INF5820

Natural Language Processing - NLP

H2009
Jan Tore Lønning
jtl@ifi.uio.no

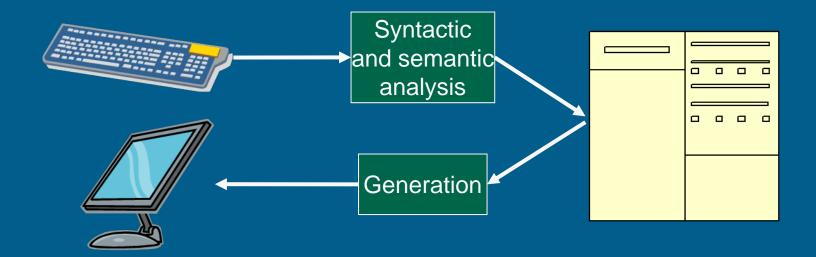
Today

- Overiew: course content
- Practicalities
- Beginning tagging

NLP applications - examples

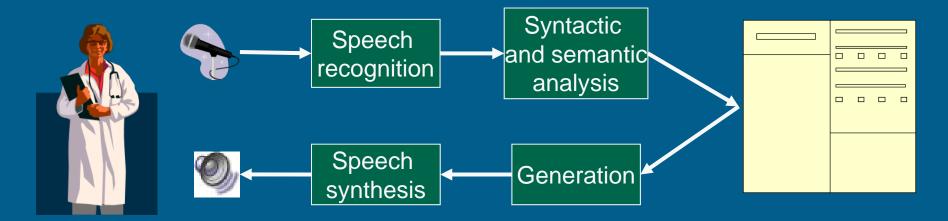
- 1. General:
 - 1. Translation
 - Dialogue
 - 3. Information processing
- 2. Speech
 - Speech ←→ text
 - 2. Voice control
- 3. Language support

Communicating with the computer



- The model of the computer as communication:
 - Analysis
 - Process
 - Generate/synthesis

Oral communication

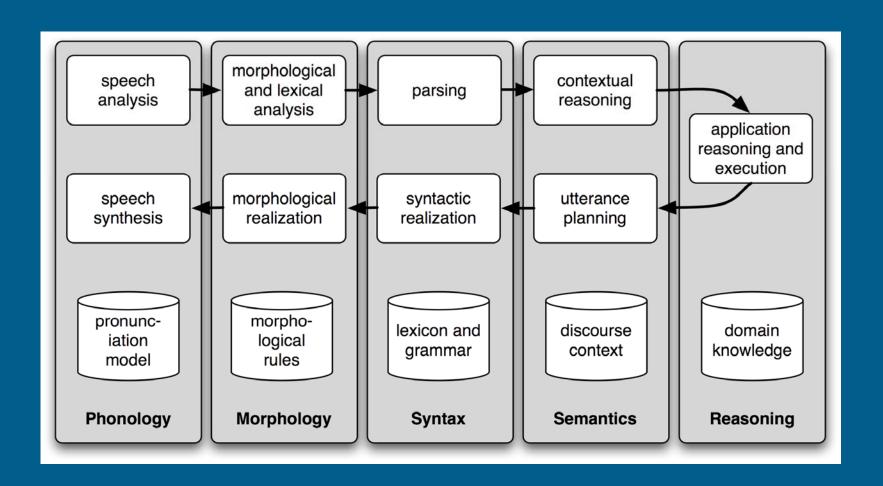


- The model of the computer as communication:
 - Analysis: speech, grammar, semantics, pragmatics
 - Process
 - Generate/synthesis: content, grammar, speech

The communicating computer

- This model fits many applications
 - Translation
 - Dialogue
 - Information processing
 - (with or without speech)
- The processing step varies:
 - Translation
 - Find an answer
 - Carry out an order

From NLTK



Analysis: two approaches

- Theoretical, formal
 - Build a declarative model using
 - Linguistics
 - Logic
 - Algorithms
 - o How does it fit data?
- Empirical
 - Start with naturally occurring text
 - What information can we get?

Grammars (formal approach)

Context Free Phrase-Structure Grammar (CF P-SG)

```
S \rightarrow NP VP
```

NP → DET N

 $VP \rightarrow IV$

VP → TV NP

NP → NP som VP

 $NP \rightarrow NP PP$

 $PP \rightarrow P NP$

NP → kari | ola

 $N \rightarrow barn | by | mann$

BNF (Backus-Naur Form)

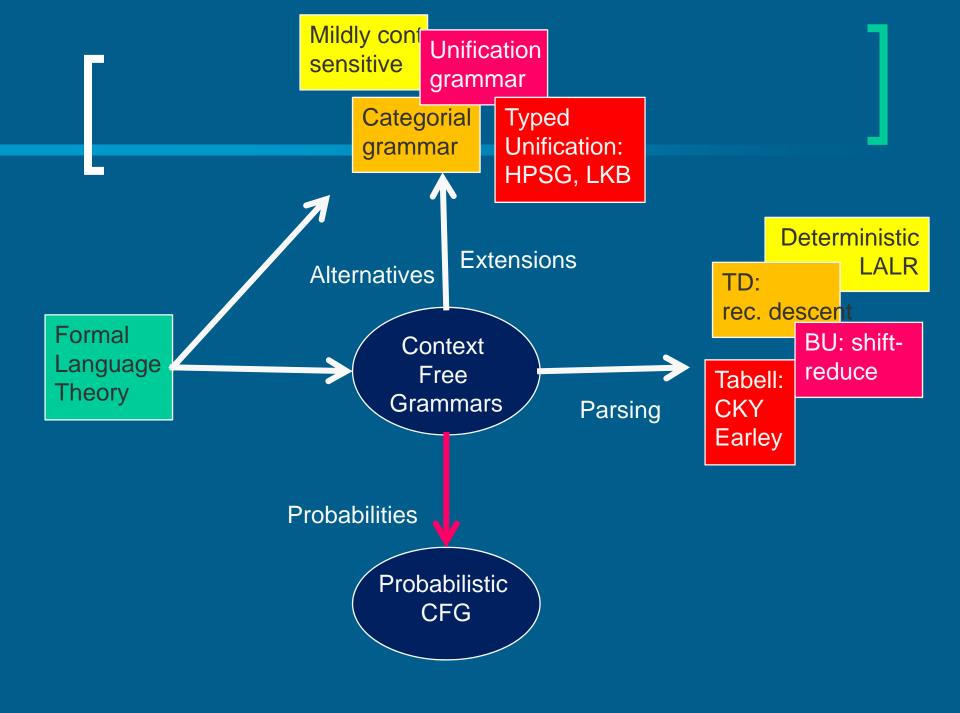
S ::= NP VP

NP::= DET N | NP som VP | NP PP | kari | ola

VP ::= IV | TV NP

PP ::= P NP

N ::= barn | by | mann



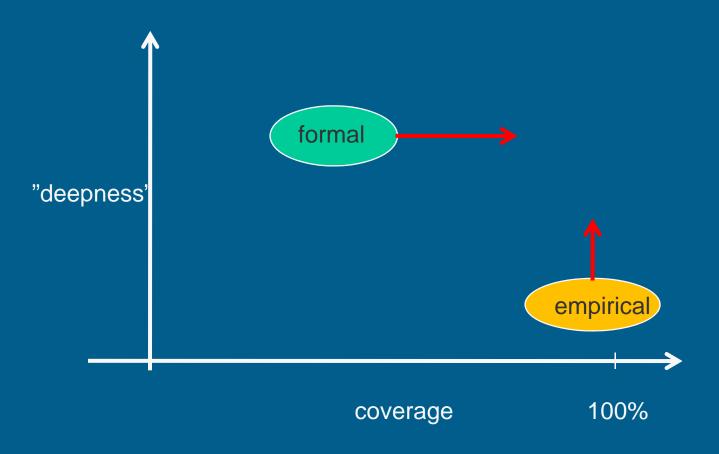
Formal approach: challenges

- Coverage
 - Ca 80%
 - The grammar isn't complete
 - The text isn't grammatical
- Ambiguities
 - Sentences are ambiguous
 - Long sentences may get many parses (in the thousands)
- Larger coverage → more rules → more ambiguities
- Efficiency

Empirical methods

- Examples:
 - Tagging
 - Speech recognition
 - Statistical MT
- Learn from examples: generalize
- Stochastic methods: probabilities
- Challenge for analysis:
 - Input to compositional semantics

Two approaches



From formal towards hybrid

- Coverage:
 - Supply with simpler methods where the formal method fails
 - Challenge: compatible output
- Ambiguities
 - Stochastic methods

A decisive difference

- Formal methods:
 - A clearcut division between
 - Grammatical ungrammatical
 - Possible analysis impossible
 - Choosing the most probable between the grammatical ones
- Empirical, stochastic approach
 - Choose the "best" (most probable)
 - No division between possible and impossible

INF5830

- http://www.uio.no/studier/emner/matna t/ifi/INF580/index.xml
- Bygger på INF4820 (kan tas samtidig)
- Alternerer med INF5820 Language technological applications

Mixed audience

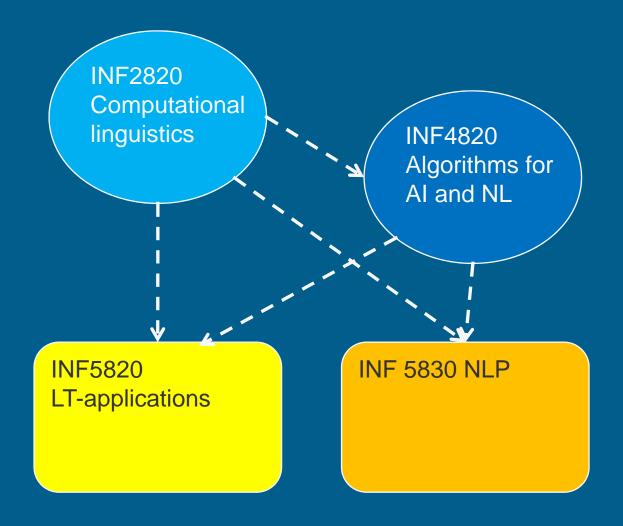
Challenge:

- Participants have different backgrounds (e.g. INF4820, 5820)
- Content of some courses have changed
 - E.g. HMM in INF4820
 - Probabilistic CFG in INF2820/INF4820

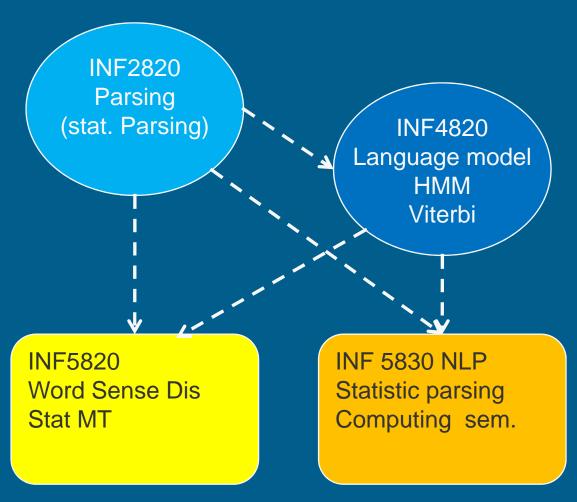
Goal:

- INF2820 or INF4820 sufficient background
- Avoid repetition
- Consult INF4820

Related courses



Statistical NLP



-stat. inference?

- smoothing?
- information theory ?

Content

- Probabilities 28.8 (=INF4820, 5820)
- Tagging
 - o CG
 - o HMM, short (more in INF4820: Viterbi)
 - Max Ent
- Probabilistic CFG
 - o Basic
 - CKY-parsing
 - Charniak-parser
 - Collins-parser

Content, contd.

- RASP-systemet
- Dependency parsing
- From parsing to semantics
 - PropBank, FrameNet
 - Role labeling
 - Relation detection

Schedule

- Class
 - Monday 14.15-16
 - Wednesday 10.15-12 (not every week)
- Exam
 - o Dec. 10, 2:30 PM

Assignments

- 3 sets
- Familarize ourselves with techniques and tools
- 1. N-gram tagging
- 2. Prob. Parsing
- 3. Small group project

PhD-students

- Use code INF9830
- Supposed to do more than master students
- Class presentation

PART OF SPEECH TAGGING

Part of speech tagging

Example: Oslo-Bergen-tagger

Parts of Speech

- 8 (ish) traditional parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
 - Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
 - Lots of debate within linguistics about the number, nature, and universality of these
 - We'll completely ignore this debate.

POS examples

- N noun chair, bandwidth, pacing
- V verb study, debate, munch
- ADJ adjective purple, tall, ridiculous
- ADV adverb unfortunately, slowly
- P preposition of, by, to
- PRO pronoun I, me, mine
- DET determiner the, a, that, those

POS Tagging

J&M: "The process of assigning a part-ofspeech or lexical class marker to each word in a collection." word

the	DET
koala	N
put	V
the	DET
keys	N
on	P
the	DET
table	N

Why is POS Tagging Useful?

- First step of
 - Chunking (partial parsing)
 - Named entity recognition
 - Word sense disambiguation
- Speech synthesis
 - o How to pronounce "lead"? No: "passasjer"?
 - o INsult inSULT
 - OBject obJECT
 - OVERflow overFLOW
 - DIScount disCOUNT
- Information extraction
 - Lemmatization
 - Finding names, relations, etc.
- POS brings info to neighboring words
 - Speech recognition

Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
 - N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
 - o PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist
- Tradeoff:
 - How much information is needed?
 - How difficult is the disambiguation?

Pen TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	' or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

POS Tagging

- Words often have more than one POS: back
 - The back door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

Processing - Jurafsky and Martin

-How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous	(1 tag)	44,019		38,857	
Ambiguous (2	–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Two Methods for POS Tagging

- 1. Rule-based tagging
 - o (ENGTWOL)
- 2. Stochastic
 - 1. Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - MEMMs (Maximum Entropy Markov Models)

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

she: PRP

promised: VBN,VBD

• to TO

back: VB, JJ, RB, NN

• the: DT

• bill: NN, VB

Etc... for the ~100,000 words of English with more than 1 tag

Assign Every Possible Tag

NN
RB
VBN
JJ
VB
PRP VBD
TO VB
DT
NN
She promised to back the bill

Tagging vs parsing

- A tagger faces the same two tasks as a grammar-based parser
- Ambiguity:
 - Choose the correct tag sequence between several candidates
- Coverage:
 - Assigning tags to words not in the lexicon:
 - Proper names
 - New words
 - Compounds
 - typos

Ambiguity

How to tag genuine ambiguities?

	VB	PRP\$	NN
PRP	VBD	PRP	VB
1	saw	her	duck

- Possible parses:
 - PRP VB PRP\$ NN
 - PRP VBD PRP\$ NN
 - PRP VBD PRP VB
- Impossible
 - PRP VBD PRP VB
 - + 4more