INF5820

Natural Language Processing - NLP

H2009
Jan Tore Lønning
jtl@ifi.uio.no

Today

Overiew: course content Practicalities

Beginning tagging

NLP applications - examples

1. General:
2. Translation
3. Dialogue
4. Information processing
5. Speech
6. Speech $\leftrightarrow \rightarrow$ text
7. Voice control
8. Language support

Communicating with the computer

- The model of the computer as communicatior:
- Analysis
- Process
- Generate/synthesis

Oral communication

- The model of the computer as communicatior:
- Analysis: speech, grammar, semantics, pragmatics
- Process
- Generate/synthesis: content, grammar, speech

The communicating computer

- This model fits many applications
- Translation
- Dialogue
- Information processing
- (with or without speech)
- The processing step varies:
- Translation
- Find an answer
- Carry out an order

From NLTK

Analysis: two approaches

- Theoretical, formal
- Build a declarative model using
- Linguistics
- Logic
- Algorithms
- How does it fit data?
- Empirical
- Start with naturally occurring text
- What information can we get?

Grammars (formal approach)

Context Free Phrase-Structure Grammar (CF P-SG)

```
S }->\mathrm{ NP VP
NP}->\mathrm{ DET N
VP }->\mathrm{ IV
VP }->\mathrm{ TV NP
NP }->\mathrm{ NP som VP
NP }->\mathrm{ NP PP
PP }->\mathrm{ P NP
NP }->\mathrm{ kari | ola
N }->\mathrm{ barn | by|mann
```

```
BNF (Backus-Naur Form)
```

BNF (Backus-Naur Form)
S ::= NP VP
S ::= NP VP
NP::= DET N | NP som VP |
NP::= DET N | NP som VP |
NP PP | kari | ola
NP PP | kari | ola
VP ::= IV | TV NP
VP ::= IV | TV NP
PP ::= P NP
PP ::= P NP
N ::= barn | by | mann

```
N ::= barn | by | mann
```


Formal approach: challenges

- Coverage
- Ca 80\%
- The grammar isn't complete
- The text isn't grammatical
- Ambiguities
- Sentences are ambiguous
- Long sentences may get many parses (in the thousands)
- Larger coverage \rightarrow more rules \rightarrow more ambiguities
- Efficiency

Empirical methods

- Examples:
- Tagging
- Speech recognition
- Statistical MT
- Learn from examples: generalize
- Stochastic methods: probabilities
- Challenge for analysis:
- Input to compositional semantics

Two approaches

From formal towards hybrid

- Coverage:
- Supply with simpler methods where the formal method fails
- Challenge: compatible output
- Ambiguities
- Stochastic methods

A decisive difference

- Formal methods:
- A clearcut division between
- Grammatical - ungrammatical
- Possible analysis - impossible
- Choosing the most probable between the grammatical ones
- Empirical, stochastic approach
- Choose the "best" (most probable)
- No division between possible and impossible

INF5830

- http://www.uio.no/studier/emner/matna t/ifi/INF580/index.xml
Bygger på INF4820 (kan tas samtidig)
- Alternerer med INF5820 Language technological applications

Mixed audience

- Challenge:
- Participants have different backgrounds (e.g. INF4820, 5820)
- Content of some courses have changed
- E.g. HMM in INF4820
- Probabilistic CFG in INF2820/INF4820
- Goal:
- INF2820 or INF4820 sufficient background
- Avoid repetition
- Consult INF4820

Related courses

Statistical NLP

-stat.
inference?

- smoothing ?
- information theory?

Content

- Probabilities 28.8 (=INF4820, 5820)
- Tagging
- CG
- HMM, short (more in INF4820: Viterbi)
- Max Ent
- Probabilistic CFG
- Basic
- CKY-parsing
- Charniak-parser
- Collins-parser

Content, contd.

- RASP-systemet
- Dependency parsing
- From parsing to semantics
- PropBank, FrameNet
- Role labeling
- Relation detection

Schedule

Class

- Monday 14.15-16
- Wednesday 10.15-12 (not every week)

Exam

- Dec. 10, 2:30 PM

Assignments

- 3 sets
- Familarize ourselves with techniques and tools

1. N-gram tagging
2. Prob. Parsing
3. Small group project

PhD-students

- Use code INF9830
- Supposed to do more than master students

Class presentation

PART OF SPEECH TAGGING

Part of speech tagging

Example: Oslo-Bergen-tagger

Parts of Speech

- 8 (ish) traditional parts of speech
- Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc
- Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags...
- Lots of debate within linguistics about the number, nature, and universality of these
- We'll completely ignore this debate.

POS examples

- N
- V
- ADJ

ADV

- P
- PRO
- DET
noun chair, bandwidth, pacing
verb study, debate, munch
adjective purple, tall, ridiculous
adverb unfortunately, slowly
preposition of, by, to
pronoun I, me, mine
determiner the, a, that, those

POS Tagging

J\&M: "The process of assigning a part-ofspeech or lexical class marker to each word in a collection." word
the
koala
DET
N
put
the
V
keys
on
the
DET
N
table

Why is POS Tagging Useful?

First step of

- Chunking (partial parsing)
- Named entity recognition
- Word sense disambiguation
- Speech synthesis
- How to pronounce "lead"? No: "passasjer"?
- INsult inSULT
- OBject obJECT
- OVERflow overFLOW
- DIScount disCOUNT
- Information extraction
- Lemmatization
- Finding names, relations, etc.
- POS brings info to neighboring words
- Speech recognition

Choosing a Tagset

- There are so many parts of speech, potential distinctions we can draw
- To do POS tagging, we need to choose a standard set of tags to work with
- Could pick very coarse tagsets
- N, V, Adj, Adv.
- More commonly used set is finer grained, the "Penn TreeBank tagset", 45 tags
- PRP\$, WRB, WP\$, VBG
- Even more fine-grained tagsets exist
- Tradeoff:
- How much information is needed?
- How difficult is the disambiguation?

rPen TreeBank POS Tagset

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	"	right quote	, or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, $(,, 4,<$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), \}, >
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	! ?
RBS	adverb, superlative	fastest	.	mid-sentence punc	; ... -
RP	particle	up, off			

Using the Penn Tagset

- The/DT grand/JJ jury/NN commmented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- Prepositions and subordinating conjunctions marked IN ("although/IN I/PRP..")
- Except the preposition/complementizer "to" is just marked "TO".

POS Tagging

- Words often have more than one POS: back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

[How Hard is POS Tagging? Measuring Ambiguity

87-tag Original Brown

45-tag Treebank Brown

Unambiguous (1 tag)	$\mathbf{4 4 , 0 1 9}$	$\mathbf{3 8 , 8 5 7}$	
Ambiguous (2-7 tags)	$\mathbf{5 , 4 9 0}$	$\mathbf{8 8 4 4}$	
Details: 2 tags	4,967	6,731	
	3 tags	411	1621
4 tags	91	357	
5 tags	17	90	
6 tags	2 (well, beat)	32	
7 tags	2 (still, down)	6 (well, set, round,	
		open, fit, down)	
8 tags		4 ('s, half, back, a)	
9 tags		3 (that, more, in)	

Two Methods for POS Tagging

1. Rule-based tagging

- (ENGTWOL)

2. Stochastic
3. Probabilistic sequence models

- HMM (Hidden Markov Model) tagging
- MEMMs (Maximum Entropy Markov Models)

Rule-Based Tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

Start With a Dictionary

- she:
- promised:
- to
- back:
- the:
- bill:

PRP
VBN, VBD
TO
VB, JJ, RB, NN
DT
NN, VB

- Etc... for the $\sim 100,000$ words of English with more than 1 tag

Assign Every Possible Tag

NN RB

VBN JJ VB
PRP VBD
TO VB
DT NN She promised to back the bill

Tagging vs parsing

- A tagger faces the same two tasks as a grammar-based parser
- Ambiguity:
- Choose the correct tag sequence between several candidates
- Coverage:
- Assigning tags to words not in the lexicon:

Proper names

- New words
- Compounds
- typos

Ambiguity

- How to tag genuine ambiguities?

	VB	PRP\$	NN
PRP	VBD	PRP	VB
I	saw	her	duck

- Possible parses:
- PRP VB PRP\$ NN
- PRP VBD PRP\$ NN
- PRP VBD PRP VB
- Impossible
- PRP VBD PRP VB
- + 4more

