INF5820

Natural Language Processing - NLP

H2009
Jan Tore Lønning
jtl@ifi.uio.no

Part of Speech Tagging

INF5830

Lecture 2

Aug 31 2009

Part of speech tagging

Example: Oslo-Bergen-tagger

POS Tagging

J&M: "The process of assigning a part-ofspeech or lexical class marker to each word in a collection." word

the	DET
koala	N
put	V
the	DET
keys	N
on	P
the	DET
table	N

POS Tagging

- Words often have more than one POS: back
 - The *back* door = JJ
 - On my back = NN
 - Win the voters back = RB
 - Promised to *back* the bill = VB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

Processing - Jurafsky and Martin

-How Hard is POS Tagging? Measuring Ambiguity

		87-tag	Original Brown	45-tag	g Treebank Brown
Unambiguous ((1 tag)	44,019		38,857	
Ambiguous (2	–7 tags)	5,490		8844	
Details:	2 tags	4,967		6,731	
	3 tags	411		1621	
	4 tags	91		357	
	5 tags	17		90	
	6 tags	2	(well, beat)	32	
	7 tags	2	(still, down)	6	(well, set, round,
					open, fit, down)
	8 tags			4	('s, half, back, a)
	9 tags			3	(that, more, in)

Methods for POS Tagging

- 1. Rule-based tagging
 - o (ENGTWOL)
- 2. Stochastic
 - 1. Probabilistic sequence models
 - HMM (Hidden Markov Model) tagging
 - MEMMs (Maximum Entropy Markov Models)
- Transformation-based tagger (Brill)
 - 1. Rule-based +
 - Relearning

Different approaches

Deep	Grammars, parsing	
	CG: Syntactic categories	
Shallow, low- level	Rule-based tagging (CG)	HMM-tagging, MaxEnt-tagging
	Rule-based Hand-written	Stochastic Machine learning

CG-tagger

- Steps in the tagging process:
 - 1. Preprocessing
 - 1. Tokenization: from characters to tokens
 - 2. Sentence segmentation
 - 2. Morphological analysis, multi-tagging
 - 1. Assign all possible tags to all tokens
 - 3. Disambiguation
 - 1. Remove contextually impossible tags (using a set of hand-written rules)
 - 2. Keep 1+ tags for each token

-2. Morphological analysis – multi-tagging

- Assign all possible tags to all tokens
- Alt.1 Fullform lexicon, containing
 - All words: run, runs, running, ran, run, ...
 - With associated tags
- Alt. 2 Lexeme lexicon (run)+
 - o Morphological analyzer:
 - run, runs, ran, running ...
 - Tag
 - Efficiency
 - Finnish: 2000 forms of a noun,
 12000 forms of a verb

Part of speech tagging

Example: Oslo-Bergen-tagger

CG-tagger

- Steps in the tagging process:
 - 1. Preprocessing
 - 1. Tokenization: from characters to tokens
 - 2. Sentence segmentation
 - 2. Morphological analysis, multi-tagging
 - 1. Assign all possible tags to all tokens
 - 3. Disambiguation
 - Remove contextually impossible tags (using a set of hand-written rules)
 - 2. Keep 1+ tags for each token

Example: Adverbial "that" rule

- Eliminates all readings of "that" except the one in
 - "It isn't that odd"

```
Given input: "that"

If

(+1 A/ADV/QUANT) ; if next word is adj/adv/quantifier
(+2 SENT-LIM) ; following which is E-O-S

(NOT -1 SVOC/A) ; and the previous word is not a

; verb like "consider" which
; allows adjective complements
; in "I consider that odd"

Then eliminate non-ADV tags
Else eliminate ADV
```

Hand-written rules

- Eks
 - # 3044
 - #2391-92
 - #2421
 - #5088 spesifik
- Regelformat: http://visl.sdu.dk/cg2_howto.html

Tagging vs parsing

- A tagger faces the same two tasks as a grammar-based parser
- Ambiguity:
 - Choose the correct tag sequence between several candidates
- Coverage:
 - Assigning tags to words not in the lexicon:
 - Proper names
 - New words
 - Compounds
 - typos

CG-syntax

- After POS-tagging/Morph. Disambiguation:
- 4. Map tags to sets of possible syntactic functions
- 5. Run disambiguator for synt. Function
- Uses similar types of rules and processing as morph. Analyzor
- See examples

CG-rule format for tagging

- Rules may refer to
 - Morph. Categories (tags)
 - Word forms
- Rules may be general:
 - Part of a tag (=class of tags), e.g. all verbs.
 - Sets of words
- Specific: single words
- Contexts:
 - Local, neighbors
 - Anywhere in the sentence
- Rule-format developed over time: CG, CG2, CG3

CG-processing

- Two layers of rules:
 - All normal rules are tried first
 - The heuristic rules
- Possible rule conflicts (within a layer)
 - Determined by rule-order (outside the formalism)
- Rules compiled into finite automata
 - Easily combined
 - Fast processing

Ambiguity

A CG-tagger leaves ambiguities:

	VB	PRP\$	NN
PRP	VBD	PRP	VB
	saw	her	duck

- How to determine the possible parses?
 - PRP VB PRP\$ NN
 - PRP VBD PRP\$ NN
 - PRP VBD PRP VB
- In contrast to the impossible ones:
 - PRP VBD PRP VB
 - + 4more

Coverage: unknown words

- All possible tags?
 - No too many
- Spell correction? (typos)
- Guess tags:
 - From morphology:
 - -ing: VBG, JJ, N
 - Norw.: -er: V_pres, N_pl
 - Starting capital: proper name
 - From frequency
 - Proper names
 - Nouns
- Norw., German, etc:
 - Compound analysis

Stochastic tagging:

HMM-TAGGING

And then

- Some statistics:
 - Product rule
 - Stochastic variable
- J & M,Chap. 5, slide 26-36
- Morkov-models slides