INF5820

Natural Language Processing - NLP

H2009
Jan Tore Lønning
jtl@ifi.uio.no

Dependensparsing

INF5830

Lecture 12

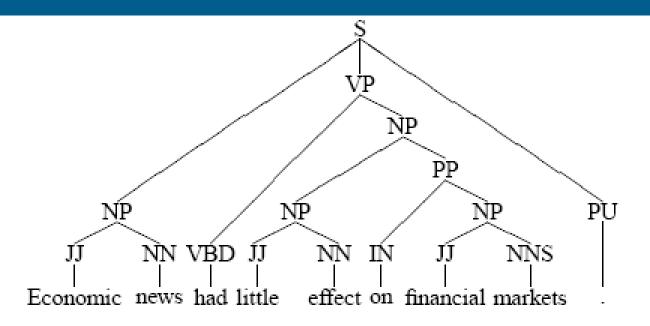
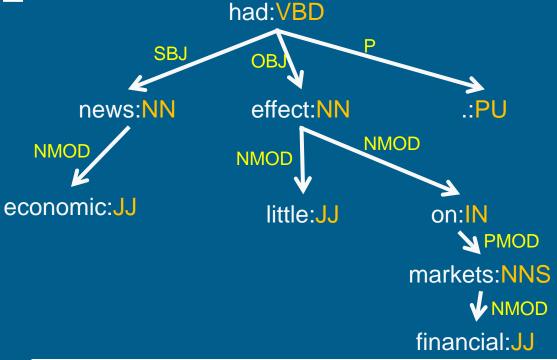
Nov 2, 2009

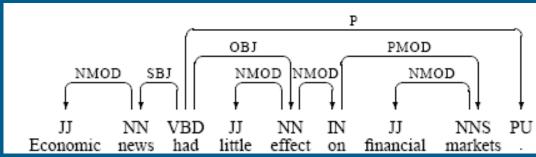
Today

- Dependency grammar
- Dependency parsing
 - w/MaltParser

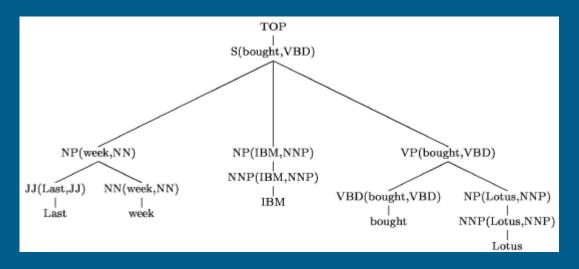
Dependency grammar

- Syntax as dependency structure between words
- Asymmetric relationship between head and dependent
- Different from phrase structure: only terminals
- Lucien Tesnière (1893-1954)
 - Éléments de syntaxe structurale (1959)


Figure 1: Constituent structure for English sentence from the Penn Treebank

Nivre: Dependency Grammar and Dependency Parsing OBJ **PMOD** NMOD NMOD NMOD SBJ NMOD VBD NNlittle Economic effect financial news had onmarkets


Figure 2: Dependency structure for English sentence from the Penn Treebank

Alternativ grafikk

Sammenheng

- Fra et hodemerket PS-tre:
- Lag depedensstruktur ved å
 - slå sammen hodet med sin mor
 - Bestem dependenstype
- Fra depedens til frasestruktur ikke rett frem

Formell definisjon

Definition 1

Given a set R of dependency types (arc labels), a dependency graph for a sentence $x = (w_1, ..., w_n)$ is a labeled directed graph G = (V, E, L), where:

- 1. $V = \mathbf{Z}_{n+1}$
- 2. $E \subseteq V \times V$
- 3. $L: E \rightarrow R$

Definition 2

A dependency graph G is well-formed if and only if:

- 1. The node 0 is a root (ROOT).
- 2. G is connected (CONNECTEDNESS).4

Styrker

- Færre ting å ta stilling til
- Velegnet for språk med friere ordstilling
 - Men ikke trivielt å parse fri ordstilling
- Har den vesentlige informasjonen for videre semantisk prosessering:
 - "hvem gjorde hva med hvem"
- Velegnet for parsing:
 - Liknende informasjon som i leksikalsk PCFG tilgjengelig: ord og POS-tagg for hodet

Projektiv?

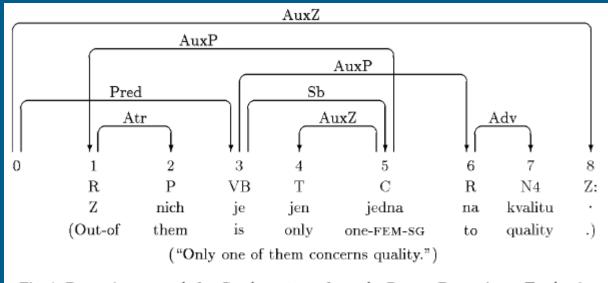


Fig. 1. Dependency graph for Czech sentence from the Prague Dependency Treebank.

Mulige krav

- 3. Single-Head: Ikke $i \rightarrow j$ og $i \rightarrow k$
- 4. Acyklisk: ikke i \rightarrow j og j \rightarrow * i
- 5. Projektiv: Hvis i → j og i < k < j eller j < k < i, så i →* k

MaltParser

- Deterministisk SR-parser for depedenssturktur
- 2. "History-based" trekkmodell for å predikere neste trekk (a la Collins)
- Diskriminativ læring av orakel for å styre parservalgene

Economic news had little effect on financial markets.

|| Economic news had little effect on financial markets.

Economic || news had little effect on financial markets.SHIFT

|| Economic news had little effect on financial markets.

Economic || news had little effect on financial markets.SHIFT
|| news had little effect on financial markets. LEFT-ARCH


```
|| Economic news had little effect on financial markets.
```

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets. SHIFT

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets. SHIFT

had little effect on financial markets. LEFT-ARCH


```
Economic news had little effect on financial markets.
```

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets. SHIFT

had little effect on financial markets. LEFT-ARCH

had little | effect on financial markets. SHIFT + SHIFT

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets. SHIFT

had little effect on financial markets. LEFT-ARCH

had little | effect on financial markets. SHIFT + SHIFT

had | effect on financial markets. LEFT-ARCH

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets.

had little effect on financial markets.

had little | effect on financial markets.

had | effect on financial markets.

had effect | on financial markets.

SHIFT

LEFT-ARCH

SHIFT + SHIFT

LEFT-ARCH

RIGHT-ARCH

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets.

LEFT-ARCH had little effect on financial markets.

had little | effect on financial markets. SHIFT + SHIFT

had | effect on financial markets.

had effect | on financial markets.

had effect on | financial markets.

SHIFT

LEFT-ARCH

RIGHT-ARCH

RIGHT-ARCH

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets. SHIFT

had little effect on financial markets.

had little | effect on financial markets.

had | effect on financial markets.

had effect | on financial markets.

had effect on | financial markets.

had effect on financial | markets.

LEFT-ARCH

SHIFT + SHIFT

LEFT-ARCH

RIGHT-ARCH

RIGHT-ARCH

SHIFT

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets.

had little effect on financial markets.

had little | effect on financial markets.

had | effect on financial markets.

had effect | on financial markets.

had effect on | financial markets.

had effect on financial | markets.

had effect on | markets.

SHIFT

LEFT-ARCH

SHIFT + SHIFT

LEFT-ARCH

RIGHT-ARCH

RIGHT-ARCH

SHIFT

LEFT-ARCH

Economic | news had little effect on financial markets. SHIFT

news had little effect on financial markets. LEFT-ARCH

news | had little effect on financial markets.

had little effect on financial markets.

had little | effect on financial markets.

had | effect on financial markets.

had effect | on financial markets.

had effect on | financial markets.

had effect on financial | markets.

had effect on | markets.

had effect on markets |.

SHIFT

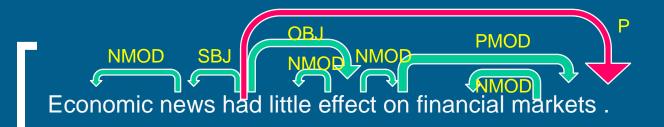
LEFT-ARCH

SHIFT + SHIFT

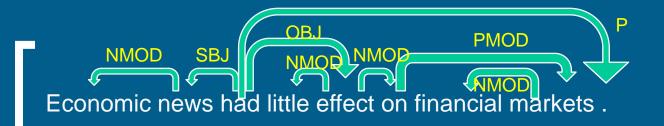
LEFT-ARCH

RIGHT-ARCH

RIGHT-ARCH


SHIFT

LEFT-ARCH


RIGHT-ARCH

Economic news had little effect on financial markets. Economic | news had little effect on financial markets. SHIFT news had little effect on financial markets. LEFT-ARCH news | had little effect on financial markets. SHIFT LEFT-ARCH had little effect on financial markets. had little | effect on financial markets. SHIFT + SHIFT had | effect on financial markets. LEFT-ARCH **RIGHT-ARCH** had effect | on financial markets. had effect on || financial markets. **RIGHT-ARCH** had effect on financial | markets. SHIFT had effect on | markets. LEFT-ARCH had effect on markets||. **RIGHT-ARCH** 3 x REDUCE had || .


```
Economic news had little effect on financial markets.
Economic | news had little effect on financial markets. SHIFT
news had little effect on financial markets.
                                                     LEFT-ARCH
news | had little effect on financial markets.
                                                     SHIFT
                                                     LEFT-ARCH
had little effect on financial markets.
had little | effect on financial markets.
                                                     SHIFT + SHIFT
had | effect on financial markets.
                                                     LEFT-ARCH
                                                     RIGHT-ARCH
had effect | on financial markets.
had effect on || financial markets.
                                                     RIGHT-ARCH
had effect on financial | markets.
                                                     SHIFT
had effect on | markets.
                                                     LEFT-ARCH
had effect on markets||.
                                                     RIGHT-ARCH
                                                     3 x REDUCE
had | .
                                                     RIGHT-ARCH
had . ||
```



```
Economic news had little effect on financial markets.
Economic | news had little effect on financial markets. SHIFT
news had little effect on financial markets.
                                                     LEFT-ARCH
news | had little effect on financial markets.
                                                     SHIFT
                                                     LEFT-ARCH
| had little effect on financial markets.
had little | effect on financial markets.
                                                     SHIFT + SHIFT
had | effect on financial markets.
                                                     LEFT-ARCH
had effect | on financial markets.
                                                     RIGHT-ARCH
had effect on || financial markets.
                                                     RIGHT-ARCH
had effect on financial | markets.
                                                     SHIFT
                                                     LEFT-ARCH
had effect on || markets.
had effect on markets||.
                                                     RIGHT-ARCH
                                                     3 x REDUCE
had || .
                                                     RIGHT-ARCH
had.
                                                     2 x REDUCE
```


Detalj:

- starter med kant fra 0 til alle andre noder
- fjerner kanten fra 0 til n når vi legger inn ny kant til n (SINGLE-HEAD)
- står igjen med kant fra 0 til had

Deterministic

- So far: non-deterministic algorithm
- Deterministic:
 - An oracle decides the next move when stack is non-empty
 - The oracle is learned from a treebank

Features

- σ_i is j-th token on stack
- τ_{i} is *j*-th token in input
- h(j), head of j in graph
- I(j), leftmost child of j
- r(j), rightmost child of j
- p(j) is tag of j
- d(j) is dependency type of j
- w(j) is word of j

Standard modell:

- **p(.)**:
 - \circ σ_0 , σ_1
 - \circ $\tau_0, \tau_1, \tau_2, \tau_3$
- **w**(.):
 - \circ σ_0 , $h(\sigma_0)$
 - \circ τ_0, τ_1
- **d(.)**:
 - \circ $I(\sigma_0)$, σ_0 ,
 - \circ r(σ_0), l(τ_0)

had effect | on financial markets.

$$p(\sigma_0) = p(effect) = NN$$

$$p(\sigma_1) = p(had) = VBD$$

$$p(\tau_0) = p(on) = IN$$

$$p(\tau_1) = p(financial) = JJ$$

$$p(\tau_2) = p(markets) = NNS$$

$$p(\tau_3) = p(.) = PU$$

$$W(\sigma_0) = effect$$
 $W(h((\sigma_0)) = had$
 $W(\tau_0) = on$
 $W(\tau_1) = financial$
 $d(I(\sigma_0)) = NMOD$
 $d(\sigma_0) = OBJ$
 $d(r(\sigma_0)) = nil$
 $d(I(\tau_0)) = nil$

Læring

- Trekkene læres fra en trebank med eksempler
- Forenlig med ulike læringsteknikker:
 - Memory-based learning, som TiMBL
 - Support-Vector Machines
 - o Osv.

Evaluering

Table 1. Data sets. AS = Annotation scheme (C = Constituency, D = Dependency, G = Grammatical functions); <math>Pro = Projective; #D = Number of dependency types; #P = Number of PoS tags; TA = Tagging accuracy; #W = Number of words; #S = Number of sentences; SL = Mean sentence length; $EM = Evaluation method (T = Held-out test set, <math>CV_k = k$ -fold cross-validation)

Language	AS	Pro	#D	#P	TA	#W	#S	SL	EM
Bulgarian	С	no	14	51	93.5	72k	5.1k	14.1	CV ₈
Chinese	CG	yes	12	35	100.0	509k	18.8k	27.1	T
Czech	D	no	26	28	94.1	1507k	87.9k	17.2	T
Danish	D	no	54	33	96.3	100k	5.5k	18.2	T
Dutch	$^{\rm CD}$	no	23	165	95.7	186k	13.7k	13.6	T
English	CG	yes	12	48	96.1	1174k	49.2k	23.8	T
German	CG	no	31	55	100.0	382k	22.1k	17.3	CV_{10}
Italian	D	no	17	89	93.1	42k	1.5k	27.7	CV_{10}
Swedish	CG	yes	17	46	95.6	98k	6.3k	15.5	T
Turkish	D	no	24	484	100.0	48k	5.6k	8.6	CV_{10}

Results

Table 3. Overview of results. Model = Best feature model (- = omitted, + = added, \rightarrow = replaced by); Settings = TiMBL settings; AS_U = Unlabeled attachment score; AS_L = Labeled attachment score

Language	Model	Settings	AS_U	AS_L
Bulgarian Chinese Czech Danish Dutch English German Italian Swedish Turkish	$\forall a[w(a) \rightarrow s_6(w(a)))]$ Standard Standard $[w(h(\sigma_0)) \rightarrow s_6(w(h(\sigma_0))); -w(\tau_1)]$ Standard Standard $[-w(h(\sigma_0)); -w(\tau_1); +p(\sigma_2)]$ Standard Standard Standard $[-p(\sigma_1); -p(\tau_2); -p(\tau_3); -w(h(\sigma_0)); -w(\tau_1)]$	Standard $k = 6, l = 8$ Standard Standard $k = 10$ $k = 7, l = 5$ $k = 13, IL$ Standard Standard Standard	81.3 81.1 80.1 85.6 84.7 88.1 88.1 82.9 86.3 81.6	73.6 79.2 72.8 79.5 79.2 86.3 83.4 75.7 82.0 69.0

Time complexity

- O(n³):
 - CKY-recognition
 - CKY w/parse forest
 - CKY for PCFG
 - o n-best CKY with PCFG
- Collins-parser:
 - \circ O(n⁵) (an adaption is O(n⁴))
- MaltParser
 - O(n) with standard model
 - O(n²) with unrestricted look-ahead

Generative model

- E.g. PCFG
- Generates tree with probability:
 - o P(t) = P(t, s) if s is the yield of t
 - \circ P(t, s) = 0 for other s
- Hence:

$$P(t|s) = \frac{P(s|t)P(t)}{P(s)} = \frac{P(t)}{P(s)}$$

o and

$$argmax_s P(t|s) = argmax_s P(t)$$

Also language model:

$$P(s) = \sum_{t} P(t, s)$$

Discriminative model

- Does not construct the tree
- Only compares P(t1 |s) to P(t2 | s) for candidate trees
- MaltParser
 - does not compare full trees
 - but moves:
 - local decisions