UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination inMAT-INF 4130 — Numerical linear algebraDay of examination:3 December 2013Examination hours:1100–1500This problem set consists of 4 pages.Appendices:NonePermitted aids:None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 True or false

Give reasons for your answers.

1a

If two matrices have the same eigenvalues they must be similar.

Answer: False. The matrices $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $J = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ have the same eigenvalues $\lambda_1 = \lambda_2 = 1$. However J is defective and cannot be diagonalized by a similarity transformation.

1b

If $\boldsymbol{x} \in \operatorname{span}(\boldsymbol{A})$ and $\boldsymbol{y} \in \ker(\boldsymbol{A})$ then $\boldsymbol{x}^T \boldsymbol{y} = 0$ for any $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$.

Answer: False. Let
$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
. Then $\boldsymbol{x} := \boldsymbol{A} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \in \operatorname{span}(\boldsymbol{A})$ and $\boldsymbol{y} := \begin{bmatrix} 1 \\ -1 \end{bmatrix} \in \ker(\boldsymbol{A})$ since $\boldsymbol{A}\boldsymbol{y} = \boldsymbol{0}$. But $\boldsymbol{x}^T\boldsymbol{y} = 2 \neq 0$.

1c

The overdetermined linear system

$$\boldsymbol{A}\boldsymbol{x} = \begin{bmatrix} 1 & 2\\ 2 & 3\\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix} = \boldsymbol{b}$$

(Continued on page 2.)

has a least squares solution $x_1 = -6$, $x_2 = 9/2$. This solution is unique. **Answer**: Both true. The normal equation $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{A}^T \mathbf{b}$ for this system is

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 21 & 28 \\ 28 & 38 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

with solution $x_1 = -6$, $x_2 = 9/2$. The solution is unique since $A^T A$ is nonsingular. Uniqueness also follows since A has linearly independent columns.

1d

The matrix

$$oldsymbol{A} := egin{bmatrix} 1 & -1 & 0 & 1 \ 0 & 1 & -1 & -1 \ 1 & 0 & 5 & -10 \ 0 & 9 & 0 & 10 \end{bmatrix}$$

has a unique LU-factorization. (Do not compute the factorization.)

Answer: True. A has a unique LU-factorization if and only if the leading principal submatrices $A_{[k]}$ are nonsingular for k = 1, 2, 3. $A_{[1]} = [1]$ is nonsingular since it is nonzero, and $A_{[2]}$ is triangular with nonzero diagonal elements and therefore nonsingular. We show that $A_{[3]}$ has linearly independent columns and is therefore noisngular. We find

$$m{A}_{[3]} m{x} = m{0} \iff m{x}_1 - x_2 = 0 \ x_2 - x_3 = 0 \ x_1 + 5x_3 = 0 \ x_1 + 5x_3 = 0$$

Alternatively,

$$\det(\mathbf{A}_{[3]}) = \det(\begin{bmatrix} 1 & -1\\ 0 & 5 \end{bmatrix}) + \det(\begin{bmatrix} -1 & 0\\ 1 & -1 \end{bmatrix}) = 5 + 1 = 6 \neq 0.$$

Problem 2 Givens rotation

A Givens rotation of order 2 has the form $\boldsymbol{G} := \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \in \mathbb{R}^{2 \times 2}$, where $s^2 + c^2 = 1$.

2a

Is \boldsymbol{G} symmetric and unitary?

Answer: \boldsymbol{G} is only symmetric for s = 0. \boldsymbol{G} is unitary since $\boldsymbol{G}^T \boldsymbol{G} = \begin{bmatrix} s^2 + c^2 & 0 \\ 0 & s^2 + c^2 \end{bmatrix} = \boldsymbol{I}.$

(Continued on page 3.)

2b

Given $x_1, x_2 \in \mathbb{R}$ and set $r := \sqrt{x_1^2 + x_2^2}$. Find G and y_1, y_2 so that $y_1 = y_2$, where $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = G \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

Answer: We find $y_1 = y_2$ if and only if $cx_1 + sx_2 = -sx_1 + cx_2$ and $s^2 + c^2 = 1$. Thus s and c must be solutions of

$$(x_1 + x_2)s + (x_1 - x_2)c = 0$$
$$s^2 + c^2 = 1.$$

If $x_1 = x_2$ then the solution is s = 0 and $c = \pm 1$. Suppose $x_1 \neq x_2$. Substituting $c = \frac{x_1 + x_2}{x_2 - x_1} s$ into $1 = s^2 + c^2$ we find

$$1 = s^{2} \left(1 + \frac{(x_{1} + x_{2})^{2}}{(x_{2} - x_{1})^{2}} \right) = s^{2} \frac{(x_{2} - x_{1})^{2} + (x_{1} + x_{2})^{2}}{(x_{2} - x_{1})^{2}} = s^{2} \frac{2r^{2}}{(x_{2} - x_{1})^{2}}$$

There are two solutions

$$s_1 = \frac{x_2 - x_1}{r\sqrt{2}}, \ c_1 = \frac{x_2 + x_1}{r\sqrt{2}}, \ s_2 = -s_1, \ c_2 = -c_1.$$

We find

$$y_1 = y_2 = c_1 x_1 + s_1 x_2 = \frac{1}{r\sqrt{2}} ((x_1 + x_2)x_1 + (x_2 - x_1)x_2) = r/\sqrt{2}.$$

The other solution is $y_1 = y_2 = c_2 x_1 + s_2 x_2 = -(c_1 x_1 + s_1 x_2) = -r/\sqrt{2}$.

Problem 3 Perturbation of the identity matrix

Let $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ and suppose $\|\boldsymbol{B}\| < 1$ for some operator norm.

3a

Show that I - B is nonsingular.

Answer: Suppose I - B is singular. Then (I - B)x = 0 for some nonzero $x \in \mathbb{C}^n$, and x = Bx so that $||x|| = ||Bx|| \le ||B|| ||x||$. But then $||B|| \ge 1$. It follows that I - B is nonsingular if ||B|| < 1.

3b

Show that

$$\|(I - B)^{-1}\| \le \frac{1}{1 - \|B\|}$$

Answer: Taking norms and using the inverse triangle inequality in

$$I = (I - B)(I - B)^{-1} = (I - B)^{-1} - B(I - B)^{-1}$$

(Continued on page 4.)

implies

 $\|I\| \ge \|(I - B)^{-1}\| - \|B(I - B)^{-1}\| \ge (1 - \|B\|)\|(I - B)^{-1}\|.$

If the matrix norm is an operator norm then $\|\boldsymbol{I}\| = 1$ and the upper bound follows.

Problem 4 Matlab program

Suppose $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, where A has rank n and let $A = U\Sigma V^T$ be a singular value factorization of A. Thus $U \in \mathbb{R}^{m \times n}$ and $\Sigma, V \in \mathbb{R}^{n \times n}$. Write a Matlab function [x, K] = lsq(A, b) that uses the singular value factorization of A to calculate a least squares solution $x = V\Sigma^{-1}U^Tb$ to the system Ax = b and the spectral (2-norm) condition number of A. The Matlab command [U,Sigma,V] = svd(A,0) computes the singular value factorization of A.

Answer: The matrix Σ is a diagonal matrix with the singular values on the diagonal ordered so that $\sigma_1 \geq \cdots \geq \sigma_n$. Moreover, $\sigma_n > 0$ since A has rank n. The spectral condition number is $K = \sigma_1/\sigma_n$. We also use the Matlab function diag(Sigma) that extracts the diagonal of Σ . This leads to the following program:

function [x,K]=lsq(A,b)
[U,Sigma,V]=svd(A,0);
s=diag(Sigma);
x=V*((U'*b)./s);
K=s(1)/s(length(s));

Good luck!