UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in MAT-INF 4130 - Numerical linear algebra
Day of examination: 3 December 2013
Examination hours: 1100-1500
This problem set consists of 4 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

All 9 part questions will be weighted equally.

Problem 1 True or false

Give reasons for your answers.

1a

If two matrices have the same eigenvalues they must be similar.
Answer: False. The matrices $\boldsymbol{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $\boldsymbol{J}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ have the same eigenvalues $\lambda_{1}=\lambda_{2}=1$. However \boldsymbol{J} is defective and cannot be diagonalized by a similarity transformation.

1b

If $\boldsymbol{x} \in \operatorname{span}(\boldsymbol{A})$ and $\boldsymbol{y} \in \operatorname{ker}(\boldsymbol{A})$ then $\boldsymbol{x}^{T} \boldsymbol{y}=0$ for any $\boldsymbol{A} \in \mathbb{R}^{2 \times 2}$.
Answer: False. Let $\boldsymbol{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. Then $\boldsymbol{x}:=\boldsymbol{A}\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 0\end{array}\right] \in \operatorname{span}(\boldsymbol{A})$ and $\boldsymbol{y}:=\left[\begin{array}{c}1 \\ -1\end{array}\right] \in \operatorname{ker}(\boldsymbol{A})$ since $\boldsymbol{A} \boldsymbol{y}=\mathbf{0}$. But $\boldsymbol{x}^{T} \boldsymbol{y}=2 \neq 0$.

1c
The overdetermined linear system

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right]=\boldsymbol{b}
$$

(Continued on page 2.)
has a least squares solution $x_{1}=-6, x_{2}=9 / 2$. This solution is unique.
Answer: Both true. The normal equation $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$ for this system is

$$
\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 3 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
21 & 28 \\
28 & 38
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 3 & 5
\end{array}\right]\left[\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

with solution $x_{1}=-6, x_{2}=9 / 2$. The solution is unique since $\boldsymbol{A}^{T} \boldsymbol{A}$ is nonsingular. Uniqueness also follows since \boldsymbol{A} has linearly independent columns.

1d

The matrix

$$
\boldsymbol{A}:=\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 1 & -1 & -1 \\
1 & 0 & 5 & -10 \\
0 & 9 & 0 & 10
\end{array}\right]
$$

has a unique LU-factorization. (Do not compute the factorization.)
Answer: True. \boldsymbol{A} has a unique LU-factorization if and only if the leading principal submatrices $\boldsymbol{A}_{[k]}$ are nonsingular for $k=1,2,3 . \quad \boldsymbol{A}_{[1]}=[1]$ is nonsingular since it is nonzero, and $\boldsymbol{A}_{[2]}$ is triangular with nonzero diagonal elements and therefore nonsingular. We show that $\boldsymbol{A}_{[3]}$ has linearly independent columns and is therefore nosingular. We find

$$
\boldsymbol{A}_{[3]} \boldsymbol{x}=\mathbf{0} \Longleftrightarrow \begin{aligned}
& x_{1}-x_{2}=0 \\
& x_{2}-x_{3}=0 \\
& x_{1}+5 x_{3}=0
\end{aligned} \Longleftrightarrow x_{1}=x_{2}=x_{3}=0 .
$$

Alternatively,

$$
\operatorname{det}\left(\boldsymbol{A}_{[3]}\right)=\operatorname{det}\left(\left[\begin{array}{cc}
1 & -1 \\
0 & 5
\end{array}\right]\right)+\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right]\right)=5+1=6 \neq 0
$$

Problem 2 Givens rotation

A Givens rotation of order 2 has the form $\boldsymbol{G}:=\left[\begin{array}{cc}c & s \\ -s & c\end{array}\right] \in \mathbb{R}^{2 \times 2}$, where $s^{2}+c^{2}=1$.

$2 a$

Is \boldsymbol{G} symmetric and unitary?
Answer: \boldsymbol{G} is only symmetric for $s=0 . \boldsymbol{G}$ is unitary since $\boldsymbol{G}^{T} \boldsymbol{G}=$ $\left[\begin{array}{cc}s^{2}+c^{2} & 0 \\ 0 & s^{2}+c^{2}\end{array}\right]=\boldsymbol{I}$.

2b

Given $x_{1}, x_{2} \in \mathbb{R}$ and set $r:=\sqrt{x_{1}^{2}+x_{2}^{2}}$. Find \boldsymbol{G} and y_{1}, y_{2} so that $y_{1}=y_{2}$, where $\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\boldsymbol{G}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
Answer: We find $y_{1}=y_{2}$ if and only if $c x_{1}+s x_{2}=-s x_{1}+c x_{2}$ and $s^{2}+c^{2}=1$. Thus s and c must be solutions of

$$
\begin{aligned}
\left(x_{1}+x_{2}\right) s+\left(x_{1}-x_{2}\right) c & =0 \\
s^{2}+c^{2} & =1 .
\end{aligned}
$$

If $x_{1}=x_{2}$ then the solution is $s=0$ and $c= \pm 1$. Suppose $x_{1} \neq x_{2}$. Substituting $c=\frac{x_{1}+x_{2}}{x_{2}-x_{1}} s$ into $1=s^{2}+c^{2}$ we find

$$
1=s^{2}\left(1+\frac{\left(x_{1}+x_{2}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}\right)=s^{2} \frac{\left(x_{2}-x_{1}\right)^{2}+\left(x_{1}+x_{2}\right)^{2}}{\left(x_{2}-x_{1}\right)^{2}}=s^{2} \frac{2 r^{2}}{\left(x_{2}-x_{1}\right)^{2}}
$$

There are two solutions

$$
s_{1}=\frac{x_{2}-x_{1}}{r \sqrt{2}}, c_{1}=\frac{x_{2}+x_{1}}{r \sqrt{2}}, \quad s_{2}=-s_{1}, c_{2}=-c_{1} .
$$

We find

$$
y_{1}=y_{2}=c_{1} x_{1}+s_{1} x_{2}=\frac{1}{r \sqrt{2}}\left(\left(x_{1}+x_{2}\right) x_{1}+\left(x_{2}-x_{1}\right) x_{2}\right)=r / \sqrt{2} .
$$

The other solution is $y_{1}=y_{2}=c_{2} x_{1}+s_{2} x_{2}=-\left(c_{1} x_{1}+s_{1} x_{2}\right)=-r / \sqrt{2}$.

Problem 3 Perturbation of the identity matrix

Let $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ and suppose $\|\boldsymbol{B}\|<1$ for some operator norm.

3a

Show that $\boldsymbol{I}-\boldsymbol{B}$ is nonsingular.
Answer: Suppose $\boldsymbol{I}-\boldsymbol{B}$ is singular. Then $(\boldsymbol{I}-\boldsymbol{B}) \boldsymbol{x}=\mathbf{0}$ for some nonzero $\boldsymbol{x} \in \mathbb{C}^{n}$, and $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{x}$ so that $\|\boldsymbol{x}\|=\|\boldsymbol{B} \boldsymbol{x}\| \leq\|\boldsymbol{B}\|\|\boldsymbol{x}\|$. But then $\|\boldsymbol{B}\| \geq 1$. It follows that $\boldsymbol{I}-\boldsymbol{B}$ is nonsingular if $\|\boldsymbol{B}\|<1$.

3b

Show that

$$
\left\|(\boldsymbol{I}-\boldsymbol{B})^{-1}\right\| \leq \frac{1}{1-\|\boldsymbol{B}\|}
$$

Answer: Taking norms and using the inverse triangle inequality in

$$
\boldsymbol{I}=(\boldsymbol{I}-\boldsymbol{B})(\boldsymbol{I}-\boldsymbol{B})^{-1}=(\boldsymbol{I}-\boldsymbol{B})^{-1}-\boldsymbol{B}(\boldsymbol{I}-\boldsymbol{B})^{-1}
$$

(Continued on page 4.)
implies

$$
\|\boldsymbol{I}\| \geq\left\|(\boldsymbol{I}-\boldsymbol{B})^{-1}\right\|-\left\|\boldsymbol{B}(\boldsymbol{I}-\boldsymbol{B})^{-1}\right\| \geq(1-\|\boldsymbol{B}\|)\left\|(\boldsymbol{I}-\boldsymbol{B})^{-1}\right\| .
$$

If the matrix norm is an operator norm then $\|\boldsymbol{I}\|=1$ and the upper bound follows.

Problem 4 Matlab program

Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}$, where \boldsymbol{A} has rank n and let $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}$ be a singular value factorization of \boldsymbol{A}. Thus $\boldsymbol{U} \in \mathbb{R}^{m \times n}$ and $\boldsymbol{\Sigma}, \boldsymbol{V} \in \mathbb{R}^{n \times n}$. Write a Matlab function $[\mathrm{x}, \mathrm{K}]=1 \mathrm{sq}(\mathrm{A}, \mathrm{b})$ that uses the singular value factorization of \boldsymbol{A} to calculate a least squares solution $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{T} \boldsymbol{b}$ to the system $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ and the spectral (2-norm) condition number of \boldsymbol{A}. The Matlab command $[\mathrm{U}, \mathrm{Sigma}, \mathrm{V}]=\operatorname{svd}(\mathrm{A}, 0)$ computes the singular value factorization of \boldsymbol{A}.

Answer: The matrix $\boldsymbol{\Sigma}$ is a diagonal matrix with the singular values on the diagonal ordered so that $\sigma_{1} \geq \cdots \geq \sigma_{n}$. Moreover, $\sigma_{n}>0$ since \boldsymbol{A} has rank n. The spectral condition number is $K=\sigma_{1} / \sigma_{n}$. We also use the Matlab function diag (Sigma) that extracts the diagonal of $\boldsymbol{\Sigma}$. This leads to the following program:

```
function [x,K]=lsq(A,b)
[U,Sigma,V]=svd(A,0);
s=diag(Sigma);
x=V*((U'*b)./s);
K=s(1)/s(length(s));
```

Good luck!

