UNIVERSITY OF OSLO
 Faculty of mathematics and natural sciences

Constituent exam in: MAT1110 - Kalkulus og lineær algebra
Day of examination: Fredag 30. mars 2012
Examination hours: $15.00-17.00$
This problem set consists of 4 pages.

Appendices:
Permitted aids:

Answer sheet, formelsamling.
None.

Please make sure that your copy of the problem set is

 complete before you attempt to answer anything.The exam consists of 15 questions. The 10 first count for 3 points each, while the 5 last count for 4 points each, so there is a total of 50 points. There is only one correct alternative for each question. If you give no answer or a wrong answer to a question, you will be given 0 points. If you check more than one alternative, you will be given 0 points.

Unfortunately there were 2 correct answers for Question 3. Any of those answers will be credited.

Question 1. (3 points) Let $F(x, y)=\left(x^{2} y, x y^{4}\right)$. The linearization of F at the point $(1,1)$ is:
A) $\mathbf{T}_{(1,1)}(x, y)=(2,4)+(2 x+y, x+4 y)$
B) $\mathbf{T}_{(1,1)}(x, y)=(-2,4)+(2 x+y, x+4 y)$
C) $\mathbf{T}_{(1,1)}(\mathrm{x}, \mathrm{y})=(-2,-4)+(2 \mathrm{x}+\mathrm{y}, \mathrm{x}+4 \mathrm{y})$ CORRECT
D) $\mathbf{T}_{(1,1)}(x, y)=(-2,-4)+(2 x+y, x-4 y)$
E) $\mathbf{T}_{(1,1)}(x, y)=(-2,-4)+(2 x-y, x+4 y)$

Question 2. (3 points) Let $R \subset \mathbb{R}^{2}$ be the rectangle $R=[1,3] \times[2,4]$, and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the affine mapping defined by $F(x, y)=(1,3)+A(x, y)$, where A is the matrix

$$
A=\left(\begin{array}{ll}
2 & 7 \\
3 & 1
\end{array}\right)
$$

Then the area of the image $F(R)$ is
A) 76 CORRECT
B) 42
C) 67
D) 15
E) 64

Question 3. (3 points) Which conic section does the following equation define:

$$
x^{2}-10 x+y^{2}-6 y+30=0 ?
$$

A) A circle CORRECT
B) An ellipse CORRECT
C) A parabola
D) A hyperbola
E) None

Question 4. (3 points) Let L be a linear mapping such that $L\left(5 \cdot \mathbf{e}_{1}\right)=(2,4)$ and $L\left(\mathbf{e}_{2}\right)=(-1,3)$, where \mathbf{e}_{1} is the vector $\mathbf{e}_{1}=(1,0)$ and \mathbf{e}_{2} is the vector $\mathbf{e}_{2}=(0,1)$. Then the matrix for L is:
A) $\left(\begin{array}{rr}2 / 5 & -1 \\ 4 / 5 & 3\end{array}\right)$ CORRECT
В) $\left(\begin{array}{rr}2 / 5 & 4 / 5 \\ -1 & 3\end{array}\right)$
C) $\left(\begin{array}{rr}2 / 5 & 3 \\ -1 & 4 / 5\end{array}\right)$
D) $\left(\begin{array}{rr}2 & -1 \\ 4 & 3\end{array}\right)$
E) $\left(\begin{array}{rr}2 & 4 \\ -1 & 3\end{array}\right)$

Question 5. (3 points) Let C be the curve in \mathbb{R}^{2} parametrized by $\mathbf{r}(\mathrm{t})=\left(2 \mathrm{t}^{2}, \sin (\mathrm{t})\right), t \in[1,7]$. Then the acceleration $\mathbf{a}(\mathrm{t})$ is given by:
A) $7-1=6$.
B) $\sqrt{16+\sin ^{2}(t)}$
C) $(t, \cos (t))$
D) $(4, \sin (t))$
E) $(4,-\sin (t))$ CORRECT

Question 6. (3 points) Let R be the rectangle $R=[0,1] \times[0,1]$ and let $f(x, y)=x^{3} y+5 x y^{2}$. Then $\iint_{R} f(x, y) d x d y$ is equal to
A) $1 / 2$
B) $24 / 23$
C) $23 / 24$ CORRECT
D) $1 / 7$
E) 0

Question 7. (3 points) Let R be the rectangle $R=[1,3] \times[1,3]$ and let $f(x, y)=2 x+5 y$. The are of the graph $\{(x, y, z): z=f(x, y)\}$ over R is
A) $4 \sqrt{15}$.
B) 4
C) $4 \sqrt{30}$. CORRECT
D) $4 \sqrt{25}$
E) 10 .

Question 8. (3 points) Let $A \subset \mathbb{R}^{2}$ be the domain bounded by the x-axis and the graph $y=\sqrt{1-x^{2}}$. The integral $\iint_{A} x^{2} y$ is equal to:
A) 1
B) $2 / 15$ CORRECT
C) 2
D) $1 / 7$
E) 0

Question 9. (3 points) Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a mapping such that $F((0,0))=(0,0)$ and

$$
F^{\prime}(0,0)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $g^{\prime}(0,0)=(2,3)$. Then the derivative of the composed function $h(x, y)=g(F(x, y))$ at the origin is equal to
A) $(1,2)$
B) $(11,16)$ CORRECT
C) $(0,0)$
D) $(12,14)$
E) $(13,13)$

Question 10. (3 points) Let A be the domain in \mathbb{R}^{2} such that $x \geq 0, y \geq e^{x}$, and $y \leq 2 e^{-x}$. The integral $\iint_{A} y d x d y$ is equal to:
A) $1 / 4$ CORRECT
B) $1 / 2$
C) $1 / 3$
D) 0
E) $-1 / 3$

Question 11. (4 points) Let $f(x, y)=x^{2} y+5 x y^{2}$ and let S be the graph of f in \mathbb{R}^{3}. The tangent plane to S at the point $(1,1, f(1,1))$ is defined by :
A) $z=0$
B) $z=12+7 x+11 y$
C) $z=-12+7 x+11 y$ CORRECT
D) $z=-12+11 x+7 y$
E) $z=-12+11 x-7 y$

Question 12. (4 points) Let C be the curve in \mathbb{R}^{2} parametrized by $\mathbf{r}(\mathrm{t})=\left(\mathrm{t}^{2}, \mathrm{t}^{3}\right), \mathrm{t} \in[0,2]$, The arc length of C is equal to:
A) $(1 / 27)\left((40)^{3 / 2}-8\right)$ CORRECT
B) $(1 / 54)(40)^{3 / 2}$
C) $(2 / 54)\left((40)^{2 / 3}+8\right)$
D) $2(40)^{3 / 2}$
E) 1

Question 13. (4 points) Let $C \subset \mathbb{R}^{2}$ be the curve parametrized by $\mathbf{r}(\mathrm{t})=(\cos (\mathrm{t}), 3 \sin (\mathrm{t})), \mathrm{t} \in[0, \pi / 2]$, and let f be the function $f(x, y)=x y$. The integral $\int_{C} f d s$ is equal to
A) $28 / 3$
B) $15 / 3$
C) $26 / 8$ CORRECT
D) $\pi / 3$
E) 2π

Question 14. (4 points) Let C be the same curve as in the previous question, let $\phi(x, y)=x^{2}+\cos (x y)$, and let F be the vector field $F=\nabla \phi$ (the gradient of ϕ). Then $\int_{C} F \cdot d r$ is equal to :
A) $1 / 3$
B) π
C) $1 / 5$
D) 2π
E) -1 CORRECT

Question 15. (4 points) Let $C \subset \mathbb{R}^{2}$ be the ellipse $C=\{(x, y)$: $\left.\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=1\right\}$ and let A be the domain bounded by C. Then the area of A is equal to
A) a
B) b
C) $\frac{1}{2} \int_{C} x d y-y d x$ CORRECT
D) $\frac{1}{2} \int_{C} x d x-y d y$
E) $\iint_{A} x y d x d y$

