UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences

Examination in: MAT2440 - Ordinary Differential Equations and Optimal Control Theory

Solution

Problem 1

The equilibrium points are solution of the system

$$
\begin{align*}
& -3 x+4 y+x y=0 \tag{1}\\
& -2 x+6 y-x y=0 \tag{2}
\end{align*}
$$

Adding up the two equations, we get

$$
-5 x+10 y=0
$$

which yields $x=2 y$. Hence, after plugging this in (1), we get

$$
-6 y+4 y+2 y^{2}=0
$$

which gives $y(2 y-2)=0$. There are two equilibrium points: $(0,0)$ and $(2,1)$. Let $f_{1}(x, y)=-3 x+4 y+x y$ and $f_{2}(x, y)=-2 x+6 y-x y$. The linearization of the system around the equilibrium point $Y_{0}=\left[\begin{array}{l}x_{0} \\ y_{0}\end{array}\right]$ is given by $Z^{\prime}=J Z$ where

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)
$$

and $Z=Y-Y_{0}$. Here, we obtain

$$
J=\left(\begin{array}{ll}
-3+y & 4+x \\
-2-y & 6-x
\end{array}\right)
$$

For (0, 0), it yields

$$
J=\left(\begin{array}{ll}
-3 & 4 \\
-2 & 6
\end{array}\right)
$$

The eigenvalues are solutions of

$$
\lambda^{2}-3 \lambda-10=0
$$

There are two distinct eigenvalues

$$
\lambda=\frac{3 \pm 7}{2}
$$

which have opposite signs. The equilibrium is a saddle point. For the equilibrium $(2,1)$, we obtain

$$
J=\left(\begin{array}{ll}
-2 & 6 \\
-3 & 4
\end{array}\right)
$$

The eigenvalues are solutions of

$$
\lambda^{2}-2 \lambda+10=0
$$

and we obtain two complex eigenvalues

$$
\lambda=\frac{2 \pm 6 i}{2}=1 \pm 3 i
$$

Since $\operatorname{Re}(\lambda)>0$, it corresponds to a spiral source.

Problem 2 (weight 40\%)

2a (weight 20\%)
The matrix A has two complex eigenvalues $\lambda=1 \pm 3 i$ (see problem 1). A complex eigenvector associated with $\lambda=1+3 i$ satisfies

$$
\left(\begin{array}{ll}
-3-3 i & 6
\end{array}\right)\binom{x}{y}=0
$$

so that $u=\binom{2}{1+i}$ is an eigenvector. Two independent solutions are given by $\operatorname{Re}\left(e^{\lambda t} u\right)$ and $\operatorname{Im}\left(e^{\lambda t} u\right)$. We have

$$
\begin{aligned}
e^{\lambda t} u & =e^{t}(\cos (3 t)+i \sin (3 t))\binom{2}{1+i} \\
& =e^{t}\binom{2 \cos (3 t)}{\cos (3 t)-\sin (3 t)}+i e^{t}\binom{2 \sin (3 t)}{\cos (3 t)+\sin (3 t) .}
\end{aligned}
$$

Hence, the general solution is

$$
\begin{equation*}
Y(t)=A e^{t}\binom{2 \cos (3 t)}{\cos (3 t)-\sin (3 t)}+B e^{t}\binom{2 \sin (3 t)}{\cos (3 t)+\sin (3 t) .} \tag{3}
\end{equation*}
$$

for any constant A and B.

2b (weight 10\%)

We have to determine A and B in (3) such that

$$
Y(0)=\binom{2}{2}=A\binom{2}{1}+B\binom{0}{1}
$$

We get $A=B=1$ and

$$
Y(t)=e^{t}\binom{2 \cos (3 t)+2 \sin (3 t)}{2 \cos (3 t)}
$$

2c (weight 10\%)

A fundamental matrix solution is given by

$$
\Phi(t)=e^{t}\left(\begin{array}{cc}
2 \cos (3 t) & 2 \sin (3 t) \\
\cos (3 t)-\sin (3 t) & \cos (3 t)+\sin (3 t)
\end{array}\right)
$$

The exponential matrix $e^{t A}$ is equal to

$$
e^{t A}=\Phi(t) \Phi(0)^{-1} .
$$

We compute $\Phi(0)$ and $\Phi(0)^{-1}$. We obtain

$$
\Phi(0)=\left(\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right)
$$

and

$$
\Phi(0)^{-1}=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
-\frac{1}{2} & 1
\end{array}\right) .
$$

Hence,

$$
e^{t A}=e^{t}\left(\begin{array}{cc}
\cos (3 t)-\sin (3 t) & 2 \sin (3 t) \\
-\sin (3 t) & \cos (3 t)+\sin (3 t)
\end{array}\right)
$$

Problem 3 (weight 40\%)

3a (weight 10\%)
The matrix $\left(\begin{array}{cc}1 & \frac{1}{2} \\ 6 & -1\end{array}\right)$ has two distincs eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-2$. The vectors

$$
u_{1}=\binom{1}{2} \quad u_{2}=\binom{1}{-6} .
$$

are eigenvectors for λ_{1} and λ_{2}, respectively. The general solution is

$$
\begin{equation*}
Y(t)=A e^{2 t}\binom{1}{2}+B e^{-2 t}\binom{1}{-6} . \tag{4}
\end{equation*}
$$

3b (weight 20\%)
The Hamiltonian is given by

$$
H(t, x, u, p)=-3 x^{2}-u^{2}+p(x+u) .
$$

The function $u \mapsto H$ is concave so that $\frac{\partial H}{\partial u}=0$ is a necessary and sufficient condition for a maximizer. We have

$$
\frac{\partial H}{\partial u}=-2 u+p
$$

and, by the maximum principle, $u^{*}=\frac{p}{2}$. We have

$$
\dot{x}=x+u=x+\frac{p}{2}
$$

and, from the maximum principle,

$$
\dot{p}=-\frac{\partial H}{\partial x}=6 x-p .
$$

Hence $Y(t)=\binom{x(t)}{p(t)}$ satisfies the ordinary differential equation given in $\mathbf{3 a}$ and it follows from there that

$$
\begin{aligned}
& x(t)=A e^{2 t}+B e^{-2 t} \\
& p(t)=2 A e^{2 t}-6 B e^{-2 t}
\end{aligned}
$$

Since $x(0)=0$, we get $A=-B$ and the system above rewrites

$$
\begin{align*}
& x(t)=A\left(e^{2 t}-e^{-2 t}\right) \tag{5a}\\
& p(t)=A\left(2 e^{2 t}+6 e^{-2 t}\right) \tag{5b}
\end{align*}
$$

We have to determine A. Since $x(\ln (2))=-1$, we get $A=-\frac{4}{15}$. Since the function $x \mapsto-3 x^{2}+p x$ and $u \mapsto-u^{2}+p u$ are concave, the function $(x, u) \mapsto H$ is concave. By Mangasarian's theorem, the conditions of the maximum principle are not only necessary but also sufficient.

3c (weight 10\%)
The terminal condition in this case is either

$$
\begin{equation*}
x(\ln (2))=-1 \text { and } p(\ln (2)) \geq 0 \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
x(\ln (2))>-1 \text { and } p(\ln (2))=0 \tag{7}
\end{equation*}
$$

The same derivation as in the previous question leads us to (5) and we have to determine A. If $x(\ln (2))=-1$, it follows the previous question that $A=-\frac{4}{15}$ and

$$
p(\ln (2))=-\frac{10}{15}
$$

so that (6) does not hold. If $p(\ln (2))=0$, we obtain $A=0$ and $p(t)=x(t)=0$. Hence, (7) is satisfied, as $x(\ln (2))=0>-1$, and

$$
x^{*}(t)=u^{*}(t)=0
$$

is a solution which fullfills the conditions of the maximum principle. Since the function $(x, u) \mapsto H$ is concave, we know, by Mangasarian's theorem, that this pair solves also the original optimal control problem.

