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Problem 1

The equilibrium points are solution of the system

−3x + 4y + xy = 0 (1)
−2x + 6y − xy = 0. (2)

Adding up the two equations, we get

−5x + 10y = 0

which yields x = 2y. Hence, after plugging this in (1), we get

−6y + 4y + 2y2 = 0

which gives y(2y − 2) = 0. There are two equilibrium points: (0, 0) and
(2, 1). Let f1(x, y) = −3x + 4y + xy and f2(x, y) = −2x + 6y − xy. The

linearization of the system around the equilibrium point Y0 =
[
x0

y0

]
is given

by Z ′ = JZ where

J =

(
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

)
and Z = Y − Y0. Here, we obtain

J =
(
−3 + y 4 + x
−2− y 6− x

)
.

For (0, 0), it yields

J =
(
−3 4
−2 6

)
.

The eigenvalues are solutions of

λ2 − 3λ− 10 = 0

There are two distinct eigenvalues

λ =
3± 7

2
,
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which have opposite signs. The equilibrium is a saddle point. For the
equilibrium (2, 1), we obtain

J =
(
−2 6
−3 4

)
.

The eigenvalues are solutions of

λ2 − 2λ + 10 = 0

and we obtain two complex eigenvalues

λ =
2± 6i

2
= 1± 3i.

Since Re(λ) > 0, it corresponds to a spiral source.

Problem 2 (weight 40%)

2a (weight 20%)

The matrix A has two complex eigenvalues λ = 1 ± 3i (see problem 1). A
complex eigenvector associated with λ = 1 + 3i satisfies

(
−3− 3i 6

)(x
y

)
= 0

so that u =
(

2
1 + i

)
is an eigenvector. Two independent solutions are given

by Re(eλtu) and Im(eλtu). We have

eλtu = et(cos(3t) + i sin(3t))
(

2
1 + i

)
= et

(
2 cos(3t)

cos(3t)− sin(3t)

)
+ iet

(
2 sin(3t)

cos(3t) + sin(3t).

)
Hence, the general solution is

Y (t) = Aet

(
2 cos(3t)

cos(3t)− sin(3t)

)
+ Bet

(
2 sin(3t)

cos(3t) + sin(3t).

)
(3)

for any constant A and B.

2b (weight 10%)

We have to determine A and B in (3) such that

Y (0) =
(

2
2

)
= A

(
2
1

)
+ B

(
0
1

)
.

We get A = B = 1 and

Y (t) = et

(
2 cos(3t) + 2 sin(3t)

2 cos(3t)

)
.
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2c (weight 10%)

A fundamental matrix solution is given by

Φ(t) = et

(
2 cos(3t) 2 sin(3t)

cos(3t)− sin(3t) cos(3t) + sin(3t)

)
The exponential matrix etA is equal to

etA = Φ(t)Φ(0)−1.

We compute Φ(0) and Φ(0)−1. We obtain

Φ(0) =
(

2 0
1 1

)
and

Φ(0)−1 =
(

1
2 0
−1

2 1

)
.

Hence,

etA = et

(
cos(3t)− sin(3t) 2 sin(3t)
− sin(3t) cos(3t) + sin(3t)

)

Problem 3 (weight 40%)

3a (weight 10%)

The matrix
(

1 1
2

6 −1

)
has two distincs eigenvalues λ1 = 2 and λ2 = −2. The

vectors

u1 =
(

1
2

)
u2 =

(
1
−6

)
.

are eigenvectors for λ1 and λ2, respectively. The general solution is

Y (t) = Ae2t

(
1
2

)
+ Be−2t

(
1
−6

)
. (4)

3b (weight 20%)

The Hamiltonian is given by

H(t, x, u, p) = −3x2 − u2 + p(x + u).

The function u 7→ H is concave so that ∂H
∂u = 0 is a necessary and sufficient

condition for a maximizer. We have

∂H

∂u
= −2u + p

and, by the maximum principle, u∗ = p
2 . We have

ẋ = x + u = x +
p

2

and, from the maximum principle,

ṗ = −∂H

∂x
= 6x− p.
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Hence Y (t) =
(

x(t)
p(t)

)
satisfies the ordinary differential equation given in 3a

and it follows from there that

x(t) = Ae2t + Be−2t,

p(t) = 2Ae2t − 6Be−2t.

Since x(0) = 0, we get A = −B and the system above rewrites

x(t) = A(e2t − e−2t), (5a)

p(t) = A(2e2t + 6e−2t). (5b)

We have to determine A. Since x(ln(2)) = −1, we get A = − 4
15 . Since

the function x 7→ −3x2 + px and u 7→ −u2 + pu are concave, the function
(x, u) 7→ H is concave. By Mangasarian’s theorem, the conditions of the
maximum principle are not only necessary but also sufficient.

3c (weight 10%)

The terminal condition in this case is either

x(ln(2)) = −1 and p(ln(2)) ≥ 0 (6)

or
x(ln(2)) > −1 and p(ln(2)) = 0. (7)

The same derivation as in the previous question leads us to (5) and we have
to determine A. If x(ln(2)) = −1, it follows the previous question that
A = − 4

15 and

p(ln(2)) = −10
15

so that (6) does not hold. If p(ln(2)) = 0, we obtain A = 0 and
p(t) = x(t) = 0. Hence, (7) is satisfied, as x(ln(2)) = 0 > −1, and

x∗(t) = u∗(t) = 0

is a solution which fullfills the conditions of the maximum principle. Since
the function (x, u) 7→ H is concave, we know, by Mangasarian’s theorem,
that this pair solves also the original optimal control problem.


