PROBLEM

A function F is given by

$$
F(x, y)=x^{2}\left(1+y^{2}\right)
$$

(a) Show that F is convex in the region

$$
R=\left\{(x, y):|y| \leq \frac{1}{\sqrt{3}}\right\}
$$

(b) Show that the variation problem

$$
\begin{align*}
& \min \int_{0}^{1} x^{2}\left(1+\dot{x}^{2}\right) \mathrm{d} t, \tag{1}\\
& x(0)=x(1)=1
\end{align*}
$$

has Euler equation

$$
\begin{equation*}
x\left(x \ddot{x}+\dot{x}^{2}-1\right)=0 \tag{*}
\end{equation*}
$$

Explain that the solutions of $(*)$ may be obtained as solutions of the equation

$$
F(x, \dot{x})-\dot{x} \frac{\partial F}{\partial \dot{x}}(x, \dot{x})=c
$$

where c is an arbitrary constant.
(c) Find the only possible solution x^{*} of the variation problem. Let

$$
\begin{aligned}
& V=\left\{x: x \text { is a } C^{2} \text { function such that } x(0)=x(1)=1\right. \\
&\text { and } \left.|\dot{x}(t)| \leq \frac{1}{\sqrt{3}} \text { for all } t \in[0,1]\right\}
\end{aligned}
$$

Show that $x^{*} \in V$. Explain that x^{*} minimizes the integral in (1) among all functions in V.

