MAT 2440 Solutions

June 28, 2012

Problem 1.

We observe that

$$
A=2 I+N, N=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], N^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], N^{3}=0
$$

Since $I N=N I$, the matrix exponential is

$$
\begin{aligned}
e^{t A} & =e^{t(2 I+N)}=e^{2 t} I e^{t N}=e^{2 t}\left(I+t N+\frac{1}{2} t^{2} N^{2}\right) \\
& =e^{2 t}\left[\begin{array}{llc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Consequently, the solution of the initial value problem is

$$
\mathbf{x}(t)=e^{2 t A}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=e^{2 t}\left[\begin{array}{c}
t+\frac{1}{2} t^{2} \\
1+t \\
1
\end{array}\right]
$$

An alternative is to use that the eigenvalues are all equal to 2 (A is upper triangular so the eigenvalues are the entries on the main diagonal). The eigenspace is seen to be one-dimensional, spanned by $\mathbf{v}_{1}=[1,0,0]^{T}$. Hence two independent generalized eigenvectors are needed. First $(A-2 I)^{3}=0$, so that any vector $\mathbf{v}_{3} \neq \mathbf{0}$ that is linearly independent of \mathbf{v}_{1} may be tried. We take $\mathbf{v}_{3}=[0,0,1]^{T}$. Then

$$
(A-2 I) \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\mathbf{v}_{\mathbf{2}}
$$

Finally,

$$
(A-2 I) \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\mathbf{v}_{\mathbf{1}}
$$

Using the above generalized eigenvectors we find the general solution

$$
\mathbf{x}(t)=a e^{2 t} \mathbf{v}_{\mathbf{1}}+b e^{2 t}\left(t \mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}\right)+c e^{2 t}\left(\frac{1}{2} t^{2} \mathbf{v}_{\mathbf{1}}+t \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{3}}\right)
$$

Then

$$
\mathbf{x}(0)=a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+c \mathbf{v}_{\mathbf{3}}=[a, b, c]^{T}=[0,1,1]^{T} \Leftrightarrow a=0, b=c=1 .
$$

Hence we readily derive the same solution as above.

Problem 2

(a) The critical points occur for
$y=\sqrt{x} / \varepsilon($ if $\varepsilon \neq 0)$
and
$2 x+y / \sqrt{x}-1=0$
This leads to $2 x+1 / \varepsilon-1=0$, and the only critical point is

$$
x=\frac{1}{2}\left(1-\frac{1}{\varepsilon}\right), y=\frac{1}{\varepsilon \sqrt{2}}\left(1-\frac{1}{\varepsilon}\right)^{\frac{1}{2}} .
$$

Since $x>0$ we must have $\frac{1}{\varepsilon}<1$, that is $\varepsilon>1$ or $\varepsilon<0$.
(b) Here

$$
\frac{d y}{d x}=\frac{\dot{y}}{\dot{x}}=\frac{2 x+\frac{y}{\sqrt{x}}-1}{2 \varepsilon y-2 \sqrt{x}},
$$

or

$$
\left(2 x+\frac{y}{\sqrt{x}}-1\right) \mathrm{d} x+(2 \sqrt{x}-2 \varepsilon y) \mathrm{d} y=0
$$

which is of the type $P d x+Q d y=0$. Such differential forms are exact if and only if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. In the present case this holds true for all ε, both expressions being equal to $\frac{1}{\sqrt{x}}$. Hence there is a function $F(x, y)$ such that $\frac{\partial F}{\partial x}=P$ and $\frac{\partial F}{\partial y}=Q$. Integration of P wrt. x yields

$$
F(x, y)=x^{2}+2 y \sqrt{x}-x+A(y)
$$

and then

$$
\frac{\partial F}{\partial y}=2 \sqrt{x}+A^{\prime}(y)=2 \sqrt{x}-2 \varepsilon y, A^{\prime}(y)=-2 \varepsilon y
$$

Thus

$$
A(y)=-\varepsilon y^{2}+k .
$$

Now the solutions of our differential equation are given by $F(x, y(x))=C$, or

$$
\begin{equation*}
x^{2}-\varepsilon y^{2}+2 y \sqrt{x}-x=C \tag{*}
\end{equation*}
$$

(c) Let $\varepsilon=-1$. Then the critical point is $(1,-1)$. We complete the squares in (*) and derive

$$
(\sqrt{-\varepsilon} y+\sqrt{x})^{2}+\left(x-\frac{1}{2}\left(1-\frac{1}{\varepsilon}\right)\right)^{2}=K \quad(K \text { a constant })
$$

With $\varepsilon=-1$ this becomes

$$
(* *) \quad(y+\sqrt{x})^{2}+(x-1)^{2}=K
$$

If the critical point were repulsive, then $x \rightarrow \infty$ or $y \rightarrow \pm \infty$ as $t \rightarrow \infty$. This clearly contradicts $(* *)$ since its right hand side is constant. Similarly, it is impossible to have $x \rightarrow 1$ and $y \rightarrow-1$ as $t \rightarrow \infty$ (the constant solution $x=1, y=-1$ cannot occur since the solution curves are supposed not to pass through the critical point.) Thus the critical point is not a sink. (We conclude that the critical point is either a stable center or an asymptotic stable spiral point.)
(d) We let $\varepsilon=1$ in (1):

$$
\begin{array}{ll}
\text { (i) } & \dot{x}=2 y-2 \sqrt{x} \\
\text { (ii) } & \dot{y}=2 x+\frac{y}{\sqrt{x}}-1
\end{array}
$$

From (i)

$$
y=\frac{1}{2}(\dot{x}+2 \sqrt{x})=\frac{1}{2} \dot{x}+\sqrt{x}, \dot{y}=\frac{1}{2} \ddot{x}+\frac{1}{2} \frac{\dot{x}}{\sqrt{x}}
$$

We combine this with (ii):

$$
\frac{1}{2} \ddot{x}+\frac{\dot{x}}{2 \sqrt{x}}=2 x+\frac{\frac{1}{2} \dot{x}+\sqrt{x}}{\sqrt{x}}-1=2 x+\frac{\dot{x}}{2 \sqrt{x}}
$$

or

$$
\ddot{x}-4 x=0
$$

Hence

$$
x(t)=A e^{2 t}+B e^{-2 t}
$$

and

$$
y(t)=\frac{1}{2} \dot{x}+\sqrt{x}=A e^{2 t}-B e^{-2 t}+\sqrt{A e^{2 t}+B e^{-2 t}}
$$

Problem 3

We will solve

$$
\max \int_{0}^{1}\left(x-x^{2}-u^{2}\right) \mathrm{d} t, \dot{x}=-2 \sqrt{x}-2 u, x(0)=1, x(1)=0 .
$$

(a) The Hamiltonian for this (normal) problem is

$$
H=H(t, x, u, p)=x-x^{2}-u^{2}+2 p(-\sqrt{x}-u)
$$

If $x=x^{*}, u=u^{*}$ form an optimal pair, then by the Maximum Principle there is a continuous and piecewise C^{1}-function p such that

$$
\frac{\partial H}{\partial x}=-\dot{p}
$$

That is,

$$
\dot{p}=2 x+p x^{-\frac{1}{2}}-1 .
$$

Moreover, $u=u^{*}$ must maximize $H\left(t, x^{*}(t), u, p(t)\right)$ for each $t \in[0,1]$. Hence (as the range of $u=u(t)$ is all of \mathbb{R}) we must have $\frac{\partial H}{\partial u}=0$ or

$$
-2 u-2 p=0, u=-p
$$

Since $\frac{\partial^{2} H}{\partial u^{2}}=-2<0$, this yields a maximum. We combine this with the relation $\dot{x}=-2 \sqrt{x}-2 u$ and obtain the system

$$
\left\{\begin{array}{l}
\dot{x}=2 p-2 \sqrt{x} \tag{I}\\
\dot{p}=2 x+\frac{p}{\sqrt{x}}-1, \quad x>0,
\end{array}\right.
$$

(b) The system (I) is (1) of Problem 2 with $y=p$ and $\varepsilon=1$. The solution for $x=x^{*}$ of $2(d)$ was

$$
x(t)=A e^{2 t}+B e^{-2 t}
$$

Here

$$
x(0)=A+B=1
$$

and

$$
x(1)=A e^{2}+B e^{-2}=0
$$

which give

$$
\begin{gathered}
B=-e^{4} A, A\left(1-e^{4}\right)=1, \\
A=\frac{1}{1-e^{4}}, B=-\frac{e^{4}}{1-e^{4}}=\frac{e^{4}}{e^{4}-1}
\end{gathered}
$$

Hence

$$
x^{*}(t)=\frac{1}{1-e^{4}}\left(e^{2 t}-e^{4-2 t}\right)=\frac{e^{2}}{e^{4}-1}\left(e^{2-2 t}-e^{2 t-2}\right)
$$

Then

$$
\begin{aligned}
u^{*}(t) & =-p(t)=-\frac{1}{2} \dot{x}(t)-\sqrt{x(t)} \\
& =\frac{1}{e^{4}-1}\left(e^{2 t}+e^{4-2 t}\right)-\frac{1}{\sqrt{e^{4}-1}} \sqrt{e^{4-2 t}-e^{2 t}}
\end{aligned}
$$

This is the only possible candidate of an optimal pair.
(c) Let $R(t)=\left\{(x, u) \in \mathbb{R}^{2}: 4 x^{3 / 2} \geq p(t)\right\}$

We proceed to show, for each $t, H(t, x, u, p(t))$ is concave with respect to (x, u) in the region $R(t)$ by using the 2 nd derivative test. Let $t \in[0,1]$ and put $p=p(t)$. Here

$$
\frac{\partial^{2} H}{\partial u^{2}}=-2<0
$$

and

$$
\frac{\partial^{2} H}{\partial x^{2}}=-2+\frac{1}{2} p x^{-3 / 2} \leq 0 \Leftrightarrow p x^{-3 / 2} \leq 4 \Leftrightarrow p \leq 4 x^{3 / 2}
$$

Finally,

$$
\frac{\partial^{2} H}{\partial x^{2}} \frac{\partial^{2} H}{\partial u^{2}}-\frac{\partial^{2} H}{\partial x \partial u}=-2 \frac{\partial^{2} H}{\partial x^{2}} \geq 0 \Longleftrightarrow p x^{-3 / 2} \leq 4
$$

This shows the convexity statement.
(d) Assume that the solution $\left(x^{*}, u^{*}\right)$ from (b) belongs to W this is the case if and only if $4\left(x^{*}\right)^{3 / 2}<p(t)$ for all $t \in[0,1]$ and may be proved as indicated below.
Now the function $(x, u) \mapsto H(t, x, u, p(t)), W \rightarrow \mathbb{R}$ is concave for each $t \in$ $[0,1]$. By Mangasarian's Theorem the pair $\left(x^{*}, u^{*}\right)$ from (b) is optimal among the elements of W : The proof of Mangasarian's Theorem works equally well if concavity of H holds only in an open, convex subset of the $x u$-plane. In the present case the region

$$
\left\{(x, u): x^{3 / 2}>\frac{1}{4} p\right\}
$$

is open and convex. (If $p>0$ this is the half plane $\left\{(x, u): x>\left(\frac{1}{4} p\right)^{2 / 3}\right\}$, and if $p<0$ it is the set \mathbb{R}^{2}.) Convexity is needed where the "Gradient Inequality" is used in the proof.

For the sake of completeness we finally prove that $p(t)<4 x^{3 / 2}$, for all $t \in[0,1]$, and hence the solution $\left(x^{*}, u^{*}\right)$ from (b) belongs to W :

$$
\begin{gathered}
p(t)=\left(\frac{e^{4-2 t}-e^{2 t}}{e^{4}-1}\right)^{\frac{1}{2}}-\left(\frac{e^{4-2 t}-e^{2 t}}{e^{4}-1}\right)<\frac{4}{\left(e^{4}-1\right)^{3 / 2}}\left(e^{4-2 t}-e^{2 t}\right)^{3 / 2}=4 x^{3 / 2} \\
\hat{\Downarrow} \\
\left(e^{4-2 t}-e^{2 t}\right)^{\frac{1}{2}}\left(e^{4}-1\right)-\left(e^{4-2 t}+e^{2 t}\right)\left(e^{4}-1\right)<4\left(e^{4-2 t}-e^{2 t}\right)^{3 / 2}
\end{gathered}
$$

We let $y=e^{2 t}, k=e^{4}$. Then the last inequality is equivalent to:

$$
\left(k y^{-1}-y\right)^{1 / 2}(k-1)-4\left(k^{-1}-y\right)^{3 / 2}<\left(k y^{-1}+y\right)(k-1)
$$

or

$$
(k-1)-4\left(k y^{-1}-y\right)<\frac{k y^{-1}+y}{\left(k y^{-1}-y\right)^{1 / 2}}(k-1)
$$

Let

$$
\begin{aligned}
\phi(y) & =(k-1)-4\left(k y^{-1}-y\right), \\
\psi(y) & =\frac{k y^{-1}+y}{\left(k y^{-1}-y\right)^{1 / 2}}(k-1) .
\end{aligned}
$$

Then

$$
\phi^{\prime}(y)=-4\left(-k y^{-2}-1\right)=4\left(k^{-2}+1\right)>0 .
$$

Hence ϕ increases and its maximum is

$$
\phi_{\max }=\phi\left(e^{2}\right)=k-1 .
$$

Therefore it suffices to prove that

$$
\psi_{\min }>\phi_{\max }=k-1
$$

Now

$$
\begin{gathered}
\psi^{\prime}(y)=\frac{k-1}{k y^{-1}-y}\left[\left(1-k y^{-2}\right)\left(k y^{-1}-y\right)^{1 / 2}+\frac{1}{2}\left(k y^{-1}+y\right)\left(k y^{-1}-y\right)^{-1 / 2}\left(k y^{-2}+1\right)\right] \\
=\frac{(k-1) y}{\left(k y^{-1}-y\right)^{3 / 2}}\left[\frac{1}{2}\left(k y^{-2}+1\right)^{2}-\left(1-k y^{-2}\right)^{2}\right] \\
=\frac{k-1}{\left(k y^{-1}-y\right)^{3 / 2}}\left[-\frac{1}{2} k^{2} y^{-4}+3 k y^{-2}-\frac{1}{2}\right]
\end{gathered}
$$

Let $f(y)=-k^{2} y^{-4}+6 k y^{-2}-1$. Then

$$
\psi^{\prime}(y)=\frac{\frac{1}{2}(k-1) y}{\left(k y^{-1}-y\right)^{3 / 2}} f(y)=r(y) f(y)
$$

where $r(y)>0$. Thus the sign and zeros of ψ^{\prime} are completely determined by f. Next we put $u=y^{-2}, y=u^{-1 / 2}, f(y)=f\left(u^{-1 / 2}\right)=g(u)$. Then

$$
g(u)=-k^{2} u^{2}+6 k u-1=0
$$

if and only if

$$
u=\frac{1}{2 k^{2}}\left[6 k \pm \sqrt{32 k^{2}}\right]=\frac{1}{k}[3 \pm 2 \sqrt{2}]
$$

Since u is in $[1 / k, 1]$ we must use the + sign in front of the square root. Here $g(1 / k)=4>0$ and $g(1)=-k^{2}+6 k-1=-e^{8}+6 e^{4}-1<0$. Hence $\psi^{\prime}(y)>0$ for $y \in\left(e^{2} /(3+2 \sqrt{2})^{1 / 2}, e^{2}\right)$ and $\psi^{\prime}(y)<0$ for $y \in\left(1, e^{2} /(3+2 \sqrt{2})^{1 / 2}\right)$. Let $a=(3+2 \sqrt{2})^{1 / 2}$. Then

$$
\begin{gathered}
\psi_{\min }=\psi\left(e^{2} / a\right)=\frac{e^{2} a+e^{2} / a}{\left(e^{2} a-e^{2} a^{-1}\right)^{1 / 2}}\left(e^{4}-1\right) \\
=\frac{e\left(a+a^{-1}\right)}{\left(a-a^{-1}\right)^{1 / 2}}\left(e^{4}-1\right)=\frac{e(2.82 \ldots)}{1.41 \ldots}\left(e^{4}-1\right)>e^{4}-1=\phi_{\max }
\end{gathered}
$$

This shows that $p(t)<4 x^{3 / 2}$, for all $t \in[0,1]$.

THE END

