"Decomposition of a linear functional into positive ones"
 For use in MAT4410, autumn 2012
 Nadia S. Larsen

October 16, 2012.
The purpose of this note is to prove the following statement:
Lemma 0.1. Let (X, Σ, μ) be a measure space, let $1 \leq p<\infty$ and let $L^{p}(X, \mu)$ be the space of real-valued p-integrable functions on X. If φ is a bounded linear functional on $L^{p}(X, \mu)$, then $\varphi=\varphi_{+}-\varphi_{-}$, where both φ_{+}and φ_{-}are positive bounded functionals.

Proof. By linearity we have $\varphi(0)=0$. If $f \in \mathcal{L}^{p}(X, \mu)$ with $f \geq 0$, let $A=\{\varphi(g) \mid g \in$ $\left.\mathcal{L}^{p}(X, \mu), 0 \leq g \leq f\right\}$ and define $\tilde{\varphi}(f)=\sup A$. Since the zero functional is in A, we have $\tilde{\varphi}(f) \geq 0$. Since $0 \leq g \leq f$, it follows that

$$
\begin{equation*}
\varphi(f) \leq \tilde{\varphi}(f) \leq\|\varphi\|\|f\|_{p} \tag{1}
\end{equation*}
$$

Now suppose that $f \in \mathcal{L}^{p}(X, \mu)$. Define $\phi: L^{p}(X, \mu) \rightarrow \mathbb{R}$ by $\phi(f)=\tilde{\varphi}\left(f^{+}\right)-\tilde{\varphi}\left(f^{-}\right)$. Note that if $f \geq 0$ then $\phi(f)=\tilde{\varphi}(f)-\tilde{\varphi}(0)=\tilde{\varphi}(f) \geq 0$, so ϕ is positive. Since $\tilde{\varphi}$ is continuous, so is ϕ. We next claim that ϕ is linear.

Let $f, h \in \mathcal{L}^{p}(X, \mu)$. Assume first $f, h \geq 0$. For any $0 \leq g_{1} \leq f$ and $0 \leq g_{2} \leq h$, linearity of φ implies that

$$
\tilde{\varphi}(f+h) \geq \varphi\left(g_{1}+g_{2}\right)=\varphi\left(g_{1}\right)+\varphi\left(g_{2}\right)
$$

so $\tilde{\varphi}(f+h) \geq \tilde{\varphi}(f)+\tilde{\varphi}(h)$. For the converse inequality let again $\varepsilon>0$ and choose $0 \leq g \leq f+h$ such that $\tilde{\varphi}(f+h)<\varphi(g)+\varepsilon$. Let $g_{1}=\min \{g, f\}$. Since $0 \leq g_{1} \leq f$, $0 \leq g-g_{1}$ and $g \leq f+h$ we necessarily have $0 \leq g-g_{1} \leq h$ (assume not and reach a contradiction). Then

$$
\tilde{\varphi}(f+h)<\varphi\left(g-g_{1}\right)+\varphi\left(g_{1}\right)+\varepsilon<\varepsilon+\tilde{\varphi}(h)+\tilde{\varphi}(f),
$$

from which the converse inequality follows. Thus $\tilde{\varphi}$ is linear on positive valued functions.
For arbitrary f, h note that $f+h=\left(f^{+}+h^{+}\right)-\left(f^{-}+h^{-}\right)$. But $f+h=(f+h)^{+}-$ $(f+h)^{-}$, so $(f+h)^{+}+\left(f^{-}+h^{-}\right)=\left(f^{+}+h^{+}\right)+(f+h)^{-}$. Applying $\tilde{\varphi}$ to both sides of the last equality and using that $\tilde{\varphi}$ is linear on positive valued functions shows that $\phi(f+h)=\phi(f)+\phi(h)$.

For homogeneity, again suppose $f \geq 0$ and let $a>0$. Then

$$
\begin{aligned}
\tilde{\varphi}(a f) & =\sup \{\varphi(g) \mid 0 \leq g \leq a f\}=\sup \left\{\varphi(g) \left\lvert\, 0 \leq \frac{1}{a} g \leq f\right.\right\} \\
& =\sup \{\varphi(a g) \mid 0 \leq g \leq f\}=a \sup \{\varphi(g) \mid 0 \leq g \leq f\}
\end{aligned}
$$

using linearity of φ in the last equality. For arbitrary f and $a>0$ note that

$$
\phi(a f)=\tilde{\varphi}\left((a f)^{+}\right)-\tilde{\varphi}\left((a f)^{-}\right)=\tilde{\varphi}\left(a f^{+}\right)-\tilde{\varphi}\left(a f^{-}\right)=a\left(\tilde{\varphi}\left(f^{+}\right)-\tilde{\varphi}\left(f^{-}\right)\right)=a \phi(f)
$$

But $(-a f)^{+}=a f^{-}$and $(-a f)^{-}=a f^{+}$, so homogeneity of ϕ is true for all $a \in \mathbb{R}$.
Finally, we have $\varphi=\phi-(\varphi-\phi)$, where both ϕ and $\varphi-\phi$ are linear, positive, and bounded.

Note that a similar proof can be found in the book "The elements of integration and Lebesgue measure" by R. G. Bartle, Wiley Classics Library (see Lemma 8.13).

