Suggested solution to the exam in MAT4410, December 17, 2012.

Problem 1. Let λ denote Lebesgue measure on $X = [0, \infty)$. Find the limit

$$\lim_{n \to \infty} \int_{X \times X} e^{-(\frac{x^2 y^2}{n} + x + y)} d(\lambda \otimes \lambda)(x, y).$$

Solution: We have $e^{-(\frac{x^2y^2}{n}+x+y)} \to e^{-(x+y)}$ as $n \to \infty$ pointwise on $X \times X$. By Tonelli's theorem, which applies since all the functions involved are measurable and non-negative, it follows that

$$\int_{X \times X} e^{-(x+y)} d(\lambda \otimes \lambda)(x,y) = \left(\int_X e^{-x} d\lambda(x)\right) \left(\int_X e^{-y} d\lambda(y)\right),$$

and since $\int_X e^{-x} d\lambda(x) = \lim_n \int_{[0,n]} e^{-x} dx = 1$ e.g. by Monotone Convergence theorem, it follows that $e^{-(x+y)} \in L^1(X \times X)$. Then

$$\lim_{n \to \infty} \int_{X \times X} e^{-(\frac{x^2 y^2}{n} + x + y)} d(\lambda \otimes \lambda)(x, y) = 1$$

by Dominated Convergence Theorem.

Problem 2. Let c_0 denote the Banach space of sequences converging to zero. Let $a = \{a_n\}_{n\geq 1}$ be a sequence of complex numbers such that $\sum_{n=1}^{\infty} a_n b_n$ is convergent for every $\{b_n\}_{n\geq 1} \in c_0$. For every $k \geq 1$, define $T_k : c_0 \to \mathbb{C}$ by $T_k(b) = \sum_{j=1}^k a_j b_j$ for $b = \{b_n\}_{n\geq 1}$ in c_0 .

2a. Show that T_k is a bounded linear functional for every $k \ge 1$.

2b. Conclude that $a \in l^1(\mathbb{N})$. What is the relationship between $||a||_1$ and $||T_k||$ for $k \ge 1$?

Solution for 2a: since $b_n \to 0$, the sequence $b = \{b_n\}_{n \ge 1}$ is bounded. Then

$$|T_k(b)| \le \sum_{j=1}^k |a_j b_j| \le ||b||_{\infty} \sum_{j=1}^k |a_j|.$$

Hence $||T_k|| \leq \sum_{j=1}^k |a_j|$, so T_k is bounded (you need to fill in the details for proving that T_k is linear).

Solution for 2b: fix $b = \{b_n\}_{n \ge 1}$ in c_0 . Then

$$\lim_{k \to \infty} T_k(b) = \lim_{k \to \infty} \sum_{j=1}^k a_j b_j \le \sum_{j=1}^\infty a_j b_j < \infty.$$

Thus by the Banach-Steinhaus theorem, the map $Tb = \lim_{k\to\infty} T_k(b)$ defines a bounded operator $T: c_0 \to \mathbb{C}$. Moreover, $||T|| = \sup_{k\geq 1} ||T_k||$. Let $\alpha_j \in \mathbb{C}$ such that $a_j\alpha_j = |a_j|$ for every $j \geq 1$. Since

$$T_k(\alpha_1,\ldots,\alpha_k,0\ldots) = \sum_{j=1}^k a_j \alpha_j = \sum_{j=1}^k |a_j|,$$

it follows that $||T_k|| = \sum_{j=1}^k |a_j|$ for $k \ge 1$. Hence $||a||_1 = \sum_{n=1}^\infty |a_n| = ||T||$, so that $a \in l^1(\mathbb{N})$.

Problem 3. 4a. Formulate a consequence of the Hahn-Banach extension theorem for linear functionals appropriate for linear subspaces of normed spaces.

Solution. If X is a normed space, then a bounded linear functional l on a linear subspace Y admits an extension \overline{l} to a bounded linear functional with $\|l\| = \|\overline{l}\|$ (choose the convex function $\phi(\alpha x) = \|x\| |\alpha|$ as a bound for l).

3b. If X is a normed space and $Y \subset X$ is a linear subspace, show that Y is dense in X if and only if the only element $\varphi \in X^*$ such that $\varphi(y) = 0$ for all $y \in Y$ is the zero functional $\varphi_0(x) = 0$ for all $x \in X$.

Solution: Suppose first Y is dense. Let $\varphi \in X^*$ such that $\varphi(y) = 0$ for all $y \in Y$. We must show that $\varphi(x) = 0$ for all x. If there is $x \in X$ such that $\varepsilon_0 = |\varphi(x)| > 0$, choose $y \in Y$ with $||x - y|| < \varepsilon_0/||\varphi||$. Then $|\varphi(x)| = |\varphi(x - y)| \le ||\varphi|| \cdot ||x - y|| < \varepsilon_0$, a contradiction. Thus $\varphi = \varphi_0$. For the converse direction, if there is $x \in X \setminus \overline{Y}$, then $d = \operatorname{dist}(x, Y) > 0$, and by a consequence to the Hahn-Banach theorem for normed spaces there is $\varphi \in X^*$ with $\varphi(x) = d$ and $\varphi(y) = 0$ for all $y \in Y$. Thus $\varphi \neq \varphi_0$, a contradiction to the assumption.

3c. Suppose that μ is a Borel measure on [0, 1] such that $\int_{[0,1]} x^k d\mu(x) = 0$ for all $k \ge 1$. Show that $\mu = 0$.

Solution: (Note that in the hypothesis one should assume $k \ge 0$ in order to avoid complications.) Let X = C[0, 1] with the supremum norm, and let Y be the subspace of polynomials in one variable. It is known that Y is dense in X. By the Riesz Representation theorem, there is a bounded functional $\varphi(f) = \int_{[0,1]} f d\mu$ on X. The assumption that $\varphi(x^k) = 0$ for all $k \ge 0$ implies by continuity of φ that φ vanishes on all elements of Y. Then φ is the zero functional by 3b, so $\mu([0,1]) = ||\varphi|| = 0$, and therefore $\mu = 0$.

3d. (This problem is independent of problems 3b and 3c.) Let λ be the Lebesgue measure on [0, 1] and let $L^p([0, 1], \lambda)$ for 1 be the Banach space of*p*-integrable, complex-valued functions on <math>[0, 1]. Suppose that $\{f_k\}_{k\geq 1}$ is a sequence of elements in $L^p([0, 1], \lambda)$ and $\{a_k\}_{k\geq 1}$ is a sequence of

complex numbers for which there exists C > 0 such that

$$|\sum_{k=1}^{m} \alpha_k a_k| \le C \Big(\int_{[0,1]} |\sum_{k=1}^{m} \alpha_k f_k(x)|^p d\lambda(x) \Big)^{1/p}$$

for any choice of complex numbers $\alpha_1, \ldots, \alpha_m$ and any $m \ge 1$. Let $\frac{1}{p} + \frac{1}{q} = 1$. Show that there is $g \in L^q([0, 1], \lambda)$ such that

$$\int_{[0,1]} f_k(x)g(x)d\lambda(x) = a_k, \,\forall k \ge 1.$$

Solution: Let $Y = \text{span}\{f_k \mid k \ge 1\}$. Define $\varphi_0 : Y \to \mathbb{C}$ by

$$\varphi_0(\sum_{k=1}^m \alpha_k f_k) = \sum_{k=1}^m \alpha_k a_k$$

for any choice of complex numbers $\alpha_1, \ldots, \alpha_m$ and any $m \ge 1$. This is a linear map, and the assumption gives that φ_0 is bounded with $\|\varphi_0\| \le C$. By the Hahn-Banach theorem there is an extension $\varphi \in L^p([0,1])^*$. Since $L^p([0,1])^* \cong L^q([0,1])$, there is a function $g \in L^q([0,1])$ such that

$$\varphi(f) = \int_{[0,1]} fg d\lambda$$

for every $f \in L^p([0,1])$. Hence $\int_{[0,1]} f_k(x)g(x)d\lambda(x) = \varphi_0(f_k) = a_k$ for all $k \ge 1$, as claimed.

Problem 4. Let (X, Σ) be a measurable space and λ , μ be measures on Σ with λ finite, $\mu \sigma$ -finite and $\lambda \ll \mu$. Then for every $\varepsilon > 0$ there is $\delta > 0$ such that

$$\mu(A) < \delta \Rightarrow \lambda(A) < \varepsilon, \ \forall A \in \Sigma.$$

Solution: If $f = d\lambda/d\mu$, then let $X_n = \{x \in X \mid |f(x)| \le n\}$ for every $n \ge 1$. Proceed as in the proof of Lemma 9.19 (Teschl): first $\lambda(X \setminus X_n) \to 0$, so there is n such that $\lambda(X \setminus X_n) < \varepsilon/2$. Take now $\delta = \varepsilon/(2n)$.

4b. Let $X = \mathbb{R}$ with its Borel σ -algebra \mathcal{B} and let λ be Lebesgue measure on \mathcal{B} . Define a measure on \mathcal{B} by

$$\mu(A) = \int_A \frac{1}{e^{|x|}} d\lambda(x) \text{ for all } A \in \mathcal{B}.$$

Explain why $\lambda \ll \mu$. Solution: first note that $\mu \ll \lambda$ by construction, because $1/e^{|x|}$ is measurable and non-negative. Since $h = d\mu/d\lambda$ is the function

 $h(x) = e^{-|x|}$, which satisfies h(x) > 0 for all x, we have by a known result that 1/h is the Radon-Nikodym derivative $d\lambda/d\mu$.

4c. With $(\mathbb{R}, \mathcal{B})$, λ and μ as in question 4b, show that the conclusion of problem 4a does not hold.

Solution: Let $\varepsilon = 1$. Let $\delta > 0$ arbitrary, and choose $n \in \mathbb{N}$ such that $1/e^n < \delta$. Let A = [n, n+1]. For $x \in A$, we have $e^x \ge e^n$, so $h(x) \le 1/e^n < \delta$ on A. Thus

$$\mu(A) = \int_{[n,n+1]} \frac{1}{e^{|x|}} d\lambda(x) < \int_{[n,n+1]} \delta d\lambda(x) = \delta\lambda(A) = \delta,$$

but $\lambda(A) \ge 1$.