
Suggested solution to the exam in MAT4410, December 17, 2012.

Problem 1. Let λ denote Lebesgue measure on X = [0,∞). Find the limit

lim
n→∞

∫
X×X

e−(x2y2

n
+x+y)d(λ⊗ λ)(x, y).

Solution: We have e−(x2y2

n
+x+y) → e−(x+y) as n → ∞ pointwise on X ×

X. By Tonelli’s theorem, which applies since all the functions involved are
measurable and non-negative, it follows that∫

X×X

e−(x+y)d(λ⊗ λ)(x, y) = (

∫
X

e−xdλ(x))(

∫
X

e−ydλ(y)),

and since
∫

X
e−xdλ(x) = limn

∫
[0,n]

e−xdx = 1 e.g. by Monotone Convergence

theorem, it follows that e−(x+y) ∈ L1(X ×X). Then

lim
n→∞

∫
X×X

e−(x2y2

n
+x+y)d(λ⊗ λ)(x, y) = 1

by Dominated Convergence Theorem.

Problem 2. Let c0 denote the Banach space of sequences converging to zero.
Let a = {an}n≥1 be a sequence of complex numbers such that

∑∞
n=1 anbn is

convergent for every {bn}n≥1 ∈ c0. For every k ≥ 1, define Tk : c0 → C by

Tk(b) =
∑k

j=1 ajbj for b = {bn}n≥1 in c0.
2a. Show that Tk is a bounded linear functional for every k ≥ 1.
2b. Conclude that a ∈ l1(N). What is the relationship between ‖a‖1 and

‖Tk‖ for k ≥ 1?
Solution for 2a: since bn → 0, the sequence b = {bn}n≥1 is bounded. Then

|Tk(b)| ≤
k∑

j=1

|ajbj| ≤ ‖b‖∞
k∑

j=1

|aj|.

Hence ‖Tk‖ ≤
∑k

j=1 |aj|, so Tk is bounded (you need to fill in the details for
proving that Tk is linear).

Solution for 2b: fix b = {bn}n≥1 in c0. Then

lim
k→∞

Tk(b) = lim
k→∞

k∑
j=1

ajbj ≤
∞∑

j=1

ajbj <∞.
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Thus by the Banach-Steinhaus theorem, the map Tb = limk→∞ Tk(b) defines
a bounded operator T : c0 → C. Moreover, ‖T‖ = supk≥1 ‖Tk‖. Let αj ∈ C
such that ajαj = |aj| for every j ≥ 1. Since

Tk(α1, . . . , αk, 0 . . . ) =
k∑

j=1

ajαj =
k∑

j=1

|aj|,

it follows that ‖Tk‖ =
∑k

j=1 |aj| for k ≥ 1. Hence ‖a‖1 =
∑∞

n=1 |an| = ‖T‖,
so that a ∈ l1(N).
Problem 3. 4a. Formulate a consequence of the Hahn-Banach extension
theorem for linear functionals appropriate for linear subspaces of normed
spaces.

Solution. If X is a normed space, then a bounded linear functional l on a
linear subspace Y admits an extension l to a bounded linear functional with
‖l‖ = ‖l‖ (choose the convex function φ(αx) = ‖x‖|α| as a bound for l).

3b. If X is a normed space and Y ⊂ X is a linear subspace, show that Y
is dense in X if and only if the only element ϕ ∈ X∗ such that ϕ(y) = 0 for
all y ∈ Y is the zero functional ϕ0(x) = 0 for all x ∈ X.

Solution: Suppose first Y is dense. Let ϕ ∈ X∗ such that ϕ(y) = 0
for all y ∈ Y . We must show that ϕ(x) = 0 for all x. If there is x ∈ X
such that ε0 = |ϕ(x)| > 0, choose y ∈ Y with ‖x − y‖ < ε0/‖ϕ‖. Then
|ϕ(x)| = |ϕ(x − y)| ≤ ‖ϕ‖ · ‖x − y‖ < ε0, a contradiction. Thus ϕ = ϕ0.
For the converse direction, if there is x ∈ X \ Y , then d = dist(x, Y ) > 0,
and by a consequence to the Hahn-Banach theorem for normed spaces there
is ϕ ∈ X∗ with ϕ(x) = d and ϕ(y) = 0 for all y ∈ Y . Thus ϕ 6= ϕ0, a
contradiction to the assumption.

3c. Suppose that µ is a Borel measure on [0, 1] such that
∫

[0,1]
xkdµ(x) = 0

for all k ≥ 1. Show that µ = 0.
Solution: (Note that in the hypothesis one should assume k ≥ 0 in order

to avoid complications.) Let X = C[0, 1] with the supremum norm, and let
Y be the subspace of polynomials in one variable. It is known that Y is dense
in X. By the Riesz Representation theorem, there is a bounded functional
ϕ(f) =

∫
[0,1]

fdµ on X. The assumption that ϕ(xk) = 0 for all k ≥ 0 implies

by continuity of ϕ that ϕ vanishes on all elements of Y . Then ϕ is the zero
functional by 3b, so µ([0, 1]) = ‖ϕ‖ = 0, and therefore µ = 0.

3d. (This problem is independent of problems 3b and 3c.) Let λ be the
Lebesgue measure on [0, 1] and let Lp([0, 1], λ) for 1 < p < ∞ be the Ba-
nach space of p-integrable, complex-valued functions on [0, 1]. Suppose that
{fk}k≥1 is a sequence of elements in Lp([0, 1], λ) and {ak}k≥1 is a sequence of
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complex numbers for which there exists C > 0 such that

|
m∑

k=1

αkak| ≤ C
(∫

[0,1]

|
m∑

k=1

αkfk(x)|pdλ(x)
)1/p

for any choice of complex numbers α1, . . . , αm and any m ≥ 1. Let 1
p

+ 1
q

= 1.

Show that there is g ∈ Lq([0, 1], λ) such that∫
[0,1]

fk(x)g(x)dλ(x) = ak, ∀k ≥ 1.

Solution: Let Y = span{fk | k ≥ 1}. Define ϕ0 : Y → C by

ϕ0(
m∑

k=1

αkfk) =
m∑

k=1

αkak

for any choice of complex numbers α1, . . . , αm and any m ≥ 1. This is a
linear map, and the assumption gives that ϕ0 is bounded with ‖ϕ0‖ ≤ C.
By the Hahn-Banach theorem there is an extension ϕ ∈ Lp([0, 1])∗. Since
Lp([0, 1])∗ ∼= Lq([0, 1]), there is a function g ∈ Lq([0, 1]) such that

ϕ(f) =

∫
[0,1]

fgdλ

for every f ∈ Lp([0, 1]). Hence
∫

[0,1]
fk(x)g(x)dλ(x) = ϕ0(fk) = ak for all

k ≥ 1, as claimed.

Problem 4. Let (X,Σ) be a measurable space and λ, µ be measures on Σ
with λ finite, µ σ-finite and λ� µ. Then for every ε > 0 there is δ > 0 such
that

µ(A) < δ ⇒ λ(A) < ε, ∀A ∈ Σ.

Solution: If f = dλ/dµ, then let Xn = {x ∈ X | |f(x)| ≤ n} for every n ≥ 1.
Proceed as in the proof of Lemma 9.19 (Teschl): first λ(X \ Xn) → 0, so
there is n such that λ(X \Xn) < ε/2. Take now δ = ε/(2n).

4b. Let X = R with its Borel σ-algebra B and let λ be Lebesgue measure
on B. Define a measure on B by

µ(A) =

∫
A

1

e|x|
dλ(x) for all A ∈ B.

Explain why λ� µ. Solution: first note that µ� λ by construction, because
1/e|x| is measurable and non-negative. Since h = dµ/dλ is the function
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h(x) = e−|x|, which satisfies h(x) > 0 for all x, we have by a known result
that 1/h is the Radon-Nikodym derivative dλ/dµ.

4c. With (R,B), λ and µ as in question 4b, show that the conclusion of
problem 4a does not hold.

Solution: Let ε = 1. Let δ > 0 arbitrary, and choose n ∈ N such that
1/en < δ. Let A = [n, n+1]. For x ∈ A, we have ex ≥ en, so h(x) ≤ 1/en < δ
on A. Thus

µ(A) =

∫
[n,n+1]

1

e|x|
dλ(x) <

∫
[n,n+1]

δdλ(x) = δλ(A) = δ,

but λ(A) ≥ 1.
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