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Chapter 1

Hilbert’s axiom system for
plane geometry;
A short introduction

Euclid’s “Elements” introduced the axiomatic method in geometry, and for
more than 2000 years this was the main textbook for students of geometry.
But the 19th century brought about a revolution both in the understanding
of geometry and of logic and axiomatic method, and it became more and
more clear that Euclid’s system was incomplete and could not stand up to
the modern standards of rigor. The most famous attempt to rectify this was
by the great German mathematician David Hilbert, who published a new
system of axioms in his book “Grundlagen der Geometrie” in 1898. Here
we will give a short presentation of Hilbert’s axioms with some examples
and comments, but with no proofs. For more details, we refer to the rich
literature in this field — e. g. the books ”Euclidean and non-Euclidean
geometries” by M. J. Greenberg and ”Geometry: Euclid and beyond” by R.
Hartshorne.

Hilbert also treats geometry in 3-space, but we will only consider the
2-dimensional case. We begin by agreeing that the basic ingredients in our
study are points and lines in a plane. At the outset the plane is just a set
S where the elements P are called points. The lines are, or can at least
be naturally identified with certain subsets l of S, and the fundamental
relation is the incidence relation P ∈ l, which may or may not be satisfied
by a point P and a line l. But we also introduce two additional relations:
betweenness, enabling us to talk about points lying between two given points,
and congruence, which is needed when we want to compare configurations in
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2 CHAPTER 1. HILBERT’S AXIOM SYSTEM

different parts of the plane. Hilbert formulated three sets of axioms for these
relations: incidence axioms, betweenness axioms and congruence axioms. In
addition to these we also need an axiom of continuity to make sure that lines
and circles have “enough” points to intersect as they should, and of course
the axiom of parallels. As we introduce Hilbert’s axioms, we will gradually
put more and more restrictions on these ingredients, and in the end they
will essentially determine Euclidean plane geometry uniquely. The axioms
are also independent, in the sense that for each axiom A there is a model
satisfying all the rest of the axioms, but not A.

Note that although circles also are important objects of study in classical
plane geometry, we do not have to postulate them, since, as we shall see,
they can be defined in terms of the other notions.

Before we start, maybe a short remark about language is in order: An
axiom system is a formal matter, but the following discussion will not be
very formalistic. After all, the goal is to give a firm foundation for matters
that we all have a clear picture of in our minds, and as soon as we have
introduced the various formal notions, we will feel free to discuss them in
more common language. For example, although the relation P ∈ l should,
strictly speaking, be read: “P and l are incident”, we shall use “l contains
P”, “P lies on l” or any obviously equivalent such expression.

We are now ready for the first group of axioms, the incidence axioms:

I1: For every pair of distinct points A and B there is a unique line l
containing A and B.

I2: Every line contains at least two points.

I3: There are at least three points that do not lie on the same line.

We let AB denote the unique line containing A and B.
These three axioms already give rise to much interesting geometry, so-

called “incidence geometry”. Given three points A, B, C, for example,
any two of them span a unique line, and it makes sense to talk about the
triangle ABC. Similarly we can study more complicated configurations.
The Cartesian model R2 of the Euclidean plane, where the lines are the
sets of solutions of nontrivial linear equations ax + by = c, is an obvious
example, as are the subsets obtained if we restrict a, b, c, x, y to be rational
numbers (Q2), the integers (Z2), or in fact any fixed subring of R. However,
spherical geometry, where S is a sphere and the lines are great circles, is not
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an example, since any pair of antipodal points lies on infinitely many great
circles — hence the uniqueness in I1 does not hold. This can be corrected by
identifying every pair of antipodal points on the sphere. Then we obtain an
incidence geometry called the (real) projective plane P2. One way to think
about the points of P2 is as lines through the origin in R3. If the sphere
has center at the origin, such a line determines and is determined by the
antipodal pair of points of intersection between the line and the sphere. A
“line” in P2 can then be thought of as a plane through the origin in R3, since
such a plane intersects the sphere precisely in a great circle. Notice that in
this interpretation the incidence relation P ∈ l corresponds to the relation
“the line l is contained in the plane P”.

There are also finite incidence geometries — the smallest has exactly
three points where the lines are the three subsets of two elements.

The next group of axioms deals with the relation “B lies between A and
C”. In Euclidean geometry this is meaningful for three points A, B and C
lying on the same straight line. The finite geometries show that it is not
possible to make sense of such a relation on every incidence geometry, so
this is a new piece of structure, and we have to declare the properties we
need. We will use the notation A ∗B ∗ C for “B lies between A and C”.

Hilbert’s axioms of betweenness are then:

B1: If A∗B∗C, then A, B and C are distinct points on a line, and C∗B∗A
also holds.

B2: Given two distinct points A and B, there exists a point C such that
A ∗B ∗ C.

B3: If A, B and C are distinct points on a line, then one and only one of
the relations A ∗B ∗ C, B ∗ C ∗A and C ∗A ∗B is satisfied.

B4: Let A, B and C be points not on the same line and let l be a line which
contains none of them. If D ∈ l and A ∗D ∗ B, there exists an E on
l such that B ∗E ∗C, or an F on l such that A ∗ F ∗C, but not both.

If we think of A, B and C as the vertices of a triangle, another formulation of
B4 is this: If a line l goes through a side of a triangle but none of its vertices,
then it also goes through exactly one of the other sides. This formulation is
also called Pasch’s axiom. Note that this is not true in Rn, n ≥ 3. Hence
I3 and B4 together define the geometry as ’2–dimensional’.
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In the standard Euclidean plane (and in other examples we shall study
later) we can use the concept of distance to define betweenness. Namely,
we can then define A ∗ B ∗ C to mean that A, B are C are distinct and
d(A,C) = d(A,B) + d(B,C), where d(X,Y ) is the distance between X and
Y . (Check that B1-4 then hold!) This way Q2 also becomes an example,
but not Z2, since B4 is not satisfied. (Exercise 3.)

Observe also that every open, convex subset K of R2 (e. g. the interior
of a circular disk) satisfies all the axioms so far, if we let the “lines” be
the nonempty intersections between lines in R2 and K, and betweenness is
defined as in R2. (This example will be important later.) The projective
plane, however, can not be given such a relation. The reason is that in the
spherical model for P2, the “lines” are great circles where antipodal points
have been identified, and these identification spaces can again naturally be
identified with circles. But if we have three distinct points on a circle, each
of them is equally much “between” the others. Therefore B3 can not be
satisfied.

The betweenness relation can be used to define the segment AB as the
point set consisting of A, B and all the points between A and B:

AB = {A,B} ∪ {C|A ∗ C ∗B}.

Similarly we can define the ray
−−→
AB as the set

−−→
AB = AB ∪ {C|A ∗B ∗ C}.

If A, B and C are three point not on a line, we can then define the angle
∠BAC as the pair consisting of the two rays

−−→
AB and

−→
AC.

∠BAC = {
−−→
AB,

−→
AC}.

Note also that AB =
−−→
AB ∪

−−→
BA.

Betweenness also provides us with a way to distinguish between the two
sides of a line l. We say that two points A and B are on the same side of l
if AB ∩ l = ∅. It is not difficult to show, using the axioms, that this is an
equivalence relation on the complement of l, and that there are exactly two
equivalence classes: the two sides of l. (Exercise 4.) Similarly we say that
a point D is inside the angle ∠BAC if B and D are on the same side of
AC, and C and D are on the same side of AB. This way we can distinguish
between points inside and outside a triangle. We also say that the angles
∠BAC and ∠BAD are on the same (resp. opposite) side of the ray

−−→
AB if

C and D are on the same (resp. opposite) side of the line AB.
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The same idea can, of course, also be applied to distinguish between
the points on a line on either side of a given point. Using this, one can
define a linear ordering of all the points on a line. Therefore the axioms of
betweenness are sometimes called “axioms of order”.

We have now established some of the basic concepts of geometry, but we
are missing an important ingredient: we cannot yet compare two different
configurations of points and lines. To achieve this, we need to introduce the
concept of congruence. Intuitively, we may think of two configurations as
congruent if there is some kind of “rigid motion” which moves one onto the
other. In the Euclidean plane R2 this can be defined in terms of measure-
ments of angles and distances, such that two configurations are congruent if
all their ingredients are “of the same size”. These notions have, of course, no
meaning on the basis of just the incidence- and betweenness axioms. Hence
congruence has to be yet another piece of structure — a relation whose
properties must be governed by additional axioms.

There are two basic notions of congruence — congruence of segments
and congruence of angles. Congruence of more general configurations can
then be defined as a one-one correspondence between the point sets involved
such that all corresponding segments and angles are congruent. We use the
notation AB ∼= CD for “the segment AB is congruent to the segment CD”,
and similarly for angles or more general configurations. Hilbert’s axioms for
congruence of segments are:

C1: Given a segment AB and a ray r from C, there is a uniquely deter-
mined point D on r such that CD ∼= AB.

C2: ∼= is an equivalence relation on the set of segments.

C3: If A ∗ B ∗ C and A′ ∗ B′ ∗ C ′ and both AB ∼= A′B′ and BC ∼= B′C ′,
then also AC ∼= A′C ′.

If betweenness is defined using a distance function (as in the Euclidean
plane) we can define AB ∼= CD as d(A,B) = d(C,D). C2 and C3 are then
automatically satisfied, and C1 becomes a stronger version of B2.

Even without a notion of distance we can use congruence to compare
“sizes” of two segments: we say that AB is shorter than CD (AB < CD) if
there exists a point E such that C ∗ E ∗D and AB ∼= CE.

We can now also define what we mean by a circle: Given a point O and
a segment AB, we define the circle with center O and radius (congruent to)
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AB as the point set {C ∈ S |OC ∼= AB}. Note that this set is nonempty:
C1 implies that any line through O intersects the circle in two points.

The axioms for congruence of angles are:

C4: Given a ray
−−→
AB and an angle ∠B′A′C ′, there are angles ∠BAE and

∠BAF on opposite sides of AB such that ∠BAE ∼= ∠BAF ∼= ∠B′A′C ′.

C5: ∼= is an equivalence relation on the set of angles.

C6: Given triangles ABC and A′B′C ′. If AB ∼= A′B′, AC ∼= A′C ′ and
∠BAC ∼= ∠B′A′C ′, then the two triangles are congruent — i. e. BC ∼=
B′C ′, ∠ABC ∼= ∠A′B′C ′ and ∠BCA ∼= ∠B′C ′A′.

C4 and C5 are the obvious analogues of C1 and C2, but note that C4
says that we can construct an arbitrary angle on both sides of a given ray.
C6 says that a triangle is determined up to congruence by any angle and
its adjacent sides. This statement is often referred to as the “SAS” (side–
angle–side) congruence criterion.

In the Euclidean plane R2 we define congruence as equivalence under
actions of the Euclidean group of transformations of R2. This is generated
by rotations and translations, and can also be characterized as the set of
transformation of R2 which preserve all distances. It is quite instructive to
prove that the congruence axioms hold with this definition.

These three groups contain the most basic axioms, and they are sufficient
to prove a large number of propositions in book I of the “Elements”. How-
ever, when we begin to study circles and “constructions with ruler and com-
pass”, we need criteria saying that circles intersect (have common points)
with other circles or lines when our intuition tells us that they should. The
next axiom provides such a criterion.

First a couple of definitions:

Definition: Let Γ be a circle with center O and radius OA. We say that
a point B is inside Γ if OB < OA and outside if OA < OB.

We say that a line or another circle is tangent to Γ if they have exactly
one point in common with Γ.

We can now formulate Hilbert’s axiom E :

E: Given two circles Γ and ∆ such that ∆ contains points both inside and
outside Γ. Then Γ and ∆ have common points. (They “intersect”.)



7

(It follows from the other axioms that they will then intersect in exactly
two points.) This is an example of what we call a continuity axiom. The
following variation is actually a consequence of axiom E:

E’: If a line l contains points both inside and outside the circle Γ, then l
and Γ will intersect. (Again in exactly two points.)

Hilbert gives the Axiom of parallels the following formulation — often
called “Playfair’s axiom” (after John Playfair i 1795, although it goes back
to Proclus in the fifth century):

P: (Playfair’s axiom) Given a line l and a point P not on the line. Then
there is at most one line m through P which does not intersect l.

If the lines m and l do not intersect, we say that they are parallel, and
we write m ‖ l. The existence of a line m through P parallel to l can be
shown to follow from the other axioms, so the real content of the axiom is
the uniqueness.

With these axioms we are able to prove all the results in Euclid’s “Ele-
ments” I–IV, but they do not yet determine the Euclidean plane uniquely.
The standard plane (R2 with the structure defined so far) is an example,
and it is an instructive exercise to prove this in detail, but we obtain other
examples by replacing the real numbers by another ordered field where ev-
ery element has a square root! For uniqueness we need a stronger continuity
axiom, as for instance Dedekind’s axiom:

D: If a line l is a disjoint union of two subset T1 and T2 such that all the
points of T1 are on the same side of T2 and vice versa, then there is
a unique point A ∈ l such that if B1 ∈ T1 and B2 ∈ T2, then either
A = B1, A = B2 or B1 ∗A ∗B2.

This is a completeness axiom with roots in Dedekind’s definition of the
real numbers, and an important consequence is that the geometry on any
line can be identified with the geometry on R. One can show that it implies
axiom E, and together with the groups of axioms I*, B*, C* and P it does
determine Euclidean geometry completely.

Finally we mention that axiom D also implies another famous continuity
axiom, the Axiom of Archimedes:
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A: Given two segments AB and CD, we can find points C = C0, . . . , Cn

on
−−→
CD, such that CiCi+1

∼= AB for every i < n and CD < CCn.

(“Given a segment AB, then every other segment can be covered by a
finite number of congruent copies of AB”.)

Using this axiom we can introduce notions of distance and length such
that AB has length one, say, and a geometry with the axioms I*, B*, C* P,
E and A can be identified with a subset of the standard Euclidean plane.

Exercises.

1. Find all incidence geometries with four or five points.

2. Let V be a vector space of dimension at least 2 over a field F . Show
that V satisfies I1-3, if we define lines to be sets of the form {A+tB|t ∈
F}, where A,B ∈ V , B 6= 0.

3. Show that Q2 satisfies axioms B1–4, but Z2 does not.

4. Prove that ’being on the same side of the line `’ is an equivalence
relation on the complement of `, with exactly two equivalence classes.

5. Let A and B be distinct points in a geometry satisfying axioms I1–3
and B1–4. Show that we can find a point C such that A ∗ C ∗B.

6. Show that Q2 does not satisfy C1. Try to determine conditions on an
algebraic extension F of Q such that F 2 will satisfy C1.

7. Show that the center of a circle is uniquely determined.

8. Discuss which axioms are needed in order to bisect a given segment.

9. Which axioms are satisfied by Q 2, where Q is the algebraic closure of
Q?

10. Show that the axiom of Archimedes can be used to define a length
function on segments.

11. Suppose given a geometry with incidence, betweenness and congru-
ence, and let r be a ray with vertex O. Let ` be the unique line
containing r.
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Show that we can give ` the structure of an ordered abelian group,
with O as neutral element and such that P > O if and only if P ∈ r.

Show that two different rays give rise to isomorphic ordered groups.

12. Give the vector space R2 its standard inner product. Show that a
map φ : R2 → R2 preserves distances if and only if it can be written
φ(x) = Ax+ b, where A is an orthogonal 2×2 matrix and b is a vector.



10 CHAPTER 1. HILBERT’S AXIOM SYSTEM



Chapter 2

An introduction to
hyperbolic geometry

Introduction.

In Euclid’s axiom system the parallel axiom has always caused the most
trouble. Already from the beginning it was recognized as less obvious than
the other axioms, and during more than two thousand years of fascinating
mathematical history geometers were trying to either prove it from the other
axioms or replace it by something more obvious but with the same conse-
quences. Today we know that the reason they did not succeed is that there
exist geometries where the axiom is not satisfied. One may wonder why this
was not realized earlier, but we must remember that geometry throughout
all this time was concerned with a description of the world “as it is”, and
in the real world a statement like the parallel axiom must either be true
or not true. Euclid’s axioms do not define geometry; they describe more
precisely what kind of arguments we are allowed to use when proving new
results about the geometry of the world around us.

But in the 19th century the development of mathematics and mathemat-
ical thinking finally brought freedom from this purely descriptive approach
to geometry, allowing mathematicians like Lobachevski, Bolyai and Gauss
to realize that one might construct perfectly valid geometries where all the
other axioms of Euclid hold, but where the parallel axiom fails.

The first concrete such models were constructed by Beltrami in 1868, and
most of the models we shall present here are due to him, even if some of them
have names after other mathematicians.1 The term hyperbolic geometry

1The exception is the hyperboloid model constructed in exercise 2A.6

11
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seems to have been introduced by Felix Klein in 1871.
Instead of Euclid’s axiom system we shall use Hilbert’s axioms, and we

define a hyperbolic geometry to be an incidence geometry with betweenness
and congruence where Hilbert’s axioms hold, except that the parallel axiom
is replaced by

H: Given a line l and a point P /∈ l, there are at least two lines through
P which do not intersect l.

We start with a heuristic discussion that may, hopefully, serve as a mo-
tivation for our models for hyperbolic geometry. Discussing Hilbert’s axiom
system we observed that an open, convex subset K of the Euclidean plane
is a candidate for such a geometry if we define ‘lines’ to be intersections be-
tween K and Euclidean lines (i. e. open chords), and betweenness is defined
as in R2. The Beltrami–Klein model K K of the hyperbolic plane utilizes a
particularly simple such convex set: the interior of the unit disk. Then the
incidence- and betweenness axioms will remain satisfied, as will Dedekind’s
axiom. However, there will clearly exist infinitely many lines parallel to a
line l through a point P outside the line, hence axiom H will hold instead
of axiom P. (Recall that we call two lines parallel if they do not intersect.)

The only missing ingredient of a hyperbolic geometry is therefore a no-
tion of congruence satisfying Hilbert’s axioms C1–C6. Clearly the usual,
Euclidean definition of congruence does not work, since the fundamental
axiom C1 breaks down. (Although C2–C6 are still satisfied!) But, inspired
by the Euclidean definition of congruence as equivalence under the action
of the Euclidean group of transformations, it is natural to see if there is an
analogous group of homeomorphisms of the unit disk that might work.

An absolutely essential property these homeomorphisms should have is
that they should map all chords to chords. This property is rather diffi-
cult to study directly, but there is a geometric trick that will enable us to
find sufficiently many such maps, using some elementary results of complex
function theory! The trick is to map K to open subsets of C by certain home-
omorphisms mapping chords to circular arcs. Then the problem is reduced
to finding homeomorphism mapping circles to circles, and this is much sim-
pler, leading to the theory of Möbius transformations. The Beltrami–Klein
model K is obtained by transporting back the resulting congruence notion.

However, since the theory is computationally (as well as in other re-
spects) much simpler in the homeomorphic models in C — the Poincaré
disk D and Poincaré’s upper half–plane H — these are the models mostly
studied. They will be models for hyperbolic geometry where the “lines” are
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circular arcs (and certain straight lines) in C. The Beltrami–Klein model
will only be used for geometric motivation, except for a discussion in the
appendix.

Here is an overview of the contents of this chapter. The preparatory Sec-
tion 1 discussed the transformation of K into the other models and relations
between them. The Möbius transformations — especially those preserving
the upper half–plane — are introduced and studied in some depth in Sec-
tions 2 and 3. These transformations can be used to define a congruence
relation, giving H the structure of a hyperbolic plane. This is verified in Sec-
tion 4. In Sections 5 and 6 we define distance and angle measures in H, and
in Section 7 we translate everything done so far to the disk model D. Each
of the models has its own advantages, and this is exploited in the remaining
sections, where we study arc length and area (Section 8) and trigonometry
(Section 9).

Some notation: In the different models we are going to introduce (K,
B, D, H), the ‘lines’ of the geometry will be different types of curves. We
shall call these curves K–lines, B–lines etc., or simply hyperbolic lines if
the model is understood or if it doesn’t matter which model we use. For
example, the K–lines are the open chords in the interior of the unit circle
in the Euclidean plane. Similarly, many of our constructions will take place
in standard Euclidean R2 and R3, and then ‘lines’, ’circles’ etc. will refer to
the usual Euclidean notions.

2.1

As a set, K is just the interior of the unit disk in R2:

K = {(x, y) ∈ R2 |x2 + y2 < 1}.

Consider R2 as the subspace of R3 where the last coordinate is 0, and
let B be the lower open hemisphere

B = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1, z < 0}.

Vertical projection then defines a homeomorphism K ≈ B, mapping the
chords in K onto (open) semi–circles in B meeting the boundary curve
{(x, y) ∈ R2 |x2 + y2 = 1} orthogonally. (Perhaps the easiest way to see
this is to consider the image of a chord as the intersection between B and
the plane which contains the chord and is parallel to the z-axis. Then, by
symmetry, the image is half of the intersection of this plane with the sphere.)
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Defining such half–circles as B–lines, we obtain another model B with the
same properties as K.

We now use stereographic projection to map B back to R2. The version
of stereographic projection that we shall use here is the homeomorphism
S2 − (0, 0, 1) ≈ R2 defined as follows: If P is a point in S2 − (0, 0, 1), there
is a uniquely determined straight line in R3 through P and (0,0,1), and this
line meets R2 in a unique point. This defines a map Φ : S2 − (0, 0, 1)→ R2

which clearly is both injective and surjective. A simple argument using
similar triangles (see fig.1) shows that Φ is given by the formula

Φ(x, y, z) =
(

x

1− z
,

y

1− z

)
, (2.1.1)

and the inverse map is given by

Φ−1(u, v) =
(

2u
u2 + v2 + 1

,
2v

u2 + v2 + 1
,
u2 + v2 − 1
u2 + v2 + 1

)
. (2.1.2)

These maps are both continuous, hence inverse homeomorphisms.

1−z

z

(x,y,z)

(u,v)

Fig. 2.1.1: Stereographic projection

In the following two Lemmas we state some important properties of
stereographic projection.

Lemma 2.1.1. Let C be a circle on S2.

(i) If (0, 0, 1) /∈ C, then Φ(C) is a circle in R2.

(ii) If (0, 0, 1) ∈ C, then Φ(C − (0, 0, 1)) is a straight line in R2
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Proof. The circle C is the intersection between S2 and a plane defined by an
equation ax + by + cz = d, say, and (0, 0, 1) ∈ C if and only if c = d. Now
substitute x, y and z from formula (2.1.1 for Φ and get

2au
u2 + v2 + 1

+
2bv

u2 + v2 + 1
+
c(u2 + v2 − 1)
u2 + v2 + 1

= d .

Clearing denominators and collecting terms then yields

(c− d)(u2 + v2) + 2au+ 2bv = c+ d .

This is the equation of a line if c = d and a circle if c 6= d.

To formulate the next Lemma, recall that to give a curve an orientation
is to choose a sense of direction along the curve. In all cases of interest to us,
this can be achieved by choosing a nonzero tangent vector at every point,
varying continuously along the curve. The angle between two oriented curves
intersecting in a point P is then the angle between the tangent vectors at
P .

Lemma 2.1.2. Φ preserves angles — i. e. if C and C′ are oriented circles
on S2 intersecting in a point P at an angle θ, then their images under Φ
intersect in Φ(P ) at the same angle.

Remark. Here we are only interested in unoriented angles, i. e. we do not
distinguish between the angle between C and C′ and the angle between C′
and C. Then we can restrict to angles between 0 and π, and this determines
θ uniquely. Note that in this range θ is also determined by cos(θ). (With
appropriate choices of orientations of S2 and R2 the result is also true for
oriented angles, but we shall not need this.)

Proof. By rotational symmetry around the z-axis we may assume that the
point P lies in a fixed meridian, so we assume that P = (0, y, z) with y ≥
0. Furthermore, it clearly suffices to compare each of the circles with this
meridian, i. e. we may assume C′ is the circle x = 0, with oriented tangent
direction (0,−z, y) at the point (0, y, z). The image of this circle under Φ is
the y-axis with tangent direction (0, 1).

Observe that Φ can be extended to {(x, y, z) ∈ R3|z < 1} by the same
formula (2.1.1), and that tangential curves will map to tangential curves
(by the chain rule). Hence we can replace C by any curve in R3 with the
same oriented tangent as C in P — e. g. a straight line. This line can be
parametrized by

θ(t) = (0, y, z) + t(α, β, γ) = (tα, y + tβ, z + tγ),
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where α2 + β2 + γ2 = 1 and (α, β, γ) · (0, y, z) = βy + γz = 0. The angle u
between this line and the meridian C′ is determined by

cosu = (α, β, γ) · (0,−z, y) = −βz + γy .

Now consider the image of this line under Φ. This is parametrized by

ω(t) = Φ(θ(t)) =
(

tα

1− z − tγ
,

y + tβ

1− z − tγ

)
,

(Restrict t such that 1− z− tγ > 0.) It is geometrically obvious that this is
again a straight line, and to see this from the formula for ω(t), note that

ω(t)− ω(0) = ω(t)− Φ(P ) =
(

tα

1− z − tγ
,

y + tβ

1− z − tγ
− y

1− z

)
=

t

1− z − tγ

(
α,
β − βz + γy

1− z

)
.

(Straightforward calculation.) But this has constant direction given by the

vector V = (α,
β − βz + γy

1− z
).

It remains to check that the angle v between V and the positive y-axis

is equal to u, or, equivalently, that cosu = cos v =
V · (0, 1)
||V ||

.

Recall that cosu = −βz + γy and βy + γz = 0. Then

z cosu = −βz2 + γyz = −βz2 − βy2 = −β,

since y2 + z2 = 1. Similarly, y cosu = γ. It follows that

β − βz + γy

1− z
=
−z cosu+ cosu

1− z
= cosu ,

hence V = (α, cosu). Moreover, β2 + γ2 = z2 cos2 u+ y2 cos2 u = cos2 u, so
||V || = α2 + cos2 u = α2 + β2 + γ2 = 1. But then cos v = cosu.

Figure 2.1.2 illustrates a geometric proof of Lemma 2.1.2. N is the
“north pole”, P ′ is a point on S3 and P = Φ(P ). The lines m and n in R2

intersect in P . The crucial observation is that the image under Φ−1 of a line
is a circle — the intersection between S3 and the plane through the line and
N . Moreover, the tangent line at a point Q of this circle is the intersection
between the plane and the tangent plane of S3 at Q.
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Fig. 2.1.2: Stereographic projection preserves angles

Accordingly, let Cm be the circle Φ−1(m), and let m′ and m′′ be the
tangents to Cm at P ′ and N . Cn, n′, n′′ are defined similarly from n. Then
by symmetry the angle between m′ and n′ is the same as the angle between
m′′ and n′′. But since the tangent plane of S3 at N is parallel to R2, the
angle m′′ is parallel to m and n′′ is parallel to n. Hence the angle between
m′′ and n′′ is the same as the angle between m and n.

There are, of course, many ways to identify B with an open hemisphere
of S2, and we obtain a homeomorphic image in the plane by stereographic
projection as long as we avoid the point (0,0,1). The Lemmas above imply
that every such model will be bounded by a circle or a straight line in R2,
and the ’lines’ will correspond to circular arcs or straight lines meeting the
bounding curve orthogonally. We will use of two models obtained this way,
both being named after the great French mathematician Henri Poincaré:

1. Poincaré’s disk model D is obtained by choosing B to be the lower
hemisphere, as before. Then the image is again the interior of the unit circle,
but the D-lines are now either diameters or circular arcs perpendicular to
the boundary circle.

2. The Poincaré upper half–plane H = {(x, y) | y > 0} is the image of the
open hemisphere {(x, y, z) ∈ S2 | y > 0}. The H–lines are either half–circles
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with center on the x-axis or straight lines parallel to the y-axis.

When we analyze these models we shall henceforth identify R2 with
the complex plane C and make use of the extra structure and tools we
have available there (complex multiplication, complex function theory, etc.).
Thus, as sets we make the identifications D = {z ∈ C | |z| < 1} and H =
{z ∈ C | Im z > 0}.

D is the most symmetric model and therefore often the one best suited
for geometric arguments. But we will see that H is better for analyzing
and describing the notion of congruence. Therefore this where we begin our
analysis.

Notation : In both models the hyperbolic lines have natural extensions to
the boundary curve. (The unit circle for D and the real line for H.) These
extension points we refer to as endpoints of the hyperbolic lines, although
they are not themselves points on the lines. Analogously, we also say that
∞ is an endpoint of a vertical H–line.

Exercises for 2.1

1. Derive the formulas for Φ and its inverse.

2. We can also define stereographic projection from (0, 0,−1) instead of
(0, 0, 1). Let Φ− be the resulting map.

Determine Φ− ◦ Φ−1. (We identify R2 with C.)

3. If F is an identification between the two hemispheres we use in the
definitions of H and D, the map Φ◦F ◦Φ−1 will be a homeomorphism
between the two models. Find a formula for such a homeomorphism.
(Choose F as simple as possible.)

1.

4. (a) Show that z 7→ z−1 : C−{0} → C−{0} corresponds to a rotation
of S2 via stereographic projection.

(b) Which self–map of C − {0} does the antipodal map x 7→ −x on
S2 − {0, 0,±1} correspond to?
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2.2 Congruence in H; Möbius transformations

As noted before, we define congruence In Euclidean geometry as equivalence
under the Euclidean group E(2) of “rigid movements”, generated by orthog-
onal linear transformations x 7→ Ax and translations x 7→ x+b. This means
that the congruence relation ∼= is defined by

Segments: AB ∼= A′B′ ⇐⇒ there is a g ∈ E(2) such that g(AB) = A′B′.
Angles: ∠BAC ∼= ∠B′A′C ′ ⇐⇒ there is a g ∈ E(2) such that

g(
−−→
AB) =

−−→
A′B′ and g(

−→
AC) =

−−→
A′C ′.

Observe that

Every element of E(2) maps straight lines to straight lines, and
if A and A′ are points on the lines l and l′, there is a g ∈ E(2)
such that g(l) = l′ and g(A) = A′.

We now wish to do something similar in the case of H. Motivated by
the Euclidean example, we will look for a group G of bijections of H to itself
such that

Every element of G maps H–lines to H–lines, and if A and A′ are
points on the H-lines l and l′, there is a g ∈ G such that g(l) = l′

and g(A) = A′.

We will show that there exists such a group, consisting of so–called
Möbius transformations preserving the upper half–plane.

From complex function theory we know that meromorphic functions with
at most poles at∞ can be thought of as functions f : C→ C, where C is the
extended complex plane or the Riemann sphere C ∪ {∞}, with a topology
such that stereographic projection extends to a homeomorphism Φ : S2 ≈ C.
Lemma 2.1.1 says that Φ maps circles to curves in C that are either circles
in C or of the form l ∪ {∞}, where l is a (real) line in C. It is convenient to
call all of these curves C–circles.

Similarly, we let R denote R ∪∞.
By Lemma 2.1.2 the angle between oriented such circles at an intersection

point in C is the same as between the corresponding circles on S2. Moreover,
if they intersect in two points, the two angles will be the same. Hence we can
also define the angle at ∞ between two circles intersecting there — i. e. two
lines in C. If they intersect in a point P ∈ C, the angle of intersection at ∞
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is the same as the angle at P . If they are parallel, the angle of intersection
at ∞ is 0. With this definition, Φ is also angle preserving at ∞.

For a meromorphic function f : C→ C to be a homeomorphism, it must
have exactly one pole and one zero — hence it must have the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C. Solving the equation w = f(z) with respect to z we get

z = g(w) =
dw − b
−cw + a

,

and (formally) substituting back again:

f(g(w)) =
(ad− bc)w
ad− bc

and g(f(z)) =
(ad− bc)z
ad− bc

.

Therefore f is invertible with g as inverse if ad− bc 6= 0. If ad− bc = 0 these
expressions have no meaning, but it is easy to see that in that case f(z) is
constant. Hence we have:

The function f(z) =
az + b

cz + d
defines a homeomorphism of C if

and only if ad− bc 6= 0.

Such a function is called a fractional linear transformations — FLT for
short. Here are some important properties of FLT’s:

Lemma 2.2.1. (i) An FLT maps C–circles to C–circles.
(ii) An FLT preserves angles between C–circles.

Proof. (i) Note that we may write the equations of both circles and straight
lines in C as λ(x2 + y2)+αx+βy+ γ = 0, where λ, α, β, γ are real numbers
and z = x + iy. λ = 0 gives a straight line and λ 6= 0 a circle. Using that
x2 + y2 = zz, x = (z + z̄)/2 and y = (z − z̄)/2i = (z̄ − z)i/2, we can write
the equation as

λzz̄ + µz + µ̄z̄ + γ = 0 ,

where µ = (α − iβ)/2. Hence we need to show that if z satisfies such an
equation and w = f(z) for an FLT f , then w satisfies a similar equation.

This can be checked by writing z = f−1(w) =
aw + b

cw + d
and substituting:

λ
aw + b

cw + d
· aw + b

cw + d
+ µ

aw + b

cw + d
+ µ

aw + b

cw + d
+ γ = 0 .



2.2. CONGRUENCE IN H; MÖBIUS TRANSFORMATIONS 21

If we multiply this equation by (cw + d)(cw + d) and simplify, we end up
with an expression just like the one we want.

(ii) This is a consequence of a general fact in complex function theory.
We say that a differentiable map is angle–preserving, or conformal, if it
maps two intersecting curves to curves meeting at the same angle. It then
follows from the geometric interpretation of the derivative that a complex
function is conformal in a neighborhood of any point where it is analytic
with nonzero derivative.

For a more direct argument in our case, see Exercise 3.

Remark 2.2.2. As in Lemma 2.1.2 it is not difficult to show that the same
result is true for oriented angles (with a suitable notion of orientation that
also applies to ∞ ∈ C), but we do not need that. An angle–preserving map
(in the orientable sense) is called conformal, and it follows from the geometric
interpretation of the derivative that a complex function is conformal in a
neighborhood of any point where it is analytic with nonzero derivative.

The oriented version of Lemma 2.1.2 says that stereographic projection
also is conformal.

The word ’linear’ in FLT is related to the following remarkable observa-
tion:

Let f(z) =
az + b

cz + d
and g(z) =

a′z + b′

c′z + d′
. A little calculation gives

(f ◦ g)(z) = f(g(z)) =
a g(z) + b

c g(z) + d
=

(aa′ + bc′)z + (ab′ + bd′)
(ca′ + dc′)z + (cb′ + dd′)

.

This formula tells us two things. Firstly, it means that the composition
of two FLT’s is a new FLT. We showed earlier that the inverse of an FLT is
an FLT, and the identity map is trivially also an FLT. (z = 1z+0

0z+1 .) Hence
the set of fractional linear transformations forms a group under composi-
tion. This group will be denoted Möb+(C) . (The “even complex Möbius
transformations”.)

Secondly, it is possible to calculate with FLT’s as with matrices: Evi-

dently the matrix
[
a b
c d

]
determines f completely, and the condition ad−

bc 6= 0 means precisely that this matrix is invertible. In the same way g

is determined by
[
a′ b′

c′ d′

]
, and the calculation above shows that f ◦ g is

determined by the matrix
[
a b
c d

]
·
[
a′ b′

c′ d′

]
.
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The set of invertible 2 × 2–matrices over C forms a group — the gen-
eral linear group GL2(C) — and we have shown that there is a surjective
group homomorphism from GL2(C) onto Möb+(C) . This homomorphism

is not injective, since if k 6= 0, then
[
a b
c d

]
and

[
ka kb
kc kd

]
= k

[
a b
c d

]
will

determine the same map. However, this is the only ambiguity (Exercise 4),
and we get an isomorphism between the group Möb+(C) of fractional linear
transformations and the quotient group PGL2(C) = GL2(C)/D (projective
linear group), where D = {uI|u ∈ C− {0}} and I is the identity matrix.

(A more conceptual explanation of the connection between FLT’s and
linear algebra belongs to projective geometry — see Exercise 11).

The next Lemma and its Corollary tell us exactly what freedom we have
in prescribing values of fractional linear transformations. In fact, it provides
us with a method of constructing FLT’s with prescribed values.

Lemma 2.2.3. Given three distinct points z1, z2 and z3 in C. Then there
exists a uniquely determined FLT f such that f(z1) = 1, f(z2) = 0 and
f(z3) =∞.

Proof. Existence : Suppose first that none of the zi’s is at∞. Then we define

f(z) =
z − z2
z − z3

· z1 − z3
z1 − z2

.

In the three other cases:

if z1 =∞ : f(z) =
z − z2
z − z3

,

if z2 =∞ : f(z) =
z1 − z3
z − z3

,

if z3 =∞ : f(z) =
z − z2
z1 − z2

.

Uniqueness : Suppose g(z) has the same properties and consider the com-
position h = g ◦ f−1. This is a new FLT with h(1) = 1, h(0) = 0 and
h(∞) = ∞. The last condition implies that h must have the form h(z) =
az + b, and the first two conditions then determine a = 1 og b = 0. Thus
(g ◦ f−1)(z) = z for all z, hence f = g.

Definition 2.2.4. The element f(z) ∈ C depends on the four variables
(z, z1, z2, z3) and is denoted [z, z1, z2, z3]. It is defined as an element of
C whenever z1, z2 and z3 are distinct points of C and has the following
geometric interpretation:
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If z2 and z3 span a Euclidean segment S, every point in S will divide it
in two and we can compute the ratio between the lengths of the pieces. If
we do this for two points z and z1 in S, then |[z, z1, z2, z3]| is the quotient
of the two ratios we obtain. Because of this, [z, z1, z2, z3] is traditionally
called the cross–ratio of the four points, and it plays a very important role
in geometry. We shall meet it again later, and some of its properties are
given below, in Proposition 2.2.10.

Corollary 2.2.5. Given two triples (z1, z2, z3) og (w1, w2, w3) of distinct
points in C. Then there exists a unique FLT f such that f(zi) = wi, i =
1, 2, 3. If all six points lie in R, then f may be expressed with real coefficients

— i. e. f(z) =
az + b

cz + d
with a, b, c, d all real.

Remark 2.2.6. The existence of such f means that the group Möb+(C) acts
transitively on the set of such triples. The uniqueness says that if two frac-
tional linear transformations have the same values at three points, then they
are equal. In particular, an FLT fixing three points is the identity map.

Note that f(z) is characterized by the equation

[f(z), w1, w2, w3] = [z, z1, z2, z3] .

Proof. By Lemma 2.2.3 we can find unique FLT’s h and g such that h(z1) =
1, h(z2) = 0, h(z3) = ∞, and g(w1) = 1, g(w2) = 0 g(w3) = ∞. Let
f = g−1h. Then f(zi) = wi, i = 1, 2, 3.

Suppose also f ′ maps zi to wi. Then gf and gf ′ are both FLT’s as in
Lemma 2.2.3, and because of the uniqueness gf = gf ′. Consequently f = f ′.

The final assertion of the Corollary follows from the formulas in the
proof of 2.2.3. They show that h and g have real coefficients, hence so does
f = g−1h.

Our next observation is that Möb+(C) also acts transitively on the set of
C–circles. The reason for this is that three distinct points in C determine a
unique C–circle containing all of them.

Corollary 2.2.7. Given two circles C1 and C2 in C. Then there exists a
fractional linear transformation f such that f(C1) = C2.

Proof. Choose three distinct points (z1, z2, z3) on C1 and (w1, w2, w3) on C2,
and let f be as in the Corollary above. Then f(C1) is a C–circle which
contains w1, w2 and w3 — i. e. C2.
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We now want to determine the fractional linear transformations f which
restrict to homeomorphisms of the upper half–plane. Such an f is charac-
terized by f(R) = R, and Im f(z) > 0 if Im z > 0. Here R = R ∪ {∞} ⊂ C.

Proposition 2.2.8. A fractional linear transformation restricts to a home-

omorphism of H if and only if it can be written on the form f(z) =
az + b

cz + d
,

where a, b, c, d are real and ad− bc = 1.
Such FLT’s preserve H–lines.

Proof. Corollary 2.2.5 says that if f(z) =
az + b

cz + d
restricts to a homeomor-

phism of H, then a, b, c, d can be chosen to be real, since f(R) = R. Con-
versely, f(R) = R if a, b, c, d are real.

A short calculation gives

f(z) =
(az + b)(cz̄ + d)
(cz + d)(cz̄ + d)

=
ac|z|2 + (ad+ bc)Re z + bd

|cz + d|2
+

(ad− bc)Im z

|cz + d|2
i . (2.2.1)

It follows that f preserves the upper half–plane if and only if ad − bc > 0.
Hence, if we multiply a, b, c and d by 1/

√
ad− bc, f is as asserted.

The last claim follows immediately from the fact that fractional linear
transformations preserve C–circles and angles between them. Every H–line
determines a C–circle which meets R orthogonally, and since f preserves
angles and f(R) = R, the images of these circles will also meet R orthogo-
nally.

The fractional linear transformations restricting to homeomorphisms of
H form a subgroup of of Möb+(C) denoted Möb+(H).It can also be described
using matrices, as follows:

Let SL2(R) be the special linear group — the group of real 2×2–matrices
with determinant 1. The only multiples of the identity matrix in SL2(R) are
±I, hence, arguing as before, we get an isomorphism between Möb+(H) and
the quotient group PSL2(R) = SL2(R)/(±I).

Möb+(C) does not contain all circle–preserving homeomorphisms of C.
Complex conjugation is also circle–preserving but not even complex analytic.
(Define ∞ = ∞.) We define the group of complex Möbius transformations,
Möb(C),to be the group of homeomorphisms of C generated by the fractional
linear transformations and complex conjugation.
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Proposition 2.2.9. (1) Every complex Möbius transformation can be writ-
ten on exactly one of the forms

f(z) =
az + b

cz + d
or f(z) =

az̄ + b

cz̄ + d
, where a, b, c, d ∈ C and ad− bc = 1 .

(2) The complex Möbius transformations preserving H can be written either
as

(i) f(z)=
az + b

cz + d
, where a, b, c, d ∈ R and ad− bc = 1 , or as

(ii) f(z)=
az̄ + b

cz̄ + d
, where a, b, c, d ∈ R og ad− bc = −1 .

Proof. (1) Let S be the subset of the set of homeomorphisms of C given
by such expressions. Clearly S ⊆ Möb(C) , and S contains Möb+(C) and
complex conjugation. Therefore it suffices to check that S is closed under
composition and taking inverses, and this is an easy calculation. Moreover,
the second expression is not even complex differentiable, hence no function
can be written both ways.

To obtain determinant 1 we divide numerator and denominator by a
square root of ad− bc.

(2) f(z) can be written in one of the two types in (1). In the first case,

the result is given in Proposition 2.2.8. If f(z) =
az̄ + b

cz̄ + d
, then g(z) = −f(z)

can be written as in (i). But then f(z) = −g(z) automatically has the form
given in (ii).

The representations in Proposition 2.2.9 is not unique, but it follows from
the result in Exercise 4 that it is unique up to multiplication of (a, b, c, d)
by ±1.

Let Möb(H) be the group of Möbius transformations restricting to home-
omorphisms of H. We have shown that every element in Möb(H) can be
written as one of the two types in (2) of Proposition 2.2.9, and therefore
we call these elements the real Möbius transformations. Note that complex
conjugation, i. e. reflection in the real axis, is not in Möb(H), but f(z) = −z̄,
reflection in the imaginary axis, is. Möb(H) is generated by this reflection
and Möb+(H) .

We use the notation Möb−(H) for the elements in Möb(H) of type (ii).
These do not form a subgroup, but Möb(H) is the disjoint union of Möb+(H)
and Möb−(H) . In fact, Möb+(H)⊂Möb(H) is a normal subgroup of index
two, and Möb−(H) is the coset containing −z̄.
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Möb(H) is the group we shall use to define congruence in H, but before
we show that Hilbert’s axioms hold, we will analyze the elements in Möb(H)
closer and show that they can be classified into a few very simple standard
types.

We end this section with some properties satisfied by the cross ratio.

Proposition 2.2.10. Assume that z, z1, z2 and z3 are four distinct points
in C, and let ρ = [z, z1, z2, z3]. Then

(i) [z1, z, z2, z3] = [z, z1, z3, z2] =
1
ρ
, and [z, z2, z1, z3] = 1− ρ.

(ii) z, z1, z2 and z3 all lie on the same C–circle if and only if the cross–ratio
[z, z1, z2, z3] is real.

(iii) [g(z), g(z1), g(z2), g(z3)] = [z, z1, z2, z3] if g is a fractional linear trans-
formation.

Proof. (i) Recall that the mapping w 7→ f(w) = [w, z1, z2, z3] is the frac-
tional linear transformation which is uniquely determined by its values
1, 0 and ∞ at the points z1, z2 and z3, respectively. Then the identities

[w, z1, z3, z2] =
1

f(w)
and [w, z2, z1, z3] = 1 − f(w) follow easily by inspec-

tion. Setting w = z proves two of the identities.
Note that since f(z2) = 0 and f(z3) = ∞, ρ is not 0 or ∞. Therefore

g(w) =
1
ρ
f(w) defines a new fractional linear transformation. But then

g(z) = 1, g(z2) = 0 and g(z3) = ∞ — hence g(w) = [w, z, z2, z3]. Conse-
quently,

[z1, z, z2, z3] = g(z1) =
1
ρ
[z1, z1, z2, z3] =

1
ρ
.

(ii) Let C be the unique C–circle containing the three points z1, z2 and
z3. Then f(C) must be the unique C–circle containing 1, 0 and ∞ — i. e. R.
Likewise, f−1(R) = C. Thus z ∈ C if and only if f(z) ∈ R. But since z 6= z3,
f(z) ∈ R means f(z) ∈ R.

(iii) Let h(w) = [g(w), g(z1), g(z2), g(z3)]. This is a composition of two
FLT’s — hence h is also an FLT. By inspection, h(zj) = [zj , z1, z2, z3] for
j = 1, 2, 3. Therefore h(w) = [w, z1, z2, z3] for all w, by uniqueness.

Remark 2.2.11. (1) The three transpositions (1,2), (2,3) and (3,4) generate
the whole group S4 — the group of permutations of four letters. Hence (i)
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can be used to determine the cross ratio of any permutation of the points
z, z1, z2 and z3. For examples, see Exercise 8.

It follows that [z, z1, z2, z3] can be defined as long as three of the points
z, z1, z2 and z3 are distinct, and it can be considered as a fractional linear
transformation in each of the variables separately. This observation will be
used repeatedly later without any further comment.

(2) The identity in (iii) is not valid for all Möbius transformations g. For
example, if g(z) = z̄, then [g(z), g(z1), g(z2), g(z3)] = [z, z1, z2, z3]. (Exercise
9.)

Exercises for 2.2

1. Discuss what conditions λ, µ, γ must satisfy for λzz̄+µz+ µ̄z̄+γ = 0
to define an H–line.

2. Let the circle C be given by the equation |z− z0| = r, and let f be the
function f(z) = 1/z. When is f(C) a straight line ∪{∞}?

3. Show that any FLT can be written as a composition of maps of the
following three simple types:

(i) Translations z 7→ z + b, b ∈ C,

(ii) Linear maps z 7→ kz, k ∈ C− {0},

(iii) Taking inverse z 7→ 1
z
.

Use this to give another proof of Lemma 2.2.1. (Hint: You may find
Exercise 2.1.4a useful.)

4. Assume ad − bc 6= 0. Show that
az + b

cz + d
=
a′z + b′

c′z + d′
for every z if and

only if there exists a k 6= 0 such that
[
a′ b′

c′ d′

]
= k

[
a b
c d

]
.

5. Use the method of Corollary 2.2.5 to find explicit fractional linear
transformations mapping H onto D and vice versa. (Compare with
Exercise 2.1.3.)

6. Describe all the elements in Möb(H) that map the imaginary axis to
itself.
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7. (a) Show that Möb(H) acts transitively on the set of all triples of dis-
tinct points in R. Deduce that Möb(H) acts transitively on the set of
pairs of lines in H with one common endpoint.

(b) Show that Möb+(H) acts transitively on the set of all pairs of dis-
tinct points in R.

(c) Show that Möb(H) does not act transitively on the set of pairs of
distinct points in H.

8. Using Remark 2.2.11, show that if [z1, z2, z3, z4] = ρ, then

[z3, z4, z1, z2] = ρ and [z3, z2, z1, z4] =
ρ

1− ρ
.

9. Show that [g(z), g(z1), g(z2), g(z3)] = [z, z1, z2, z3] for all g ∈Möb−(H) .

10. Show that Möb(H) is isomorphic to the group PGL2(R) = GL2(R)/D,
where D = {uI|u ∈ R− {0}}.

11. Let CP 1 = (C2 − {0})/∼, where ∼ is the equivalence relation which
identifies v and λv, for all v ∈ C2 − {0} and λ ∈ C − {0}. (CP 1 is
called the complex projective line.)

Show that multiplication by a matrix in GL2(C) induces a bijection
of CP 1 with itself.

Verify that (z1, z2) 7→ z1/z2 defines a bijection CP 1 ≈ C, and show

that via this bijection, multiplication with the matrix
[
a b
c d

]
corre-

sponds to the fractional linear transformation
az + b

cz + d
.

Why does it now follow immediately that this correspondence is a
group homomorphism GL2(C)→Möb+(C) ?

2.3 Classification of real Möbius transformations

Since the Möbius transformations play such an important rôle in the theory,
we would like to know as much as possible about them, both geometrically
and algebraically. The results of this section can be interpreted in both
directions. Geometrically we show that up to coordinate shifts, Möbius
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transformations can be given one of three possible “normal forms”, from
which it is easy to see how they act on H. Algebraically this translates into
a classification into conjugacy classes of Möb(H) .

Since Möb(H) is isomorphic to a matrix group, this classification could
be done completely with tools from linear algebra. What we will do is
equivalent to this, but interpreted in our geometric language.

The key to the classification of matrices is the study of eigenvectors, and
it is not difficult, using Exercise 2.2.11, to see that in Möb(C) this corre-
sponds to analyzing the fixpoints of the transformations, i. e. the solutions
in C of the equation z = f(z). By a “change of coordinates” we reduce to
a situation where the fixpoint set is particularly nice. Then we can more
easily read off the properties of f .

Let us first consider the subgroup Möb+(H)⊂Möb(H). We have seen

that an element here can be written f(z) =
az + b

cz + d
, where ad− bc = 1. We

assume from now on that f has this form and is not the identity.
Observe that as a map C→ C, f has ∞ as fixpoint if and only if c = 0.

If also a = d, this is the only fixpoint — otherwise we have one more, namely
z = −b/(a − d), which is a real number. In other words, if c = 0 we have
either one or two fixpoints, and they lie in R.

If c 6= 0, the equation z =
az + b

cz + d
is equivalent to the equation

cz2 − (a− d)z − b = 0 ,

with roots

z =
a− d±

√
(a− d)2 + 4bc
2c

.

Using that ad− bc = 1, we can simplify the square root and write

z =
a− d±

√
(a+ d)2 − 4
2c

.

We see that we should distinguish between three cases:

• (a+ d)2 = 4: Exactly one real root

• (a+ d)2 > 4: Two real roots

• (a+ d)2 < 4: Two complex roots
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The number a + d is the trace of the matrix
[
a b
c d

]
, and it is invariant

under conjugation by elements of GL2(C). The trace of −
[
a b
c d

]
is −(a+d),

so it follows that the number

τ(f) = (a+ d)2

is invariant under conjugation of f by elements inMöb+(H) . In fact, it is also
invariant under conjugation by z 7→ −z̄, hence invariant under conjugation
by every element of Möb(H) .

Note that if c = 0, then ad = 1 and (a + d)2 = (a − d)2 + 4 ≥ 4, with
equality if and only if a = d. Taking into account the discussion above of the
case c = 0, we can distinguish between the following three cases, regardless
of the value of c:

• Exactly one fixpoint in R, when τ(f) = 4. We then say that f is of
parabolic type.

• Two fixpoints in R, when τ(f) > 4. f is of hyperbolic type.

• Two fixpoints in C, when τ(f) < 4. f is of elliptic type.

Let us consider more closely each of the three cases:

Case (1) : One fixpoint in R; f is of parabolic type.
If c = 0, we may then write f(z) = z + β, i. e. f is a translation parallel

to the x–axis. If c 6= 0, the unique fixpoint is q = (a − d)/2c ∈ R, and we
can find an h ∈Möb+(H) mapping q to∞. (Choose e. g. h(z) = −1/(z−q).)
Then the composition g = h ◦ f ◦ h−1 is also an element of Möb+(H), and g
has ∞ as unique fixpoint. Hence, as above, g has the form

g(z) = z + γ

for a real number γ.
In fact, if f is of parabolic type we can do even better: choose a point

p ∈ R, p 6= q and such that also f(p) ∈ R. Then f(p) 6= p and f(p) 6= q,
since q is the only fixpoint. Define h by h(z) = [z, f(p), p, q] (cross ratio)
if this is in Möb+(H); otherwise set h(z) = −[z, f(p), p, q]. Then h(p) = 0,
h(q) =∞ and h(f(p)) = 1 or −1. The composition g = h ◦ f ◦ h−1 still has
∞ as its only fixpoint, hence it has to be a translation g(z) = z + b. But
then b = g(0) = h(f(p)) = ±1.
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Hence any parabolic transformation is to a translation of the form z+1 or
z−1. These two translations are conjugate in Möb(H) , but not in Möb+(H) .
(See Exercise 5.)

We think of such a conjugation as a change of coordinates: writing
f = h−1 ◦ g ◦ h, we see that f(z) is obtained by first moving z to h(z), then
applying g and finally moving back again by h−1.

g fixes the point ∞ and translates horizontally all straight lines orthog-
onal to the real axis, i. e. H–lines ending in ∞. Since h and h−1 both map
H–lines to H–lines, we see that f must map H–lines ending in q to H–lines
of the same type.

Figure 2.3.1 illustrates this in more detail. If g translates the vertical
lines horizontally, it must also preserve the horizontal lines (dashed lines in
the left figure). Mapped back by h−1 these become circles, but these circles
are now tangent to the x–axis, as in the figure to the right. It follows that
f also must preserve such circles.

Remark 2.3.1. Such (Euclidean) circles, tangent to R at a point p, we call
horocircles at p. They can also be characterized by the property that they
are orthogonal to all hyperbolic lines ending at the point of tangency (See
Exercise 3). Another characterization is discussed in Exercise 2.7.5.

w g(w)

z

f(z)

l

f(l)

m=h(l) g(m)

q

sh(s)

h

g
f

Fig. 2.3.1: Parabolic Möbius transformation

Case (2) : f is of hyperbolic type, i. e. τ(f) = (a + d)2 > 4 and f has two
fixpoints in R.

Let h ∈Möb+(H) be a real FLT mapping the two fixpoints to 0 and ∞.
Then g = h ◦ f ◦ h−1 ∈Möb+(H) has 0 and ∞ as fixpoints. It also maps
the imaginary axis to an H–line l, But since the end points are fixed, the



32 CHAPTER 2. HYPERBOLIC GEOMETRY

end points of l are again 0 and ∞, so l must also be the imaginary axis. In
particular there is a positive real number η such that g(i) = ηi, and since
we know that g is uniquely determined by the values at the three points 0,
i and ∞, we see that

g(z) = ηz

for all z. Thus, up to a change of coordinates, f is just multiplication by a
real number.

Write η = λ2, where we also may assume λ > 0. Since we must have
τ(g) = τ(f), λ satisfies the equation

λ+
1
λ

= |a+ d| .

This equation has two roots λ and 1/λ, and the corresponding functions
λ2z and z/λ2 are conjugate by the transformation z 7→ −1/z — hence they
are both realized by different choices of h. It follows that if we also choose
η > 1, g(z) = ηz is uniquely determined. Moreover, this g(z) is invariant
under conjugation by −z̄. Therefore there is a one–one correspondence
between conjugacy classes of hyperbolic elements and real numbers > 1. (In
both Möb+(H) and Möb(H) .)

Hyperbolic transformations behave as in figure 2.3.2. g preserves straight
lines through 0, and these are mapped by h−1 to circular arcs or straight
lines through the fixpoints of f , but the image of the imaginary axis is the
only such curve meeting the x–axis orthogonally. Hence this is an H–line
between the two fixpoints of f , and it is mapped to itself by f . We call this
H–line the axis of f .

An element of Möb+(H) of hyperbolic type with axis l is often called a
“translation along l”.

Case (3) : The final case is when we have two complex fixpoints — the elliptic
case, when τ(f) < 4.

Since the two fixpoints are the roots of a real, quadratic equation, they
are complex conjugate. In particular, there is exactly one in the upper half–

plane and none in R. Let p be the fixpoint in H and set h(z) =
z − Re p

Im p
,

such that h ∈Möb+(H) and h(p) = i. This time g = h ◦ f ◦ h−1 will be a
real fractional linear transformation fixing i.

Let us analyze this g. Write g as g(z) =
αz + β

γz + δ
, where α, β, γ, δ ∈ R.

g(i) = i means that αi + β = −γ + δi — i. e. α = δ and β = −γ. If we
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g

f
h

p0=h(p)

z
f(z)

w

g(w)

w=h(z)

Fig. 2.3.2: Hyperbolic Möbius transformation

substitute this into the equation αδ−βγ = 1, we see that α2 +β2 = 1. Then
we may write α = cos(θ), β = sin(θ) for some real number θ, and we have

g(z) = gθ(z) =
cos(θ)z + sin(θ)
− sin(θ)z + cos(θ)

.

The matrix
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
describes a (clock-wise) rotation by the

angle θ in R2. We can think of g also as a kind of rotation, since it keeps i
fixed and maps the H–lines through i to lines of the same type. Figure 2.3.3
shows the image of the imaginary axis. (Note that gθ(0) = tan θ.)

0 tan θ

θ

i
θ

θ

Fig. 2.3.3: Elliptic Möbius transformation

From the picture we see that the imaginary axis is rotated by an angle
2θ. But an easy calculation shows that gθgθ′ = gθ+θ′ — hence gθ will rotate
any H–line through i by an angle 2θ. In particular, gπ =id, and gθ+π = gθ.

Later, after we have introduced Poincaré’s disk–model, the analogy with
Euclidean rotations will become even clearer. See also Exercise 6.
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If gθ is conjugate to gθ′ in Möb+(H) , then gθ = gθ′ . The reason for this is
that if h−1gθh has i as fixpoint, then gθ has h(i) as fixpoint — hence h(i) = i.
But then h = gφ for some φ; thus gθ and h commute. It follows that there is
a one–one correspondence between conjugacy classes in Möb+(H) of elliptic
elements and angles θ ∈ (0, π).

On the other hand, if h(z) = −z̄, then h−1gθh = g−θ = gπ−θ, so the con-
jugacy classes in Möb(H) are in one–one correspondence with θ ∈ (0, π/2).

Let us sum up what we have done so far:

Proposition 2.3.2. Suppose f(z) =
az + b

cz + d
, where a, b, c, d ∈ R and ad−

bc = 1, and let τ(f) = (a + d)2. Assume f is not the identity map. Then,
as an element of Möb+(H) , f is of

• Parabolic type, conjugate to z 7→ z + 1 or z − 1, if τ(f) = 4,

• Hyperbolic type, conjugate to exactly one z 7→ ηz with η > 1, if τ(f) >
4,

• Elliptic type, conjugate to a unique z 7→ gθ =
cos(θ)z + sin(θ)
− sin(θ)z + cos(θ)

with θ ∈ (0, π) , if τ(f) < 4.

In Möb(H) the only differences are that there is only one conjugacy class
of elements of parabolic type (see Exercise 5), and gθ is conjugate to gπ−θ.

We say that an element of Möb+(H) is given on normal form if it is
written as a conjugate of one of these standard representatives.

We now move on to Möb−(H) and consider a transformation of the form

f(z) =
az̄ + b

cz̄ + d
, where a, b, c, d ∈ R and ad− bc = −1.

Again we will look for fixpoints of f(z). As before, z = ∞ is a fixpoint
if and only if c = 0. If z 6= ∞, the equation f(z) = z is now equivalent to
c|z|2 + dz − az − b = 0, or

c(x2 + y2)− (a− d)x− b = 0, (2.3.1)
(a+ d)y = 0. (2.3.2)

We consider the two cases a+ d = 0 and a+ d 6= 0 separately.

First, let a+ d = 0. In this case equation (2.3.2) is trivially satisfied, so
we have only one equation (2.3.1). This describes an H–line : the vertical
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line x =
b

d− a
when c = 0 and the semi–circle with center (a/c, 0) and

radius 1/|c| if c 6= 0. (Note that a 6= d if c = 0, since then ad = −1.)
Hence f fixes an entire H–line and interchanges the two components of its
complement in H. More precisely, by a suitable conjugation as above, we
may assume that the fixed H–line is the imaginary axis. Then c = b = 0
and a = −d = ±1 — hence f(z) = −z. Thus all such transformations are
conjugate to the horizontal reflection in the imaginary axis.

If the fixpoint set is another vertical line l, we can choose h to be a
horizontal translation. Hence f must be horizontal reflection in l.

If c 6= 0 we can also write

f(z) =
a

c
+

1/c
cz̄ + d

=
a

c
+

1/c2

z − a/c
. (2.3.3)

This has the general form

g(z) = m+
r2

z −m
= m+ r2

z −m
|z −m|2

.

If C is the circle with center m and radius r, g(z) maps points outside
C to points inside and vice versa, and it leaves the circle itself fixed. More
precisely, we see that g(z) lies on the (Euclidean) ray from m through z,
and such that the product |w − m||z − m| is equal to r2. This is a very
important geometric construction called “inversion in the circle C”.

By analogy we will also call the horizontal reflection in a vertical line
l “inversion in l”. Thus inversions are precisely the transformations in
Möb−(H) such that a + d = 0, and all inversions are conjugate. Note that
there are two particularly simple representatives for this conjugacy class:
the horizontal reflection z 7→ −z and the map z 7→ 1/z̄, which is inversion
in the circle |z| = 1.

Next, assume a+ d 6= 0. Then y = 0 by (2.3.2), so there are no fixpoints
in H. In equation (2.3.1) we distinguish between the cases c = 0 and c 6= 0.

If c = 0, we get x = b/(d− a), but then we also have the fixpoint (in C)
z =∞, so f must map the vertical line x = b/(d−a) to itself. (But without
fixpoints.)

If c 6= 0, (2.3.1) has two solutions x =
a− d±

√
(a+ d)2 + 4
2c

in R.

Hence f(z) has two fixpoints on the real axis, and f must map the H–line
with these two points as endpoints to itself.
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Thus, in both cases f preserves an H–line `, fixing the endpoints, and
conjugating with a transformation mapping ` to the imaginary axis, we
obtain a function of the form k(z) = −λ2z — a composition of the reflection
(inversion) in the y–axis and a hyperbolic transformation with the same
axis.

Note that as λ2(−z) = −(λ2z), these two transformations commute.
Conjugating back, we see that we have written f as a composition of two
commuting transformations — a hyperbolic transformation h and an inver-
sion g in the axis of h. Observe also that if λ2 6= 1, the imaginary axis is
the only H–line mapped to itself by k(z) = −λ2z. It follows that the line `
above is the only line such that f(`) = `. This is used in the proof of the
following proposition:

Proposition 2.3.3. Let f ∈Möb−(H) have the form f(z) =
az̄ + b

cz̄ + d
, where

a, b, c, d ∈ R and ad− bc = −1.

• If a+ d = 0, then f an inversion, conjugate to reflection in the imag-
inary axis.

• If a + d 6= 0, f can be written f = gh, where g is an inversion and g
and h commute. Moreover, this decomposition is unique and h is of
hyperbolic type.

Proof. It only remains to prove the uniqueness statement. So, suppose f =
gh = hg, where g is inversion in a line `. If z ∈ ` we have

g(h(z)) = h(g(z) = h(z) ,

i. e. h(z) is a fixpoint for g. Hence h(z) ∈ `. It follows that

f(`) = h(g(`)) = h(`) = ` .

By as we just observed, this determines `, hence also g. It is now clear
that g and h are uniquely determined as the two transformations constructed
above.

It is worth pointing out that if we do not require that the components
commute, there are many ways of decomposing an element of Möb−(H) into
a product of an inversion and an element of Möb+(H) . Trivial such decom-
positions are given by the formulas

az + b

cz + d
=

(−a)(−z) + b

(−c)(−z) + d
= −

(
(−a)z + (−b)

cz + d

)
.



2.3. CLASSIFICATION OF REAL MÖBIUS TRANSFORMATIONS 37

More interesting, perhaps; if c 6= 0, we can generalize (2.3.3) and write
(using ad− bc = −1):

az + b

cz + d
=
a

c
+

1/c
cz̄ + d

=
a+ d

c
+
(
−d
c

+
1
c2

z − (−d/c)
|z − (−d/c)|2

)
. (2.3.4)

This is a composition of an inversion and a parabolic transformation. For
more on decompositions of Möbius transformations, see exercises 9 and 10.

Note the following, which is implicit in what we have done:

• An element in Möb−(H) is an inversion if and only if its trace a+ d is
0. (This condition is independent of whether we have normalized the
coefficients or not.)

• An inversion in an H–line l is characterized, as an element of Möb(H) ,
by having all of l as fixpoint set.

Exercises for 2.3

1. Classify the following maps and write them explicitly as conjugates of
mappings on normal form.

4z − 3
2z − 1

, − 1
z − 1

,
z

z + 1
.

2. Discuss the classification of Möbius transformations in terms of matrix
representations, without assuming determinant 1.

3. Show geometrically that the horocircles at a point p ∈ R are orthogonal
to all hyperbolic lines with p as one endpoint.

4. Explain what a hyperbolic transformation f does to the horocircles at
the endpoints of the axis of f , and also to the other H–lines sharing
the same endpoint.

5. Show that all parabolic transformations are conjugate in Möb(H) .
Show that the translations z 7→ z + 1 and z 7→ z − 1 are not con-
jugate in Möb+(H) .
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6. Fix a z in H, z 6= i. Show that as θ varies, the points gθ(z) all lie on
the same circle in C.

(Hint: if cos θ 6= 0,write gθ(z) =
tan θ + z

− tan θ z + 1
, and think of this as a

function of tan θ.)

7. Show that f ∈Möb−(H) is an inversion if and only if it has a fixpoint
in H.

8. Show that an inversion in a circle C ⊂ C, considered as a map on C
minus the center of C, has the following properties:

(a) It maps straight lines outside C to circles inside C and through
its center.

(b) Circles intersecting C orthogonally are mapped to themselves.

(These are important results about inversions that are usually proved
by geometric arguments. Her they should follow quite easily from what
we now know about Möbius transformations.) .

9. Show that every element in Möb+(H) may be written as the composi-
tion of two inversions.

10. Show that Möb(H) is generated by inversions, and show that Möb+(H)
(Möb−(H) ) consists of those elements that can be written as a com-
position of an even (odd) number of inversions.

2.4 Hilbert’s axioms and congruence in H

We are now ready to prove that the upper half–plane provides a model for
that hyperbolic plane, with congruence based on the action of Möb(H) .

Recall that, using a combination of orthogonal and stereographic projec-
tions, we have identified the open unit disk K ⊂ R2 with the upper half–plane
H ⊂ C, such that chords in K correspond to what we have called H–lines
— vertical lines or semicircles with center on the real axis in C. K inherits
incidence and betweenness relations from R2, hence we obtain corresponding
relations in H. Automatically all of Hilbert’s axioms I1–3 and B1–4 for these
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relations hold, as does Dedekind’s axiom. In this section we introduce a con-
gruence relation and show that it satisfies Hilbert’s axioms C1–6. Since, as
we have observed, the parallel axiom is replaced by the hyperbolic axiom,
we will then have completed the construction of a hyperbolic geometry.

Remark 2.4.1. Betweenness for points on a line in the Euclidean plane can
be formulated via homeomorphisms between the line and R or intervals in
R, hence the same is true for H–lines, if we use the subspace topology from
C. On R the easiest definition is:

a ∗ b ∗ c ⇐⇒ a < b < or a > b > c .

(Equivalently: (a− b)(b− c) > 0.) The simplest such homeomorphisms are
projections to the imaginary axis from the vertical lines and to the real axis
from the half–circles. It follows that betweenness for points on an H–line `
can be characterized by

• x ∗ y ∗ z ⇐⇒ Imx ∗ Im y ∗ Im z if ` is vertical,

• x ∗ y ∗ z ⇐⇒ Rex ∗ Re y ∗ Re z otherwise.

Before we go on, we need a more precise notation for lines, rays etc.
If z1, z2 are two points of H, we write ←−→z1z2 for the uniquely determined
hyperbolic line containing them, −−→z1z2 for the ray from z1 containing z2 and
[z1, z2] for the segment between z1 and z2 — i. e. [z1, z2] = −−→z1z2 ∩ −−→z2z1.
An H–line l is uniquely determined by its endpoints p and q in R, and
therefore we will also write l = (p, q). With this notation, the identity
←−→z1z2 = (p, q) will mean that the uniquely determined H–line containing z1
and z2 has endpoints p and q. Similarly, we may also write [z1, q) = −→z1q =
−−→z1z2, expressing that q is the endpoint of the ray −−→z1z2.

We say that z1 is the vertex and q the endpoint of the ray [z, q). An angle
is then an unordered pair of rays with the same vertex, where the two rays
do not lie on the same line. We use the notation ∠uzv for the unordered
pair {−→zu,−→zv}, where z ∈ H and u, v are either in H or in R.

The congruence relation in H is now defined as follows:
Congruence of segments: [z1, z2] ∼= [w1, w2] ⇐⇒ g([z1, z2]) = [w1, w2]
for some g ∈Möb(H) .
Congruence of angles: ∠uzv ∼= ∠u′z′v′ ⇐⇒ g(−→zu) =

−−→
z′u′ and

g(−→zv) =
−→
z′v′ for some g ∈Möb(H) . (Notation: g(∠uzv) = ∠u′z′v′.)

The existence parts of the congruence statements say that there are
enough Möbius transformations to move angles and segments freely around
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in H, whereas the uniqueness means that there are not too many such trans-
formations. The technical results we need are contained in the following
Lemmas:

Lemma 2.4.2. Suppose zj lies on an H–line lj, with endpoints pj and qj,
for j = 1, 2. Then there is a uniquely determined f ∈Möb+(H) such that
f(p1) = p2, f(q1) = q2 and f(z1) = z2 — hence also f(l1) = l2.

In particular we have, for example, f([z1, q1)) = [z2, q2). But since a ray
determines the line containing it, we get

Corollary 2.4.3. Möb+(H) acts transitively on the set of all rays: In fact,
given two rays σ1 and σ2 with vertices z1 and z2, there is a unique f ∈
Möb+(H) such that f(z1) = z2 and f(σ1) = σ2.

Lemma 2.4.4. (i) An element in Möb+(H) is completely determined by its
values at two points in H.

(ii) Suppose the segments [z1, z2] and [w1, w2] are congruent. Then there
is a uniquely determined f ∈Möb+(H) such that f(z1) = w1 and f(z2) = w2.

Lemma 2.4.5. Given two rays σ1 and σ2 with a common vertex z0. Then
there is a unique inversion g such that g(z0) = z0, g(σ1) = σ2 and g(σ2) =
σ1.

Proof of Lemma 2.4.2. By Exercise 2.2.7b there exists a g ∈Möb+(H) such
that g(p1) = p2 and g(q1) = q2. Then automatically g(l1) = l2. Now let h
be a hyperbolic transformation with axis l2 such that h(g(z1)) = z2. Then
f = hg satisfies all the required properties.

Uniqueness follows from Corollary 2.2.5.

Proof of Lemma 2.4.4. (i) Two points in H determine a unique line l, and
the endpoints of l must map to the endpoints of f(l), in such a way that
betweenness relations are preserved. Hence the values of f at four points are
determined, and the uniqueness follows from uniqueness in Corollary 2.2.5.

(ii) Assume that g([z1, z2]) = [w1, w2] for some g ∈Möb(H). If g ∈
Möb−(H), we replace g by k ◦g, where k is the inversion in the H–line←−→w1w2.
Therefore we may assume that g ∈Möb+(H).

The problem is that we might have g(z1) = w2 and g(z2) = w1. If so,
choose an h ∈Möb+(H) such that h(←−→w1w2) is the imaginary axis, and write
h(w1) = ω1i, h(w2) = ω2i. If we define k(z) = −ω1ω2/z, we see that k
interchanges ω1i and ω2i. Then h−1kh will interchange w1 og w2, and we
let f = h−1khg.
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Proof of Lemma 2.4.5. It follows easily from Lemma 2.4.2 that we can find
an h ∈Möb+(H) mapping σ1 to σ2. (h has z0 as fixpoint and must necessarily
be elliptic.) Let g′ be inversion in the line containing σ1 and define g = hg′.
Then g ∈Möb−(H) and has a fixpoint z0 ∈ H, hence is an inversion. Clearly
g(σ1) = h(σ1) = σ2.

Uniqueness: Suppose g′ is another inversion with the same properties.
Then g−1g′ is an element ofMöb+(H) mapping both σ1 and σ2 to themselves.
Therefore it has three fixpoints z0, q1 and q2 (in C), hence it must be the
identity map. Thus g = g′.

We are now ready to prove that Hilbert’s congruence axioms C1–6 are
satisfied. The axioms are:

The axioms for congruence of segments:

C1: Given a segment [z1, z2] and a ray σ with vertex w1, there is a uniquely
determined point w2 on σ such that [w1, w2] ∼= [z1, z2].

C2: ∼= is an equivalence relation on the set of segments.

C3: If z1 ∗z2 ∗z3 and w1 ∗w2 ∗w3 and both [z1, z2] ∼= [w1, w2] and [z2, z3] ∼=
[w2, w3], then also [z1, z3] ∼= [w1, w3].

The axioms for congruence of angles:

C4: Given a ray [w, q) and an angle ∠uzv, there are unique angles ∠p1wq
and ∠p2wq on opposite sides of [w, q) such that ∠p1wq ∼= ∠p2wq ∼=
∠uzv.

C5: ∼= is an equivalence relation on the set of angles.

C6: (SAS) Given triangles z1z2z3 og w1w2w3. If [z1, z2] ∼= [w1, w2], [z1, z3] ∼=
[w1, w3] and ∠z2z1z3 ∼= ∠w2w1w3, then the two triangles are congru-
ent — i. e. we also have [z2, z3] ∼= [w2, w3], ∠z1z2z3 ∼= ∠w1w2w3 and
∠z2z3z1 ∼= ∠w2w3w1.

C2 and C5 follow immediately since we have defined congruence by a group
action.

C1. The segment [z1, z2] defines a ray −−→z1z2, and by Corollary 2.4.3 there
exists an f ∈Möb+(H) such that f(z1) = w1 and f(−−→z1z2) = σ. If we put
w2 = f(z2), we clearly get [w1, w2] ∼= [z1, z2].
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Suppose that w′2 is another point on σ such that [w1, w
′
2] ∼= [z1, z2]. By

Lemma 2.4.4 we can find h ∈Möb+(H) such that h(z1) = w1 and h(z2) = w′2.
But then also h(−−→z1z2) =

−−−→
w1w

′
2 = σ, and by the uniqueness in Corollary 2.4.3

we must have h = f . Therefore w2 = f(z2) = h(z2) = w′2.

C3. Here we use Lemma 2.4.4(ii), saying that there exists a g ∈Möb+(H) such
that g(z1) = w1 and g(z2) = w2. Then w′3 = g(z3) is on the ray −−−→w2w3, and
g defines congruences [z2, z3] ∼= [w2, w

′
3] and [z1, z3] ∼= [w1, w

′
3]. But by the

uniqueness in C1 we must then have w′3 = w3.

C4. We may assume that u and v are the endpoints of the rays in ∠uzv. To
construct the angles is easy: let g ∈Möb+(H) be such that g([z, u)) = [w, q),
and define ∠p1wq as g(∠uzv). Let j ∈Möb−(H) be inversion in the H–
line l containing [w, q), and let ∠p2wq = jg(∠uzv) = j(∠p1wq). Since j
interchanges the two sides of l, then ∠p1wq and ∠p2wq must lie on opposite
sides of [w, q).

It remains to prove uniqueness. Suppose ∠pwq = h(∠uzv), where h ∈
Möb(H). This means that h([z, u)) is either [w, q) or [w, p), and using Lemma
2.4.5, we may, if necessary, compose h with an inversion interchanging [w, q)
and [w, p) — hence we may assume h([z, u)) = [w, q). If h ∈Möb+(H),
then h = g because of the uniqueness in Corollary 2.4.3 once again, and
[w, p) = [w, p1). If h ∈Möb−(H), then jh ∈Möb+(H) , and since jh([z, u)) =
j([w, q)) = [w, q), jh = g. Therefore h = jg, and [w, p) = [w, p2).

C6. By assumption we have ∠w2w1w3 = g(∠z2z1z3), for some g ∈Möb(H),
and after applying Lemma 2.4.5, if necessary, we may assume that g(−−→z1z2) =
−−−→w1w2 and g(−−→z1z3) = −−−→w1w3. But uniqueness in C1 then means that g(z2) =
w2 and g(z3) = w3. Hence it follows that also g([z2, z3]) = [w2, w3], g(∠z1z2z3) =
∠w1w2w3 and g(∠z2z3z1) = ∠w2w3w1.

Remark 2.4.6. Except for C6, we could have defined congruence using the
smaller group Möb+(H) . The remaining axioms would still hold.

2.5 Distance in H

Now that we have established the existence of a model for hyperbolic geom-
etry based on the upper half–plane H, it is time to start investigating the
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geometric structure itself. Classical geometry has a rich theory of triangles
and circles, we can measure distances and angles, and there is a trigonomet-
ric theory relating them. Of great practical importance are formulas for arc
lengths and area. To what extent can we do the same in hyperbolic geome-
try? Many classical geometric arguments do not use the parallel axiom, and
these will automatically be valid in hyperbolic geometry, as well. So, which
results carry over and which do not? And, what can we say when they do
not?

Naturally, we can only scratch the surface here, but in the next sections
we shall develop some of the basic theory. Enough, hopefully, to give a
feeling for what the hyperbolic world looks like.

We start with the fundamental concept of distance, and we will show
that there is a distance function in H which characterizes congruence, just
as in Euclidean geometry. Thus, we want to define a metric on H — i. e. a
function d : H×H→ R such that

(d1) d(z, w) ≥ 0, and d(z, w) = 0 if and only if z = w,

(d2) d(z, w) = d(w, z) for all z, w ∈ H,

(d3) d(z, w) ≤ d(z, u) + d(u,w) for all z, u, w ∈ H.

The desired relation with geometry leads us to we require that it also
should have the following properties:

(d4) If z, u, w are distinct points in H, then d(z, w) = d(z, u) + d(u,w) if
and only if u ∈ [z, w]. (“Distance is measured along H–lines”.)

(d5) d(z, w) = d(z′, w′) if and only if there exists a g ∈Möb(H) such that
g(z) = z′ and g(w) = w′.

(“Two segments are congruent if and only if they have the same lengths”.)

We first observe that (d4) and (d5) determine the metric almost com-
pletely, if it exists. Given z, w, there is a unique g ∈Möb+(H) such that
g(z) = i and g(w) = ti, where t ≥ 1. (This is Lemma 2.4.2 applied to the
point i on the imaginary axis and the point z on the H–line through z and
w. If g(w) has imaginary part less than 1, we can replace g by k ◦ g, where
k(z) = −1/z.) Then, because of (d5), we must have d(z, w) = d(i, ti), hence
d is completely determined by the function f : [1,∞) → [0,∞) defined by
f(t) = d(i, ti).
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We can say more about the function f . Let s and t be two numbers
greater than or equal to 1. Then si ∈ [i, sti] — hence from (d4) (and (d1),
if s or t is 1) we have:

f(st) = d(i, sti) = d(i, si) + d(si, sti) = d(i, si) + d(i, ti) = f(s) + f(t) .

(The third inequality follows from (d5) applied to h(z) = sz and z = i.)
But then one can show that f(t) = C ln(t) for some real (positive) constant
C.

(See Exercise 2.5.1 for the case when f is differentiable in one point. But it

is easy to see that f must be increasing, and a famous Theorem due to Lebesgue

says that an increasing function is differentiable almost everywhere.)

The choice of constant C just amounts to a scaling, and any positive
number could be used in the following. We choose to set C = 1. If ti and
si are two points on the imaginary axis with s < t, we then have

d(si, ti) = d(i,
t

s
i) = ln(

t

s
) .

But then also
d(ti, si) = d(si, ti) = ln(

t

s
) = − ln(

s

t
) ,

hence d(si, ti) is equal to | ln( t
s)| for any two points si and ti on the imaginary

axis. In particular, d(i, ti) = | ln(t)| for every t > 0.
This leads to the following formula for the metric d if z 6= w:

d(z, w) = | ln(| g(z)
g(w)

|)| = | ln(| i

g(w)
|)| = | ln(|g(w)|)| ,

where g ∈Möb+(H) maps z to i and w to another point on the imaginary
axis.

From the proof of Lemma 2.4.2 we can give an explicit expression for
the transformation g. If p and q are the endpoints of the unique hyperbolic
line through z and w and such that z is between p and w, we can set

g(w) = [w, z, p, q] i,

such that
d(z, w) = | ln |[w, z, p, q]|| . (2.5.1)

By Proposition 2.2.10(i) this is independent of the ordering of p and q, and
can also we used when w = z (in which case we get 0, independent of p and
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q). Thus d is a well–defined function on all of H×H. We now have to show

that the function d satisfies (d1-d5) and hence defines the metric we want.
(d1) is obvious, and (d2) follows again from Proposition 2.2.10(i).
Consider next (d5):
Let h be an element in Möb(H) . Then h(p) and h(q) are the endpoints

of the line through h(z) and h(w). If h ∈Möb(H) ,

d(h(z), h(w)) = | ln |[h(w), h(z), h(p), h(q)]|| = | ln |[w, z, p, q]|| = d(z, w)

by Proposition 2.2.10 and Exercise 2.2.9.
Conversely, assume that d(z, w) = d(z′, w′), where we assume z 6= w and

z′ 6= w′ — the other case being trivial. Let p, q and p′, q′ be the endpoints
of the lines ←→zw and

←→
z′w′. Then [w′, z′, p′, q′] = [w, z, p, q] or 1/[w, z, p, q],

and by interchanging p′ and q′, if necessary, we may assume [w′, z′, p′, q′] =
[w, z, p, q]. Let h(u) = [u, z, p, q] and h′(u) = [u, z′, p′, q′], and set g =
(h′)−1h. Then g(z) = (h′)−1(1) = z′ and g(w) = (h′)−1([w, z, p, q]) =
(h′)−1([w′, z′, p′, q′]) = w′.

It remains to prove the triangle inequality (d3) with the additional prop-
erty (d4). We need the following lemma:

Lemma 2.5.1. For every z, w we have d(z, w) ≥ | ln(Imw/Im z)|, with
equality if and only if Re z = Rew.

Proof. If Re z = Rew we can choose p = Re z and q = ∞, and we have
[w, z, p, q] = (w − p)/(z − p) = Imw/Im z.

Henceforth, assume Re z 6= Rew. The inequality is trivially satisfied if
Im z = Imw, hence we also assume Im z 6= Imw, and since d(z, w) = d(w, z),
we may choose the labeling such that Imw > Im z. Then

d(z, w) = d(w, z) = | ln(|w − q
w − p

z − p
z − q

|)| = | ln(
|w − q|
|w − p|

/
|z − q|
|z − p|

)| ,

where p and q are the endpoints of ←→zw. This expression does not change if
we interchange p and q, hence we may assume that p ∗ w ∗ z ∗ q. We now
have the situation illustrated in figure 2.5.1 (or its mirror image).

From the figure we see that
|w − q|
|w − p|

= tanA and
|z − q|
|z − p|

= tanB. But

we also have tanA = Imw/|Rew − p| and tanB = Im z/|Re z − p|, hence
we get

|w − q|
|w − p|

/
|z − q|
|z − p|

=
tanA
tanB

=
Imw

Im z
· |Re z − p|
|Rew − p|

.
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p q

A

w z

B

Re zRe w

Fig. 2.5.1:

Because of the way we have chosen p, w, z and q, we have the inequalities
Imw

Im z
> 1 and

|Re z − p|
|Rew − p|

> 1. Therefore
|w − q|
|w − p|

/
|z − q|
|z − p|

>
Imw

Im z
> 1, and

d(z, w) = ln(
|w − q|
|w − p|

/
|z − q|
|z − p|

) > ln(
Imw

Im z
) .

Hence we have strict inequality when Re z 6= Rew and equality when Re z =
Rew.

To prove the triangle inequality, it is enough to consider the case z =
i, w = ti, where t > 1, since we can always move to this situation by (d5).
If u is a third point, we get

d(z, u) + d(u,w) ≥ | ln(Imu/Im z)|+ | ln(Imw/Imu)| ≥
| ln(Imu/Im z) + ln(Imw/Imu)| = | ln(Imw/Im z)| = d(z, w) .

This is (d3). We have equality if and only if Reu = 0 and ln(Imu/Im z)
and ln(Imw/Imu) have the same sign — i. e. if and only if u also lies on the
imaginary axis and 1 = Im z ≤ Imu ≤ Imw. But this means precisely that
u ∈ [z, w], and (d4) follows.

Exercises for 2.5

1. Show that a function f : (1,∞) → R which is differentiable in one
point and satisfies the equation f(st) = f(s) + f(t) for all s and t
must be equal to C ln(t) for some constant C. (Hint: Show that F is
differentiable everywhere and compute its derivative.)
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2. The distance between two subsets U and V of a metric space is defined
as d(U, V ) = inf{d(u, v) |u ∈ U, v ∈ V }.
Let l1 and l2 be two hyperbolic lines with a common endpoint. Show
that d(l1, l2) = 0.

3. What does the set of points in H having the same, fixed distance to
the y-axis look like?

4. Assume the function f : H → H preserves hyperbolic distance. (I. e.
d(f(x), f(y)) = d(x, y) for all x, y ∈ H.) Prove that f ∈Möb(H) .

5. Show that the metric d defines the usual topology (as a subspace of
R2) in the upper half–plane. (This is not so easy to prove at this stage,
but you may try it as a challenge. After section 7 this problem will be
much simpler. See Exercise 2.7.6.)

2.6 Angle measure. H as a conformal model

Whereas the definition of distance required a fair amount of work, it turns
out that angle measure is much simpler, due to the fact that all the congru-
ence transformations are conformal as maps of C (Lemma 2.2.1ii).

A point z on a line divides the line into two rays with z as common
vertex. A third ray from z determines two angles with these rays, and these
angles are called supplements of each other. A given angle then has two
supplementary angles, but they are easily seen to be congruent.

Definition. An angle is said to be a right angle if it is congruent to its
supplements.

The usual (absolute) angular measure in R2 is a function which to any
angle associates a number between 0 and 2R, where R is the number we
associate to a right angle (usually π/2 or 90 degrees), such that two angles
are congruent (in the Euclidean sense) if and only if they are associated
to the same number. The function is also additive, in the following precise
sense:

Suppose A and D are on opposite sides of
←→
BC, and suppose the angles

∠ABC and ∠CBD have angle measures U and V , respectively, If U + V <
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2R, then the angle ∠ABD has measure U+V . (The conditions mean that we
are talking about a sum, rather than a difference of angles, and that we are
only considering angles smaller than two right angles.) If we normalize the
angle measure by requiring that right angles have the measure R and every
number in the interval (0, 2R) is realized by some angle, this determines the
angle measure uniquely. Note that what determines the angle measure is
then essentially the concept of congruence.

In H an angle measure should have exactly the same properties, except
that two angles now should have the same measure if and only if they are
congruent in the hyperbolic sense — i. e. there exists a Möbius transformation
mapping one to the other. Now we define the Euclidean angle between
two rays with common vertex to be the angle between their tangents at
the vertex. Then Lemma 2.2.1 says that fractional linear transformations
preserve the Euclidean angle measure, and complex conjugation trivially
does the same. Therefore all Möbius transformations, and in particular those
in Möb(H), also preserve Euclidean angle measure. In fact, the converse is
also true, so we have:

Lemma 2.6.1. Two angles A and B are congruent if and only if they have
the same Euclidean angle measure.

Proof. We only need to prove the if part. Let A = ∠xyz and B = ∠uvw,
and suppose they both have Euclidean angle measure θ. By Hilbert’s axiom
C4 we may reduce to the case −→yx = −→vu = [i, 0). (Notation from section 4.)
But there are exactly two rays from i making an angle θ with [i, 0) — one
on each side of the imaginary axis — and they are mapped to each other by
the reflection z 7→ −z̄, which fixes [i, 0).

It follows that we can use the same measure of angles in H as in the
Euclidean plane containing it.

We express this by saying that the Poincaré upper half–plane H is a
conformal model for hyperbolic geometry. This is one of the properties that
makes this model much more useful that the Beltrami–Klein model K, which
is not conformal.

Note that Lemma 2.6.1 then also says that two angles are congruent if
and only if they have the same size.

Since stereographic projection preserves angles, it follows that the hemi-
sphere model B also is conformal, and hence so is every other model obtained
from it by stereographic projections. In particular, this is true for Poincaré’s
disk model D, which we will investigate in the next section.
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Exercises for 2.6

1. Show that if l is a hyperbolic line and z is point not on l, then there
is a unique line l′ which contains z and which meets l orthogonally.

2. Show that if l1 and l2 are two lines which do not have a common
endpoint and which do not intersect, then there exists a line m which
meets both orthogonally.

2.7 Poincaré’s disk model D

Because of its rotational symmetry, the Poincaré disk model D will in certain
respects have great advantages over H. Therefore this section is devoted to
a closer study of this model. Having two different models to our disposal
enables us in each situation to choose the one best suited. We will see
examples of this in the last two sections.

We begin by transferring everything we have done with the upper half–
plane model H to D. We will do this using the bijection G = Φ ◦ F ◦ Φ−1,
where Φ is stereographic projection and F : B1 ≈ B2 is an identification
between the hemispheres B1 = {(x, y, z)|y > 0} and B2 = {(x, y, z)|z < 0}.
(Cf. Exercise 2.1.3.) If we choose F (x, y, z) = (x, z,−y), the formulas (2.1.1)
and (2.1.2) give:

G(u, v) =
(

2u
u2 + (v + 1)2

,
u2 + v2 − 1
u2 + (v + 1)2

)
,

or, if we write G in terms of complex numbers z = u+ iv:

G(z) =
z + z̄ + i(zz̄ − 1)

|z + i|2
=

(iz + 1)(z̄ − i)
(z + i)(z̄ − i)

=
iz + 1
z + i

.

This is a fractional linear transformation which restricts to a bijection
G : H ≈ D. We see that G(0) = −i, G(1) = 1 and G(−1) = −1, and this
determines G uniquely, by Corollary 2.2.5. (In fact, we could have used this
to define G.) Observe also that G(∞) = i and G(i) = 0.

There are, of course, many other possible FLT’s identifying H and D,
but G is particularly simple and will be our preferred choice.
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G preserves angles and C–circles, hence it maps the circle through 0, 1
and −1, i. e. R, to the circle through −i, 1 and −1, i. e. S1 = {z ∈ C | |z| =
1}. Therefore the H–lines are mapped to either circular arcs meeting S1

orthogonally, or diameters. These curves are the hyperbolic lines in the disk
model, or D–lines.

Since G preserves angles, this model will also be conformal — i. e. the
hyperbolic angle measure is the same as the Euclidean measure.

The group of real Möbius transformationsMöb(H) corresponds to a group
Möb(D) of transformations of D which preserve angles and hyperbolic lines,
and which generally has the same properties with respect to D as Möb(H) to
H. Möb(D) is defined by

f ∈ Möb(D) ⇐⇒ G−1fG ∈ Möb(H),

In other words: every element f ∈Möb(D) can be written as GgG−1

for some g ∈Möb(H), and every transformation of this form is in Möb(D).
It follows that Möb(D) and Möb(H) are conjugate subgroups of Möb(C),
hence they are isomorphic as abstract groups. We will also use the no-
tation Möb+(D) and Möb−(D) for the subgroup and coset corresponding to
Möb+(H) and Möb−(H) .

Congruence in D can now be defined as in H, but using the groupMöb(D)
instead ofMöb(H) . The mappings G and G−1 will then preserve congruence.

To see what the transformations in Möb(D) look like, we use the matrix
representation of Möbius transformations. G corresponds to the matrix[
i 1
1 i

]
, and forG−1 we will use the formulaG−1(z) =

iz − 1
−z + i

, corresponding

to the matrix
[
i −1
−1 i

]
.

Consider first Möb+(D) . If g(z) =
az + b

cz + d
, a, b, c, d real, GgG−1 will

correspond to[
i 1
1 i

] [
a b
c d

] [
i −1
−1 i

]
=
[
ia+ c ib+ d
a+ ic b+ id

] [
i −1
−1 i

]
=
[
−a+ ci− ib− d −ia− c− b+ id
ia− c− b− id −a− ic+ ib− d

]
=
[
−a− d+ (c− b)i −b− c− (a− d)i
−b− c+ (a− d)i −a− d− (c− b)i

]
.



2.7. POINCARÉ’S DISK MODEL D 51

The last matrix has the form
[
α β
β̄ ᾱ

]
, with α = −a − d + (c − b)i and

β = −b − c − (a − d)i. This means that elements in Möb+(H) give rise to
complex fractional linear transformations of the form

g(z) =
αz + β

β̄z + ᾱ
. (2.7.1)

On the other hand, it is easy to see that every pair of complex numbers
(α, β) can be written uniquely on this form, with a, b, c and d real. A sim-
ple calculation (compare determinants) gives αᾱ − ββ̄ = 4(ad − bc), hence
αz + β

β̄z + ᾱ
defines an element in Möb+(D) if and only if αᾱ − ββ̄ > 0, and we

can normalize α and β such that αᾱ − ββ̄ = 1. Note that (kα, kβ) defines
the same function as (α, β) only if k is real. Hence we can only normalize by
multiplication by real numbers. Any such normalization will preserve the
sign of αᾱ− ββ̄.

The corresponding computation for Möb−(D) is slightly different because

of the complex conjugation involved. If g(z) =
az̄ + b

cz̄ + d
with a, b, c, d real,

then

GgG−1(z) = G

(
aG−1(z) + b

cG−1(z) + d

)
= G

(
aG−1(z̄) + b

cG−1(z̄) + d

)
,

where G−1 now is the fractional linear transformation corresponding to the

conjugate of the matrix for G−1, i. e.
[
−i −1
−1 −i

]
= −

[
i 1
1 i

]
. But this matrix

defines the same transformation as
[
i 1
1 i

]
, hence G−1 = G. One possible

matrix of coefficients for GgG−1 is therefore

[
i 1
1 i

] [
a b
c d

] [
i 1
1 i

]
= · · ·

· · · =
[
−a+ d+ (c+ b)i c− b− (a+ d)i
−(c− b) + (a+ d)i a− d+ (c+ b)i

]
=
[
α′ β′

−β̄′ −ᾱ′
]
,

with α′ = −a + d + (c + b)i and β′ = c − b − (a + d)i. But
[
α′ β′

−β̄′ −ᾱ′
]

determines the same function as[
iα′ iβ′

−iβ̄′ −iᾱ′
]

=
[
iα′ iβ′

iβ′ iα′

]
=
[
α β
β̄ ᾱ

]
,
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with α = iα′ and β = iβ′. Here αᾱ − ββ̄ = α′ᾱ′ − β′β̄′ = −4(ad − bc),
which is positive if g ∈Möb−(H) . Therefore we again may normalize such
that αᾱ− ββ̄ = 1

Hence Möb−(H) corresponds to maps of the form

f(z) =
αz̄ + β

β̄z̄ + ᾱ
, (2.7.2)

with αᾱ− ββ̄ = 1.

Examples. (1) Complex conjugation in D. Then α = 1, α′ = −i and
β = β′ = 0. The equations above give −a + d = 0, c + b = −1, a + d = 0
and c − b = 0. Therefore a = d = 0 and c = b = −1/2. Hence complex
conjugation in D corresponds to f(z) = (−1

2)/(−1
2)z̄ = 1/z̄ = z/|z|2 in H,

i. e. the inversion in the circle (H–line) |z| = 1.

However, we could also argue like this: Complex conjugation is an el-
ement in Möb(D) which fixes the whole horizontal diameter `. Hence the
corresponding element in Möb(H) must fix all of G−1(`), which must be the
H–line containing i and having endpoints 1 and −1. But, by the classifica-
tion results of section 3, this is the inversion z 7→ 1/z̄.

(2) Similarly we see that inversion (reflection) in the imaginary axis H
corresponds to reflection in the imaginary axis in D.

(3) Let us now determine the elements in Möb(D) which have 0 as a

fixpoint. For Möb+(D) this means
α · 0 + β

β̄ · 0 + ᾱ
= 0 — i. e. β = 0. The

condition αᾱ − ββ̄ = 1 gives |α| = 1, and we can write α = eiθ for some
θ ∈ R. Hence any element inMöb+(D) which has 0 as fixpoint can be written
f(z) = αz/ᾱ = α2z = ei2θz. But this is the formula for a rotation by the
angle 2θ, written as complex multiplication. Conversely, any such rotation
is an element in Möb+(D) .

A short calculation shows that the transformation G−1fG of H that this

rotation corresponds to is the elliptic transformation gθ(z) =
cos θz + sin θ
− sin θz + cos θ

studied in section 3.

Similar considerations show that an element of Möb−(D) having 0 as
fixpoint has the form f(z) = eiθz̄, which is a reflection in a line (diameter
in D) forming an angle of θ/2 with the x-axis. (For example, we can write
eiθz̄ = eiθ/2e−iθ/2z, which means that we get eiθz̄ from z by first rotating
by the angle −θ/2, then reflecting in the x-axis, and finally rotating back
by the angle θ/2.) These mappings — rotations and reflections — form the
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group of orthogonal linear transformations in dimension 2, corresponding to
the group O(2) of orthogonal 2×2–matrices. Hence we have shown that the
set of elements of Möb(D) fixing 0 is precisely the group O(2) acting on R2,
restricted to the open unit disk D.

Note that via the isomorphism with Möb(H) (conjugation by G), the
subgroup of rotations (isomorphic to (SO(2)) corresponds to the elliptic
transformations of H having i as fixpoint. This is the identification of these
transformations with rotations that we promised in section 3.

More generally, also in Möb(D) we have a classification of elements ac-
cording to the behaviour of fixpoints, and we can define parabolic, hyperbolic
and elliptic elements as before, corresponding to the elements of the same
types in Möb(H) . Similarly, in Möb−(D) the inversions are the transforma-
tions with a D–line of fixpoints, corresponding to the inversions in Möb−(H) .
Cf. exercises 2 and 3.

We can also transfer the metric d from H to D. Let us write dH for d as
defined in section 5. Then the formula

dD(z1, z2) = dH(G−1(z1), G−1(z2))

will define a metric on D such that G and G−1 become inverse isometries
(distance-preserving maps). In particular, the analogues of conditions (d1)-
(d5) in section 5 will automatically hold. We will now derive a more explicit
expression for dD.

Recall that dH(G−1(z1), G−1(z2)) = | ln(|[G−1(z1), G−1(z2), P,Q]|)|, where
P,Q are the endpoints of the H–line through G−1(z1) and G−1(z2). But G−1

maps D–lines to H–lines, so {P,Q} = {G−1(p), G−1(q)}, where p and q are
the endpoints of the D–line through z1 and z2. Hence

dD(z1, z2) = | ln(|[G−1(z1), G−1(z2), G−1(p), G−1(q) = | ln(|[z1, z2, p, q]|| ,
(2.7.3)

by Proposition 2.2.10(iii). This is completely analogous to the formula for
dH, but now all four points are in C, so we can always write

dD(z1, z2) = | ln(|z1 − p
z1 − q

z2 − q
z2 − p

|)| .

The extra symmetry in D can be used to study the metric in more
detail, and in particular it will enable us to derive formulas for dD(z1, z2)
not involving the endpoints p and q.
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First observe that since rotations around the origin are isometries, the
distance from 0 to a point z must be equal to the distance from 0 to r, where
r = |z| ∈ [0, 1) ∈ D. But the endpoints of the D–line through 0 and r are 1
and −1, so the distance formula gives

dD(0, z) = dD(0, r) = | ln(|0− (−1)
0− 1

r − 1
r − (−1)

|)| = ln(
1 + r

1− r
) .

This equation can also be solved for r, yielding

r = tanh(
dD(0, z)

2
) . (2.7.4)

To find the distance between two arbitrary points z1 and z2, we now first
move z1 to 0 by an isometry f ∈Möb+(D) , and then use the formula above
for the distance between 0 and f(z2).

If f(z) =
az + b

b̄z + ā
satisfies f(z1) = 0, then b = −az1, Therefore we can

write

f(z) =
a(z − z1)
−az1z + ā

=
a

ā

(
z − z1
−z̄1z + 1

)
.

Introducing the notation ρ = |f(z2)| =
|z2 − z1|
|1− z̄1z2|

, we now have

dD(z1, z2) = ln(
1 + ρ

1− ρ
) , or ρ = tanh(

dD(z1, z2)
2

) .

Another expression is obtained from the second of these by using the
formula of Exercise 8b:

sinh2(
dD
2

) =
tanh2(dD/2)

1− tanh2(dD/2)
=

ρ2

1− ρ2
.

Substituting for ρ, we have

sinh2(
dD
2

) =

|z2 − z1|2

|1− z̄1z2|2

1− |z2 − z1|
2

|1− z̄1z2|2

=
|z2 − z1|2

|1− z̄1z2|2 − |z2 − z1|2
.

The denominator here is

(1− z̄1z2)(1− z1z̄2)− (z1 − z2)(z̄1 − z̄2) =

1− z̄1z2 − z1z̄2 + |z1|2|z2|2 − (|z1|2 − z1z̄2 − z̄1z2 + |z2|2) =

1− |z1|2 − |z2|2 + |z1|2|z2|2 = (1− |z1|2)(1− |z2|2) .
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Hence we get

sinh2(
dD
2

) =
|z2 − z1|2

(1− |z1|2)(1− |z2|2)
.

Finally we make use of the identity cosh(2w) = 2 sinh2(w) + 1 with
w = dD/2, and obtain:

cosh(dD(z1, z2)) = 1 +
2|z2 − z1|2

(1− |z1|2)(1− |z2|2)
. (2.7.5)

This is perhaps the most common formula for the metric in D. But now
we may also go back to H using the isometry G, to obtain a similar formula
for dH:

dH(w1, w2) = dD(G(w1), G(w2)) = dD(
iw1 + 1
w1 + i

,
iw2 + 1
w2 + i

) .

A simple calculation gives

iw2 + 1
w2 + i

− iw1 + 1
w1 + i

= · · · = 2w1 − 2w2

(w2 + i)(w1 + i)
, and

1− | iw + 1
w + i

|2 =
(w + i)(w̄ − i)− (iw + 1)(−iw̄ + 1)

|w + i|2
=

· · · = 2 iw̄ − 2 iw
|w + i|2

=
4 Imw

|w + i|2
.

Substituting these expressions into the formula for dD above, we obtain
the formula

cosh(dH(w1, w2)) = 1 +
|w2 − w1|2

2 (Imw1)(Imw2)
. (2.7.6)

These equations (2.7.5 and 2.7.6) express the metrics in D and H as
functions of the points only, without referring to the endpoints of lines.
Note that the function cosh(t) is increasing for t ≥ 0, hence the equations
determine the metrics uniquely.

Exercises for 2.7
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1. Show that the restriction G−1|S1 : S1 → R of the fractional linear
transformation G is the analogue of stereographic projection from i ∈
S1.

2. Discuss a classification of the elements of Möb+(D) analogous to the
classification of elements of Möb+(H) in section 3.

3. Show that an element of Möb(D) has a D–line of fixpoints if and only
if it is the restriction of an inversion in a C–circle. (Hence the term
‘inversion’ is well–defined.)

Show that g(z) =
αz̄ + β

β̄z̄ + ᾱ
determines an inversion in D if and only if

|α|2 − |β|2 > 0 and Reβ = 0.

4. (a) Show that hyperbolic circles, i. e. subsets of D of the form

{z ∈ D | dD(z, z0) = r}, where z0 is a fixed point and r > 0, also are
Euclidean circles.

(b) The same problem with H instead of D.

5. Fix a point z0 on a hyperbolic line l, and consider (hyperbolic) circles
through z0 with center on l. Show that as the center approaches an
endpoint of l, the circle approaches a horocircles.

6. Show that dD defines the subspace topology on D ⊂ C.

(Hint: Show first (1) dD : D×D→ [0,∞) is continuous in the Euclidean
topology on D, and (2) dD(z1, z2) ≥ |z1 − z2| for all z1 and z2 in D.)

Why have we now also solved Exercise 2.5.5?

7. Prove a converse to Exercise 2.5.2, i. e. show that if l1 and l2 are two
lines which do not intersect and d(l1, l2) = 0, then they have a common
endpoint. (You might need hint (2) in Exercise 6.)

Same question for D.

8. In this and the next two sections we use several relations between the
hyperbolic functions. Verify the following formulas:

(a) cosh2 x− sinh2 x = 1,

(b) sinh2 x =
tanh2 x

1− tanh2 x
,

(c) sinh 2x = 2 sinhx coshx,
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(d) cosh 2x = cosh2 x+ sinh2 x,

(e)
1 + tanh2 x

1− tanh2 x
= cosh 2x,

(f)
2 tanhx

1− tanh2 x
= sinh 2x.

2.8 Arc–length and area in the hyperbolic plane

Suppose that C is a curve in a metric space, given by a parametrization
z(t), t ∈ [a, b], and assume for simplicity that z is injective. The arc–length
of C is defined as

sup
a=t0<t1<···<tn=b

∑
i

d(z(ti)z(ti+1)) , (2.8.1)

provided this number is finite. (The supremum is taken over all partitions
a = t0 < t1 < · · · < tn = b of the interval [a, b].) If so, we say that the curve
is rectifiable. This is clearly the case if z(t) satisfies a Lipschitz condition on
[a, b] — i. e. if there exists a constant K such that

d(z(t1), z(t2)) ≤ K|t1 − t2|

for all t1, t2 in [a, b].
If C is rectifiable, then the arc–length of the restriction of z to [a, t] exists

for every t ∈ [a, b] and defines a continuous, non-decreasing function s(t) on
[a, b]. This is not the place to discuss the general theory, but one can show
that if the limit

σ(t) = lim
h→0

d(z(t+ h), z(t))
|h|

,

exists and is continuous at every t, then s(t) is given as the integral

s(t) =
∫ t

a
σ(τ) dτ .

Hence
s′(t) = σ(t) = lim

h→0

d(z(t+ h), z(t))
|h|

. (2.8.2)

In particular, this condition will be satisfied in R2, H or D whenever
z(t) is C1 as a curve in R2 — i. e. whenever both component functions are
continuously differentiable.
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The following is an important observation: Suppose g : X → Y is
an isometry between (possibly different) metric spaces X and Y , and let
z(t), t ∈ [a, b] be a curve in X with image curve gz(t) in Y . Then, if z has
arc–length s, gz will also have arc–length s — i. e. arc length is preserved
by isometries. This follows immediately from the definition (2.8.1), since we
then always will have d(gz(ti+1), gz(ti)) = d(z(ti+1)z(ti)).

Example 2.8.1. If z(t) parametrizes a segment of a hyperbolic line, con-
dition (d4) for a metric in in chapter 2.5 implies that the arc-length is
equal to the hyperbolic distance between the endpoints. Moreover, an obvi-
ous generalization of the triangle inequality (d3) shows that d(z(a), z(b)) ≤
Σid(z(ti), d(zi+1)) for every partition a = t0 < t1 < · · · < tn = b of [a, b].
Hence the hyperbolic line is the shortest possible curve between the two
points.

Example 2.8.2. In R2 we have the formula

s′(t) =

√
(
dx

dt
)2 + (

dy

dt
)2 , (2.8.3)

where z(t) = (x(t), y(t)), provided z(t) is continuously differentiable. We

may also write this as (
ds

dt
)2 = (

dx

dt
)2 + (

dy

dt
)2. This formula is valid for any

parametrization, and we express this by the relation

ds2 = dx2 + dy2 . (2.8.4)

(This relation can be given a precise interpretation as an equation in an
appropriate vector space, but here it suffices to think about it as an invariant
notation for (2.8.3)).

We will now derive analogous expressions for the arc-length in the two
models H and D for the hyperbolic plane. To distinguish between the two
cases we write dH and dD for the metrics.

We start with H. The distance formula (2.7.6) gives:

cosh(dH(z(t+ h), z(t))) = 1 +
|z(t+ h)− z(t)|2

2 (Im z(t+ h))(Im z(t))
. (2.8.5)

To simplify notation we now write d(h) = dH(z(t + h), z(t)). By Tay-
lor’s formula for cosh we can write coshw = 1 + w2

2 + η(w)w2, where
limw→0 η(w) = 0. (2.8.5) then yields

1 +
(d(h))2

2
+ η(d(h))(d(h))2 = 1 +

|z(t+ h)− z(t)|2

2 (Im z(t+ h))(Im z(t))
,
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and hence

(
d(h)
|h|

)2(1 + 2 η(d(h))) =
∣∣∣∣z(t+ h)− z(t)

h

∣∣∣∣2 1
(Im z(t+ h))(Im z(t))

. (2.8.6)

It follows that if z(t) is C1, then limh→0

(
d(z(t+ h), z(t))

|h|

)2

exist and is

equal to
(

(
dx

dt
)2 + (

dy

dt
)2
)
/(Im z(t))2. Since the expressions involved are

positive, we get

s′(t) = lim
h→0

d(z(t+ h), z(t))
|h|

=

√
(
dx

dt
)2 + (

dy

dt
)2

Im z(t)
.

Analogous to the example R2 above we can also write (remember that
y = Im z)

ds2 =
dx2 + dy2

y2
. (2.8.7)

For the Poincaré disk we can make a similar analysis. The only difference

is that the factor
1

(Im z(t+ h))(Im z(t))
on the right hand side of formula

(2.8.6) is replaced by
4

(1− |z(t+ h)|2)(1− |z(t)|2)
. Thus, in this case we

obtain

ds2 = 4
dx2 + dy2

(1− x2 − y2)2
. (2.8.8)

As in the Euclidean case (2.8.4) we should think of these formulas as a way
to describe how to get ds/dt from a parametrization z(t) = (x(t), y(t)) of
the curve. Thus, (2.8.8) means that in D we have

(
ds

dt
)2 = 4

(
dx

dt
)2 + (

dy

dt
)2

(1− x(t)2 − y(t)2)2
.

Example 2.8.3. Let us apply this to compute the arc–length (circumference)
of the hyperbolic circle C with hyperbolic radius ρ. (Cf. Exercise 2.7.5.)
Since arc–length is preserved by isometries, we may assume that C ⊂ D and
with center in 0. C will then also be a Euclidean circle with center in 0,
with Euclidean radius given by formula (2.7.4) — i. e. r = tanh(ρ/2). C may



60 CHAPTER 2. HYPERBOLIC GEOMETRY

then be parametrized as z(t) = reit = (r cos t, r sin t), t ∈ [0, 2π], and we get
dx/dt = −r sin t, dy/dt = r cos t and x2 + y2 = r2. Thus

(
ds

dt
)2 = 4

(−r sin t)2 + (r cos t)2

(1− r2)2
=

4r2

(1− r2)2
.

Hence the arc–length of C is

s(C) =
∫ 2π

0

2r
1− r2

dt =
4πr

1− r2
= π

4 tanh(ρ
2)

1− tanh2(ρ
2)

= 2π sinh(ρ) .

Now recall that

2 sinh(ρ) = eρ − e−ρ = 2ρ+
ρ3

3
+
ρ5

60
+ · · · .

It follows that the circumference of a circle is greater and increases faster
as a function of the radius in the hyperbolic than in the Euclidean plane.
More explicitly, we see that for small ρ the circumference is approximately
equal to 2πρ (i. e. the same formula as in the Euclidean Case), but when ρ
is large, it increases approximately as πeρ.

Next we discuss area in the hyperbolic plane, and in particular we want
to find the area of a triangle — i. e. the part of the plane bounded by the
three segments between three points not on a line. Hence we do not need the
most general concept of area possible, and we will limit our study to subsets
of the plane bounded by a finite number of C1curves. (C1as curves in R2.) A
reasonable area function A should be additive in the sense that for two such
subsets U and V we should have A(U ∪V )+A(U ∩V ) = A(U)+A(V ), and
the area of points and smooth curves should be 0. Furthermore, congruent
sets should have the same area — in other words: Möbius–transformations
should preserve area.

It is not hard to see that such a function will be determined up to a
constant scaling–factor (as was also the case for the distance function), so
we might just write down the formulas below and show that they satisfy
these properties. But hopefully the following informal discussion will help
to explain the geometric reason for the formulas and why they are normalized
as they are.

Consider first H. Le Ω ⊂ H ⊂ R2 be a set as described above, and think
of the identity map as a parametrization (i. e. as a map from Ω considered
as a subset of R2 to Ω as a subset of H). As usual we now cover the param-
eter set Ω with Euclidean rectangles with vertices (xi, yj), where {xi}i and
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{yj}j are increasing sequences of real numbers. Let R(i, j) be the rectangle
[xi, xi+1] × [yj , yj+1]. Then

∑
R(i,j)∩Ω 6=∅A(R(i, j)) will approximate A(Ω),

and the approximation gets better as the rectangles get smaller. Therefore
the area should be given by an integral of the form

AH(Ω) =
∫∫

Ω
K(x, y) dx dy ,

where
K(x, y) = lim

∆x,∆y→0

AH(R(∆x,∆y))
∆x∆y

,

and R(∆x,∆y) denotes the rectangle [x, x+∆x]×[y, y+∆y]. The two edges
[x, x + ∆x] × {y} and {x} × [y, y + ∆y] of R(∆x,∆y) are curves meeting
orthogonally in H, hence AD(R(∆x,∆y)) ought to be approximated by the
product of the hyperbolic lengths of these edges. It is therefore natural to
normalize AH by requiring

lim
∆x,∆y→0

AH(R(∆x,∆y))
dH(x, x+ ∆x) dH(y, y + ∆y)

= 1 .

But from (2.8.7) we get

lim
∆x→0

dH(x, x+ ∆x)
|∆x|

= lim
∆y→0

dH(y, y + ∆y)
|∆y|

=
1
y
.

Putting all this together we get K(x, y) =
1
y2

, and hence

AH(Ω) =
∫∫

Ω

dx dy

y2
. (2.8.9)

This equation we now take to be our definition of the area function on
H, and the area is defined for every set for which the integral is defined.

This discussion can also be used to prove that the area is invariant under
congruence — i. e. AH(gΩ) = AH(Ω) if g is a Möbius transformation — but
it may be instructive to see how this can also be verified from the formula.

Let g(z) =
az + b

cz + d
, with a, b, c, d ∈ R and ad− bc = 1, and assume that

Ω′ = gΩ. In order to distinguish between Ω and Ω′ we use the notation
z = x+ iy for points in Ω and w = u+ iv for points in Ω′.

The formula for change of variables in a double integral gives

AH(Ω′) =
∫∫

Ω′

du dv

v2
=
∫∫

Ω
|J(g)(z)| dx dy

(Im g(z))2
. (2.8.10)
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where |J(g)| is the determinant of the Jacobian of g considered as a mapping
between subsets of R2. But the Cauchy–Riemann equations for the complex
analytic mapping g imply that |J(g)(z)| = |g′(z)|2. (Exercise 2.) In our case
g′(z) = (ad− bc)/(cz + d)2, hence |J(g)(z)| = 1/|cz + d|4.

By formula (2.2.1) we have Im (g(z)) = Im z/|cz + d|2 = y/|cz + d|2.
Substituting all this in (2.8.10), we get

AH(Ω′) =
∫∫

Ω

1
|cz + d|4

dx dy(
y

|cz + d|2

)2 =
∫∫

Ω

dx dy

y2
= A(Ω) .

To show that all Möbius transformations preserve area it now suffices to ob-
serve that reflection in the imaginary axis, γ(z) = −z̄, does, since Möb(H) is
generated by γ and Möb+(H) . But γ preserves the y–coordinate and has
Jacobian equal to −1, so (2.8.10) again gives AH(Ω′) = AH(Ω).

Before we apply this to compute the area of a hyperbolic triangle, we
need to remark that in addition to the ordinary triangles determines by three
vertices in H, we can also consider asymptotic triangles, with one or more
“vertices” in R — so–called ideal vertices. The two edges meeting at an
ideal vertex are then H–lines or rays with this vertex as common endpoint.
We talk about simply, doubly or triply asymptotic triangles if there are one,
two or three ideal vertices.

Example 2.8.4. Area of a triangle. Every finite triangle in H is congruent to
a triangle with one side along the imaginary axis and where the third vertex
has positive real part. Figure 2.8.1 shows such a triangle, with vertices A, B
and C. m and r are the center and the radius of the circular arc (hyperbolic
line) AB, spanned by A and B. The other lower–case letters denote the
sizes of the obvious angles, thus for example, b is the angular measure of the
hyperbolic angle ∠ABC, which is the same as the Euclidean angle between
the tangents of the two circular arcs meeting at B.

First we compute the area of the region ABQP bounded by the hori-
zontal Euclidean segment y = Y and the hyperbolic segments [A,P ], [A,B]
and [B,Q]. From the figure we see that we can parametrize x as x =
m − r cos t, t ∈ [u, π − v]. Then dx = r sin t dt, and for every t, y ranges
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from r sin t to Y . We get∫∫
ABQP

dx dy

y2
=
∫ π−v

u

[∫ Y

r sin t

dy

y2

]
r sin t dt

=
∫ π−v

u

[
1

r sin t
− 1
Y

]
r sin t dt

=π − u− v − m+ r cos v
Y

.

Note that as Y goes to ∞, this expression approaches π − u − v. This
means that the asymptotic triangle with vertices A, B and∞ has finite area
equal to π − (u + v). Now observe that the Euclidean lines mO and mA
meet the H–segments [AP ] and [AB] orthogonally, hence u = a. Similarly
v = b+ b′, hence u+ v equals the sum of the angles of the triangle, since the
third angle is 0. Letting one or both of the vertices A and B approach the
real axis, we see that this formula remains valid even for doubly or triply
asymptotic triangles.

The area of the finite triangle ABC is equal to the difference between the
areas of two such asymptotic triangles — one with area π−(a+b+b′) and the
other with area π−(b′+c′). Hence the area of ABC is π−a−b−b′−π+b′+c′ =
π − a− b− c, since c+ c′ = π. (See figure 2.8.1.) Thus we have proved

Proposition 2.8.5. The area of a triangle with angles a, b and c is equal to

π − (a+ b+ c) .
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This formula is valid also for asymptotic triangles, i. e. if one or more of
the angles are 0.

This is a striking result of fundamental importance. It says that the area
only depends on the sum of the angles of the triangle, and since the area
is always positive, the sum of the angles in a triangle is always less than π.
We also see that the area of a triangle never exceeds π, and the maximal
value π is only achieved by the triply asymptotic triangles, (which are all
congruent, cf. Exercise 2.2.7).

We may also consider the area function for the disk model D. A similar
analysis then leads to the formula

AD(Ω) =
∫∫

Ω

4 dx dy
(1− x2 − y2)2

. (2.8.11)

Using the change of variables–formula 2.8.10 with g our standard isome-
try G−1 between D and H (section 7), we see that G−1 — hence also G — is
area preserving, in the sense that AH(Ω) is defined if and only if AD(G(Ω))
is defined, and

AH(Ω) = AD(G(Ω)) .

This equation could, of course, also have been used to define AD, given AH.

Because of the rotational symmetry in D it is often convenient to use
polar coordinates x = r cos θ, y = r sin θ. Then the formula becomes

AD(Ω) =
∫∫

T

4r dr dθ
(1− r2)2

, (2.8.12)

where T is the appropriate parameter set in the (r, θ)–plane.

Example 2.8.6. Let us use this to compute the area of a hyperbolic circular
disk D with hyperbolic radius ρ. As in example 2.8.3 we may assume that
the circle is a Euclidean circle with center 0. The Euclidean radius is then
R = tanh(ρ/2) (2.7.4), and we can parametrize D by polar coordinates
x = r cos θ, y = r sin θ, where r ∈ [0, R] and θ ∈ [0, 2π]. From formula
(2.8.12) we get

AD(D) =
∫ R

0

[∫ 2π

0

4r dθ
(1− r2)2

]
dr =2π

∫ R

0

4r dr
(1− r2)2

=2π
[

2
(1− r2)

]R

0

= 4π
R2

1−R2
.
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But R = tanh(ρ/2), and the formula in Exercise 2.7.8 b gives

AD(D) = 4π
R2

1−R2
= 4π sinh2(

ρ

2
) .

Using more of Exercise 2.7.8 and Taylor expansion we get

AD(D) = 2π(cosh(ρ)− 1) = π(eρ + e−ρ − 2) = π(ρ2 +
ρ4

12
+ · · · ) .

This means that the area of a circular disk is greater and increases faster
with the radius in the hyperbolic plane than in the Euclidean plane. (Just as
we observed for the circumference of a circle in example 2.8.3). In differential
geometry this is expressed by saying that the hyperbolic plane has negative
curvature.

It is also interesting to compare with geometry on a sphere of radius one.
There the circumference of a circle of radius ρ is equal to 2π sin ρ, and the area
is 2π sin2(ρ/2). Both are smaller and increase slower than in the Euclidean case.
We say that the sphere has positive curvature, whereas the Euclidean plane has
curvature 0.

Exercises for 2.8

1. Let z1 = a1 + ib and z2 = a2 + ib be two points in H with the same
imaginary value. Let L be the hyperbolic arc–length of the Euclidean
segment between z1 and z2. Compute L and show that L > dH(z1, z2).

2. To show invariance of area under Möbius transformations we used that
|J(g)(z)| = |g′(z)|2 for a complex analytic function g. Verify this.

3. Show by calculation that the isometry G : H→ D of section 7 is area
preserving.

4. Find an expression for the area of a hyperbolic n–gon.

5. Let Tα be a doubly asymptotic triangle in D with one vertex in 0
and the angle there equal to α. Show that limα→0+ A(Tα) = π, even
though the triangles degenerate to a ray in the limit.
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6. Let T be an asymptotic quadrilateral in D with one finite vertex with
angle α and three ideal vertices.

a) Find a formula for the area of T and show that the area only depends
on α.

b) Does α determine T up to congruence?

2.9 Trigonometry in the hyperbolic plane

In Euclidean geometry fundamental roles are played by the formulas known
as the Law of Sines and the Law of Cosines. For instance, these formulas
imply that certain combinations of three angles or sides in a triangle deter-
mine the triangle up to congruence (“congruence criteria”) — in fact, they
even provide simple ways of computing the remaining angles and sides. In
this section we will derive similar formulas for hyperbolic triangles. For this
it will be convenient to use Poincaré’s disk model D for the hyperbolic plane,
but the resulting formulas will be independent of which model we use. In
particular, they will also hold in H.

We first consider finite triangles, i. e. triples of points in the plane (the
vertices) which do not lie on a common hyperbolic line. Each pair of vertices
spans a segment, a line and two rays. The segments are the sides of the
triangle, and the angle at a vertex is the pair of rays having this vertex
in common. An arbitrary such triangle is congruent to one which has one
vertex in 0 and another on the positive real axis, and where the third vertex
has positive imaginary part: if u, z and w are the vertices, we can move u
to 0, rotate such that z lands on the positive real axis, and, if necessary, use
complex conjugation to obtain Imw > 0. We then say that the triangle is
in “standard position”. (But note that for any given triangle there are six
possible ways of doing this.) The angles and sides of this new triangle will
be congruent to the corresponding angles and sides of the original triangle,
so if we want to study relations between their sizes, we may assume that the
triangle is in standard position.

Admitting a slight lack of precision, we will simplify our terminology and
use the word ’side’ interchangeably for a segment and its length, measured
in the hyperbolic metric. Similarly, an ’angle’ can mean both the actual
angle and its size, measured in radians. This is all in accordance with the
usual (abuse of) language in Euclidean geometry.
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Our general triangle will then have angles α, β and γ, and we denote
the opposite sides by a, b and c, respectively. We may assume that α is the
angle at 0 and β is the other angle on the real axis. The vertex on the real
axis may be identified with a real number r ∈ (0, 1) and the third vertex
can be written w = seiα, where s ∈ (0, 1) and α ∈ (0, π). Then the distance
formula (2.7.5) yields:

cosh a= 1 + 2
|r − seiα|2

(1− r2)(1− s2)
= 1 + 2

r2 + s2 − 2 rs cosα
(1− r2)(1− s2)

=
1− r2 − s2 + r2s2 + 2r2 + 2s2 − 4rs cosα

(1− r2)(1− s2)

=
1 + r2

1− r2
1 + s2

1− s2
− 2r

1− r2
2s

1− s2
cosα.

But r = tanh(c/2) (2.7.4), and therefore

1 + r2

1− r2
=

1 + tanh2(c/2)
1− tanh2(c/2)

= cosh c , and

2r
1− r2

=
2 tanh(c/2)

1− tanh2(c/2)
= sinh c .

Similar formulas hold for s and b, and, substituting in the above expression
for cosh a, we have proved

Proposition 2.9.1. (The first Law of Cosines.)

cosh a = cosh b cosh c− sinh b sinh c cosα.

(Obviously there are two more such relations, obtained by permuting the
vertices.)

Corollary 2.9.2. (The hyperbolic Pythagorean theorem, hyperbolic.)
If α = π/2, then cosh a = cosh b cosh c.

To see the relationship with the classical Pythagorean Theorem, we sub-
stitute the Taylor series for cosh:

1 +
a2

2
+
a4

4!
+ · · · = (1 +

b2

2
+
b4

4!
+ · · · )(1 +

c2

2
+
c4

4!
+ · · · ) .

Multiplying out the parentheses and solving with respect to the a2–term, we
see that a2 = b2 +c2+ {terms of order at least 4}. Hence, for small triangles
this is approximately the Euclidean Pythagorean Theorem.
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Now we put A = cosh a, B = cosh b and C = cosh c. Then sinh a =√
A2 − 1, etc., and the first law of cosines may be written√

B2 − 1
√
C2 − 1 cosα = BC −A,

or, squaring on both sides:

(B2 − 1)(C2 − 1)(1− sin2 α) = (BC −A)2 .

We can solve this equation for sin2 α :

sin2 α =
(B2 − 1)(C2 − 1)− (BC −A)2

(B2 − 1)(C2 − 1)
=

· · ·

=
2ABC −A2 −B2 − C2 + 1

(B2 − 1)(C2 − 1)
. (2.9.1)

Consequently, the quotient

sin2 α

sinh2 a
=

sin2 α

A2 − 1
=

2ABC −A2 −B2 − C2 + 1
(A2 − 1)(B2 − 1)(C2 − 1)

,

is completely symmetric in A,B,C. Hence we get exactly the same if we
replace (α, a) by (β, b) or (γ, c), so we have shown:

sin2 α

sinh2 a
=

sin2 β

sinh2 b
=

sin2 γ

sinh2 c
.

Since sin y is positive for y ∈ (0, π) and sinhx is positive for all x > 0,
we have proved

Proposition 2.9.3. (The hyperbolic Law of Sines.)

sinα
sinh a

=
sinβ
sinh b

=
sin γ
sinh c

.

Since sinhx ≈ x for small x, we see that for small triangles this is
approximately the Euclidean sine relation.

For hyperbolic triangles there is also another cosine formula:

Proposition 2.9.4. (The second Law of Cosines.)

cosα = − cosβ cos γ + sinβ sin γ cosh a.
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(Again we obtain two additional formulas by permuting α, β and γ.)

Proof. From the first law of cosines we may write

cosα =
BC −A√

(B2 − 1)(C2 − 1)
,

and similarly for cosβ and cos γ. Substituting these three expressions, we
get

cosα+ cosβ cos γ =
BC −A√

(B2 − 1)(C2 − 1)
+

(AC −B)(AB − C)
(A2 − 1)

√
(B2 − 1)(C2 − 1)

=

· · · = A
1−A2 −B2 − C2 + 2ABC
(A2 − 1)

√
(B2 − 1)(C2 − 1)

.

Using expressions analogous to 2.9.1 for sinβ and sin γ, we obtain

sinβ sin γ =
1−A2 −B2 − C2 + 2ABC
(A2 − 1)

√
(B2 − 1)(C2 − 1)

.

Hence we have

cosα+ cosβ cos γ = A sinβ sin γ = sinβ sin γ cosh a .

The first law of cosines is analogous to the classical, Euclidean version.
One consequence is the SSS (’side–side–side’) congruence criterion, stating
that the lengths of all three sides determine all the angles; hence the whole
triangle up to congruence. An important result that follows from this (as it
does also in Euclidean geometry) is:

Proposition 2.9.5. Congruence of angles can be characterized in terms of
congruence of segments.

Proof. let r, s be rays with vertex A and r′, s′ rays with vertex A′. Choose
vertices B ∈ r and C ∈ s, both different from A. Using axiom C1 we can
now find points B′ ∈ r′ and C ′ ∈ s′ such that A′B′ ∼= AB and A′C ′ ∼= AC.
Then it follows from the SSS–criterion that ∠(r, s) ∼= ∠(r′, s′) if and only if
B′C ′ ∼= BC.
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The second cosine relation, however, does not really have a counterpart
in Euclidean geometry. One striking consequence is that if we know all the
angles of a triangle, the sides are also completely determined, and hence the
whole triangle, up to congruence. Hence, in hyperbolic geometry similar
triangles are congruent! This is the AAA congruence criterion, which also
holds in spherical geometry, but definitely not in Euclidean geometry.

Note that this observation complements the area formula in Proposition
2.8.5, which says that the area is determined by the sum of the angles. In
fact, if anything, the second law of cosines is another replacement for the
result in Euclidean geometry saying that the sum of the angles in a triangle
is π, in the sense that this is what it approximates for “small” triangles. To
see this, note that the formula can be rewritten as

cos(β + γ)− cos(π − α) = sinβ sin γ(cosh a− 1) .

If a → 0, the right hand side will also go to 0. But cos is decreasing,
hence injective, in the interval (0, π) containing both π − α and β + γ, so
this means that α + β + γ → π as a → 0. Hence α + β + γ ≈ π for small
triangles.

Because of the angle–sum formula in Euclidean geometry, two angles of
a triangle determine the third. This is not true in hyperbolic geometry,
but the second law of cosines says that two angles and the side between
them determine the third angle. In both geometries the law of sines then
determines the remaining two sides, and hence the whole triangle up to
congruence. This is known as the ASA congruence criterion (’angle–side–
angle’).

It should be remarked that these congruence criteria, stating that certain
combinations of three quantities determine the triangle up to congruence,
can be proved geometrically from the axioms. (Note that axiom C6 is the
congruence criterion SAS.) In fact, except for the AAA–criterion, which
is only valid in hyperbolic geometry, this can be done without using any
parallel axiom. Hence the same geometric proofs are valid in both Euclidean
and hyperbolic geometry. But the trigonometric formulas are needed in
order to calculate the remaining quantities (angles and sides).

We conclude this section with some remarks on asymptotic triangles.
These can be thought of as limiting positions of finite triangles as one or
more vertices move to infinity. Recall that we call such vertices ideal vertices,
and we call a triangle simply, doubly or triply asymptotic, depending on how
many ideal vertices it has. The (size of the) angle at an ideal vertex is defined
to be 0.
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Let us consider more closely the three types of asymptotic triangles:

(i) Triply asymptotic. All three sides are then hyperbolic lines, and
any two of these lines have a common endpoint in R. By Exercise 2.2.7
(essentially Corollary 2.2.5), any triple of points can be mapped to any
other triple by an element of Möb(H) . Hence any two triply asymptotic
triangles are congruent.

(ii) Doubly asymptotic. Two of the sides are rays and the third is a
hyperbolic line between their endpoints. Consider the triangle in the disk
model D. If we move the finite vertex to 0 by a Möbius transformation,
we see that the two rays become radii in D. Clearly the angle at 0 then
determines the triangle up to congruence.

(iii) Simply asymptotic. Two of the sides are rays and the third is a
finite segment of length c, say, between two finite vertices with angles α and
β. The third angle is γ = 0.

Passing to the limit as γ → 0, the second cosine relation will continue to
hold, and we get

1 = cos(0) = − cosα cosβ + sinα sinβ cosh c .

This equation determines the third of the parameters α, β and c if the two
others are given. For example, we have

cosh c =
1 + cosα cosβ

sinα sinβ
.

(See also Exercise 5.)
An important special case is when one of the angles, e. g. β, is π/2. (See

Figure 2.9.1.) Then

cosh c =
1

sinα
.

α
c

A

B s

r

Fig. 2.9.1:
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This relation is usually given a different form, obtained by solving the
equation with respect to e−c:

e−c =
1− cosα

sinα
= tan

α

2
.

These relations are possibly the simplest manifestations of the close re-
lationship between units of measurement of angles and lengths in the hy-
perbolic plane. In fact, using Lemma 2.6.1 it can be considered as another
version of Proposition 2.9.5.

Some classical terminology: let ` be the line containing the ray s. The
ray r is one of two limiting parallel rays to ` through the point A. The
lines containing the limiting parallel rays are called asymptotic parallel lines
to `, and the angle α is the asymptotic angle. Parallel lines that are not
asymptotic are called ultra-parallel.

One final word: We have now developed enough of hyperbolic geometry
to see that it differs dramatically from Euclidean geometry in the large.
However, several results show that in the small, i. e. locally around a point,
the geometries become approximations of each other. Examples are the
calculations of area and circumference of a circle, and the remarks on the
trigonometric formulas above. This is analogous to the fact that although
the Earth is a sphere, locally it looks flat, and the errors we make by using
Euclidean geometry on small regions are usually very small.

Exercises for 2.9

1 . In a triangle two of the angles are α and β, and the length of the
side opposite to the vertex with angle β is b. Explain how to find the
remaining angles and sides.

Why does this establish the congruence criterion SAA?

2. Show that two of the angles of a finite triangle are equal if and only if
the two sides opposite to these angles have the same length.

3. Use the hyperbolic sine relation to prove that in a hyperbolic triangle
the greatest angle has the longest opposite side.

4. Show that the sides of a triangle all have the same length if and only
if the three angles also are equal.
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Show that if the sides have length a and the angles are α, then
2 cosh(a/2) sin(α/2) = 1. (Hint: cut the triangle into two pieces.)

5. Show that if a simply asymptotic triangle has finite angles α and β
and finite side c, then β is determined by α and c.

6. Suppose given a quadrilateral with one ideal vertex and three right
angles. Then two of the sides have finite lengths a and b. Show that

1
cosh2 a

+
1

cosh2 b
= 1 .

7. Show that in a triangle with γ = π/2 the following formulas hold:

sinα =
sinh a
sinh c

cosα =
tanh b
tanh c

8. Formulate and prove a ’converse’ of Proposition 2.9.5.

9. Prove that a map H→ H is a Möbius transformation if and only if it
is distance preserving.

Appendix. Remarks on the Beltrami–Klein model

Since the Beltrami–Klein model played such an important part at the begin-
ning of these notes, we should not end the discussion of hyperbolic geometry
without some remarks on the missing bits of its geometry.

When we left it, we had all ingredients except congruence. Now we can
define congruence as equivalence under transformations of the form H−1gH,
where H is our identification K ≈ D and g ∈Möb(D) . This can be written
out explicitly, but the formulas are ugly and not very enlightening. How-
ever, by Proposition 2.9.5 we now also know that congruence is completely
determined by the distance measure, so we might instead ask what the dis-
tance formula looks like when transported back to K. It turns out that this
question does indeed have a nice and interesting answer.
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Recall that the set of points of K is the interior of the unit disk in R2,
and the ’lines’ of the geometry are the chords in this disk.

Let Z1, Z2 be two points of K. They span a unique chord which has
endpoints P and Q on the boundary circle of K in R2. Let us denote the
distance function on K by dK.

Proposition A.1. dK(Z1, Z2) =
1
2
| ln |[Z1, Z2, P,Q]||.

Proof. The identification H : K ≈ D is the composition of the vertical
projection from K to the upper hemisphere B with equator disk K and
stereographic projection from B to D. Note that K and D coincide as sets.

Let W1 = H(Z1) and W2 = H(Z2). The endpoints P and Q are left
fixed, so we have by definition

dK(Z1, Z2) = dD(W1,W2) = | ln |[W1.W2, P,Q]|.

Hence the result follows from

Claim 1 : [W1.W2, P,Q]2 = [Z1, Z2, P,Q].
Now we simplify notation and denote by AB both the Euclidean segment

from A to B and its Euclidean length |A−B|. Then the equation in Claim
1 reads (

W1P

W1Q

W2Q

W2P

)2

=
Z1P

Z1Q

Z2Q

Z2P
.

Hence Claim 1 is a consequence of

Claim 2 : Let Z be a point on the chord with endpoints P and Q, and let

W = H(Z). Then
(
WP

WQ

)2

=
ZP

ZQ
.

We will prove this by a geometric argument entirely within Euclidean
geometry, referring to Figure 2.9.2. Here O is the center of the unit disk,
and we have drawn both the K–line and the D–line with endpoints P and
Q. Note that the D–line has the radii OP and OQ as tangents. By the
definition of π and Φ the point W lies on the line between Z and O, so W
must be the point of intersection between the D–line and Euclidean segment
OZ.

Consider now the triangles ZPO and ZQO. With ZP and ZQ as base
segments the two triangles have the same heights, and we have

ZP

ZQ
=
A(ZPO)
A(ZQO)

,

where the right hand side is the ratio between the areas of the triangles.
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P

Q
O

Z

W
h

Fig. 2.9.2:

Likewise, the triangles ZPW and ZQW have the same heights, so we
deduce

ZP

ZQ
=
A(ZPW )
A(ZQW )

=
A(ZPO)−A(ZPW )
A(ZQO)−A(ZQW )

=
A(PWO)
A(QWO)

.

But the areas in the last fraction can also be calculated with the two
radii OP and OQ as bases, yielding

ZP

ZQ
=

1
2OP · PW sin(∠WPO)
1
2OQ ·QW sin(∠WQO)

=
PW sin(∠WPO)
QW sin(∠WQO)

.

The D–line through P,W,Q is part of a Euclidean circle, hence we can
use the theorem of peripheral angles to obtain

∠WPO = ∠WQZ and ∠WQO = ∠WPZ.

But from the figure we see that

PW sin(∠WPZ) = h = QW sin(∠WQZ).

Combining these observations, we get

PW

QW
=

sin(∠WQZ)
sin(∠WPZ)

=
sin(∠WPO)
sin(∠WQO)

.

Substituting this in the expression for
ZP

ZQ
above proves Claim 2.
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Remark. Comparing the formula in Proposition A.1 with the formula for dD
in (2.7.3), it might look as if dK is just a rescaling of dD. However, this is
not the case. The reason is that the points P,Q (p, q) are not the same in
the two formulas — in Proposition A.1 they are the endpoints of the chord
through Z1, Z2, but in (2.7.3) they are endpoints of the D–line through the
same points. The only case where they coincide is when Z1 and Z2 lie on a
common diameter. Then we have dK(Z1, Z2) = 1

2dD(Z1, Z2).

We can also derive a formula analogous to (2.7.5). First we observe
that if we identify the underlying sets of K and D with the unit disk in the
complex plane, the homeomorphism H : K→ D is given by

H(z) =
z

1 +
√

1− |z|2

(Exercise 5.) Using this we shall show that

Proposition A.2. cosh(dK(z1, z2) =
1− 〈z1, z2〉√

1− |z1|2
√

1− |z2|2
,

where 〈z1, z2〉 is the Euclidean inner product of z1 and z2.

Proof. Write wi = H(zi), i=1,2. A straightforward calculation starting with
(2.7.5) for w1, w2 gives

dD(w1, w2) =
1− |w1|2 − |w2|2 + |w1|2|w2|2

(1− |w1|2)(1− |w2|2)
+

2(|w1|2 + |w2|2 − 2〈w1, w2〉)
(1− |w1|2)(1− |w2|2)

=
(1 + |w1|2)(1 + |w2|2)
(1− |w1|2)(1− |w2|2)

− 4〈w1, w2〉
(1− |w1|2)(1− |w2|2)

(2.9.2)

Now write w = H(z) =
z

y
, where y = 1 +

√
1− |z|2. Easy calculations

then give y2 + |z|2 = 2y and y2 − |z|2 = 2y(y − 1); hence

1 + |w|2 = 2/y and 1− |w|2 = 2(y − 1)/y.

Clearly we also have 〈w1, w2〉 = 〈z1, z2〉/y1y2. Substituting this in for-
mula (2.9.2) proves the proposition.

An application of this result to yet another model for the hyperbolic
plane, the hyperboloid model, is given in exercise 6.

The Beltrami–Klein model is not conformal, and angle measure is much
more complicated. However, one fact is worth noting: it is easy to draw all
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K–lines which are orthogonal to a given line! We distinguish between two
cases:

(1) If the given line is a diameter, the K–lines orthogonal to it are the
chords that are orthogonal to it in the Euclidean sense.

(2) Assume the K–line ` is not a diameter, and let its endpoints be P
and Q. The tangents to the circle at ∞ at P and Q intersect in a point W
outside the unit disk. The K lines orthogonal to ` are the chords contained
in Euclidean lines through W . (See Figure 2.9.3a.)

`

λ

W

B

P W

Q

K

(b)(a)

Fig. 2.9.3:

Note that case (1) follows from case (2) by a limiting procedure. There-
fore it suffices to consider (2). We will prove this by a geometric argument
using the hemisphere model B and a little three–dimensional geometry. Cf.
Figure 2.9.3b. In this picture we think of K as lying in a standard R2 ⊂ R3,
and B ⊂ S2 is the upper hemisphere.

Via vertical projection the K–lines correspond to B–lines, which are cir-
cular arcs (semi–circles) which lie in vertical planes and meet the equator
circle at right (Euclidean) angles. In particular, ` correspond to one such
semi–circle, which we call λ.

The reason we pass to B is that the hemisphere model is conformal, since
it is related to D by stereographic projection. Therefore we now only need
to determine all B–lines which meet λ orthogonally in the Euclidean sense.

A B–line γ meets λ orthogonally if and only if its tangent line at the
intersection point does. But the union of all the lines meeting the circle
containing λ orthogonally is easily seen to be a circular cone, and all the
lines meet at its vertex. Since the tangents at P and Q in Figure 2.9.3a are
two such lines, we see that the cone vertex is precisely the vertex W .
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It now only remains to observe that since γ lies in a vertical plane, its
tangents also lie in this plane. Hence the plane contains W , and its projec-
tion to R2 will be a line also containing W . But the K–line corresponding
to γ is contained in this line.

Exercises for Appendix

1. Which kind of curves are ’horocircles’ in K?

2. Verify that inversion in a diameter in K is ordinary reflection in that
diameter.

3. Show that two hyperbolic lines have a common perpendicular if and
only they are ultra-parallel (end of section 2.9), and show how it can
be constructed in the Beltrami–Klein model.

4. Show that we can parametrize K by (r, θ) 7→ (tanh r cos θ, tanh r sin θ),
where r is the hyperbolic distance from the origin. (’Geodesic polar
coordinates’.)

5. Show that if we identify the underlying sets of K and D with the unit
disk in the complex plane, the homeomorphism H : K → D is given
by

H(z) =
z

1 +
√

1− |z|2

6. The hyperboloid model of the hyperbolic plane. The hyperboloid in R3

with equation z2− x2− y2 = 1 has two sheets; let L be the one where
z > 0. (Both sheets would work in the following discussion). Identify
K with the disk where x2 + y2 < 1 in the plane z = 1. Then it is
easy to see that every line through a point in L and the origin in R3

intersects K in exactly one point; in fact, this defines a homeomorphism
Ψ : L→ K. (In coordinates: Ψ(x, y, z) = (x/z, y/z).) Hence we get a
model for that hyperbolic plane by mapping the geometry of K to L
by Ψ−1.

Show that the metric in L is given by

dL((x1, y1, z1), (x2, y2, z2)) = z1z2 − x1x2 − y1y2.
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Remark. The expression

� (x1, y1, z1), (x2, y2, z2)�= z1z2 − x1x2 − y1y2

defines a Minkowski inner product on R3. It is not positive definite, but
satisfies the other axioms for a non–degenerate inner product. Observe
that L is defined as the set of “unit vectors” for this inner product,
and the metric dL can now be expressed by

cosh(dL(A1, A2)) =� A1, A2 � .

Note the similarity with the distance formula on the unit sphere S2 in
Euclidean geometry:

cos(dS2(A1, A2)) = 〈A1, A2〉.

The model L is sometimes also called the Minkowski model or the
Lorentz model of the hyperbolic plane. It generalizes easily to higher
dimensions and leads to the identification of the group of hyperbolic
isometries with the Lorentz group of linear transformations preserving
the Minkowski inner product.
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Chapter 3

Topological Classification of
compact, closed surfaces

We now move on to study more general two–dimensional objects and their
possible geometries. Note that our models for Euclidean or hyperbolic ge-
ometry are all homeomorphic to ordinary R2, and the geometries consist
of some extra structure. Now we will consider objects (topological spaces)
which are only locally homeomorphic to R2. Then the extra geometric struc-
ture can also be defined locally, and our goal is to study to which extent
these local structures can be pieced together to give a structure on the whole
space. These spaces are the objects we call “surfaces”, and in this chapter we
shall concentrate on the topology of such surfaces. The main result is a com-
plete classification of those that are connected and compact as topological
spaces.

To be more precise: A “surface” is here defined as a two–dimensional
topological manifold, i. e. a Hausdorff topological space such that every point
has a neighborhood which is homeomorphic to R2. (This is usually expressed
by saying that it is locally homeomorphic to R2.)

Here are some examples (we shall see many more later):

(1) R2, S2, T 2 = S1 × S1,

(2) Open subsets of other surfaces, e. g. the models H and D of the hyper-
bolic plane,

(3) {(x, y, z) ∈ R3 |F (x, y, z) = 0, ∇F (x, y, z) 6= 0}, where F is a contin-
uously differentiable function on an open subset of R3. Examples of
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this type include graphs of functions of two variables.

(4) Analogous to (3) we can also consider the zero set of a complex ana-
lytic function f(z, w) of two variables where at least one of the partial
derivatives is different from 0. These are complex curves, but from
our, real, point of view they have dimension 2 and will be considered
as surfaces.

A surface is a disjoint union of its connected components, so it suffices
to classify connected surfaces. Therefore, from now on we assume that all
our surfaces are connected. (The word “closed” in the title means that we
do not here consider surfaces with boundary.)

An important operation on surfaces (and manifolds in general) is con-
nected sum: Given two surfaces M1 and M2, we can get another by removing
an open disk from each of them and gluing the rest along their boundary
circles. More precisely: Let D2 be the closed 2–disk with boundary S1, and
let hi : D2 → Mi, i = 1, 2 be two embeddings, — i. e. maps which are
homeomorphism onto their images. Then the connected sum of M1 and M2,
denoted M1 #M2, is defined to be the surface

M1 #M2 = (M1 − h1(intD2)) ∪f (M2 − h2(intD2)) ,

where f : h1(S1)→ h2(S1) is the homeomorphism h2h
−1
1 .

Clearly, M1#M2 ≈M2#M1.

Remark 3.1.6. This construction makes sense also in higher dimensions, but
the result may depend on our choice of h1, h2. However, for surfaces all
choices turn out to give homeomorphic results.

In the following we will use the notationM ≈ N for “M is homeomorphic
to N”. Note, in particular, that M#S2 ≈ M for any surface M . It is also
clear that we can iterate this operation and form the connected sum of
several surfaces. The classifications theorem in dimension 2 states that a
compact, connected surface is either homeomorphic to a sphere S2, or it can
be written as a connected sum of finitely many copies of only two distinct
irreducible surfaces — i. e. surfaces which can not be decomposed further.
These two surfaces are the torus T 2 and the projective plane P 2. We will
use the following models for T 2 and P 2:

T 2 is defined as S1×S1, but since S1 is homeomorphic to a closed interval
(e. g. [0, 1]) where we have identified the endpoints, we can also think of T 2

as [0, 1]× [0, 1] where we identify opposite sides pairwise, as indicated on fig.
3.1.2.
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 1M  − h (int D)     1
             n f

M  − h (int D)
             n

 2      2

Fig. 3.1.1: Connected sum

−1

−1

b

aa

b

Fig. 3.1.2: Torus
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The projective plane is obtained from the 2–sphere S2 by identifying
antipodal points. Then we identify every point in the upper hemisphere
with a point in the lower hemisphere, hence we only need one of them to
represent all of P 2. Since both hemispheres are homeomorphic to the disk
D2, we get P 2 by identifying antipodal points on the boundary circle S1.
This identification can be realized by cutting the boundary circle into two
intervals and identifying as in fig. 3.1.3.

aa

Fig. 3.1.3: P 2

Note that we have described both the torus and the projective plane as
identification spaces where we start with a 2n-gon (n = 2 and 1 in these
examples) and identify the sides pairwise according to some definite pattern.
The labels a, a−1 etc. on the boundary indicate that we identify the two
sides in a way that preserves (. . . a . . . a . . . ) or reverses (. . . a . . . a−1 . . . ) the
direction around the 2n-gon. Thus, T 2 is represented by the string aba−1b−1

and P 2 by aa. Another example is the Klein bottle K2, represented by
abab−1. This surface is not homeomorphic to a subset of R3, but fig. 3.1.4 is
a picture with one circle of self–intersections. Using just the two surfaces T 2

b

aa

b−1

Fig. 3.1.4: Klein bottle

and P 2 and connected sum, we will see that we obtain all other surfaces up
to homeomorphism. T 2#T 2, for example, is a surfaces with “two holes”, as
in fig. 3.1.5. In the same way, the connected sum of n copies of T 2 becomes
a surface with “n holes”.
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Fig. 3.1.5: T 2#T 2

How can we show that T 2 and P 2 are not homeomorphic? The simplest
is probably to observe that T 2 is orientable and P 2 is not. An intuitive
way of thinking about orientability of surfaces is as follows: Consider an
embedded curve ω : [a, b] → M . Locally at any point we can distinguish
between the two sides of the curve and e. g. name them “right” and “left”.
Moving along the curve, we can extend this and define the right and left hand
side of the whole curve. However, if the curve is closed, i. e. ω(b) = ω(a),
the notions of right and left obtained when we come back to the starting
point may not coincide with those we had at the beginning. An example of
this is the Möbius band, shown in fig. 3.1.6. The arrows indicate a choice
of side locally, but we see that no continuous choice is valid for the whole
curve. We say that the curve is one–sided.

Fig. 3.1.6: Möbius band

If a surface has a one–sided curve, it is called non–orientable, and if all
closed curves are two–sided, it is orientable. It is clear that homeomorphic
surfaces are either both orientable or both non–orientable.

In fact, if M has a one–sided embedded, closed curve, a neighborhood
of this curve looks like a Möbius band. Hence we have
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Lemma 3.1.7. A surface is non–orientable if and only if it contains a
Möbius band.

P 2 is non–orientable, since it contains a Möbius band. This can be seen
by doing the identification in fig.3.1.3 on a band going across the disk from
the upper to the lower half–circle. To prove that T 2 or any other surface is
orientable is harder, since we have to check a certain property for all closed
curves. But here is at least a heuristic argument:

T 2 has a representation in R3 which is two–sided in the sense that it
separates R3 into two components. A choice of one of these makes it possible
to define right and left hand sides of an embedded curve, “as seen from”
the chosen component. One way to do this is to let the ordered triple of
directions (“right, forward (moving along the curve) and up”) be chosen
according to the right hand rule in R3. But this choice will not change when
we move around the curve, so the curve is also two–sided on the surface.
Hence T 2 is orientable.

Remark 3.1.8. This also proves that P 2 does not have a two–sided repre-
sentation in R3. In fact, one can show that it has no embedding in R3

whatsoever.

We can now state the existence part of our classification theorem:

Theorem 3.1.9. Any compact, connected surface is homeomorphic to a
finite connected sum of tori and projective planes.

Proof. To prove this we need a result by Radó from 1925, saying that every
surface can be triangulated. This means that it is homeomorphic to a union
of triangles, where every edge of every triangle is linearly identified with
exactly one edge of another triangle. This is a deep result, but not very
surprising. (However, the analogous statement in higher dimensions is false
from dimension 4 on!)

Let ∆1, . . . ,∆n be the triangles in a triangulation of a compact surfaces
M . We may choose the ordering such that ∪j<i∆j and ∆i have at least one
edge in common, and we choose such an edge Ei for every i. Let

Fk = ∆1 ∪E1 ∆2 ∪ · · · ∪Ek−1
∆k,

for k = 1, 2, . . . , n. Then Fk = Fk−1∪Ek
∆k, and an easy induction argument

shows that each Fk is homeomorphic to a 2-disk D2, which we may think
of as a (k + 2)–gon. In particular, Fn will be an (n + 2)–gon, and M is
obtained by identifying its edges pairwise. (It follows that n+ 2, hence also
n, is even!)
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We now give the edges names a, b, . . . , such that the edges which are
identified get either the same (. . . a . . . a . . . ) or “inverse” (. . . a . . . a−1 . . . )
names, depending on whether they are identified in a way that preserves or
reverses direction around the (n + 2)-gon. (Cf. the descriptions of T 2, K2

and P 2 above.)
If the word W = a . . . a±1 . . . lists the edges counterclockwise, we will

write D2/W for the result of the identifications. Thus the torus above can
be written D2/aba−1b−1 and P 2 as D2/aa, whereas S2 is homeomorphic to
D2/aa−1.

Let us call a word W defining a surface as above admissible. It is conve-
nient to allow the empty word {} and define D/{} = S2. The proof of the
theorem is based on the following lemma:

Lemma 3.1.10. (i) If W = W1W2, then D2/W1W2 = D2/W2W1.
(ii) If W1 and W2 are admissible, then W1W2 is also admissible, and

D2/W1W2 ≈ D2/W1 #D2/W2

Proof. (i) is only the observation that when we go around the disk, it does
not matter where we start reading the word.

(ii) We cut D2 along a line c connecting the two endpoints on the bound-
ary where W1 and W2 meet. (See fig. 3.1.7.) Since W1 and W2 are admis-
sible, these two endpoints are identified, and c represents a closed curve in
D2/W1W2.

D       − disk2

1/W  D2

1/W W  2
D      − disk2

2/W   

1W

2W 2W

1W

c c c

Fig. 3.1.7:

Thus we get two new disks where the edges are given by W1 and W2,
respectively, plus an extra edge c in both. It is then easy to see that if we
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perform the identifications encoded by W1 and W2 in these two disks but
do not identify the c’s, we get spaces homeomorphic to (D2/W1 − disk) and
(D2/W2 − disk).

We may construct D2/W1W2 by first performing all the identifications
in the two parts and then gluing along the dashed curves (which now have
become circles). But this is clearly D2/W1 #D2/W2.

In particular, we have

(1) D2/Waa−1 ≈ D2/W #S2 ≈ D2/W

(2) D2/Waa ≈ D2/W #P 2

(3) D2/Waba−1b−1 ≈ D2/W #T 2

Therefore we can eliminate all sequences having the form aa−1, aa and
aba−1b−1, in the sense that we can write D2/W ≈ D2/W ′ #M ′, where M ′

is a connected sum of tori and projective planes, and W ′ is a word which is
at most as long as W and which does not contain any such strings.

Suppose now that W = W1aW2a. Then we may, as in the proof of the
lemma above, cut D2 into two disks separating the words W1a and W2a.
But this time we construct the surface by first gluing back along the edges
labeled a. The result is a new disk with edge–identification given by the
word W1W

−1
2 cc.

1W2W
1W

2W

a

a

c
−1

a

c

c

Fig. 3.1.8:

Hence we also have

(4) D2/W1aW2a ≈ D2/W1W
−1
2 cc ≈ D2/W1W

−1
2 #P 2
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Example 3.1.11. The Klein bottle can be represented as D2/bab−1a, which
by (4) is homeomorphic to D2/bb#P 2 ≈ P 2#P 2.

By repeated use of (2) and (4) we now reduce to the case where all the
edges occur in pairs (c, c−1) etc., and by (1) we may eliminate all strings of
type cc−1 (and c−1c). Then we must either have M ≈ S2, or we can find
(possibly after switching the labels c and c−1 and/or d and d−1) edges c and
d occurring in the order c . . . d . . . c−1 . . . d−1 . . . in the word W . (Choose
first a pair with minimal distance between them.)

We now cut and paste as in fig. 3.1.9.

−1
d

−1
c

−1
d

−1
e

−1
f

−1
e

d

c

e

e

d

(a) (b)

d
f

c

d
f

e

(c)

Fig. 3.1.9:

Figure 3.1.9(a) represents the original identifications given by the word
W . We cut along a new line e as shown, and the two parts are glued together
again along c and c−1. Then we have the situation in (b), which we cut along
a new edge f . The resulting parts are glued along d and d−1, and we get
(c) in the figure. This represents the same surfaces as (a), and if we put
g = f−1, we have

D2/W ≈ D2/W ′geg−1e−1 ≈ D2/W ′ #T 2

Here W ′ is a shorter word than W . Putting all this together we may split
off summands P 2 and T 2 until we are left with a surface homeomorphic to
S2.

Thus every compact, connected surface is homeomorphic to a surface of
the type

S(m,n) = T 2 # · · ·#T 2︸ ︷︷ ︸
m

# P 2 # · · ·#P 2︸ ︷︷ ︸
n

(We set S(0, 0) = S2.) Since T 2 is orientable and P 2 is not, we see that M
is orientable if and only if n = 0 — i. e. M is homeomorphic to a surface
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of the type S(m, 0) = T 2 # · · ·#T 2. Then we shall see that the number of
summands is uniquely determined.

On the other hand, if M is not orientable, then m and n are not uniquely
determined. In fact, we have:

Lemma 3.1.12. P 2 #P 2 #P 2 ≈ T 2 #P 2

Proof. We begin by recalling Example 1, from which it follows that

P 2 #P 2 #P 2 ≈ K2 #P 2 ≈ D2/abab−1cc

Successive applications of Lemma 3.1.10 and the homeomorphism (4)
give

D2/abab−1cc ≈ D2/abacbc ≈ D2/acbcab ≈ D2/aca−1c−1bb ≈ T 2 #P 2

Now we are ready to complete the classification theorem:

Theorem 3.1.13. Any compact, connected surface is homeomorphic to a
surfaces of the type S(m,n), where n = 0, 1 or 2. m and n are then uniquely
determined by M .

Proof. The existence follows from Theorem 3.1.9 and Lemma 3.1.12, so it
only remains to establish the uniqueness of n and m. We can not give all
the details here, but at least we can explain the invariants we use and the
ingredients of the proof.

The invariants are orientability and the so–called Euler characteristic.
We have already introduced orientability, and it is obvious that homeo-

morphic surfaces are either both orientable or both no–orientable.
The Euler characteristic is an integral invariant which can be associated

to any triangulated surface M . If the triangulation has s triangles, e edges
and v vertices, then the Euler characteristic is defined by

χ(M) = v − e+ s .

The fundamental fact is that this number is independent of which triangu-
lation we use, such that if M and N are homeomorphic, then χ(M) = χ(N).
This is the only fact we cannot prove here, in full generality, but it is a nice
exercise to show that the Euler characteristic does not change if we subdi-
vide the triangles in a given triangulation by introducing new vertices and
edges. (Exercise 9. The missing step to the general result is then to show
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that we can go from one triangulation to any other by a finite number of
such operations or their inverses.)

Using suitable triangulations of the identification models D2/W it is not
difficult to verify that

χ(S(m,n)) = 2− 2m− n

This means that if M is orientable, then χ(M) = 2− 2m. Hence m, and
therefore also M , is determined by χ(M).

If M is non–orientable, then n = 1 or 2, and χ(M) = 1− 2m are −2m.
In the first case χ(M) is odd (n = 1), and in the second case it is even
(n = 2). In both cases χ(M) determines both m and n.

Remark 3.1.14. Note that we also have proved that M is completely deter-
mined by χ(M) and whether M is orientable or not.

In the orientable case the number m is called the genus of the surface.
It also follows that the genus determines an orientable surface up to home-
omorphism.

Exercises for 3.1

1. Show that if B is a Möbius band with boundary circle S, then

P 2 ≈ B ∪S≈S1 D2

K2 ≈ B ∪S B

2. Show that S(m,n) can be represented asD2/[a1, b1] · · · [am, bm]c21 · · · c2n,
where [a, b] = aba−1b−1 and c2 = cc.

3. In the identification space D2/W the edges of D are identified pairwise
with each other to curves on the surface. Draw these curves on S(2, 0)
in fig. 3.1.5 if we use the identifications in exercise 2.

4. Verify the formula χ(S(m,n)) = 2− 2m− n.

Determine the Euler characteristics of S2, T 2, P 2 and K2.

Show that these are the only compact, connected surfaces having Euler
characteristic ≥ 0.

5. Determine which compact surface can be represented asD2/abc−1bdacd−1.
What is its Euler characteristic? Is it orientable?
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6. Show that if M1 and M2 are compact surfaces such that M1#M2 is
homeomorphic to M1, then M2 must be homeomorphic to S2.

7. Show that χ(M#N) = χ(M) + χ(N)− 2 for all compact surfaces M
and N .

A surface is called irreducible if the only way it can be written as
a connected sum is if one of the summands is S2. Prove that M is
irreducible if and only if M is homeomorphic to T 2, P 2 or S2

8. Generalize the notion of triangulation to allow the two–dimensional
pieces to be arbitrary n–gons for all n. Show that the formula

χ(M) = v − e+ s

still holds, where now s is the number of polygons.

9. Show that χ(M) does not change under subdivision of the triangula-
tion. (A triangulation τ2 is a subdivision of a triangulation τ1 if every
simplex of τ2 is contained in a simplex of τ1.)



Chapter 4

Geometry on surfaces —
basic concepts

4.1 Introduction, local structure

Our goal is to generalize our geometrical studies from plane geometries to
geometries on surfaces. As we already have pointed out, this requires more
structure, so we begin by discussing what it means to put structure on
a surface. The word “structure” is here used somewhat loosely, but the
examples below will, hopefully, make it clearer what we mean.

Recall that a surface M is locally homeomorphic to R2. This means
that M has an open covering {Uj}j∈J such that there are homeomorphisms
xj : Uj ≈ xj(Uj) ⊂ R2, where xj(Uj) is open in R2. Such a pair (Uj , xj) is
called a (local) chart on M and {(Uj , xj)}j∈J is called an atlas.

If we have some kind of structure on (subspaces of) R2 (e. g. complex,
Euclidean, hyperbolic, . . . ), a natural thing to try is to transfer this structure
to M via the local charts. Of course, this ought to be independent of which
chart we choose, so the problem, in general, will be compatibility in the
overlaps between two or more charts.

Example. The fundamental example, and also the model for any further
discussion, is that of a differentiable structure. It is clearly of great interest to
extend the concept of derivatives and differentiable functions to surfaces (or
more general manifolds). Using the philosophy above, a function f : M → R
should be differentiable at a point p ∈ M if fx−1

j is differentiable at xj(p),
where (Uj , xj) is a chart with p ∈ Uj . But if (Ui, xi) is another chart with
p ∈ Ui, this should be the same as requiring that fx−1

i is differentiable at

93
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xi(p). These two conditions are equivalent for every function f if and only
if xix

−1
j and xjx

−1
i are differentiable at xj(p) and xi(p), respectively. Hence

we have a well defined concept of “differentiable function on M” if and only
if M has an atlas {(Uj , xj)}j∈J such that the coordinate transformations
xjx

−1
i are differentiable wherever they are defined (i. e. in xi(Ui ∩ Uj)) for

all i and j. Such an atlas is called a differentiable atlas, and it defines a
differentiable structure on M .

However, if studying differentiable functions is the motivation for in-
troducing this structure, we should identify structures coming from atlases
defining the same set of such functions. We call two atlases equivalent if they
do, and define a differentiable structure to be an equivalence class of differ-
entiable atlases. It is easy to see that two atlases {(Ui, xi)} and {(Vj , yj)}
are equivalent if and only if

• all compositions yjx
−1
i and xiy

−1
j are differentiable.

But this condition is clearly equivalent to

• {(Ui, xi)} ∪ {(Vj , yj)} is also a differentiable atlas.

The set of all differentiable atlases (as sets of charts) is partially ordered
by inclusions, and it follows that the union of all atlases in an equivalence
class is the unique maximal element in that class. Therefore we can also
identify a differentiable structure with a maximal differentiable atlas.

A surface M with a choice of such structure is called a differentiable
surface.

Remark. There is nothing in this discussion that confines it to dimension
two. It applies to manifolds of arbitrary dimensions — just replace ‘R2’ by
‘Rn’ everywhere — and defines a differentiable manifold.

We may also require more: if, e. g. , all the coordinate transformations
are r times continuously differentiable, we have a Cr–structure. Here r may
even be ∞, and a surface (manifold) with a C∞–structure is called smooth.

Thus, if M has a differentiable structure, we can talk about differentiable
functions onM . But we can also define differentiable mappings between such
manifolds. If M and N are two manifolds with Cr-structures {(Ui, xi)} and
{(Vj , yj)} and f : M → N is a mapping, we say that f also is Cr if all the
mappings yjfx

−1
i are r times continuously differentiable wherever they are

defined.
This way we can transfer concepts and results having to do with dif-

ferentiation to manifolds, provided they are equipped with differentiable
structures. We can also define real analytic manifolds and maps, and re-
placing Rn with Cn in the definitions, we arrive at the concept of complex
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analytic structures.
If f : M → N is differentiable and also has a differentiable inverse, we

say that f is a diffeomorphism and that M and N are diffeomorphic. Then
they are, of course, also homeomorphic. One can show that all surfaces have
smooth structures that are unique up to diffeomorphism. Hence there is no
loss of generality when we from now on tacitly assume that all surfaces are
smooth.

4.2 Geometric structure on surfaces

Using these ideas we will now attempt to define a geometric structure on
a surface M to be a geometry on (subsets of ) R2 together with a (differ-
entiable) atlas on M such that all the coordinate transformations preserve
this geometry. This will become more precise as we proceed, but first we
look at some examples.

Example 1. If we consider the integers Z as a subgroup of the additive
group R, we can define the torus T 2 as the quotient group R2/Z2 (with the
quotient topology). The easiest way to see this is to observe that under
addition of elements of Z2, every element of R2 can be moved to an element
in [0, 1]× [0, 1], and the only identifications here are of the form (t, 0) ∼ (t, 1)
or (0, s) ∼ (1, s). This means that the quotient is the disk D = [0, 1]× [0, 1]
with boundary identifications according to the pattern aba−1b−1.

The quotient map p : R2 → T 2 is a local homeomorphism, since

p|(a, b)× (c, d) : (a, b)× (c, d)→ p((a, b)× (c, d))

is a homeomorphism whenever b−a < 1 and d−c < 1. If we use the inverses
of these homeomorphisms as charts, the coordinate transformations will look
like (s, t) → (s + m, t + n) for integers m and n. Here (m,n) will depend
continuously on (s, t), and are therefore locally constant.

These coordinate transformations are restrictions of Euclidean isometries
(congruences), and they preserve the Euclidean geometry — i. e. they take
lines to lines and preserve lengths and angles. Therefore this atlas defines
what we may call a Euclidean structure on T 2.

The images of straight lines in R2 define a system of curves on T 2 which
we again may call “lines” in the Euclidean structure. This set of lines will,
however, not satisfy all of Hilbert’s axioms. For example, lines in R2 with
rational slope will map to closed curves on T 2 — hence betweenness will
have no meaning — while lines with irrational slope will map injectively to
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a topologically dense subset of T 2. Two distinct curves may intersect in
more than one point, even infinitely many, and there will be infinitely many
such curves going through two given points.

This means that segments are not determined by their endpoints, but we
have to also specify the lines containing them. Likewise, triangles are not
determined by the three vertices only. The best way to define such geometric
concepts is to lift them to R2 and use the geometry there.

Angular measure between two lines, however, will have a unique mean-
ing, since we get the same value, independent of which chart we use. We may
also measure Euclidean distance along lines, but this will only be uniquely
determined in small neighborhoods, since lines may be closed. But this
makes it possible to compare two arbitrary segments, and we may for in-
stance, as in Hilbert’s axiom C1, find a congruent copy of any given segment
starting in any point and going in any direction.

This last property is closely related to a property called “completeness”,
saying that we may prolong any segment as far as we want. For instance,
if M is the complement of a point in T 2 (or R2), then M will obviously
inherit a Euclidean structure in the sense that we can find an atlas where
all the coordinate transformations are restrictions of Euclidean isometries,
but this structure will not be complete, since segments on lines punctured
by the missing point can not be prolonged across it. We will essentially only
be interested in complete structures.

If we replace Z2 by another additive subgroup Λ ⊂ R2 of rank 2, then
R2/Λ will also have a Euclidean structure. R2/Λ will be homeomorphic (even
diffeomorphic) to T 2, but it may not be possible to find a homeomorphism
which preserves the structure — i. e. the Euclidean structures may not be
equivalent for different Λ.

To obtain these structures we have used the additive group structure on
R2, but if we look closer, we see that what we really have used is only that
Z2 (or Λ) is a group acting via structure preserving diffeomorphisms of the
surface R2. From this point of view we could replace R2 by any surface X
with a structure (“geometry”) and Z2 by a group Γ of diffeomorphisms of X
preserving this structure (“congruences”), provided that the quotient space
X/Γ is a surface. The next examples are of this type.

Example 2. Again we let X = R2 with Euclidean geometry, but now we let
Γ be the group of Euclidean isometries (congruences) generated by γ(s, t) =
(s + 1, t) and τ(s, t) = (−s + 1, t + 1). As with the torus, we can show
that the quotient map R2 → R2/Γ is a homeomorphism when restricted to
open rectangles with sides less than 1, and the inverses of these give an atlas
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which defines a Euclidean structure. To see which surface R2/Γ is, we first
observe that γ identifies all the vertical bands [n, n + 1)× R via horizontal
translation. τ identifies all the horizontal bands R× [n, n+ 1), but in a way
such that every other band is reflected in the line {1/2}×R. Hence we also
obtain R2/Γ from the square [0, 1] × [0, 1], but now we identify the sides
according to the pattern ’abab−1’. Thus the quotient is a Klein bottle.

Example 3. In this example, we use a different surface than R2 to model
a geometry. We say that a surface has spherical structure if it is locally
homeomorphic to the sphere S2 in such a way that the coordinate trans-
formations are restrictions of spherical congruences, i. e. multiplication by
matrices in the orthogonal group O(3). It turns out that there is only one
example of such a geometry except S2 itself; namely the projective plane
P 2. But P 2 is, in fact, of the type X/Γ. In fact, let X = S2, and let
Γ = Z/2 = {±I} ⊂ O(3), which acts on S2 via the antipodal map. Then
the quotient is precisely P 2, and the restrictions of the quotient map to open
subsets contained in hemispheres are homeomorphisms. If we use these to
define an atlas, then the coordinate transformations are either identities or
restrictions of the antipodal map. These are both orthogonal, hence we have
defined a spherical structure.

As remarked when we discussed Hilbert’s axiom system for plane geome-
tries, the spherical geometry is also characterized by a system of “lines”,
namely the great circles in S2 or the images of those in P 2 (which also be-
come circles). This defines an incidence geometry on P 2 where any two lines
will intersect in exactly one point. This geometry is complete.

Two observations before we go on:
(i) In all the examples so far we have described the surfaces by a rep-

resentation D2/W of the type we used to classify surfaces. Notice that in
the concrete models used for D2, it appears as a polygon bounded by lines
in the relevant geometry, and the identifications given by the word W are
given by elements in a group Γ.

(ii) The concrete models for D2 are not uniquely determined — not
even up to congruence. (For the torus we could, for example, have used
a parallelogram with vertices (0,0), (1,1), (1,2) and (0,1).) But all choices
will have the same area. Therefore it is meaningful to say that the quotient
surface also has this area.

Example 4. It should now be clear how we should define what it should mean
for a surface M to have a hyperbolic structure. Motivated by the examples
above, we should look for examples of the form H/Γ or D/Γ, where Γ is a
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suitable subgroup of Möb(H) or Möb(D) . Such subgroups are not quite so
easy to find, but this is not because there are few examples:

Theorem 4.2.1. Except for T 2, S2, P 2 and K2, every surface has at least
one hyperbolic structure. (In fact, infinitely many!)

The simplest examples are, of course, H and D themselves, and if f ∈
Möb+(H) is of hyperbolic or parabolic type and 〈f〉 is the cyclic subgroup
of Möb+(H) generated by f , then H/〈f〉 will be a hyperbolic structure on
S1 × R. If, for instance, f is the parabolic transformation f(z) = z + 1,
we get H/〈f〉 by identifying the two vertical (infinite) sides of the strip
0 ≤ Re z ≤ 1.

We can also get non–orientable surfaces: an example is the (open)
Möbius band, which can be realized as H/〈g〉, with g(z) = kz̄, with k a
real number different from 1.

Much more interesting are complete hyperbolic surfaces having finite
area in the sense discussed before.

The simplest such example is perhaps the following:
Consider the asymptotic quadrilateral in D with vertices in eπi/4, e3πi/4,

e−3πi/4 and e−πi/4. (See fig. 4.2.1.)

l

l’

m’

m

Fig. 4.2.1:

Let γ be the hyperbolic transformation having the real axis as axis and
mapping m to m′, and let τ be the hyperbolic transformation having the
imaginary axis as axis and mapping l to l′. Let Γ ⊂Möb+(D) be the subgroup

generated by γ and τ . (Explicitly: γ(z) =
√

2z + 1
1z +

√
2

and τ(z) =
√

2z + i

−iz +
√

2
.)

Then one can show that we can get D/Γ by identifying opposite sides in
the asymptotic quadrilateral via γ and τ . The identification space is then
clearly a torus minus one point. (“The point at infinity”.)
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This means that if p is a point on the torus T 2, then T 2 − {p} has a
hyperbolic structure of the form D/Γ, with finite area equal to 2π. (The
asymptotic quadrilateral is the union of two triply asymptotic triangles in-
tersecting in one side.)

We can also use fig. 4.2.1 to describe another example: Let γ be a
parabolic transformation which identifies l and m and fixes e−3πi/4, and
let τ be a parabolic transformation which identifies l′ and m′ and fixes eπi/4.
Then we get D/ < γ, τ > by identifying l with m, and l′ with m′. This
surface is homeomorphic to a sphere were we have removed three points.
(Alternatively R2 minus two points.) Hence this surface also has a hyper-
bolic structure of the form D/Γ, with finite area equal to 2π.

Both of these examples are complete. In both examples the group Γ
is a free group on two generators. (Isomorphic to the so–called fundamen-
tal group of the surface). But the surfaces are not homeomorphic, so the
abstract group does not determine the surface up to homeomorphism.

The hyperbolic surfaces constructed so far have all been non–compact.
The simplest compact surfaces admitting a hyperbolic structure are of genus
two (i. e. they are homeomorphic to T 2#T 2), and we now sketch how one
can construct such examples.

From the proof of the classification theorem, we know that a surface of
genus two can be obtained from an octagon where the edges are identified
according to the pattern a1b1a

−1
1 b−1

1 a2b2a
−1
2 b−1

2 . We now need this to be a
hyperbolic octagon, where the identifications are made via hyperbolic isome-
tries. In particular, we need the edges that are identified (e. g. the edges
labeled a1 and a−1

1 ) to be segments of the same length. Moreover, all the
vertices are identified to one point and all angles are preserved, so the sum
of the interior angles at all vertices must be 2π. But in the hyperbolic plane
we may achieve this by a regular octagon. In the disk model this can be
constructed as follows: Draw the radii (the rays) from 0 ∈ D to the eight
points {ekπi/4}k=0,...,7 in S1. Every circle in D with center at 0 will intersect
all these radii, and the eight points of intersection will be the vertices of
a regular, hyperbolic octagon. When the (hyperbolic) radius of the circle
increases from 0 to ∞, the interior angle at the vertices will decrease from
3π/4 (as in the Euclidean case) to 0 (with all the vertices at∞). Somewhere
in between the angle will be π/4, which is what we need. (We can, of course,
also use the hyperbolic trigonometric relations to calculate exactly for which
radius this will happen.)

We now use this octagon as our disk D2. Then there are unique elements
γi ∈Möb+(H) mapping ai to a−1

i , i = 1, 2, and τi ∈Möb+(H) mapping bi
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to b−1
i , i = 1, 2, with the right orientations. If we identify the edges of D2

by these congruences, the identification space becomes a surface of genus
two with a hyperbolic structure. This surface also has the form D/Γ, where
now Γ is generated by the elements γ1, γ2, τ1 and τ2.

The area of this surface is equal to the area of the regular octagon D2,
i. e. 4π.

This hyperbolic structure is also complete, and the “lines” are images of
D-lines under the quotient map D→ D/Γ.

Remark 4.2.2. From the formula for the area of hyperbolic triangles it is easy
to see that an n–gon with peripheral angle sum 2π has area (n − 4)π. It
follows that the area of a compact hyperbolic surface of genus g constructed
as above from a 4g–gon will have area 4π(g − 1), independent of lengths of
the sides. This will later be a consequence of a much more general result —
the Gauss–Bonnet theorem.

After all these examples, we are now ready for a more formal definition:
Let (X,G) be one of the pairs

• (H,Möb(H)) (or (D,Möb(D)),

• (R2, E(2)), where E(2) is the group of Euclidean isometries,

• (S2, O(3)), where O(3) is the group of spherical isometries (orthogonal
matrices).

We say that a surface has a geometric structure modeled on (X,G) (or
shorter: a hyperbolic, Euclidean or spherical structure, respectively) if it
has an atlas {(Ui, xi : Ui → xi(Ui) ⊂ X)}i such that all the coordinate
transformations are restrictions of elements of G.

One can show that a complete, connected surface with such a structure
must have the form X/Γ for some subgroup Γ ⊂ G. The classification of
geometric structures on surfaces then becomes the classification of subgroups
occurring this way. The richest and most interesting such theory is in the
hyperbolic case, were it leads to the theory of Fuchsian groups.

The idea of characterizing geometries using group actions goes back to
Felix Klein and Sophus Lie, and it was presented by Klein in the famous
Erlangen program in 1872. The groups G are examples of Lie groups. Note
that in all the three cases above G acts transitively on X, i. e. for any two
points x, y ∈ X we can find a g ∈ G such that y = gx. Moreover, the
stabilizer subgroup

Gx = {g ∈ G|gx = x}
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is isomorphic to the orthogonal group O(2). Then, for any x ∈ X, the map

g 7→ gx : G→ X

induces a bijection (even a homeomorphism) between X and the left cosets
G/Gx, with G–action corresponding to left multiplication. This way we
obtain identifications

R2 ≈ E(2)/O(2),

S2 ≈ O(3)/O(2),

H ≈ SL2(R)/SO(2).



102 CHAPTER 4. GEOMETRY ON SURFACES



Chapter 5

Differential geometry on
surfaces

We are now going to broaden our perspective and generalize dramatically
the idea of geometric structures on surfaces. Until now we have restricted
ourselves to the classical geometries or structures built from them. But
most surfaces in space do not allow such a structure — still they are very
natural objects for “geometric” studies, and we would like to develop a
theory which also includes these. This will require completely new ideas,
exploiting methods from calculus and differential equations — whence the
term differential geometry. The structures built from the classical geometries
are very special cases, and one of our main results will be a characterization
of these geometries inside differential geometry.

The geometric structures we defined earlier were homogeneous; they look
“the same” at every point in the sense that neighborhoods of any two points
can be mapped to each other by local congruences, as, for instance, on a
perfectly round sphere in space. However, most surfaces are not like this.
On a two–dimensional graph a maximum point and a saddle point look
very different, and whatever we may mean by “geometric structure” should
capture this difference.

In these notes we will introduce a notion of geometric structure which is
allowed to vary continuously over the surface. This notion will not be based
on lines and incidence, even locally, but rather on infinitesimal versions of
distance and angles, encoded in a Riemannian metric. Maps preserving
this metric — local isometries — are then analogues of local congruences in
the classical geometries, but we do not require such maps to exist between
neighborhoods of arbitrary points.

103
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Although not part of the initial structure, analogues of “lines” in the
classical geometries will appear eventually, but now they will be constructed
as curves satisfying local properties that can be used to characterize lines in
the classical geometries (“geodesic curves”).

The history of differential geometry on surfaces is long and fascinating.
The literature is enormous, and we can only begin to explore it in these notes.
It started with studies of special surfaces in Euclidean 3–space and only
gradually developed into a general theory. Central characters in the story
were Euler, Monge and, above all, Gauss. Gauss was the first to introduce
the intrinsic point of view, realizing that many aspects of geometry could be
understood from metric properties of the surfaces itself, without reference
to the surrounding space. This paved the way for Riemann, who generalized
the theory to abstract manifolds of any dimension. In honour of him the
abstract theory is also called Riemannian geometry.

Our treatment will be based on the abstract point of view, but using
geometry on surfaces in space as motivation. After covering the most fun-
damental ideas, we will concentrate on two major results: characterization
of the classical geometries and the Gauss–Bonnet theorem.

But before we can venture into this new terrain, we need some more
background material on differentiable surfaces and maps. Everything will
be formulated for smooth (i. e. C∞) surfaces. We will need to differentiate
functions several times, and then it is convenient to agree once and for all
that all surfaces and maps are smooth.1

The fundamentals on tangent planes and derivatives are covered in sec-
tion 1, followed by a discussion of orientability in section 2. Then we are
ready for the definition of the fundamental concepts of Riemannian metrics
and local isometries, which are found in sections 3 and 4. Section 5 treats
the most important tool we have for measuring the variation of a metric over
a surface: Gaussian curvature. The promised reappearance of distinguished
lines, geodesics, follows in section 6. They are used to construct particu-
larly well behaved local coordinates (section 7), which, in turn, are used
in section 8 to characterize the classical geometries as those with constant
curvature. The last section deals with the famous Gauss–Bonnet theorem,
which is a powerful formula bringing together topological information (Euler
characteristic) and curvature.

A remark on terminology: we have defined differentiable structures and
maps using local charts x : V → R2, where the V’s are open subsets of the

1A careful analysis will reveal that as long as we just study surfaces in R3, C2 will do.
The extension to abstract surfaces via Gauss’ Theorema egregium requires C3.
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surface S. It will here be convenient to replace charts with their inverses
x−1 : x(V)→ S, which we will call (local) parametrizations. Thus, a surface
can also be defined as a space S such that for every p ∈ S there is a map
x : U → S from an open set U ⊂ R2, such that p ∈ x(U) and x : U → x(U) is
a homeomorphism. (x,U) is also called a coordinate patch. The coordinate
transformation are now the maps y−1x : U ∩ x−1y(V ) → V ∩ y−1x(U),
defined for coordinate patches (x,U) and (y,V).

We will here also use the word atlas for a collection of coordinate patches
{(xi,Ui)} such that ∪iUi = S. A differentiable structure on S is then a
maximal atlas such the all coordinate transformations are smooth.

We emphasize that this is only a change of language; one can easily pass
between charts and parametrizations by taking inverses.

5.1 Tangent planes and derivatives of maps

We have already defined what it means for a map between smooth surfaces
to be smooth, but we also need to define what we mean by the derivatives
of such maps. The idea is that the derivative of a map f should be a
linear approximation to f , so we first have to define vector spaces which
approximate the surface: the tangent planes. This can be done in several
different ways, but here our point of view is that tangent vectors should be
tangent vectors of curves on the surface. To illustrate the idea, let q be a
point in the plane R2. Every smooth curve through q has a tangent vector
there, and the set of all possible tangent vectors can naturally be identified
with the vector space R2 itself. But each vector can be realized as the
tangent vector of infinitely many curves through q. Hence, if we define an
equivalence relation on the set of smooth curves through q by declaring two
curves to be equivalent if they have the same tangent vector at this point,
we can identify the vector space R2 with the set of equivalence classes. This
is a formulation that is easy to generalize to an arbitrary smooth surface.

Let S be a smooth surface, and let p be a point on S. By a curve at p we
shall mean a smooth map ω : J → S, where J is an open interval containing
0, such that ω(0) = p. Let Ωp = Ωp(S) be the set of all such curves at p.

We now choose a local parametrization x : U → S around p. Then x−1ω
is a curve at x−1(p) ∈ R2, and (x−1ω)′(0) is a vector in R2. Define the
equivalence relation ∼ on Ωp by

ω ∼ τ ⇐⇒ (x−1 ◦ ω)′(0) = (x−1 ◦ τ)′(0).
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(Cf. Fig. 5.1.1. Note that ω and τ need not be defined on the same interval
J for this to make sense. It is also not necessary that the image of the whole
curve is contained in x(U).

x−1(p)

p
x

U S

Fig. 5.1.1: Curves with the same tangent.

Lemma 5.1.1. (1) The equivalence relation ∼ does not depend on the choice
of local parametrization x.
Define TpS to be the set of equivalence classes.

(2) ω 7→ (x−1ω)′(0) induces a bijection TpS ≈ R2.
(3) The bijection in (2) defines a vector space structure on TpS which is

independent of x.

Proof. (1): If y : V → S is another parametrization, then

(y−1ω)′(0) = (y−1xx−1ω)′(0) = J(y−1x)x−1(p)(xω)′(0) ,

where J(y−1x)x−1(p) is the Jacobian matrix of y−1x at the point x−1(p).
But J(y−1x)x−1(p) is invertible, since y−1x is a diffeomorphism near x−1(p).

(2) Injectivity follows immediately from the definition of ∼.
Surjectivity: If v ∈ R2, let ω(t) = x(x−1(p) + tv). Then ω(t) is defined

for t near 0, and (x−1ω)′(0) = v.
(3): Let αx : TpS → R2 be the bijection in (2), and let αy be the

analogous bijection obtained using the parametrization y. Then

αy ◦ α−1
x (v) = y−1(x(x−1(p) + tv))′(0) = J(y−1x)x−1(p) v.
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But multiplication by J(y−1x)x−1(p) is an isomorphism of vector spaces.

Definition 5.1.2. TpS with the vector space structure given by Lemma 5.1.1
is called the tangent plane of S at p.

This definition is quite abstract, and valid for an arbitrary surface. How-
ever, for surfaces in R3, we can identify TpS with something which is easier
to visualize.

Definition 5.1.3. Let S be a subset of R3 which is also a smooth surface,
and let ι : S ⊂ R3 be the inclusion map. S is called a regular surface if for
every local parametrization x of S the Jacobian of the composition ι ◦ x has
rank 2 at every point.

From now on, when we write S ⊂ R3, we will always assume that S is
regular.

One can show that S is regular if and only if it locally (around every
point) has the form {(x, y, z) ∈ R3 : F (x, y, z) = 0} for some smooth function
F with ∇F 6= 0 on S. Spheres are examples of surfaces defined this way.
Other important examples include graphs of smooth functions f(u, v) defined
on open subsets O ⊂ R2, parametrized by x(u, v) = (u, v, f(u, v)). In fact,
we shall see below that locally every regular surface can be identified with
a graph, possibly rotated and translated in space.

If S is regular, we can identify TpS with the plane in R3 which contains
p and all the tangent lines to curves on S through p. This plane can be
further identified with a linear subspace of R3 via the translation taking p
to 0 ∈ R3. Thus we may naturally identify every TpS with such a subspace,
and we will always assume that we have done so. The vector space structure
given by Lemma 5.1.1 makes this identification an isomorphism. Note that
if S is given by an equation F (x, y, z) = 0, the tangent space is determined
by its normal vector ∇F (x, y, z).

Notation. Let ω′(0) denote the equivalence class of ω in TpS. This is the
tangent vector of ω in p. More generally, we let ω′(t) denote ω′t(0), where
ωt(s) = ω(t+s) (where this is defined). This means that we take the tangent
vector of ω in ω(t) instead of ω(0). Note that if S ⊂ R3, we may think of ω
as a curve in R3, and ω′(t) is then the tangent vector of this curve in R3.

A parametrization x : U → S gives rise to a natural basis for TpS for
every p ∈ x(U). Let (u, v) be the coordinates in U ⊂ R2. If we fix v and
vary u, we get a curve u 7→ β(u) = x(u, v). The tangent vector β′(u) of this
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curve we denote xu(u, v). Fixing u and varying v we similarly get tangent
vectors xv(u, v). Via the identifications TpS ≈ R2, these vectors correspond
to the standard basis vectors (1, 0) and (0, 1) in R2, and therefore they form
a basis for Tx(u,v)S.

The curves u 7→ x(u, v) and v 7→ x(u, v) are called coordinate curves. xu

and xv are the tangent vectors of these curves, and they may be thought
of as the partial derivatives of x with respect to u and v. If S ⊂ R3, we
may also think of them as the partial derivatives of x considered as a map
x : U → R3. In fact, we see that S is regular if and only if xu and xv are
always linearly independent as vectors in R3, or if the cross product xu×xv

is non–zero everywhere. The cross product is then a normal vector to the
tangent plane.

Remark 5.1.4. Another common notation for xu and xv is ∂
∂u and ∂

∂v . This
notation refers to a different interpretation of tangent vectors and will not
be used here.

Derivatives of smooth maps. Let f : S → S′ be smooth, let p be a point
of S, and q = f(p).

If ω ∈ Ωp(S), then f ◦ ω ∈ Ωq(S′).

Lemma 5.1.5. (fω)′(0) depends only on ω′(0).

Proof. Let x : U → S and y : V → S′ be local parametrizations around p
and q, respectively.

Suppose that ω′(0) = τ ′(0) — i. e. (x−1ω)′(0) = (x−1τ)′(0). Then

(y−1fω)′(0) = ((y−1fx)(x−1ω))′(0) = J(y−1fx)x−1(p)(x
−1ω)′(0)

= J(y−1fx)x−1(p)(x
−1τ)′(0) = (y−1fτ)′(0).

Definition 5.1.6. The derivative of f at p is the map dfp : TpS → TqS
′

defined by dfp(ω′(0)) = (fω)′(0). This is well–defined by Lemma 5.1.5.

Examples 5.1.7. If U is an open subset of R2, we have a natural identification
between R2 and TLu for every p ∈ U . This identification will often be un-
derstood in the following. (See also exercise 1.) Using this identification, the
bijection TpS ≈ R2 of Lemma 5.1.1 is nothing but d(x−1)p = (dxx−1(p))−1.

If U ′ is another such subset and f : U → U ′ is smooth, then dfp is
multiplication by the Jacobi matrix of f at p, which is a linear transformation
R2 → R2.
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More generally, we have:

Lemma 5.1.8. Let f : S → S′ be a smooth map between surfaces. Then
(1) dfp is a linear transformation for every p ∈ S.
(2) (Chain rule) If g : S′ → S′′ is another smooth map and q = f(p),

Then d(g ◦ f)p = dgq ◦ dfp.

Proof. We first prove (2):
d(gf)p(ω′(0)) = (gfω)′(0) = dgq((fω)′(0)) = dgq(dfp(ω′(0)).

(1): Using (2) we can write df = d(y(y−1fx)x−1) = dy ◦ d(y−1fx) ◦
d(x−1), which is a composition of three linear transformations by Example
5.1.7.

Writing vectors in R2 as (a, b), we see by Example 5.1.7 that xu =
dx(1, 0) and xv = dx(0, 1). We can use this to express a tangent vector
ω′(t) of a curve ω in the basis {xu, xv}. Suppose ω has image in x(U), such
that we can write ω(t) = x(u(t), v(t)), for uniquely determined functions
u(t) and v(t). Then τ(t) = (u(t), v(t)) = x−1ω(t) defines a curve in U , and
τ ′(t) = (u′(t), v′(t)) = u′(t)(1, 0) + v′(t)(0, 1). Therefore we get

ω′(t) = dx(τ ′(t)) = u′(t) dx(1, 0) + v′(t) dx(0, 1) = u′(t)xu + v′(t)xv .

It is also easy to see that if x : U → S and y : V → S′ are local
parametrizations and f : S → S′ is smooth, then the Jacobian matrix
J(y−1fx) is the matrix of df with respect to the bases (xu, xv) and (yu, yv).
(Exercise 3.)

The inverse function theorem easily generalizes to say that if dfp is non-
singular (has rank 2), then f is a diffeomorphism of a neighborhood of p
onto its image. As an application, let us show that locally every regular
surface can be thought of as the graph of a function.

Let H ⊂ R3 be a plane with a unit normal vector N and let p be a point
in H. If f : V → R is a function defined on an open subset of H, we define
the graph of f to be the subset

Sf = {q + f(q)N | q ∈ V} ⊂ R3.

This is an obvious generalization of the standard definition of a graph, and
Sf is clearly a regular surface if and only if f is smooth.

Proposition 5.1.9. A regular surface S ⊂ R3 coincides with a graph of a
smooth function in a neighborhood of every point.
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Proof. Suppose first that the regular surface S contains the origin 0 ∈ R3

and consider S near 0. Let π : S → T0S be the restriction to S of the
orthogonal projection to T0S. Then it is easy to verify that dπ0 is the
identity map. (Strictly speaking we here identify the tangent plane of T0S
at 0 with T0S itself. See exercise 1.) Therefore π has a local inverse γ :W →
γ(W) ⊂ S, where W is a neighborhood of 0 in T0S, and γ can be written
γ(w) = w + h(w)N , where N is a normal vector to T0 and h : W → R is a
smooth function. But this means that γ(W) is identified with the graph of
the function h.

If p ∈ S is an arbitrary point, we can clearly reduce to the case p = 0 by
a translation in space.

Remark 5.1.10. For later use we observe the following two easy facts about
the function h constructed in the preceding proof:

(i) Let L(p) be the line spanned by the surface normal N(p) at p. Then
h = πL◦γ, where πL : S → L(p) is the restriction to S of the orthogonal
projection to L(p).

(ii) The point 0 ∈ W is a critical point for h and (equivalently) p is a
critical point for πL.

Exercises for 5.1

1. Let V be a vector space of dimension n. Verify that V has a smooth
structure such that taking coordinates with respect to any basis defines
a diffeomorphism between V and Rn. We will always assume that
vector spaces have this structure.

Show that there is a natural isomorphism of vector spaces TvV ∼= V
for every v ∈ V .

Using this isomorphism, show that if L : V → V is linear, then dLv =
L for every v ∈ V .

2. Consider the set of complex numbers C with its smooth structure
(Exercise 1.) Show that the tangent planes TzC have natural structures
as complex (one–dimensional) vector spaces.

If f(z) is an analytic function on an open subset of C, show that f is
smooth. Finally, show that, via the identifications TzC ∼= C in exercise
1, dfz is (complex) multiplication by f ′(z).



5.1. TANGENT PLANES AND DERIVATIVES OF MAPS 111

3. Let x : U → S and y : V → S′ be local parametrizations and f : S → S′

a smooth map. Verify that the Jacobian matrix J(y−1fx) is the matrix
of df with respect to the bases (xu, xv) and (yu, yv).

4. Let α(u) = (f(u), g(u)), u ∈ [a, b] be an embedded curve in the xz–
plane such that f(u) > 0 for all u. Find a parametrization of the
surface of rotation obtained by rotating α around the z–axis and find
conditions for this to be a regular surface.

Discuss what happens if we remove the condition f(u) > 0.

5. Let α and δ be curves in R3 defined on the same interval. Define
x(u, v) = α(u) + vδ(u). If this is a parametrization of a surface S, we
call S a ruled surface — S is then a union of lines going through points
in imα and with directions given by δ. Discuss general conditions for
this to be regular surface, and apply to the cases

a) α constant (“generalized cones”).

b) δ constant (“generalized cylinders”).

c) δ(t) = α′(t) (The “tangent developable” of α.)

6. Find a parametrization of a Möbius band and a torus realized as reg-
ular surfaces in R3.

7. Consider the proof given that any regular surface locally is a graph of a
smooth function. Discuss what happens when we replace the tangent
plane with an arbitrary plane.

8. Prove the assertions in Remark 5.1.10.

More generally, let πL :→ L be orthogonal projection to a line L
spanned by a vector V and write πL(z) = g(z)V . As a converse to (ii),
prove that at a critical point q for g, the surface normal also spans L.

The next two exercises discuss an extension of the definitions of smooth
maps and derivatives needed in Section 9.

9. Let g : I → S be a map from a not necessarily open interval to a
surface S. We say that g is smooth if we can find a smooth map
G : J → S on an open interval containing I, such that g = G|I. Show
that if a ∈ I is an endpoint of I, then G′(a) is independent of G.

We then use the notation g′(a) = G′(a).
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10. Let 4 be a triangle in R2. In analogy with exercise 9.we say that a
map f : 4 → S is smooth if it can be extended to a smooth map G
defined on an open neighborhood of 4 in R2.

Show that if p is a point on the boundary of 4, the derivative dFp

only depends on f .

For this reason we will write dfp = dFp.

5.2 Orientation

When we discussed the topological classification of compact surfaces, we
needed to distinguish between orientable and non–orientable surfaces. We
will now show how these concepts can be defined more precisely for smooth
surfaces, in terms of properties of smooth atlases.

An orientation of a vector space is determined by an ordered basis, and
two ordered bases define the same orientation if and only if the transition
matrix between them has positive determinant. This divides the set of
ordered bases into two equivalence classes, and an orientation is the same
as a choice of one of them. A basis in the chosen equivalence class will be
called “positively oriented”.

In dimension 2, for example, we see that if (e1, e2) is an ordered basis
representing one orientation, then (e1,−e2) represents the other (“opposite”)
orientation. Hence, if we think of e1 as pointing “ahead” and e2 “left”,
then −e2 points “right”, and changing orientation amounts to interchanging
the notions of left and right. Similarly, we can change the orientation by
replacing (e1, e2) by (e2, e1).

Another way of thinking about orientation in dimension 2 is as a pre-
ferred choice of one of the two possible senses of rotation around a point.

We will now concentrate on dimension two, though suitably generalized
most of the following will also apply in higher dimensions.

If S is a surface, each tangent plane TpS has two possible orientations.
An orientation of the surface is a “continuous” choice of such orientations for
all p. To make sense of the continuity requirement, note that if x : U → S is a
local parametrization, then the ordered bases (xu, xv) determine orientations
of TpS for all p ∈ x(U). This is what we will mean by a continuous choice of
orientations on x(U). If y : V → S is another parametrization, (yu, yv) will
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determine the same orientations on x(U) ∩ y(V) if and only if the Jacobian
J(y−1x) has positive determinant (where it is defined). Hence a precise
definition of orientability will be:

Definition 5.2.1. The surface S is orientable if it admits a differentiable
atlas such that the Jacobians of all the coordinate transformations have pos-
itive determinant everywhere. An orientation of S is a choice of a maximal
such atlas.

Note that we obtain an atlas defining the opposite orientation by revers-
ing the order of the parameters (u, v) everywhere.

For regular surfaces we have the following convenient characterization of
orientability:

Proposition 5.2.2. If S ⊂ R3 is a regular surface, S is orientable if and
only if it has a smooth normal vector field, i. e. if and only if we can choose
a unit normal vector Np ∈ R3 to every tangent plane TpS such that the
resulting map N : S → S2 is smooth.

Proof. Given such a normal vector field, we can use the “right–hand rule” to
give an ordering (v1, v2) of any basis for TpS by requiring that (v1, v2, Np)
is a right–hand system of vectors in R3, or better: if the (3 × 3) matrix
[vt

1, v
t
2, N

t
p] has positive determinant.

If x : U → S is a parametrization and (xu, xv) is the “wrong” ordering,
we can correct that by interchanging u and v. Doing this with (the inverses
of) all charts in an arbitrary atlas produces an orientable atlas. (We will
refer to this orientation as the orientation determined by the normal N).

Conversely, given an orientable, smooth atlas, we can use the vector
product in R3 and define the normal vector field by

N =
xu × xv

‖xu × xv‖
.

Here is a sketch of how to relate this definition of orientability to the
previous one, which was based on the notions of one–sided or two–sided
curves:

Let α : [0, 1] → S be a smooth, closed curve (i. e. α(1) = α(0), and
assume that α′(t) 6= 0 for all t — i. e. α is regular. Locally, for small varia-
tions of the parameter t, we can distinguish between ”the two sides” of the
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curve, and the issue is whether or not it is possible to choose one side con-
tinuously along the whole curve. More precisely: can we find a continuous
family of tangent vectors v(t) ∈ Tα(t)S such that α′(t) and v(t) are linearly
independent for every t and (α′(0), v(0)) and (α′(1), v(1)) define the same
orientation of Tα(0)S = Tα(1)S?

First we reduce to an infinitesimal situation, using the observation that
a vector v ∈ Tα(s)S which is not a multiple of α′(s), points to exactly one
of the two sides of the curve (in the local picture), and the sides can be
distinguished by the orientation classes of the ordered bases (α′(t), v) for
Tα(s)S. Thus the problem of a continuous choice of sides along the whole
curve, becomes the problem of a continuous choice of orientations of Tα(s)S
for all s. If this is possible, we call α orientation preserving. This definition
can easily be extended to closed curves which are only piecewise regular, i. e.
regular except at a finite number of points.

The result is:

Proposition 5.2.3. A surface S is orientable if and only if every closed,
piecewise regular curve is orientation preserving.

Proof. One way is easy: if S is orientable, we can just take the restriction
of any orientation on S to the curve.

To prove the converse, assume that every closed, regular curve is ori-
entation preserving. We want to construct an orientable, smooth atlas on
S. It is clearly enough to treat each connected component separately, so we
assume that S is connected.

Start by choosing some local parametrization x0 : U0 → S with U0 con-
nected, and a basepoint p0 ∈ x0(U0). Let p be another point in S. Since S is
connected, we can find a regular path β such that β(0) = p0 and β(1) = p.
Every point β(t) lies in the image of a local parametrization, and, using
compactness of the interval [0.1], we can find a partition t0 = 0 < t1 < · · · <
tn = 1 and local parametrizations xi : Ui → S, i = 1, . . . , n, with all Ui con-
nected, such that β([ti−1, ti]) ⊂ xi(Ui) for all i. By inductively interchanging
the parameters of xi, if needed, we may assume that det d(x−1

i xi−1)u > 0
for i = 1, . . . , n and all u ∈ Ui−1 such that x−1

i xi−1(u) is defined. In par-
ticular, this means that we have a continuous choice of orientations along
β, extending the orientation defined by x0 at p0. Doing this for every point
p ∈ S, we clearly obtain an atlas for the smooth structure on S. The claim
is that this atlas is orientable.

If not, we would have det d(y−1x)u < 0 for some local parametrizations
x : U → S and y : V → S obtained as above, and u ∈ U ∩ x−1y(V). But,
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by construction, x(U) contains a point p connected to p0 by a curve β with
a continuous choice of orientations extending a fixed orientation at p0, and
y(V) contains a point q connected to p0 by a curve γ with the same property..
But p and q can be connected to x(u) by curves β1 and γ1 contained in x(U)
and y(V), respectively.

x(U)

y(V)

x(u)

q

p

γ

γ1

β1

·

·
·

·

β

p0

Fig. 5.2.1:

The composition of these four curves is a piecewise regular closed curve.
But it is not orientation preserving, since prolonging an orientation from
x(u) around the curve leads to the opposite orientation when we come back
to the same point.

Let f : S → S′ be a local diffeomorphism between oriented surfaces.
We say that f is orientation preserving if dfp maps positively oriented bases
to positively oriented bases. Equivalently: the Jacobian matrix J(y−1fx)
has positive determinant wherever it is defined, for all local parametriza-
tions x and y in orientable atlases for S and S′, respectively. In particular,
the parametrizations (or charts) in orientable atlases are themselves orienta-
tion preserving. Clearly, compositions and inverses of orientation preserving
diffeomorphisms are again orientation preserving.
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Exercises for 5.2

1. Show that on a connected, orientable surface an orientation is com-
pletely determined by a choice of orientation of the tangent space at
one point. Hence the surface has exactly two orientations.

2. Let f : S → S be a diffeomorphism of an orientable surface. Show
that the question of whether f is orientation preserving or not (with
respect to the same orientation on both copies of S), does not depend
on which orientation we choose for S.

3. Show that the orientation preserving hyperbolic congruences in H are
precisely the elements in Möb+(H) . What are the analogous results
for the other classical geometries?

4. Show that P 2 and the Möbius band are non–orientable.

5.3 Riemannian surfaces

We are now ready to introduce the most general notion of a geometric struc-
ture on a smooth surface, or rather an infinitesimal version of it. In our
earlier treatment of geometry (e. g. Euclidean and hyperbolic geometry), ge-
ometric structure was defined in terms of the system of subsets we called
“lines”. Next we tried to extend this to surfaces by first defining the geomet-
ric structure locally, and then patching pieces together in such a way that a
global system of lines could be defined by prolongations of local lines. The
system quickly becomes very complicated, but it is important to observe
that the global system is completely determined by the local pictures. Now
we will take this local point of view to the extreme and start with geometry
on the infinitesimal approximations of the surface, i. e. the tangent planes.
This may look unnatural at first, but in the remaining sections we shall
see that all we need in order to develop the geometry is contained in this
infinitesimal information.

We have seen that as we pass to smaller and smaller neighborhoods
of a point in the hyperbolic plane the geometry resembles more and more
Euclidean geometry, and the same is true of spherical geometry. Hence we
should expect that the infinitesimal approximation of a general geometry
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should, indeed, be Euclidean. But essentially all of Euclidean geometry is
encoded in the inner product. This leads up to the following definition:

Definition 5.3.1. A Riemannian metric on S is a choice of inner product
on every tangent space TpS, varying smoothly with p.

We use the notation 〈w1, w2〉p for the inner product on Tp(S), or just
〈w1, w2〉 if the point p is understood.

The smooth dependence on p means the following: if x : U → S is a local
parametrization, the inner product is completely determined by its values
on the basis {xu, xv} — i. e. by the functions

E = 〈xu, xu〉, G = 〈xv, xv〉 and F = 〈xu, xv〉 = 〈xv, xu〉 . (5.3.1)

The inner product is smooth if these functions are smooth for all local
parametrizations.

A surface with a given Riemannian metric we be called a Riemannian
surface, and we say that the surface has a Riemannian structure.

Caution: This is not the same as Riemann surface, which in the litera-
ture means a surface with a complex analytic structure, i. e. a complex mani-
fold of (complex) dimension one. However, the definitions of Riemannian met-
ric/structure etc. above have obvious generalizations to manifolds of any dimen-
sion n, which are then called Riemannian n–manifolds. We choose to use the
terminology “Riemannian surface” rather than “Riemannian 2-manifold”.

Given a Riemannian metric, we define the norm ‖w‖p of a vector w ∈ TpS
by ‖w‖2p = 〈w,w〉p. If ω(t) = x(u(t), v(t)), t ∈ [a, b] is a C1–curve and
p = ω(t), we get

‖ω′(t)‖2p = E(p)(u′(t))2 + 2F (p)u′(t)v′(t) +G(p)(v′(t))2 .

Motivated by the theory of curves in space, we define the arc–length of ω
between the parameter values a and t by

s(t) =
∫ t

a
‖ω′(t)‖ω(t) dt .

This formula can also be written

(
ds

dt
)2 = E(

du

dt
)2 + 2F

du

dt

dv

dt
+G(

dv

dt
)2 .

This should hold for any parametrization of the same curve, so we write
more concisely

ds2 = Edu2 + 2Fdu dv +Gdv2. (5.3.2)
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(Note the similarity with the arc–length formula in Euclidean and hy-
perbolic geometry.)

Since the metric is determined over x(U) by E,F and G, we also use
(5.3.2) as a notation for the Riemannian metric. The relation with arc
length is also a good reason for using the word “metric”: given two points p
and q, let Ωp,q be the set of all C1–curves on S from p to q. Then we define

d(p, q) = inf{`(γ)|γ ∈ Ωp,q} , (5.3.3)

where `(γ) is the arc length of γ. One can show that this defines a metric
on S in the sense of topology (see exercise 6), and that the topology defined
by this metric is the underlying topology on S. Hence we can also think
of the Riemannian metric as an infinitesimal version of a topological metric
defining the topology on S.

I addition to giving rise to a distance function along curves, the metric
also makes it possible to define the angle between two curves at a point of
intersection as the angle between the tangent vectors at that point. Thus,
if α(t) and β(t) are two smooth curves such that α(0) = β(0), they meet at
the angle φ ∈ [0, π] determined uniquely by

〈α′(0), β′(0)〉 = cosφ ‖α′(0)‖ ‖β′(0)‖.

Hence we already see that the Riemannian metric captures features that
are clearly geometric in nature. Differential geometry deals with how and
to what extent the Riemannian metric determines geometric properties of
the surface.

Examples 5.3.2. (1) Parametrizing R2 by the identity map, we get ds2 =
dx2 +dy2. This is the Euclidean plane as a Riemannian surface. Using polar
coordinates, we parametrize R2 − {0} by z(r, θ) = (r cos θ, r sin θ). Then
zr = (cos θ, sin θ) and zθ = (−r sin θ, r cos θ). Thus E(r, θ) = 1, F (r, θ) = 0
and G(r, θ) = r2, hence ds2 = dr2 + r2dθ2.

(2) If S ⊂ R3 is a regular surface, the tangent planes inherit inner
products from the standard inner product η · ξ = ηξt on R3. This defines
a Riemannian structure on S, and we will always assume that a regular
surface comes with this Riemannian structure. The inner product, or the
local expression Edu2 +2Fdu dv+Gdv2, is then called the first fundamental
form of S.

For example, let S be the graph of the smooth function f(u, v). The
natural choice of parametrization is x(u, v) = (u, v, f(u, v)), with xu =
(1, 0, fu), xv = (0, 1, fv). Hence

E = ‖xu‖2 = 1 + f2
u , F = xu · xv = fufv, G = ‖xv‖2 = 1 + f2

v .
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(fu and fv are the partial derivatives of f with respect to u and v).
(3) Let S = H, i. e. Poincaré’s upper half plane model for the hyperbolic

plane. We have seen that arc length can be described infinitesimally by

ds2 =
dx2 + dy2

y2
. (5.3.4)

This defines a Riemannian metric on H via the local parametrization
given by the identity map. (Or, more precisely, the inverse of the inclusion
H ⊂ R2.) Thus E(x, y) = G(x, y) = 1/y2, and F = 0. The identity
F = 0 expresses that the two systems of coordinate lines x =constant and
y =constant are orthogonal to each other, as in the Euclidean plane. In fact,
since the metric at every point is just a multiple of the Euclidean metric, all
angles will be the same in the two geometries. We say that the two metrics
are conformally equivalent. (Cf. exc. 4.7.)

This is an example of a Riemannian structure on a surface which not
given as a regular surface in R3, and it is not a priori clear that (5.3.4) can
be realized as a fundamental form. However, this will follow from Exercise
5.4.5.

On Poincaré’s disk model D, we similarly get a Riemannian metric with
E = G = 4/(1− x2 − y2)2 and F = 0.

Area. Let S ⊂ R3 be a regular surface, and let x : U → S be a local
parametrization. If Ω ⊂ U is a region bounded by, say, smooth curves, we
know from calculus that the area of R = x(Ω) is

A(R) =
∫∫

Ω

∥∥∥∥∂x∂u × ∂x

∂v

∥∥∥∥ dudv =
∫∫

Ω
‖xu × xv‖ dudv. (5.3.5)

The area can also be expressed in terms of the functions E, F and G,
using the identity

‖xu × xv‖2 = ‖xu‖2‖xv‖2 − 〈xu, xv〉2 = EG− F 2. (5.3.6)

Substituting this in (5.3.5) we obtain a formula which makes sense for
general Riemannian surfaces:

A(R) =
∫∫

Ω

√
EG− F 2 dudv . (5.3.7)

Note that if R = R2 ∪ R2 with R1 ∩ R2 a union of smooth curves, then
A(R) = A(R1) + A(R2). It follows that if R, more generally, is a region
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which is a union along such curves of a finite number of regions Ri of the
type considered above, then we can define the area of R by

A(R) = ΣiA(Ri) ,

and this will be independent of choice of such subdivision of R. In particular,
one can prove that any compact Riemannian surface has such subdivision.
(This will be more or less obvious for all examples we will ever deal with.)
Hence a compact Riemannian surface S has a well–defined area A(S).

Remark 5.3.3. Since the tangent vectors xu and xv are linearly independent,
it follows from the Schwarz inequality that EG−F 2 is always strictly positive
on a Riemannian surface. This fact will be important several times in what
follows.

Example 5.3.4. In H we have seen that E = G = 1/y2 and G = 0. Hence, if
we use the identity map as parametrization, we get the area formula

A(R) =
∫∫

R

dxdy

y2
.

as before. By the same argument we recover the area formula for the
Poincaré disk D.

Exercises for 5.3

1. Compute the first fundamental form of the parametrization of a surface
of rotation that you found in exercise 5.1.4.

2. Compute the first fundamental form of the sphere of radius r minus
two antipodal points, parametrized using spherical coordinates.

3. Let E du2+2Fdu dv+Gdv2 = E′ds2+2F ′ds dt+G′dt2 be the metric in
a coordinate neighborhood expressed in two parametrizations x(u, v)
and y(s, t). Prove that(

E′ F ′

F ′ G′

)
= J(x−1y)t

(
E F
F G

)
J(x−1y) ,

where J(x−1y) is the Jacobian of the coordinate transformation x−1y.

4. Use exercise 3 to prove the following:
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(i) For a metric on S to be smooth it suffices that the functions E, F
and G are smooth for all parametrizations in some differentiable
atlas for S.

(ii) E′G′ − F ′2 = (EG− F 2)|J(x−1y)|2.
(iii) The area given by formula (5.3.7) is independent of the parametriza-

tion.

5. Referring to Exercise 5.1.10, let f : 4 → S be a smooth map from a
triangle to a Riemannian surface S. Let p ∈ 4 be a vertex and assume
that dfp is nonsingular. Show that the angle between the images of
the two sides meeting at p is not 0 or π.

6. Show that formula (5.3.3) defines a topological metric on S.

5.4 Isometries

While homeomorphisms are bijections preserving the topological structure
and diffeomorphisms are homeomorphisms preserving the differentiable struc-
ture, we define isometries to be diffeomorphisms preserving the Riemannian
structure. In precise terms, we say that a map f : S → S′ between Rieman-
nian surfaces is an isometry5 if it is a diffeomorphism and

〈dfp(v), dfp(w)〉f(p) = 〈v, w〉p (5.4.1)

for every p ∈ S and v, w ∈ TpS. If we omit the condition that f should be
a diffeomorphism, we call it a local isometry. Condition (5.4.1) implies that
dfp is an isomorphism (apply it to v = w), so f will automatically be a local
diffeomorphism by the inverse function theorem.

The polarization formula 2〈v, w〉 = ‖v + w‖2 − ‖v‖2 − ‖v‖2 shows that
an inner product is determined by the norm it defines. Hence it suffices to
check that ‖dfp(v)‖f(p) = ‖v‖p for every v ∈ TpS.

The identity map is trivially an isometry, and, using the chain rule, we
see that compositions and inverses of isometries are again isometries. Hence
the set of isometries of a Riemannian surface to itself is a group under
composition — the isometry group of S.

Examples 5.4.1. (1) The Euclidean isometries g ∈ E(2), i. e. the distance
preserving maps g(x) = Ax+b, where A is an orthogonal matrix and b ∈ R2,
are also the isometries of the Riemannian surface R2.



122 CHAPTER 5. DIFFERENTIAL GEOMETRY

(2) If S and S′ are surfaces in R3 and f : S → S′ is the restriction of a
Euclidean isometry of R3, then f is clearly an isometry between S and S′.
For example, any spherical isometry, i. e. multiplication by a matrix in O(3),
is an isometry of the Riemannian structure on every sphere with center at
the origin.

(3) Every f ∈Möb(H) is an isometry of the Riemannian structure on H.
This follows from the fact that f preserves arc length, since the infinitesimal
expression for arc length defines the Riemannian metric. (Cf. exercise 2.)
But it can also be instructive to check directly that dfz preserves the norm
on TzH for every z ∈ H :

Let f(z) =
az + b

cz + d
, with a, b, c, d real and ad − bc = 1. Then f ′(z) =

1/(cz + d)2, so formula (2.1) in the notes on hyperbolic geometry gives
Im f(z) = Im z |f ′(z)|.

Identifying TzH with C, we have dfz(w) = f ′(z) · w. (Complex mul-
tiplication, see exercise 5.1.2.) If | | denotes Euclidean norm in TzH (i. e.

|x + iy|2 = x2 + y2), then the hyperbolic norm is given by ‖w‖z =
|w|
Im z

.
Hence

‖dfz(w)‖f(z) =
|f ′(z)| |w|
Im f(z)

=
|w|
Im z

= ‖w‖z .

Thus it follows that every f ∈ Möb+(H) is an isometry of the Riemannian
structure. On the other hand, the inversion r(z) = −z̄ (reflection about
the imaginary axis) preserves both the imaginary part and Euclidean norm,
hence r is also an isometry. Since Möb(H) is generated by Möb+(H) and r,
every element of Möb(H) is an isometry.

A similar analysis for D shows that Möb(D) also consists of isometries
of D as a Riemannian surface. Moreover, any hyperbolic isometry between
H and D is also an isometry between the Riemannian structures. Hence
the two models are isometric representations of the hyperbolic plane as a
Riemannian surface.

These examples show that in the three classical geometries, geometric
isometries are also Riemannian isometries. One can show that the opposite
is also the case, such that the word “isometry” is uniquely defined in these
three geometries.

A consequence is that surfaces with a geometric structure built on one
of the models (X,G) in “Geometry on surfaces. . . ”, page 6, also have Rie-
mannian structures locally isometric to the structure on X. For every chart
x : U → x(U) ⊂ X, we can define a Riemannian structure on U such that
x becomes an isometry. (Define 〈v, w〉 as 〈dx(v), dx(w)〉.) Since the coor-
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dinate transformations preserve inner products, this will be independent of
x.

Definition 5.4.2. Aspects of the geometry which are preserved under all
isometries are called intrinsic, whereas those which depend on a particular
representation of the surface — e. g. as a regular surfaces in R3 — are called
extrinsic.

Arc length is an example of an intrinsically defined quantity, since it can
be expressed only in terms of the norms in the tangent planes, and the norms
are preserved under isometries. More explicitly: if ω : [a, b]→ S is a curve,
then its arc length is defined as l(ω) =

∫ b
a ‖ω

′(t)‖ω(t)dt. If f : S → S′ is a
smooth map, then l(fω) =

∫ b
a ‖(fω)′(t)‖ω(t)dt =

∫ b
a ‖dfω(t)(ω′(t))‖f(ω(t))dt.

But if f is an isometry, this is equal to l(ω). (A converse to this observation
is given as Exercise 2.)

Similar remarks apply to the area function, proving that area is also an
intrinsic quantity. (Exercise 4.)

The following proposition records some simple observations which will
be very useful later. We use the notation E,G, F for the functions defining
the metric using a local parametrization x, and similarly E′, G′, F ′ when we
use a local parametrization x′.

Proposition 5.4.3. a) Suppose x : U → S and x′ : U → S′ are local
parametrization of two Riemannian surfaces such that E = E′, F = F ′ and
G = G′. Then the composition x′ ◦ x−1 is an isometry between x(U) and
x′(U).

b) Conversely, assume p ∈ S has a neighborhood which is isometric to
a neighborhood of q in S′. If x : U → S is a local parametrization around
p, then x′ = f ◦ x : U → S′ is a local parametrization around q such that
E = E′, F = F ′ and G = G′.

Exercises for 5.4

1. Let f : S → S′ be a map of surfaces which is a local diffeomorphism.
Show that if S′ is Riemannian, then S has a unique Riemannian struc-
ture such that f is a local isometry.
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2. Suppose that f : S → S′ is a diffeomorphism between two Riemannian
surfaces. Show that f is an isometry if and only if f preserves arc–
length — i. e. such that lS(ω) = lS′(f ◦ ω) for all curves ω in S, where
lS (lS′) is arc–length in S (S′).

3. Show that a generalized cylinder (cfr. exercise 5.1.5b) is locally iso-
metric to the standard Euclidean plane. (Hint: Reduce, by a suitable
projection, to the case where the curve α lies in a plane orthogonal to
δ. Then parametrize by arc–length.)

4. Show that isometric compact surfaces have the same area.

5. (a) Let H be the upper half–plane model for the hyperbolic plane,
and let M be the subset {z ∈ H | Im z > 1}. Let U = R× (0, π/2) and

define x : U →M by x(u, v) = u+
i

cos v
.

Show that x is a parametrization of M and compute the metric ds2 =
E du2 + 2Fdu dv +Gdu2 in these coordinates.

b) Define y : U → R3 by

y(u, v) = (cos v cosu, cos v sinu, sin v + ln(
1− sin v

cos v
)) .

Show that y parametrizes a regular surface of rotation Σ in R3 and
compute its metric in these coordinates.

c) Show that there is an element γ generating an infinite cyclic sub-
group Γ ⊂ Möb(H) such that M/Γ and Σ are isometric.

Explain why this shows that Σ is a hyperbolic surface.

This is a famous example of a hyperbolic surface realized as a regu-
lar surface — the “pseudosphere”. In fact, this was the first example of
a geometry ever noticed to provide a local model for hyperbolic geom-
etry, by Beltrami in 1868. A few months later he published his models
for the hyperbolic plane.

Note that the pseudosphere is not compact. We will see later that
there are no compact, hyperbolic regular surfaces. (Proposition 5.5.6.)

d) Let z0 ∈ H be an arbitrary point. Explain how we can use the
results in this exercise to show that the standard metric on H in a
neighborhood of z0 (given by formula (5.3.4)) can be realized as a
fundamental form.
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6. Let S be a Riemannian surface with metric 〈, 〉. Show that if λ is a
positive real number, we can define a new metric 〈, 〉λ by setting

〈v, w〉λp = λ〈v, w〉p

for every p ∈ S and v, w ∈ TpS. We shall refer to this as a rescaling of
the metric.

Let Sλ be S with this new Riemannian structure. Show that if S is
compact, then Sλ and Sλ′ are not isometric if λ 6= λ′, but that all R2

λ

are isometric.

7. We say that the smooth map g : S → S′ is conformal if there is a
smooth function k > 0 on S such that

〈dgp(v), dgp(w)〉p = k(p)〈v, w〉g(p)

for every p ∈ S and v, w ∈ TpS. Show that g must be an angle
preserving local diffeomorphism and that g−1 is also conformal if g is
a diffeomorphism. (If so, g is a conformal equivalence.)

Show that given the Riemannian surface S, all Sλ of exercise 6 are
conformally equivalent.
Remark. One can prove that all Riemannian metrics on surfaces are locally confor-
mally equivalent to the Euclidean metric du2 + dv2. (Isothermal coordinates.)

5.5 Curvature

Curvature is probably the most important concept in differential geometry.
It comes in many variations, but they all try to measure different aspects of
how the surface curves and bends as we move around on it. We shall here
concentrate on what is called Gaussian curvature, which is motivated by the
study of regular surfaces in R3. From the definition, it is not at all obvious
that this curvature is, in fact, intrinsic. Indeed, when the great mathe-
matician C. F.Gauss discovered that it is, he named the result “Theorema
egregium” — remarkable theorem.

Let first S be a regular surface in R3. To analyze how S varies near a
point p is essentially the same as to analyze how the tangent planes of S
turn in space as we move around p. The tangent plane is determined by the
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direction of a normal vector, so we may as well study how the unit normal
vector N(q) varies with q. In fact, a norm6al vector to a tangent plane can
be thought of as a normal vector to the surface itself.

If x : U → S ⊂ R3 is a local parametrization, the vector cross product
xu×xv is a normal vector. (It is non–zero since S is regular.) Therefore the
unit normal is

N =
xu × xv

‖xu × xv‖
. (5.5.1)

N is uniquely determined up to sign, and we get −N by, for instance,
changing the order of u and v (or xu and xv). Formula (5.5.1) clearly defines
N(q) as a smooth function of q with values in R3, and since ‖N‖ = 1, we
may think of N as a smooth map N : x(U)→ S2. This is the Gauss map.

p

q N(p) N(q)

N

Fig. 5.5.1: The Gauss map

The derivative of the Gauss map at the point p is a linear transformation
Rnp : TpS → TN(p)S

2. But considered as subspaces of R3, TpS and TN(p)S
2

have the same normal vector (namelyN(p)), hence they must coincide. Thus
RNp can naturally be thought of as a linear transformation TpS → TpS. We
define the Gaussian curvature (or just curvature) of S at the point p as the
determinant of this linear transformation:

K(p) = det(dNp). (5.5.2)

Observe that if we had used the opposite normal (−N) instead, formula
(5.5.2) would have given K(p) = det(d(−Np)) = det(−dNp), which equals
det(dNp) since TpS has dimension 2. Hence it does not matter which unit
normal vector we use.

The linear transformation −dNp : TpS → TpS is also called the shape
operator or Weingarten map of S at p.

The determinant of a matrix A measures the rate of distortion of area
by the linear transformation v 7→ Av, so K(p) measures the infinitesimal
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distortion of area under the Gauss map. In fact, we have the following
formula:

Proposition 5.5.1. Let p ∈ S. Then

|K(p)| = lim
R→p

AS2(N(R))
AS(R)

.

where AS2 and AS are the area functions on S2 and S, and the limit is taken
over all regions R containing p.

If K(p) 6= 0, the Gauss map is a local diffeomorphism near p, and K(p) is
positive if N is orientation preserving, negative if it is orientation reversing.

To better understand the definition of curvature, it may be illuminating to
consider the more familiar case of curves in the plane, from a similar point of
view. Let α(t) be a regular parametrization of a curve C (i. e. α′(t) 6= 0 for all t).
The curvature κ of C is usually defined as the rate of change of the direction of the
tangent as we move along the curve. Thus, if T (α(t)) = α′(t)/|α′(t)| is the unit
tangent vector, then κ is defined by |(Tα)′(t)| = κ(α(t))|α′(t)|. But in the plane
we might as well have considered the unit normal vector, e. g. defined by N = ρT ,
where ρ is rotation by π/2. Then we also have κ(α(t))|α′(t)| = |(Nα)′(t)|. But N
can be considered as a map N : C → S1, which is the one–dimensional analogue
of the Gauss–map. Since the tangent line of C at α(t) is generated by α′(t), the
derivative dN of N is defined by dN(α′(t)) = (Nα)′(t). Hence this curvature
measures the infinitesimal rate of distortion of length under the analogue of the
Gauss map for curves in the plane.

Examples 5.5.2. (1) If S is a plane, then N is constant, and dN = 0. Hence
the curvature is constant, equal to 0.

(2) If S is a cylinder (on an arbitrary curve), the normal will always lie
in the plane normal to the axis of the cylinder. Hence the Gauss map will
have image contained in a great circle in S2. Therefore dN will have rank
≤ 1 and determinant 0, so the curvature will again be 0 everywhere.

(3) Let S ⊂ R3 be a sphere of radius r and center at the origin. Then

the Gauss map is given as N(p) =
1
r
p, and dNp =

1
r
Ip, where Ip is the

identity map on TpS. Hence the curvature is 1/r2 everywhere. (“A small
sphere curves more than a big sphere.”)

We will now derive an important formula for the K(p) in terms of local
coordinates. The formula is the basis for most direct calculations, and also
for the proof of Gauss’ Theorema egregium below.

Let S ⊂ R3 be a regular surface and let x : U → S be a local parametriza-
tion around p. Then the basis vectors {xu, xv} can be thought of as functions
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U → R3, and we can take further partial derivatives and define, e. g., xuu, xvv

and xuv = xvu. (The last equality holds because x is at least three times
differentiable.)

The composition N ◦x is a smooth map U → R3. The partial derivatives
we denote by Nu, Nv, i. e.

Nu =
d

dt
N(x(u+ t, v))|t=0 = dN(xu),

and similarly for Nv.
Differentiating the identities N · xu = N · xv = 0 with respect to u and

v, we get Nu · xu +N · xuu = 0, Nv · xu +N · xuv = 0, Nu · xv +N · xvu = 0
and Nv · xv +N · xvv = 0.

Now define functions e, f, g by

e = N · xuu = −Nu · xu,

g = N · xvv = −Nv · xv, (5.5.3)
f = N · xuv = N · xvu = −Nu · xv = −Nv · xu.

Then we have

Proposition 5.5.3.

K =
eg − f2

EG− F 2
. (5.5.4)

Proof. Let
[
α γ
β δ

]
be the matrix of dN relative to the basis {xu, xv}. Thus

Nu = dN(xu) = αxu + β xv,

Nv = dN(xv) = γ xu + δ xv.
(5.5.5)

Taking inner product of both sides of these equations with xu and xv we
get, using (5.5.3):

− e = Nu · xu = αE + β F,

− f = Nu · xv = αF + β G,

− f = Nv · xu = γ E + δ F,

− g = Nu · xv = γ F + δ G.

These equations can be written on matrix form as
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−
[
e f
f g

]
=
[
α β
γ δ

] [
E F
F G

]
. (5.5.6)

But curvature is defined as the determinant of the matrix
[
α γ
β δ

]
, hence

eg − f2 = K(EG− F 2). (5.5.7)

Remark 5.5.4. Because of the normalization of N , it is usually best to avoid
differentiating N . Hence, actual calculations are often simpler if we use the
formulas e = N · xuu, g = N · xvv and f = N · xuv instead of the other
variants.

Example 5.5.5. Let S ⊂ R3 be the graph of a smooth function h(x, y) defined
on an open subset O ⊂ R2. The parametrization z(x, y) = (x, y, h(x, y))
gives, as we have seen, zx = (1, 0, hx), zy = (0, 1, hy) and E = 1 + h2

x, G =
1 + h2

y, F = hxhy. The unit surface normal is

N =
zx × zy
‖zx × zy‖

=
(−hx,−hy, 1)√

1 + h2
x + h2

y

.

Differentiating z once more, we get zxx = (0, 0, hxx) , zyy = (0, 0, hyy) and
zxy = (0, 0, hxy) , hence

e =
hxx√

1 + h2
x + h2

y

, g =
hyy√

1 + h2
x + h2

y

and f =
hxy√

1 + h2
x + h2

y

.

Consequently,

K =
hxxhyy − h2

xy

(1 + h2
x + h2

y)2
=

detH(h)
(1 + h2

x + h2
y)2

,

where H(h) is the Hessian of h. It follows, for example, that at a non–
degenerate critical point of h (i. e. a critical point where detH(h) 6= 0), the
curvature is positive if the point is a maximum or minimum point for f and
negative if it is a saddle point. In fact, at a critical point the curvature is
equal to the determinant of the Hessian.

Recalling from Proposition 5.1.9 that any regular surface is locally a
graph, we now have a geometric interpretation of the sign of the curvature
at a point p, if K(p) 6= 0. In particular, from property (ii) of Remark
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5.1.10 and its converse in Exercise 5.1.8, we see that if the curvature is
negative at every point, a function defined by projection to a line cannot
have a maximum point. It follows that a compact regular surface cannot
have everywhere negative curvature.

We will discuss further the problem of realizing compact geometric sur-
faces later, but first we will prove one of the most important results of
differential geometry:

Theorema egregium. Gaussian curvature is intrinsic.

Proof. We want to prove that if we choose local coordinates x(u, v), the
curvature can be expressed entirely in terms of the functions E, F and G
and their derivatives. As in Proposition 5.4.3b, on an isometric surface we
can find local coordinates defined for the same values of (u, v) and giving
rise to the same functions E, F, G. But then the curvatures also have to be
the same.

We start with formula (5.5.4), written as

K =
(xuu ·N)(xvv ·N)− (xuv ·N)2

EG− F 2
.

Now we substitute the expression N =
xu × xv

‖xu × xv‖
=

xu × xv√
EG− F 2

for N and

use the formula ((a × b) · c) = det

a
b
c

 = det

a
b
c

t

for the triple vector

product. Then

K(EG− F 2)2 = (xuu · (xu × xv))(xvv · (xu × xv))− (xuv · (xu × xv))2

= det

xuu

xu

xv

det

xvv

xu

xv

t

− det

xuv

xu

xv

det

xuv

xu

xv

t

= det

xuu

xu

xv

xvv

xu

xv

t− det

xuv

xu

xv

xuv

xu

xv

t

= det

xuu · xvv xuu · xu xuu · xv

xu · xvv E F
xv · xvv F G

− det

xuv · xuv xuv · xu xuv · xv

xu · xuv E F
xv · xuv F G

 .
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It remains to express the inner products in the last two matrices in terms
of E, F and G.

Taking derivatives with respect to u and v yields

Eu = 2xuu · xu,

Fu = xuu · xv + xu · xuv,

Gu = 2xuv · xv,

Ev = 2xuv · xu,

Fv = xuv · xv + xu · xvv,

Gv = 2xvv · xv.

From these equations we easily get expressions for the six inner products
xa ·xbc, a, b, c ∈ {u, v} in terms of the derivatives E, F and G. For example,
xu · xuv = 1

2Ev and xu · xvv = Fv − 1
2Gu. Substituting these six expressions,

we get

K(EG− F 2)2 =

= det

 xuu · xvv
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

− det

xuv · xuv
1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G


= det

xuu · xvv − xuv · xuv
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G

− det

 0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

 .

(The last identity can be verified, for instance, by expansion of the de-
terminants along the first columns.) To finish the proof, observe that

xuu · xvv − xuv · xuv = (xu · xvv)u − (xu · xuv)v = (Fv −
1
2
Gu)u −

1
2
Evv ,

which is an expression in the derivatives of E, F and G. Dividing by the
factor (EG − F 2)2, we now have an expression for K which only depends
on the metric on S (Brioschi’s formula).

For the purpose of calculations, the actual formula yields little insight
and is quite meaningless to memorize. A somewhat simpler version is given
in exercise 6 when F = 0, and one can show that it is always possible to
find parameters where this is the case. An even simpler case is geodesic
coordinates, which will be discussed in section 7.

But the fact that Gaussian curvature is preserved under (local) isometries
has many important consequences. For example, it implies that R2 and S2

are not locally isometric, since R2 has curvature 0 everywhere, and S2 has
positive curvature everywhere. This means that it is impossible to draw
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a map (on flat, “Euclidean” paper) of any part of the earth which scales
all distances by the same amount. Hence any map of the earth must be
distorted some way or other.

Another application is that any surface with a transitive group of isome-
tries (like R2 and S2) must have constant curvature, since the transitivity
means that for every pair of points p and q there is an isometry mapping p
to q.

On a more fundamental level, we can use the result to extend the defini-
tion of curvature to surfaces that are not given as regular surfaces in R3. It
suffices that we know that they are locally isometric to such surfaces. More
specifically, if p ∈ S is a point in a Riemannian surface and f : U → S′ is
an isometry of a neighborhood of p to a regular surface, we can define the
curvature of S at p to be equal to the curvature of S′ at f(p). Theorema
egregium then says that a different choice of local isometry would give the
same result. Moreover, it follows from Proposition 5.4.3b that we can use
Brioschi’s formula to compute the curvature using any local coordinates on
S′.

An important example is the hyperbolic plane. By a famous result of
Hilbert, it is impossible to realize the hyperbolic plane as a regular surface in
R3, but if you did Exercise 5.4.5, you have proved that the upper half–plane
model H is locally isometric to the ’pseudosphere’. Therefore H has a well–
defined curvature function. In fact, since H is an example of a Riemannian
surface with a transitive group of isometries, the curvature must be constant.
Using the standard metric on H, given by formula (5.3.4), we have E = G =
1/v2 and F = 0, and Brioschi’s formula gives K = −1. Hence the hyperbolic
plane is not even locally isometric to the Euclidean plane or to any sphere.

The following natural question now arises: can we also use the formula
to define curvature, even for Riemannian surfaces which are not known to
be locally isometric to regular surfaces?

The answer is indeed affirmative, but unfortunately we can not conclude
this from our proof of Theorema egregium, since it uses very explicitly the
Euclidean geometry in R3 and the assumption that E, F and G have the
form given in formulas (5.3.1). One could, of course, try to prove that
Brioschi’s formula is invariant under all local coordinate changes by a brute
force calculation. This is certainly theoretically possible, but the amount of
work involved would be formidable, and probably not to be recommended.
A better proof goes by verifying that the formula coincides with a more
general definition which is manifestly invariant, using Riemannian connec-
tions. However, this would lead us too far astray, so we will accept this fact
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without proof. Thus, for abstract surfaces we will use Brioschi’s formula as
the definition of curvature.

Earlier we have seen that one can construct many compact hyperbolic
surfaces, hence also compact Riemannian surfaces with constant curvature
−1. But a consequence of the preceding discussion and the computation in
Example 5.5.5 is that such surfaces cannot be realized as regular surfaces
in R3. This means that to obtain a general geometric theory it is essential
that we consider general abstract surfaces, and not just those that lie in R3.

What about compact Euclidean surfaces, like tori? The following result
shows that neither can they be realized as regular surfaces:

Proposition 5.5.6. A compact surface S ⊂ R3 must have a point where
the curvature is strictly positive.

Proof. Let S ⊂ R3 be compact. Previously we have seen that a maximum
point for a function gotten by projection to a line will be a point with
curvature greater than or equal to zero. To obtain the sharper result we
instead use the function

f(q) = |q|2 = q · q .

Let p be a maximum point for f . This exists since S is compact. Obvi-
ously p 6= 0. Let ω ∈ ΩpS represent a tangent vector v = ω′(0) ∈ TpS and
set g(t) = f(ω(t)). Then 0 is a maximum point for g(t), and we have

(i) : g′(0) = 0 and (ii) : g′′(0) 6 0 . (5.5.8)

Note that g′(t) = 2ω(t) · ω′(t) and g′′(t) = 2ω(t) · ω′′(t) + 2|ω′(t)|2. From
(5.5.8 i) we get 0 = g′(0) = 2p · v, and since this is true for every v ∈ TpS,
it follows that the vector p ∈ R3 is orthogonal to TpS. Hence we can choose
the surface normal such that

N(p) =
1
|p|
p . (5.5.9)

The second condition (5.5.8 ii) yields the inequality |ω′(0)|2 + ω(0) ·
ω′′(0) 6 0, or

p · ω′′(0) 6 −|ω′(0)|2 = −|v|2 . (5.5.10)

In order to prove that K(p) = det dNp > 0 we will use the following
observation:
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Algebraic lemma. Let A be a real 2 × 2 matrix which is self adjoint
with respect to an inner product 〈 , 〉 on R2. Then detA > 0 if and only if
〈A(v), v〉 6= 0 for all v 6= 0 in R2.

The easy proof of this lemma is left as an exercise (8), as is the verification
that it applies to dNp (5.7).

It now remains to verify that dNp(v) · v 6= 0 for every nonzero v ∈ TpS.
Let v be represented by ω ∈ ΩpS. Then dNω(t)(ω′(t)) = (Nω)′(t), hence
dNp(v) · v = (Nω)′(0) ·ω′(0). But since (Nω)(t) ·ω′(t) = 0 for all t, we have

0 = ((Nω) · ω′)′(t) = (Nω)′(t) · ω′(t) + (Nω)(t) · ω′′(t).

For t = 0 this gives

dNp(v) · v = −(Nω)(0) · ω′′(0) = − 1
|p|
p · ω′′(0) >

|v|2

|p|
> 0

since v 6= 0, by (5.5.9) and (5.5.10).

Since compact Euclidean surfaces, e. g. the geometric surfaces R2/Λ
where Λ ⊂ R2 is a discrete rank two subgroup, are locally isometric to
R2, they must have constant curvature 0. Hence they can not occur as regu-
lar surfaces. The only remaining compact geometric surfaces are then those
with spherical geometry. But there are only two such surfaces: S2 and P 2,
and one can show that P 2 cannot even be topologically realized in R3. (In
fact, only orientable compact surfaces can be realized in R3.) Consequently,
S2 is the only compact surface with geometric structure built on the classical
geometries which can be realized as a regular surface in R3.

Note that the compactness condition here is essential. In addition to the
pseudosphere of curvature −1, the Euclidean plane R2 ⊂ R3 or cylinders are
obvious examples of regular surfaces of curvature 0.

Exercises for 5.5

1. Let r(u, v) = (g(u) cos v, g(u) sin v, h(u)) be a parametrization of a
regular surface of rotation. Show that the Gaussian curvature is given
by

K(r(u, v)) =
h′(g′h′′ − g′′h′)
g(g′2 + h′2)2

.

Which such surfaces have constant curvature 0?
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2. Assume 0 < a < b. Compute the curvature of the torus in R3 given
by the parametrization

r(u, v) = ((a cos v + b) cosu, (a cos v + b) sinu, a sin v).

Where is the curvature positive and where is it negative?

3. Consider again the surfaces of rotation of exercise 1, and assume that
g′(u)2 + h′(u)2 = 1. (I. e. the generating curve is parametrized by arc
length — see section 6.) Show that the formula simplifies to

K = −g
′′

g
.

Discuss how we can find all surfaces of rotation of constant curvature
and show that the only compact such surfaces are the standard spheres.

4. a) Let S1 be the surface obtained by rotating the curve

u 7→ (u, lnu), u > 0.

in the xz–plane around the z–axis. Compute its curvature both using
exercise 1 and by the method of Example 5.5.5.

b) Let S2 be the “helicoid” given by the parametrization

y(u, v) = (u cos v, u sin v, v), u > 0, v arbitrary.

Compute its curvature.

c) Show that there is a smooth map f : S2 → S1 such that K(f(p)) =
K(p) for every p, but that no such map can be a local isometry. This
proves that there is no “converse” to Theorema egregium: the curva-
ture function does not determine the surface up to local isometry.

(Hint: The u–coordinates must correspond. Now use exercise 5.3.3.)

5. What happens to the Gaussian curvature when we scale the metric as
in exercise 5.4.6?

6. Show that if F = 0, then

K = − 1
2
√
EG

(
∂

∂v

(
Ev√
EG

)
+

∂

∂u

(
Gu√
EG

))
.
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7. Show that the derivative dNp of the Gauss map for a regular surface in
R3 is self adjoint with respect to the first fundamental form. Conclude
that it has real eigenvalues and an orthogonal basis of eigenvectors.

(The negatives k1 and k2 of the eigenvalues are called the principal
curvatures at the point p, and the directions of the eigenvectors are
called the principal directions at p.

Note that K(p) = k1k2. This is sometimes taken as the definition of
curvature.)

8. Prove the algebraic lemma in the proof of Proposition 5.5.6.

9. If S ⊂ R3 is a regular surface, define the mean curvature of S at a
point p to be

H(p) = −1
2
tr(dNp) =

1
2
(k1 + k2).

Prove that H2 ≥ K. When do we have equality here? Is H intrinsic?

10. The definition of mean curvature in the previous exercise depends
(up to sign) on the choice of normal direction, but the condition that
H(p) = 0 everywhere does not. If this condition is satisfied, S is called
a minimal surface. Why can a compact surface never be minimal?

11. Show that Nu×Nv = K(xu×xv). Use this to prove Proposition 5.5.1
when K(p) 6= 0.

12. Suppose that the first fundamental form of a surface S ⊂ R3 has the
form h(u, v)(du2+dv2), with respect to some parametrization x(u, v) =
(f1(u.v), f2(u, v), f3(u, v)). Show that the image of x is minimal if and
only if the three coordinate functions fi are harmonic, i. e.

∂2fi

∂u2
+
∂2fi

∂v2
= 0 for i = 1, 2, 3 .

5.6 Geodesics

We will now introduce the “lines” of the geometry on Riemannian surfaces.
They will be defined as curves satisfying certain properties which character-
ize the straight lines in Euclidean geometry. There are at least two possible
characterizations we might use.
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(1) Straight lines are curves which minimize distance between its points.

This is in many ways an attractive definition. It is obviously intrinsic
and it can be studied on arbitrary Riemannian surfaces, and we have seen
that it is satisfied by the hyperbolic lines in the hyperbolic plane. But one
has to find a formulation such that closed curves are allowed, as on S2. This
can be done locally, leading to a variational problem which can be solved.
However, even in the case of R2 this requires a significant amount of work.

(2) Straight lines are curves which never change direction.
What do we mean by this? The direction of a curve t 7→ β(t) in R3 at

β(t) is the direction of the derivative β′(t) at that point. To measure change
of direction we need the second derivative β′′(t), and in R2 or R3 a precise
formulation of (2) could be

(2’) Straight lines are curves with parametrizations β(t) such that β′(t)
and β′′(t) are linearly dependent.

This is a much simpler condition to deal with in R2, since it leads di-
rectly to differential equations without the detour through the calculus of
variations (exercise 1). However, it does not apply as it stands to curves
on other surfaces, even surfaces in R3, since β′′(t) in general will not be a
tangent vector of the surface. But there is a way around this: replace β′′(t)
by the component that ’can be seen from the surface’. This leads to the def-
inition of the covariant second derivative, which is precisely the replacement
for the second derivative we need. With β′′(t) replaced by the covariant
second derivative, condition (2’) will define our ’lines’. Finding them is then
reduced to solving ordinary differential equations.

This is the approach we choose. The relation with condition (1) will be
discussed briefly at the end of the section.

Consider a regular surface S ⊂ R3 (as always with Riemannian structure
inherited from R3), and let β : (−ε, ε) → S be a smooth curve. Then β′(t)
and β′′(t) are both defined as vectors in R3, and β′(t) ∈ Tβ(t)S for all t.
In general β′′(t) does not lie in Tβ(t)S, but there is a unique orthogonal
decomposition

β′′(t) = Dβ′′(t) + PN (β′′(t)),

where Dβ′′(t) ∈ Tβ(t)S is the tangential component of β′′(t) and PN (β′′(t))
is its normal component. In other words, Dβ′′(t) and PN (β′′(t)) are the
images of the orthogonal projections of the vector β′′(t) on Tβ(t)S and the
line perpendicular to it. (See Fig. 5.6.1.)

Definition 5.6.1. Dβ′′ is called covariant second derivative of β.
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p = α(t)
α′(t)

α

α′′(t)

α′(t)

α′′(t)

Dα′′(t)
TpS

Fig. 5.6.1: Covariant second derivative
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We now use Dβ′′ to define ’lines’, but in order for the “direction of β ”
to make sense at every point, we need to require that β′(t) 6= 0 everywhere,
i. e. the parametrization should be regular.

Definition 5.6.2. The curve β is called a geodesic if β′(t) 6= 0 and Dβ′′(t)
is a multiple of β′(t) for all t.

Remark 5.6.3. It is not hard to see that this condition is preserved if we
reparamatrize the curve, e. g. if we replace β(t) by β(h(t)), where h(t) is a
diffeomorphism (exercise 2). Therefore this is really a property of the curve
as a geometric object, and not of the particular parametrization.

To get a feeling for how this works we consider some examples, before
proceeding with the theory.

Example 5.6.4. (1) A straight line in R3 is a geodesic in any surface that
contains it. This is because the line can be parametrized by a linear function
with vanishing second derivative.

(2) The difference between β′′(t) and Dβ′′(t) is a multiple of the surface
normal N(β(t)). Hence the curve is a geodesic if and only if the three vectors
β′(t), β′′(t) and N(β(t)) are linearly dependent. This form of the condition
is often easy to check on concrete examples, either geometrically or via the
equation

det

 β′(t)
β′′(t)
N(β(t))

 = 0 , (5.6.1)

when the vectors are written on component form. An important special
case is when the curve lies in the intersection between the surface and a
plane which is not tangent to the surface. Then β′(t) and β′′(t) both lie in
the plane, and the curve will be a geodesic if the surface normal also lies
in the plane. For example, on a surface of rotation with parametrization
r(u, v) = (g(u) cos v, g(u) sin v, h(u)) all the generating curves v= constant
will be geodesics, and the circles u= constant are geodesics if and only if
g′(u) = 0.

Equation (5.6.1) is convenient for testing special curves, but far too
complicated for finding geodesics in general. However, we shall see that if
we require the parametrization to be of a special type, Definition (5.6.2) can
be formulated as a much simpler differential equation.

Assume that β′(t) 6= 0 for all t. Then there is an orthogonal decompo-
sition of the tangent space Tβ(t)S into the sum of the tangent line and the
normal line of the curve. The tangent line is generated by β′(t), and we
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let T (t) denote the unit vector T (t) = 1
‖β′(t)‖β

′(t). Hence we have a further
decomposition

Dβ′′(t) = a(t)T (t) + ν(β(t)) , (5.6.2)

where 〈a(t)T (t), ν(β(t))〉 = 0. The coefficient a(t) can be computed by
taking inner product with T (t):

a(t) = 〈Dβ′′(t), T (t)〉 =
1

‖β′(t)‖
〈β′′(t), β′(t)〉 =

1
2‖β′(t)‖

d

dt
(‖β′(t)‖2).

(5.6.3)
It follows that a(t), hence also the tangential component a(t)T (t) of

Dβ′′(t), is intrinsic. (In fact, although Dβ′′(t) so far is only defined on sur-
faces in R3, we could use formula (5.6.3) to define its tangential component
for any regular curve on a general surface.)

Recall now that the arc length function s(t) is determined (up to addi-

tion of a constant) by
ds

dt
= ‖β′(t)‖, and since this is nonzero everywhere,

we can invert s = s(t) and write t = t(s). Then α(s) = β(t(s)) defines
another parametrization of the same curve — parametrization by arc length.
This parametrization has the property that ‖α′(s)‖ = 1 for all s, hence the
calculation above shows that the tangential component of Dα′′(s) vanishes.
It follows that if a curve is parametrized by arc length, it is geodesic if and
only if the covariant second derivative vanishes along the curve. Note that
this is equivalent to saying that α′′(s) is orthogonal to the surface.

Conversely, the same calculation gives that if a curve with a regular

parametrization has vanishing covariant second derivatives, then
ds

dt
is con-

stant — i. e. the parametrization is by a multiple of arc length. We call such
parametrizations constant speed parametrizations.

We summarize this discussion in

Proposition 5.6.5. A curve parametrized by α(t) is a constant speed geodesic
if and only if the covariant second derivative vanishes.

In other words: the constant speed geodesics are the solutions of the
second order differential equation

Dα′′(s) = 0. (5.6.4)

Example 5.6.6. Let S ⊂ R3 be a sphere of radius R and center at the origin.
If α(s) is a curve on S parametrized by arc length, we have

Dα′′(s) = α′′(s)− α′′(s) · α(s)
R2

α(s) .
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But α′′(s) · α(s) = (α′(s) · α(s))′ − |α′(s)|2 = −1. Hence α is a constant
speed geodesic if and only if

α′′(s) +
1
R2

α(s) = 0 .

The solutions of this vector equation have the form α(s) = cos(s/R)A +
sin(s/R)B, and it is easily seen that this is a curve on S if and only if A
and B are orthogonal vectors on S. But these curves are precisely the great
circles on S.

In order to be able to work with equation (5.6.4) in general, we will
express Dα′′(s) in local coordinates. (The property of being a geodesic is
clearly a local property.) Assume that Imβ ⊂ x(U) for a local parametriza-
tion x : U → S. We may then write β(t) = x(u(t), v(t)), and we have

β′(t) =u′xu + v′xv,

β′′(t) =u′′xu + v′′xv + (u′)2xuu + 2u′v′xuv + (v′)2xvv.
(5.6.5)

We need expressions forDxuu, Dxuv andDxvv — the orthogonal projections
of xuu, xuv and xvv on the tangent planes of S. First we write xuu, xuv and
xvv in terms of the basis (xu, xv, N), where N is the unit normal vector as
in Proposition 5.2.2:

xuu = Γ1
11xu + Γ2

11xv + eN,

xuv = Γ1
12xu + Γ2

12xv + fN, (5.6.6)

xvv = Γ1
22xu + Γ2

22xv + gN.

The coefficients e, f and g are as in Proposition 5.5.3, as can be seen by
taking inner product with N . Γk

ij , i, j, k = 1, 2 are called the Christoffel
symbols of S with respect to the parametrization x. The effect of projecting
to TpS is just to remove the component along N .

Taking inner product of equations (5.6.6) with xu and xv and substitu-
tion of equalities derived in the proof of Theorema egregium yields a system
of equations which can be written as

[
E F
F G

] [
Γ1

11

Γ2
11

]
=
[

1
2Eu

Fu − 1
2Ev

]
,[

E F
F G

] [
Γ1

12

Γ2
12

]
=

[
1
2Ev
1
2Gu

]
, (5.6.7)[

E F
F G

] [
Γ1

22

Γ2
22

]
=
[
Fv − 1

2Gu
1
2Gv

]
,
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or, more compactly:

[
E F
F G

] [
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=
[

1
2Eu

1
2Ev Fv − 1

2Gu

Fu − 1
2Ev

1
2Gu

1
2Gv

]
. (5.6.8)

Substituting (5.6.6) in (5.6.5) and projecting to Tβ(t)S, we get the fol-
lowing formula for the covariant second derivative in local coordinates:

Dβ′′(t) =
(
u′′ + (u′)2Γ1

11 + 2u′v′Γ1
12 + (v′)2Γ1

22

)
xu (5.6.9)

+
(
v′′ + (u′)2Γ2

11 + 2u′v′Γ2
12 + (v′)2Γ2

22

)
xv.

As a corollary we have the following analogue of Theorema egregium:

Theorem 5.6.7. The covariant second derivative is intrinsic.

Proof. This means that if Φ : S → S′ is an isometry between regular sur-
faces, then

dΦβ(t)(Dβ
′′(t)) = D(Φβ)′′(t). (5.6.10)

(“Covariant second derivatives are preserved by isometries.”) Observe first
that it follows from (5.6.8) that all Γk

ij can be expressed by E, F and G and
their derivatives. Hence the Christoffel symbols are intrinsic.

Formula (5.6.9) is valid for any local parametrization. Hence, if Φ :
S → S′ is an isometry, we get a similar formula for D(Φβ)′′(t) using the
parametrization Φx on S′. But then the functions u(t) and v(t) are the
same as for β, and since Φ is an isometry, it follows that the Christoffel
symbols also are preserved. Since dΦβ(t) is linear and (Φx)u = dΦ(xu) and
(Φx)v = dΦ(xv), (5.6.10) follows.

Remark 5.6.8. The covariant second derivative is also independent of direc-
tion, in the sense that if we reverse the direction of the curve by replacing
the parametrization α(t) by β(s) = α(c− s), for some constant c, then

Dβ′′(s) = Dα′′(c− s)

for every s, i. e. the covariant derivatives of the two curves are the same at
every point of the curve. This follows easily from (5.6.9).

As a consequence of Proposition 5.6.5, formula (5.6.9) and Theorem 5.6.7
we now have
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Theorem 5.6.9. (i) Suppose α(s) = x(u(s), v(s)) is a parametrization of a
smooth curve. Then the curve is a constant speed geodesic if and only if u(s)
and v(s) satisfy the following system of differential equations (the geodesic
equations):

u′′ + (u′)2Γ1
11 + 2u′v′Γ1

12 + (v′)2Γ1
22 = 0,

v′′ + (u′)2Γ2
11 + 2u′v′Γ2

12 + (v′)2Γ2
22 = 0.

(5.6.11)

(ii) Geodesics are preserved by isometries.

Examples 5.6.10. (1) R2 with the Euclidean metric. Then E, F and G are
constant, hence all Γk

ij = 0. Equations (5.6.11) reduce to u′′ = v′′ = 0, and
the geodesic curves are the straight lines.

(2) S2 with spherical coordinates: x(u, v) = (cosu cos v, sinu cos v, sin v).
xu = (− sinu cos v, cosu cos v, 0), xv = (− cosu sin v,− sinu sin v, cos v), and
E = cos2 v, F = 0, G = 1. Equations (5.6.7) then yield Γ1

12 = − tan v,
Γ2

11 = cos v sin v, and Γk
ij = 0 otherwise. The geodesic equations are then

u′′ − 2 tan v u′v′ = 0,

v′′ + cos v sin v(u′)2 = 0.

These equations can be solved explicitly, but they are complicated. There-
fore the more direct approach above is much better. However, it is also
possible to argue as follows:

It is obvious that the equations have the solutions u = constant, v =
as+ b. Hence all meridians are geodesics. But for any point p on the sphere
we can find a linear isometry A taking (0, 0, 1) to p , and A will map the
meridians to the great circles through p. Since isometries map geodesics to
geodesics, it follows that all great circles are geodesics.

This argument does not rule out the possibility that there could be more
geodesics, but that will follow from the uniqueness in Proposition 5.6.11
below.

Note that our definition of covariant second derivative and the proof of
Theorem 5.6.7 use the Euclidean geometry of R3 in essential ways. Hence
the comments we made after the proof of Theorema egregium apply here,
as well. We can define geodesics on surfaces which are locally isometric
to regular surfaces as curves which map to geodesics by local isometries,
and calculations can be done using Equations (5.6.11) — again referring to
Proposition 5.4.3b.
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But as with Brioschi’s formula for curvature, it is possible to prove that
the theory applies in full generality: we can use formula (5.6.9) with Christof-
fel symbols defined by (5.6.8) to define the covariant second derivative of
curves on general Riemannian surfaces. Then Definition 5.6.2 and Proposi-
tion 5.6.5 immediately extends, and we can use Equations (5.6.11) to calcu-
late geodesics. Then the whole theory will be intrinsic in the most general
sense.
Examples 5.6.10 cont. (3) The upper half–plane model of the hyperbolic
plane with coordinates z = x+iy : We have seen that E = G = 1/y2, F = 0,
and from (5.6.7) we get Γ1

12 = Γ2
22 = −Γ2

11 = −1/y and Γ1
11 = Γ1

22 = Γ2
12 = 0.

The geodesic equations are now

x′′ − 2
y
x′y′ = 0,

y′′ +
1
y
(x′)2 − 1

y
(y′)2 = 0.

First we observe that the vertical lines x = a are solutions. In fact, then the
second equation reduces to y′′ − (y′)2/y = 0, or (y′/y)′ = 0. This equation
has the solutions y = becs for constants b and c, and if parametrization is by
arc length, we must have c = 1. Hence α(s) = a+besi are parametrizations of
the vertical H–lines as geodesics. But since all H–lines are images of vertical
lines by hyperbolic isometries, it follows that all H–lines are geodesics.

It follows from the uniqueness part of Proposition 5.6.11 below that
these are all the geodesics, but one can also proceed as follows: If x′ 6= 0,

the first equation is separable and can be written
x′′

x′
=

2y′

y
. Integration

gives x′ = Cy2, C 6= 0.
We could now try to substitute this in the second equation, but instead

we use another trick which is often very useful. Namely, we will exploit the
requirement that the geodesic should be parametrized by arc length, i. e.
(x′)2E + 2Fx′y′ + (y′)2G = 1.

In the present case we get (x′)2 + (y′)2 = y2. Now we substitute x′ =
Cy2 into this equation and obtain y′ = ±y

√
1− C2y2 . Multiply by the

expression ±Cy/
√

1− C2y2 on both sides and get

±Cyy′√
1− C2y2

= Cy2 = x′ ,

or, after integration:

± 1
C

√
1− C2y2 = x−m,



5.6. GEODESICS 145

for some constant m. Squaring, we obtain the equation for a circle with
center on the real line:

(x−m)2 + y2 =
1
C2

.

Hence we see that all geodesics are contained in H–lines.

In concrete computations it is sometimes more convenient to use the gen-
eral formulation Dβ′′(t) = λ(t)β′(t) than the equations (5.6.11), since this
allows simpler parametrizations. An illustration in the case of the hyperbolic
plane H is given in exercise 5.

In general it is of course hopeless to try to solve equations (5.6.11) explic-
itly. The real importance of the equations is that they allow us to prove gen-
eral existence and uniqueness theorems for geodesic curves. In fact, (5.6.11)
is a system of ordinary differential equations, and the following proposition
follows from the general theory for such equations:

Proposition 5.6.11. Every point of a Riemannian surface S has an open
neighborhood V with the following property:

There exist positive numbers ε and τ such that for every q ∈ V and w ∈
TqS with ‖w‖ < ε, there is a unique constant speed geodesic γq

w : (−τ, τ)→ S
such that

γq
w(0) = q and γq

w
′(0) = w .

Moreover, γq
w(t) depends smoothly on q, w and t.

The last sentence needs some explanation. Let Bq(ε) = {w ∈ TqS| ‖w‖ < ε},
for q ∈ V and ε > 0. Then η(q, w, t) = γq

w(t) is defined on a subset of ∪qTqS, and
we have not said what it means for a map from such a set to be smooth. What
we mean is this:

We can assume that V ⊂ x(U) for some parametrization x. Then the mapping
θ : R2 × U → ∪q∈x(U)TqS defined by θ(a, b, u, v) = axu(u, v) + bxv(u, v) is a
bijection. The composition η ◦ θ is defined on an open subset of R2 × U , and we
say that η is smooth if this map is.

One can check that this does not depend on choice of local parametrization,
and that it, in fact, defines a smooth manifold structure on ∪p∈STpS — the so–
called tangent bundle of S, which plays a central role in differential geometry and
topology.

The following observation is very useful: From the homogeneity of equa-
tions (5.6.11) it follows that if γ(t) is a solution, then η(t) = γ(ct) is also a so-
lution. But η(0) = γ(0) and η′(0) = cγ′(0), so it follows that γq

cw(t) = γq
w(ct).

Using this and uniqueness, we can enlarge either one of the constants ε and
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τ in Theorem 5.6.11 at the expense of the other. For example, we may
assume τ > 1 and define the exponential map expp : Bp(ε)→ S by

expp(w) = γp
w(1) ,

for some ε > 0. If 0 < s < 1, we then have expp(sw) = γp
sw(1) = γp

w(s),

hence s 7→ expp(sw) is a geodesic and
d

ds
expp(sw)|s=0 = w.

The following theorem states the most important local properties of the
exponential map:

Theorem 5.6.12. For every p ∈ S there is an ε > 0 such that

(1) expp is a diffeomorphism between Bp(ε) and a neighborhood of p.

(2) If ε is small enough, any two points in expp(Bp(ε)) can be joined by
a unique geodesic of length less than 2ε.

A neighborhood parametrized by the exponential map as in (1), is called
a normal neighborhood. We come back to these in the next section. We end
this section with some further remarks on geodesics, without proofs.

First we address the obviously very important problem of extending the
exponential mapping to all of TpS. Using the equality γq

cw(t) = γq
w(ct) again,

we see that this is equivalent to the following question: when can we extend
constant speed geodesics infinitely in both directions?

We call S geodesically complete if expp is defined on all of TpS, for all
p ∈ S. It is trivial to construct examples which do not have this property:
the simplest is to remove a point from a normal neighborhood. The famous
Hopf–Rinow theorem gives the exact conditions for a Riemannian structure
to be complete. As mentioned earlier, a Riemannian metric determines a
topological metric by d(p, q) = infα l(α) where α runs over all piecewise
smooth curves from p to q and l(α) is the arc length of α. The topology
defined by this metric is the given topology on the surface.

Theorem 5.6.13. (Hopf–Rinow) A Riemannian surface is geodesically com-
plete if and only it is complete in the metric d. Moreover, if S is complete (in
either sense), then any two points p and q in S can be joined by a geodesic
of length d(p, q).

Note that the last statement implies that the exponential map expp is
surjective for every p.

Examples. (1) Since all compact metric spaces are complete, it follows
that all compact Riemannian surfaces are geodesically complete.
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(2) Regular surfaces S which are closed subsets of R3 are also geodesically
complete. Note that the metric d is not the metric induced from the metric
on R3 (except when S is a convex, open subset of a plane), but we clearly
have d(p, q) ≥ |p − q| for all p and q. Therefore a Cauchy sequence with
respect to the metric d is also Cauchy with respect to the induced metric.
Hence it has a limit in S if S is closed as a subset of R3.

We conclude with a result on the relationship between geodesics and
“shortest length” curves.

We call a curve β : (a, b)→ S locally length-minimizing if any c ∈ (a, b) is
contained in a smaller interval (a′, b′) such that l(β|(a′, b′)) = d(β(a′), β(b′)).
A curve β from p to q such that l(β) = d(p, q), is clearly locally length–
minimizing, but the converse need not be true, as for example in the case of
a great circle of a sphere.

Theorem 5.6.14. A constant speed curve is locally length–minimizing if
and only if it is geodesic.

Thus, in this precise sense, the two characterizations of “lines” at the
beginning of this section are indeed equivalent.

Exercises for 5.6

1. Let t 7→ β(t) ∈ R3 be a smooth, regular curve such that β′(t) and
β′′(t) are everywhere linearly dependent. Show that the curve lies on
a straight line.

2. Prove the statement of Remark 5.6.3.

3. Fill in the arguments for the claims in Example 5.6.4

4. Let S be the graph of the function f(x, y) = 2x2−y2. Determine which
intersections between S and planes through the z–axis are geodesics.

5. Show that the H–lines are geodesic by showing that Dβ′′(t) and β′(t)
are linearly independent everywhere, for suitable parametrizations β(t).

6. Let S be the cylinder with equation x2 + y2 = 1 in R3. Find infinitely
many geodesics from (1, 0, 0) to (1, 0, 1) on S.

7. This exercise relies on the results and notation in exercise 4.5.
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Let w be an arbitrary point of the pseudosphere Σ. Show that there
are infinitely many geodesics on Σ that go through w twice. Can a
geodesic go through w more than twice?

8. Assume that S1 and S2 are two regular surfaces in R3 which intersect
tangentially in a curve C. Show that if C is a geodesic in S1, then it is
also geodesic in S2.

9. Assume that S1 and S2 are two regular surfaces in R3 which intersect
orthogonally in a curve C. Show that if C is a geodesic in both S1 and
S2, then it is a straight line in R3.

10. Compute the exponential map for the sphere S2 at the point p =
(0, 0, 1), and show explicitly that it is defined on all of TpS

2 and also
that it is surjective.

What is here the largest ε for which (1) and (2) of Theorem 5.6.12 are
true?

11. Show that a rescaling of the metric by a constant factor (exercise 5.4.6)
does not change the geodesics.

Why does this prove that the set of geodesics does not determine the
Riemannian structure up to isometry?

12. Assume that f : S → S′ is a local isometry between geodesically
complete surfaces, and let p be a point in S. Show that

f(expp(v)) = expf(p)(dfp(v))

for every v ∈ TpS.

5.7 Geodesic polar coordinates

By Theorem 5.6.12 we can use exponential maps to define local parametri-
zations. These parametrizations are naturally suited to study local geome-
try, and they will play an essential rôle in the remaining sections. But first
we have to choose coordinates on TpS.

One possibility is to choose an orthonormal basis and use the associated
coefficient vectors — i. e. an ordinary Cartesian coordinate system. But



5.7. GEODESIC POLAR COORDINATES 149

to study local behaviour around a point, it is often better to use polar
coordinates. In fact, by comparing these two kinds of parameters, we shall
see that we obtain a very precise description of the metric near a fixed point.

To fix notation, assume we have chosen an orthonormal basis for the
tangent plane TpS, giving rise to Cartesian coordinates (u, v). For θ ∈ R
we let α(θ) ∈ TpS be the point with Cartesian coordinates (cos θ, sin θ).
Then ‖α(θ)‖ = 1 and the curve θ 7→ α(θ) parametrizes the ’unit circle’
{w ∈ TpS|‖w‖ = 1} in TpS.

Recall that there is a natural identification of Tw(TpS) with TpS for every
w ∈ TpS, giving TpS (as a surface) a natural Riemannian structure. Then
‖α′(θ)‖α(θ) = 1, hence θ will also measure arc length (in radians).

Any w ∈ TpS can be written as w = rv, where r = ‖w‖p and ‖v‖p = 1,
and r and v are uniquely determined if w 6= 0. The map (r, θ) 7→ rα(θ) from
R2 to TpS is a diffeomorphism when restricted to sets of the form (0, ε)×J ,
where J is an open interval of length ≤ 2π. It follows that if ε > 0 is small
enough for expp to be a diffeomorphism on Bε(0p), the map

x(r, θ) = expp(rα(θ)) , (r, θ) ∈ (0, ε)× J

is a local parametrization of S. (r, θ) are then geodesic polar coordinates.
Note that the formula is meaningful when r ∈ (−ε, ε) and for longer intervals
J — for geodesically complete surfaces even for all r and θ — and it will
often be useful to consider x as defined in this generality. But it is important
to remember that x is a diffeomorphism only when the pair (r, θ) is restricted
as stated.

A similar remark applies to the tangent vectors xr(r, θ) and xθ(r, θ): they
may be defined for all r and θ, but they do not form a basis everywhere.
For example, xθ(0, θ) = 0 always.

If we keep r or θ constant, expp(rα(θ)) parametrizes geodesic circles or
geodesic radii. These are the coordinate curves for geodesic polar coordi-
nates. A word of warning, however: the geodesic radii are geodesics, but
the geodesic circles are (usually) not!

Examples 5.7.1. (i) In R2 with p = 0, geodesic polar coordinates are just
ordinary polar coordinates x(r, θ) = (r cos θ, r sin θ).

(ii) Around the point p = (0, 0, 1) ∈ S2, geodesic polar coordinates
coincide with spherical coordinates

x(r, θ) = (sin r cos θ, sin r sin θ, cos r).

(Cf. Exercise 7.) The geodesic radii are great circles through p and geodesic
circles are intersections of S2 with horizontal planes.
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(iii) For the hyperbolic plane we get the simplest formulas if we use the
Poincaré disk model D ⊂ R2 with p = 0. Then a point of hyperbolic distance
r to p has Euclidean norm tanh(

r

2
), and by the rotational symmetry of the

disk model we get geodesic polar coordinates

x(r, θ) = (tanh(
r

2
) cos θ, tanh(

r

2
) sin θ).

(I all three cases the fixed orthonormal basis is the standard basis for
R2.)

We will now examine the functions E(r, θ) = ‖xr‖2, G(r, θ) = ‖xθ‖2 and
F (r, θ) = 〈xr, xθ〉 for geodesic polar coordinates.

E is the simplest: since r 7→ expp(rα(θ)) is a geodesic curve parametrized
by arc length, E = 〈xr, xr〉 = 1. The following Gauss’ lemma tells us that
F = 0, such that the metric has the form

ds2 = dr2 +G(r, θ)dθ2. (5.7.1)

Lemma 5.7.2. (Gauss’ lemma.) Let α : I → TpS be a regular curve such
that ‖α(t)‖ is constant, and let x(r, t) = expp(rα(t)). Then 〈xr, xt〉 = 0.

Proof. Let Dxrr denote the covariant second derivatives of the coordinate
curves r 7→ expp(rα(t)), t fixed. Then Dxrr = 0, since these coordinate
lines are by definition geodesics, parametrized by a constant multiple of arc
length. But by equations (5.6.6), with r, t replacing u, v, we have

Dxrr = Γ1
11xr + Γ2

11xt .

Thus Γ1
11 = Γ2

11 = 0, and

0 = Γ1
11F + Γ2

11G = Fr −
1
2
Et .

Since E = 〈xr, xr〉 = ‖α(t)‖2 is constant, it follows that F is independent
of r. But then, by continuity,

F (r, t) = 〈xr(r, t), xt(r, t)〉 = 〈xr(0, t), xt(0, t)〉 = 0 .

Example 5.7.3. For use in the next section we examine what (5.7.1) looks
like for the classical geometries. Clearly the metric will look the same at
any point in any model we prefer, so we use the coordinates in Examples
5.7.1. Note that we only have to compute G(r, θ) = 〈xθ, xθ〉.
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R2: Geodesic polar coordinates are x(r, θ) = (r cos θ, r sin θ), giving xθ =
(−r sin θ, r cos θ). Hence

ds2 = dr2 + r2dθ2.

S2: We get xθ = (− sin r cos θ, sin r cos θ, 0). The metric is induced from
the Euclidean metric in R3. Thus G(r, θ) = xθ · xθ = sin2 r, and

ds2 = dr2 + sin2 rdθ2.

D: The metric in Cartesian coordinates is now

ds2 = 4
du2 + dv2

(1− u2 − v2)2
,

and the formula for geodesic polar coordinates in Example 5.7.1(iii) gives

xθ = (− tanh(
r

2
) sin θ, tanh(

r

2
) cos θ).

Writing xθ = (a, b), this means that

〈xθ, xθ〉 = 4
a2 + b2

(1− a2 − b2)2
,

or, since here a2 + b2 = tanh2(
r

2
),

〈xθ, xθ〉 =
4 tanh2(

r

2
)

(1− tanh2(
r

2
))2

= sinh2 r.

The last equality follows from a well–known relation between hyperbolic
functions. (Exercise 2.7.8f.)

Formula (5.7.1) is valid throughout a normal neighborhood of p, ex-
cept at the point p itself. In order to analyze the behaviour of G(r, θ) as
we approach p — i. e. as r → 0 — we compare with the Cartesian co-
ordinates u = r cos θ, v = r sin θ, which also are valid near p. I. e. we
have a parametrization y(u, v) defined in a neighborhood of 0, such that
x(r, θ) = y(r cos θ, r sin θ).

In these coordinates, the metric is has the form

ds2 = Edu2 + 2Fdu dv +Gdv2,
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where now E, F and G are smooth functions of (u, v). Moreover, at the
point p we have E = G = 1 and F = 0. Now use the relation

xθ =
∂u

∂θ
yu +

∂v

∂θ
yv = −r sin θ yu + r cos θ yv

to obtain

G = 〈xθ, xθ〉 = r2(sin2 θ E − 2 sin θ cos θ F + cos2 θ G) = r2L ,

where L = L(r, θ) is a smooth function such that limr→0 L(r, θ) = 1. Hence
we can write G = h2, where h(r, θ) has an expansion

h(r, θ) = r + a(θ)r2 + b(θ)r3 + r3O(r). (5.7.2)

(Recall that O(r) is a generic notation for a term which for small r is
bounded by a constant times r.)

At this point we recall the curvature formula from our proof of Theorema
egregium. With ds2 = dr2 + h2dθ2 we obtain, after a little calculation

K = −hrr

h
, (5.7.3)

which with the expression (5.7.2) for h yields

K = − 2a(θ) + 6b(θ)r + rO(r)
r + a(θ)r2 + b(θ)r3 + r3O(r)

.

This formula is valid for r 6= 0, but since Gaussian curvature is continu-
ous, this expression must approach K(p) as r → 0. This is only possible if
a(θ) = 0 and 6b(θ) = −K(p) for all θ. Hence (5.7.2) reduces to

h(r, θ) = r − K(p)
6

r3 + r3O(r) . (5.7.4)

As an application, let us compute the circumference of a geodesic circle of
radius ρ and center p, using the parametrization βρ(θ) = x(ρ, θ), θ ∈ [0, 2π],
with geodesic coordinates as above. Then the circumference is

lρ(p) = l(βρ) =
∫ 2π

0
‖β′ρ(θ)‖ dθ =

∫ 2π

0
h dθ

=
∫ 2π

0
(ρ− K(p)

6
ρ3 + · · · ) dt = 2πρ− K(p)π

3
ρ3 + · · · .

A corollary of this is another interpretation of curvature:
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Corollary 5.7.4.

K(p) = lim
ρ→0

3(2πρ− lρ(p))
πρ3

.

Example 5.7.5. A hyperbolic circle of radius ρ has circumference 2π sinh ρ.
Hence

K(p) = lim
ρ→0

3(2πρ− 2π sinh ρ)
πρ3

= lim
ρ→0

6(ρ− (ρ+ ρ3

6 + · · · ))
ρ3

= −1

for every p, as before.

Corollary 5.7.4 also gives an interpretation of the sign of the curvature:
K(p) is positive if the circumference of a small geodesic circle is smaller than
that of a Euclidean circle of the same radius and negative if it is bigger.

Exercise 1 gives a similar result comparing areas of circles.

Exercises for 5.7

1. Let Aρ be the area of a geodesic circle of radius ρ and center p. Prove
that

K(p) = lim
ρ→0

12(πρ2 −Aρ)
πρ4

.

Use this to give yet another proof that the curvature of the hyperbolic
plane is constant equal to −1.

2. Let ds2 = dr2 +G(r, θ)dθ2 be the metric in geodesic polar coordinates
around the point p ∈ S. Now rescale the metric by a factor λ = c2 as
in Exercise 5.4.6, and show that in the new geodesic polar coordinates
the metric is

ds2 = dr2 + c2G(
r

c
, θ)dθ2 .

5.8 Riemannian surfaces of constant curvature

We now have the tools necessary for proving one of our main results: the
characterization of geometries locally isometric to the classical geometries.
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Suppose given a function K defined in a neighborhood of p ∈ S. If we
want to find a local Riemannian metric with curvature function K, we have
to find a solution of equation (5.7.3) of the form (5.7.4).

We are interested in the simplest case, namely the case when K is con-
stant. Our calculations have shown that surfaces built on the classical ge-
ometries have this property, and if you did Exercise 5.5.5, you know that
metrics obtained from these by scaling have the same property. We want to
prove that these are the only ones. This relies on the observation in Propo-
sition 5.4.3, saying that if two surfaces can be parametrized by the same
subset of R2 in such a way that the functions E,F and G are the same, then
they are locally isometric. Thus it suffices to show that a point of a surface
of constant curvature has a neighborhood such that the metric in geodesic
polar coordinates looks like one of the metrics in Example 5.7.3, possibly
scaled by a constant as in Exercise 5.7.2.

So, consider the equation (5.7.3), or equivalently

hrr +Kh = 0, (5.8.1)

for K constant. The general solution of this equation is well known, and we
distinguish between the three cases K = 0, K > 0 and K < 0.
(i) K = 0 : The equation reduces to hrr = 0, which has the solutions
h = Ar+B, where A and B are functions of only θ. But the condition (5.7.4)
gives B = 0 og A = 1. Hence the metric has the form ds2 = dr2 + r2dθ2,
which is the same as for the Euclidean metric in polar coordinates. Hence
a neighborhood of p in S is isometric to a neighborhood of the origin in the
Euclidean plane.

(ii) K = 1/R2, R > 0: Equation (5.8.1) is now hrr +
1
R2

h = 0, with the
general solution

g = A cos
r

R
+B sin

r

R
= A

(
1− 1

2

( r
R

)2
+ · · ·

)
+B

(
r

R
− 1

6

( r
R

)3
+ · · ·

)
.

Condition 5.7.4 gives A = 0 and B = R, and the metric becomes

ds2 = dr2 +R2 sin2(
r

R
) dθ2 .

This is, by Example 5.7.3 and Exercise 5.7.2, the metric on the sphere
S2

R of radius R. It follows that S must be locally isometric to this sphere.
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(iii) K = − 1
ρ2
, ρ > 0 : Now (5.8.1) becomes hrr −

1
ρ2
h = 0. The general

solution is

h = Ae
r
ρ +Be−

r
ρ = A

(
1 +

r

ρ
+

1
2

(
r

ρ

)2

+ · · ·

)
+B

(
1− r

ρ
+

1
2

(
r

ρ

)2

+ · · ·

)
.

Condition 5.7.4 give A =
ρ

2
and B = −ρ

2
. Consequently, h = ρ sinh

r

ρ
and

the metric is

ds2 = dr2 + ρ2 sinh2 r

ρ
dθ2 . (5.8.2)

But this is the metric of D in geodesic polar coordinates, scaled by the
constant ρ.

Let us denote this scaled version of D by Dρ. We have now proved

Theorem 5.8.1. Suppose S is a Riemannian surfaces such that the Gaus-
sian curvature is constant. Then

• If K = 0, S is locally isometric to the Euclidean plane.

• If K = 1/R2, S is locally isometric to a sphere of radius R.

• If K = −1/ρ2, S is locally isometric to the hyperbolic plane Dρ.

Remark 5.8.2. Clearly there is a scaled version Hρ as well, and Hρ is iso-
metric to Dρ.

Exercises for 5.8

1. Show that G(z) =
iz + 1
z + i

is an isometry between Hρ and Dρ as Rie-

mannian surfaces for every ρ.

2. Show that if the surface S has a geometric structure modeled H, then
it also has one modeled on Hρ for every ρ > 0.
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5.9 The Gauss–Bonnet theorem

Until now, our study of differential geometry has been a study of local prop-
erties. In this last section we shall prove the celebrated Gauss–Bonnet the-
orem, relating local, geometric information to global, topological properties
of surfaces. The theorem has a number of striking consequences, and it
can be seen as the first example of an index theorem — a formula relating
topological and analytic invariants.

Before we state the theorem, we need some more definitions. First,
we will need to define integrals of smooth functions over curves and surface
regions, generalizing line and surface integrals in R3 to arbitrary Riemannian
surfaces.

Line integrals. If f is a function defined on a curve C parametrized by a
function α : [a, b]→ S with ‖α′(t)‖ 6= 0 for all t, we define∫

C
fds =

∫ b

a
f(α(t))

ds

dt
dt =

∫ b

a
f(α(t))‖α′(t)‖α(t)dt. (5.9.1)

It is not difficult to check that this is independent of the parametrization.
If C is only piecewise smooth, we define the integral as the sum of integrals
over the smooth pieces.

Surface integrals. Suppose f is defined on a compact region R bounded
by a piecewise smooth curve on a Riemannian surface. If R ⊂ x(U) for a
parametrization x, we define∫∫

R
fdA =

∫∫
x−1(R)

f(x(u, v))
√
EG− F 2dudv. (5.9.2)

By exercise 1. this is independent of choice of parametrizations. If R is
not included in a coordinate neighborhood, we can subdivide it into smaller
pieces which are, and define the integral as a sum. This will be independent
of the subdivision; cf. the discussion of area in section 5.3. In particular, we
can define the integral over the whole surface S if it is compact.

(These integrals can, of course, also be defined directly as analogues of
Riemann integrals (“limits of sums”). Note also that the formulas for arc
length and area in Section 5.3 are special cases.)

The other new ingredient we need is geodesic curvature. Fix a Rieman-
nian surface S, and assume that α(s) is a regular curve parametrized by arc
length, with unit tangent vector T (s) = α′(s). For every s the curve has
two possible unit normal vectors nα(s) at α(s). A continuous choice of one
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of them we will call a normal orientation of the curve. (Continuous means
that locally we can write nα = φxu + ψxv, where φ and ψ are continuous
functions.)

Definition 5.9.1. Let α(s) be a normally oriented curve parametrized by
arc length. The geodesic curvature is defined as the normal component of
Dα′′(t):

kg(s) = Dα′′(s) · nα(s). (5.9.3)

It follows from formula (5.6.3) that for curves on regular surfaces in R3

we have
Dα′′(s) = kg(s)nα(s). (5.9.4)

One can show that (5.6.3) holds in general, but we will see that (5.9.4) is
also a consequence of calculations in the proof of Gauss–Bonnet given below.
It then follows that the curve is a geodesic if and only if kg(s) = 0 for all s.
Hence the function kg can be thought of as a measure of how far the curve
is from being a geodesic.

The choice of normal orientation only affects the sign of kg. There are
two situations where a normal orientation is naturally defined.

(i) Usually one considers only the case when the surface S is oriented, and
then the normal vector nα is chosen such that (T (s), nα(s)) is a positively
oriented (orthonormal) basis for Tα(s)S. For example, if S is a regular surface
in R3 and N is the surface normal defining the orientation, we can set
nα(s) = N(α(s))× T (s).

(ii) In the situation we will consider, however, the surface is not neces-
sarily oriented, but the curves will all be regular boundary curves of regions
R ⊂ S. Then we can choose nα to be the unit normal vector pointing into
R — i. e. each nα(s) has the form β′(0), for some curve such that β(t) ∈ R
for t > 0. Note that for this definition of normal orientation, the direction
of the boundary curve does not matter.

If R ⊂ S is as in (ii) and S is oriented, the two orientations agree if we
choose to traverse ∂R counterclockwise around R.

Let now S be a connected Riemannian surface, and suppose R ⊂ S
is a compact region bounded by a finite union of regular curves. Denote
the boundary by ∂R. Note that ∂R can have many components, and each
component is a piecewise smooth, closed curve. We are now in situation (ii)
above, and each smooth piece is normally oriented by the inward normal
vector.

At a non–smooth point pi, R has a well defined interior angle ηi ∈ [0, 2π],
and we say that the boundary changes direction by the angle εi = π − ηi ∈
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[−π, π] at pi. Note that if S is oriented and we follow ∂R counterclockwise,
the angle is positive if we turn to the left and negative is we turn to the
right.

We call pi a cusp point if εi is ±π. This means that the two smooth
boundary curves meeting at pi have the same tangent there.

The Gauss–Bonnet theorem is the following formula:

Theorem 5.9.2. (Gauss–Bonnet)∫∫
R
KdA+

∫
∂R
kgds+

∑
i

εi = 2πχ(R). (5.9.5)

Here K and kg are the Gaussian and geodesic curvatures, respectively,
and χ(R) is the Euler characteristic of R. The index i runs over all the
non–smooth points of ∂R. The striking feature of this formula is that the
left hand side depends entirely on geometric information, whereas the right
hand side is purely topological. For example, If S is compact, we can apply
the theorem to R = S, and the formula simplifies to∫∫

S
KdA = 2πχ(S). (5.9.6)

Since the Euler characteristic determines S up to homeomorphism, it
follows that the curvature function also determines S up to homeomorphism!

Some more immediate applications:

• For any metric on S2 or P 2 there must be points where the curvature
is positive.

• On orientable surfaces of genus at least 2, there has to be points where
the curvature is negative.

• On a torus or a Klein bottle the curvature either vanishes everywhere,
or it must take both positive and negative values.

In particular, The only compact surfaces that allow metrics of constant
positive curvature are S2 or P 2, the only ones with constant zero curvature
are the torus and the Klein bottle, and neither of these can have metrics of
constant negative curvature.

These are just a few of the many consequences of the theorem; more will
follow after the proof, which will occupy the next five pages.
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Proof of the Gauss–Bonnet theorem. Assume first that no εi is ±π, i. e. ∂R
has no cusp point. We take as a fact that any such region R can be smoothly
triangulated, i. e. it can be written as a union of smooth, embedded triangles,
where the intersection of two distinct triangles (if non–empty) is either a
common side or a vertex. (Cf. Exercise 5.1.10. An embedding is a regular,
injective map.) In fact, by further subdividing the triangles, if necessary, we
may assume that every triangle is contained in a normal neighborhood, i. e.
a neighborhood parametrized by geodesic polar coordinates, centered at a
point in the interior of some triangle.

We shall see that the general case follows if we can prove the theorem
for each such triangle.

Thus, let R ⊂ Wp be the embedded image of a triangle, where Wp

is parametrized by geodesic coordinates x(r, θ), (r, θ) ∈ [0, ρ) × R, with
center p = x(0, θ) /∈ ∂R. Although S is not assumed to be orientable, Wp

is, and we now orient it such that (xr, xθ) is a positively oriented basis
outside p. (This orientation extends uniquely also to p, by declaring that
e. g. (xr(0, 0), xr(0, π/2)) should be a positively oriented basis there.)

The boundary ∂R is the union of three smooth curves, and we choose
parametrizations by arc length α1(s), α2(s) and α3(s), traversing ∂R in
counterclockwise direction, with respect to the orientation chosen on Wp.
We may assume that if the length of αi is li, then α1(l1) = α2(0), etc.

It also follows that (α′i(li), α
′
i+1(0)) is a positively oriented basis for

Tαi(li)S = Tαi(li)Vp. Let εi ∈ (0, π) be the angle between α′i(li) and α′i+1(0),
where i is counted mod 3. (Cf. also exercise 5.3.5.)

α1

α2

α3

ε1

ε2

ε3

R

Fig. 5.9.1:

We have seen that Gaussian curvature in geodesic polar coordinates is

given by K = −hrr

h
, where ds2 = dr2 + h2dθ2 is the metric. Let us now
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calculate the geodesic curvature kg for the boundary curves using these
coordinates.

Write the parametrization of the curve as α(s) = x(r(s), θ(s)). Then
α′ = r′xr + θ′xθ has norm 1. Moreover, ‖xr‖ = 1 and ‖xθ‖ = h, hence α′ =
r′xr + hθ′

xθ

h
is α′ expressed in an orthonormal basis. It follows that there

is an angle φ(s), uniquely determined mod 2π, such that r′(s) = cosφ(s)
and hθ′ = sinφ(s). φ(s) is the angle between the geodesic radius through
α(s) and the curve, and it defines a smooth function of s, normalized e. g.
by choosing φ(0) ∈ (−π, π]. Moreover, the inward pointing unit normal nα

is then determined as

nα = − sinφxr + cosφ
xθ

h
.

(α′ rotated π/2 in the positive direction.)

The Christoffel symbols for the metric ds2 = dr2 + h2dθ2 are computed
from equation (5.6.8:[

1 0
0 h2

] [
Γ1

11 Γ1
12 Γ1

22

Γ2
11 Γ2

12 Γ2
22

]
=
[
0 0 −hhr

0 hhr hhθ

]
.

Formula (5.6.9) for the covariant second derivative now gives:

Dα′′(s) = (r′′ − hhrθ
′2)xr + (θ′′ + 2

hr

h
r′θ′ +

hθ

h
θ′

2)xθ

=((r′)′ − hrθ
′(hθ′))xr + ((hθ′)′ + hrr

′θ′)
xθ

h
(5.9.7)

= (− sinφφ′ − hrθ
′ sinφ)xr + (cosφφ′ + hrθ

′ cosφ)
xθ

h
=(φ′ + hrθ

′)nα(s).

Thus we have the following expression for the geodesic curvature:

kg(s) = φ′ + hrθ
′. (5.9.8)

We now compute the integral∫
∂R
kgds =

∫
∂R
φ′ ds+

∫
∂R
hrθ

′ds.

(Strictly speaking, we should replace ∂R by the corresponding parameter
set on the right hand side, but we choose to simplify the notation, believing
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that it is clear what we mean. This remark also applies at several points
later.)

Consider first the term
∫
∂R φ

′ds:∫
∂R
φ′ds =

∫
α1

φ′1ds+
∫

α2

φ′2ds+
∫

α3

φ′3ds

= (φ1(l1)− φ1(0)) + (φ2(l2)− φ2(0)) + (φ3(l3)− φ3(0)).

The function φi is determined up to a constant multiple of 2π on each αi,
uniquely determined by φi(0). If we fix φ1(0), then φ2 and φ3 are determined
by φ2(0) = φ1(l1)+ ε1 and φ3(0) = φ2(l2)+ ε2. But coming back to α3(l3) =
α1(0) we can only say that φ1(0) ≡ φ3(l3) + ε3 (mod 2π). Hence∫

∂R
φ′ds = 2kπ − ε1 − ε2 − ε3

for some integer k.
We state the following result without proof:

Claim: k = 0 if p ∈ intR and k = 1 if p /∈ R. (“Hopf’s Umlaufsatz”.)
This may sound obvious, but the Claim is not at all trivial. Here is an

indication of how it can be proved. The idea is to use the fact that k = (
R

∂R
φ′ds+

ε1 + ε2 + ε3)/2π is an integer — hence will remain constant under continuous
modifications of the terms involved.

We apply two kinds of such modifications. First consider R as lying in R2 ≈
TpS (via exp−1

p ) with the metric ds2 = dr2 + h2dθ2, and deform the metric via

ds2 = dr2 +(tr2 +(1− t))h2dθ2, t ∈ [0, 1] to the standard metric ds2 = dr2 +r2θ2.
Then use the fact that ∂R is the boundary of an embedded triangle to deform

to the case where R is a very small Euclidean triangle. (p may remain inside or
outside R throughout this deformation.) But in this situation the claim is easy
to verify.

Next we calculate the term
∫
∂R hrθ

′ds. We must again distinguish be-
tween the two cases p /∈ R and p ∈ R — i. e. the case when R is contained
in the image of the parametrization x and the case when it is not.

Case 1: p /∈ R. Then Green’s theorem gives∫
∂R
hrθ

′ds =
∫

∂R
hrdθ =

∫∫
R
hrrdr dθ =

∫∫
R

hrr

h
h dr dθ = −

∫∫
R
KdA.

Case 2: p ∈ R. Let Rδ be R minus the interior of a small geodesic disk of
radius δ around p. Then Rδ is contained in the parametrized region, and
Green’s theorem now gives∫

∂R
hrθ

′ds = −
∫∫

Rδ

KdA+
∫

r=δ
hrθ

′ds .
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Using formula (5.7.2) we see that the last line integral is 2π plus terms
containing the factor δ2. The curvature functionK is defined and continuous
in all of R. Therefore, taking limits as δ goes to 0, we get∫

∂R
hrθ

′ds = −
∫∫

R
KdA+ 2π.

Putting all this together shows that in both cases we have∫
∂R
kgds = 2π −

∫∫
R
K dA− ε1 − ε2 − ε3,

which completes the proof in the case where R is an embedded triangle con-
tained in a normal neighborhood. Note that although we used an auxilliary
orientation of R in the proof, the result is independent of which orientation
we choose, since all the terms can be defined without an orientation.

In the general case (but still no cusp) we can triangulate R as ∪jRj ,
where each Rj has this form. Let the interior angles of Rj be ηji = π −
εji, i = 1, 2, 3. Then we can also write Gauss–Bonnet’s theorem for Rj as∫∫

Rj

KdA+
∫

∂Rj

kgds = ηj1 + ηj2 + ηj3 − π.

Summing over all Rj , we get∫∫
R
KdA+

∑
j

∫
∂Rj

kgds =
∑
j,i

ηji − Tπ , (5.9.9)

where T is the total number of triangles. Denote the three smooth boundary
curves (the “edges”) of Rj by αji, i = 1, 2, 3, all normally oriented by our
convention. The edges lying in the interior of R will then come in pairs with
opposite normal orientations. Hence the geodesic curvatures have opposite
signs, and the corresponding terms cancel in∑

j

∫
∂Rj

kgds =
∑
j,i

∫
αji

kgds.

The remaining edges are the ones in ∂R, and we have∑
j

∫
∂Rj

kgds =
∑

αji⊂∂R

∫
αji

kgds =
∫

∂R
kgds.

It remains to analyze the right hand side of (5.9.9). Observe first that the
sum of all the angles ηji around an internal vertex of R is 2π, so summing
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all such angles, we get 2π(V − V∂), where V and V∂ denote the numbers of
vertices in R and ∂R.

The remaining angles ηji are interior angles at vertices in ∂R. Note that
each non–smooth point must be such a vertex, and there the angles sum up
to π − εk, where this defines the external angle εk ∈ (−π, π) at this vertex.
At each smooth point the angles ηji sum up to π.

It follows that the sum of all ηji at all vertices in ∂R is V∂ π −
∑
k

εk.

Let E be the total number of edges in R and E∂ the number of edges in
∂R. Then clearly

E∂ = V∂ .

Since every triangle has three edges, of which interior edges lie in two
triangles and boundary edges lie in one, we also have the relation

3T = 2E − E∂ .

Substituting this, we obtain∑
j,i

ηji − Tπ =2π(V − V∂) + V∂ π −
∑

k

εk − Tπ

=2πV − πV∂ − πT −
∑

k

εk

=2πV − πE∂ − πT −
∑

k

εk

=2πV − π(2E − 3T )− πT −
∑

k

εk

=2πχ(R)−
∑

k

εk .

This proves Gauss–Bonnet for regions without any cusp points along the
boundary, which suffices for most applications. But the theorem is also valid
in the cusp case. In fact, the above proof applies as it stands if there are
only inward cusps (cf. Fig. 5.9.2), since then R can be be triangulated as
before. However, the case of outward cusps needs slightly more care.

We refer to Fig. 5.9.2a. Near the cusp point, ∂R looks like two curves
becoming tangent at q. Now cut R along a curve curve C connecting the two
curves near the cusp and remove the part containing the cusp. (The upper
part in Fig. 5.9.2.)
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R R
ε′

ε = π

ε = −π

a. Outward cusp b. Inward cusp

ε′′

R

C

Fig. 5.9.2:

Do this for all the cusps and call the result R′. Then Gauss–Bonnet
applies to R′, to give∫

R′
KdA+

∫
∂R′

kgds = 2πχ(R′)−
∑
i∈Io

εi −
∑
j∈Ic

(ε′j + ε′′j ) ,

where the index set Ic corresponds to the outward cusp points and Io to the
other corners. For each cusp point ∂R′ has two corners with angles ε′ and
ε′′, and as we let the curve C move toward the cusp point, we can arrange
for the sum ε′ + ε′′ to tend to π. In the limit we get formula (5.9.5), where
now εi = π.

We end with some more examples of applications of the Gauss–Bonnet
theorem.

(1) Area formulas for geodesic triangles:

Let R be a triangle with geodesic sides and interior angles α, β and γ.
Then

∫∫
RKdA = α+ β + γ − π. If K is constant, we get

KA(R) = α+ β + γ − π ,

which gives the well–known area formulas in hyperbolic and spherical geom-
etry. In Euclidean geometry it reduces to the relation α+ β + γ = π.

(2) A closed geodesic cannot bound a disk on a surface with curvature
less than or equal to 0. For along such a curve kg = 0, so if it bounds a
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region R homeomorphic to a disk, we would have
∫∫

RKdA = 2π− ε, where
ε ≤ π. But then K cannot be non-positive on R.

(3) Similarly, on a surface of curvature ≤ 0 two geodesics cannot meet
at two points so as to bound a region R homeomorphic to a disk, because
we then would have

∫∫
RKdA = 2π − ε1 − ε2 for two angles εi < π. This

means, for example, that in a neighborhood parametrized by a disk, there
can be only one geodesic joining two points.

(4) Two simple, closed geodesics on a compact surface S of everywhere
positive curvature must have a point of intersection.

In fact, by Gauss–Bonnet, χ(S) > 0, so S ≈ S2. If γ1 and γ2 are two
geodesics which do not intersect, they must bound a region R ≈ S1 × I,
which has Euler characteristic 0. Hence 0 = 2πχ(R) =

∫∫
RK > 0, which is

a contradiction.

(5) As an example of a completely different kind of application we get a
new proof that the Euler characteristic is independent of triangulation. Note
that there is no relation at all between triangulations and metrics locally.

Exercises for 5.9

1. Show that the definition of surface integrals is independent of choice
of parametrization. (Use Exercise 5.3.4.)

2. Find a formula for the geodesic curvature in terms of a parametrization
β(t) which is not necessarily by arc length.

3. Verify “Hopf’s Umlaufsatz” for a Euclidean triangle in R2.

4. Generalize the area formulas in the constant curvature cases to arbi-
trary geodesic n–gons.

5. Show that a compact, oriented Riemannian surface S with curvature
everywhere 0 is homeomorphic to a torus.

Show that if K ≥ 0, but not 0 everywhere, then S is homeomorphic
to a sphere.

6. Suppose S is a compact, oriented surface with constant curvature K 6=
0, and suppose that S = S1 ∪ S2, where S1 ∩ S2 is a simple, closed,
geodesic. Show that the ratio between the areas of S1 and S2 is a
rational number.
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What is this number if K > 0?

7. Assume that a surface homeomorphic to T 2#T 2#T 2 has a geometric
structure modeled on standard hyperbolic geometry. What is its area?

8. Use the Gauss–Bonnet theorem to compute the geodesic curvature of
circles on the standard S2.

9. Let C be a hyperbolic circle of (hyperbolic) radius ρ. Explain why the
geodesic curvature kg of C is constant and depends only on ρ.

Compute kg.

10. Let p be a point in a Riemannian surface S. Let {εn} be a sequence of
positive numbers converging to 0, and let {Cn} be a sequence of simple
closed curves with no non-smooth points, such that d(q, p) < εn for
every q ∈ Cn. Prove that

lim
n→∞

∫
Cn

kgds = 2π.

11. Verify the claim in Remark 4.2.2.

12. Let P ⊂ R3 be a polyhedron homeomorphic to a compact surface. If
v is a vertex P , define its defect d(v) to be 2π − α(v), where α(v)
is the sum of the angles around v. (Hence d(v) measures the failure
of P to lie in a plane near v.) Define the total defect of P to be
D(P ) = Σvd(v), where the sum is over all the vertices of P .

Show that D(P ) = 2πχ(P ). (Descartes’ theorem.)
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