
Mathematical Logic II

Dag Normann

January 7, 2004

Contents

1 Classical Model Theory 5
1.1 Embeddings and isomorphisms 5
1.2 Elementary embeddings . 10
1.3 Complete Theories . 15

1.3.1 Categorical theories . 15
1.3.2 Elimination of Quantifiers 16

1.4 Element types . 23
1.5 Saturated structures . 28
1.6 ω-logic . 31

1.6.1 ω-logic . 31
1.6.2 ω-completeness . 32

1.7 Exercises to Chapter 1 . 34

2 Finitary Model Theory 38
2.1 The 0-1 -law . 38
2.2 Second order languages . 41
2.3 Exercises to Chapter 2 . 43

3 Classical Computability Theory 45
3.1 The foundation, Turing’s analysis 45
3.2 Computable functions and c.e. sets 48

3.2.1 The primitive recursive functions 48
3.2.2 The computable functions 53
3.2.3 Computably enumerable sets 59

3.3 Degrees of Unsolvability . 64
3.3.1 m-reducibility . 64
3.3.2 Turing degrees . 67

3.4 A minimal degree . 72
3.4.1 Trees . 72
3.4.2 Collecting Trees . 74
3.4.3 Splitting Trees . 74
3.4.4 A minimal degree . 75

3.5 A priority argument . 76
3.5.1 C.e. degrees . 76

1

3.5.2 Post’s Problem . 76
3.5.3 Two incomparable c.e. degrees 77

3.6 Subrecursion theory . 79
3.6.1 Complexity . 79
3.6.2 Ackermann revisited . 80
3.6.3 Ordinal notation . 81
3.6.4 A subrecursive hierarchy 83

3.7 Exercises . 83

4 Generalized Computability Theory 90
4.1 Computing with function arguments 90
4.2 Computing relative to a functional of type 2 90
4.3 2E versus continuity . 90
4.4 Hyperarithmetics . 90
4.5 Typed λ-calculus and PCF . 90
4.6 Exercises to Chapter 4 . 90

5 Non-trivial exercises and minor projects 91

6 Appendix:
Some propositions from a beginners course in logic 93

2

Introduction

This book is written as the curriculum text for the course Mathematical Logic II
given at the University of Oslo, Norway. The presumption is that the reader has
taken the course Mathematical Logic, or is familiar with logic up to the same
level. In the Appendix we have collected some propositions without proofs.
These are precise versions of theorems assumed to be known to the reader.

We will assume that the reader is familiar with first order logic at an ele-
mentary level, including the soundness theorem, the deduction theorem and
the completeness theorem for countable theories. We will assume knowledge
of the Henkin-style proof of this theorem. The theorem of constants will be
used extensively. At some occations we will use the full completeness theorem,
though a full proof use Zorn’s Lemma or comparative means. Since most inten-
ded readers also will follow a course in axiomatic set theory, the verification of
Zorn’s Lemma from the Axiom of Choice is left for that course.

This textbook is essentially consisting of two parts, Model Theory and Com-
putability Theory. In model theory we mainly restrict ourselves to the classical
topics like quantifier elimination and omitting/realising types, but have inclu-
ded a brief introduction to finite model theory. In the computability theory part
we use a Kleene-style introduction, and give an introduction to the recursion
theorem, c.e. sets, Turing degrees, a basic priority argument and the existence
of minimal degrees. We also include a chapter on generalized computability
theory.

We will use the following terminology and conventions, all taken from the
present textbook [1] in the course Mathematical Logic:

• L will be a first order language. Unless specified otherwise, L will be a
language with equality.

• c1, c2 etc. will be names (or constant symbols) in a formal language.

• f , g, etc. will be function symbols in a formal language. Sometimes it will
be convenient to consider a name as a function symbol of arity 0.

• R, P , Q etc. will be relation symbols in a formal language.

• v1, v2, . . . is the formal list of variables, but we will mainly use x, y etc.
instead.

• t1, t2 etc. will denote terms.

• φ, ψ, ξ, etc. will denote formulas or sentences.

• A structure A for a language L will consist of a domain A and interpre-
tations lA for each name, function symbol and relation symbol l (l for
’letter’) in L. Whenever we are given structures A and B, we may use A
and B for the domains of these structures without always mentioning it.

3

• s will denote an assignment function, a function assigning an element of a
structure A to each variable vi. φ[s] will be used intuitivly as the formula φ
where all free variables are replaced by names for elements in A according
to the assignment s.

• We will use the terminology tx1,...,xn
t1,...,tn and φx1,...,xn

t1,...,tn for instansiations of
terms for free occurences of variables. In the latter case we assume without
saying that the terms are substitutable for the variables in question.

• Since the notation above is both hard to read and to write, we will so-
metimes write φ(x1, . . . , xn) when φ is a formula with at most x1, . . . , xn
free. When we use this notation, we may write

φ(t1, . . . , tn)

instead of
φx1,...,xn
t1,...,tn .

Each chapter is supplied with a set of exercises at the end, some simple and
some hard. The exercises is an integrated part of the text, and at the end the
students are assumed to have worked through most of them.

Chapter 5 will consist of just exercises. These will not represent integrated
parts of the curriculum, but challenges the eager reader might like to face.

4

Chapter 1

Classical Model Theory

In model theory we investigate the connection between particular first order
theories or first order theories of a special kind and the class of models for that
theory. The completeness theorem is one of the most basic tools in model theory,
and some of the applications will refer to the actual proof of the completeness
theorem. We will also, without hesitation, use the axiom of choice.

1.1 Embeddings and isomorphisms

In this section we will discuss more systematically ways of comparing structures
of a 1. order language L. Some of these concepts will be known to the reader,
but for the sake of completeness we include all relevant definitions.

Definition 1.1 Let L be a first order language, A an L-structure with domain
A.
A substructure B with domain B will be an L-structure such that

1. B ⊆ A.

2. cB = cA whenever c is a name (constant symbol) in L.

3. fB(a1, . . . , an) = fA(a1, . . . , an) whenever f is a function symbol in L of
arity n and a1, . . . , an ∈ B.

4. RB = RA ∩Bn.

Definition 1.2 A first order theory T is open if all non-logical axioms are open,
i.e. has no quantifiers.

Lemma 1.1 Let A be an L-structure.

a) Let B ⊆ A. Then B is the domain of a substructure B of A if and only if
B is closed under all interpretations fA where f is a function symbol (or
a constant) in L.

5

b) Let B be a substructure of A. Let φ be an L-formula and s an assignment
over B (and then also over A.) Then φ[s] is true in B if and only if it is
true in A.

Proof
The proof of a) is trivial and the proof of b) is trivial by induction on the
sub-formula relation.

Given a structure A, it is sufficient to consider the class of substructures for
most purposes where this is relevant. However, sometimes we want to go the
other way, we might like to extend a structure. This is done e.g. in moving
from the natural numbers to the integers, further on to the rationals and maybe
continuing to the algebraic numbers, the real nunbers or the complex numbers.
Whenever convenient we may consider a natural number as a complex number,
though in the set-theoretical model-building there is a far way to go. In the
extreme, a natural number will be a finite set totally ordered by the ∈-relation,
an integer will be an equivalence class of pairs of natural numbers, a rational
number will be an equivalence class of pairs of integers, a real will be a Dedekind
cut of rational numbers (or even worse, an equivalence class of Cauchy sequences
of rational numbers) and a complex number will be a pair of real numbers.
Of course there is no mathematical gain in thinking of complex numbers as
such monsters, it is easier to assume that N ⊂ Z ⊂ R ⊂ C and just base our
mathematics on the intuition about these sets that we have.

When we in the context of a logic course want to extend a structure, it is
standard procedure to use the completeness theorem in such a way that we
ensure that a copy of the original structure will be a substructure. We have to
do some set-theoretical hocus pocus in order to obtain an actual extension.

We will now develop the concepts needed in order to make this precise:

Definition 1.3 let L be a first order language and let A and B be L-structures.

a) An embedding from B to A is a map π : B → A that is one to one and
such that

π(cB) = cA for each name c.

π(fA(a1, . . . , an)) = fB(π(a1), . . . , π(an)) for all a1, . . . , an ∈ B.

RB(a1, . . . , an)⇔ RA(π(a1), . . . , π(an)) for all a1, . . . , an ∈ B.

b) An isomorphism will be an embedding that is onto.

Examples 1.1 a) If we consider 〈R, 0,+, <〉 and 〈R+, 1, ·, <〉 as two struc-
tures for the language with one name, one binary function and one binary
relation, then π(x) = ex is an isomorphism.

b) If we consider the reals as sets of Dedekind cuts of rationals with the
inherited algebraic structure, then π(q) = {r ∈ Q ; r < q} will be an
embedding of Q into R.

6

c) If Z = 〈Z,+, ·, 0, 1〉 is a structure for the language of ring theory, then the
set of non-negative integers will be a substructure (but not a subring) of
Z.

There are two traditions for defining the interpretation of a formula over a
structure. One is using assignments as we did in the introduction. Then we
define the truth value of any formula relative to a given assignment. The other
tradition is to extend the language with names for each element in the struc-
ture, and then only interpret the sentences in this extended language. These
approaches are equivalent, but it turns out that the latter approach is more easy
to use for many of the purposes in model theory.

Definition 1.4 Let L be a first order language, A an L-structure.

a) By L(A) we mean the language L where we add one new constant symbol
ca for each a ∈ A.

b) As a default, we will consider A as an L(A)-structure via the interpretation
cAa = a.

See Exercise 1.3 for the tedious, but simple observations that have to be made.
Recall that a literal is a formula that is either an atomic formula or the negation
of an atomic formula.

Definition 1.5 Let L be a first order language and let A be an L structure.
By the diagram of A, D(A), we mean the set of variable-free literals in L(A)
that are true in A.

The diagram will play an important part when we want to show that we have
extensions of a structure A with some desired properties; we just have to show
that the diagram of A is consistent with the desired properties:

Lemma 1.2 Let L be a first order language, A and B L-structures.
Then the following are equivalent:

i) There is an embedding π of A into B.

ii) We may give an interpretation of the extra constants ca from L(A) in B
such that B becomes a model for D(A).

Proof
Assume i). Let (ca)

B = π(a). With this interpretation, ii) is verified.
Assume ii). Let π(a) = (ca)

B. Since L is a language with equality, and B is a
model for the diagram of A, π will be an embedding.

It will be a matter of taste if we talk about extensions of structures or of
embeddings into other structures, see Exercise 1.4. Our first result is a typical
modeltheoretical one, we connect the logical form of the axioms in a theory
with the relations between models and their substructures. Recall that two first
order theories are equivalent if they have the same theorems. (A consequence
will be that they are based on the same language; why?)

7

Theorem 1.1 (Los-Tarski)
Let T be a first order theory over a language L. Then the following are equiva-
lent:

1. If B is a model for T and A is a substructure for B, then A is a model for
T .

2. T is equivalent to an open theory T ′.

Proof
By the completeness theorem, two theories will be equivalent if and only if they
have the same models. Thus 2.⇒ 1. is already proved.
Now assume that 1. holds. Let the non-logical axioms in T ′ be the open theorems
of t . Then T ′ is an open theory, and all models for T will be models for T ′. In
order to prove that T and T ′ are equivalent, we must prove the converse. So,
let A be a model for T ′. In order to prove that T ′ is a model for T , consider
the theory

T ∗ = D(A) ∪ T.
Claim
T ∗ is consistent.

Proof
Assume not. Then there are φ1, . . . , φn in the diagram of A such that T ∪
{φ1, . . . , φn} is inconsistent, or alternatively, that T ` ¬(φ1 ∧ · · · ∧ φn).
Each φi will be an instance of some literal ψi in L, and we may let the same name
ca be substituted for the same variable z. Thus there are variables z1, . . . , zm,
new names ca1 , . . . , cam and literals ψ1, . . . , ψn in L such that

φi = (ψi)
zi,...,zm
ca1 ,...,cam

for each i ≤ n.
The names caj will not occur in the non-logical axioms in T , so by the theorem
of constants, T ` ¬(ψ1 ∧ · · · ∧ ψn).
However, each φi is a true literal, so φ1∧· · ·∧φn is a valid instance of ψ1∧· · ·∧ψn.
This contradicts that ¬(ψ1 ∧ · · · ∧ ψn) is valid in A, and the claim is proved.

Let B be a model for T ∗. There will be an embedding of A into B, and by
Exercise 1.2, A is a model for T .
This ends the proof of the theorem

Sometimes in model theory we will construct a structure by piecewise exten-
sions, quite often using the completeness theorem at each step. In order to
handle such constructions we need the concept of direct limit, a concept you
find in other parts of mathematics as well.

Definition 1.6 Let 〈I,<〉 be a partial ordering.
The ordering is called directed if

∀i ∈ I∀j ∈ I∃k ∈ I(i < k ∧ j < k).

8

A directed ordering is a generalisation of an increasing sequence.

Definition 1.7 Let L be a first order language.

a) A directed system of L-structures will consist of

1. A directed ordering 〈I,<〉
2. An L-structure Ai for each i ∈ I
3. An embedding πij : Ai →Aj whenever i ≤ j in I

such that πii is the identity function on each Ai and such that whenever
i ≤ j ≤ k, then πik = πjk ◦ πij where ◦ denotes composition.

b) Using the notation from a), a directed limit of the system will be an L-
structure A and embeddings πi : Ai →A for each i ∈ I such that

– If i ≤ j, then πi = πj ◦ πij.
– If B is an L-structure and ηi is an embedding from Ai to B for each
i ∈ I such that ηi = ηj ◦ πij whenever i ≤ j, then there is a unique
embedding η : A → B such that ηi = η ◦ πi for each i ∈ I.

Remark 1.1 The concept of a directded limit is more general. In a category
theoretical context it is often known as a colimit.

Theorem 1.2 Each directed system will have a directed limit, and this is unique
up to isomorphisms.

Proof
The reader should verify for her/himself that if A and B both satisfies the
requirements of a directed limit, then A and B are isomorphic.
Let X be the set of ordered pairs (i, a) such that a ∈ Ai where Ai is the domain
of Ai.
We let (i, a) ≈ (j, b) if for some k ∈ I we have that i ≤ k, j ≤ k and πik(a) =
πjk(b).
This definition does not depend on the choice of k, and ≈ will be an equivalence
relation.
Let A be the set of equivalence classes [(a, i)], and let πi(a) = [(a, i)].
Whenever C1, . . . , Cn are equivalence classes, we may find an i ∈ I and
a1, . . . , an ∈ Ai such that Cj = [(i, aj)] for each j ≤ n. Here we use that 〈I,<〉
is a directed ordering.
We let

fA(C1, . . . , Cn) = [(i, fAi(a1, . . . , an))]

and
RA(C1, . . . , Cn)⇔ RAi(a1, . . . , an)

whenever f and R are n-ary.
This definition does not depend on i.
The details left out and the rest of the proof is left for the reader as Exercise
1.5.

9

1.2 Elementary embeddings

If two structures A and B for the same language L are isomorphic, they will
have the same logical properties. In fact, this must be true as long as a logical
property reflects the structure itself and not the underlying set-theoretical re-
presentation of the domains or of other parts of the interpretations. In paricular,
they will share the same properties expressible in higher order logic.
Concepts like finite, well ordering, countable and complete are not expressible
in first order logic. In order to make a discussion of this precise, we need a new
concept:

Definition 1.8 Let L be a first order language, and let A and B be two L-
structures.
We say that A and B are elementary equivalent if

A |= φ⇔ B |= φ

whenever φ is a sentence in L.
Since it is useful to consider a structure as the same structure even if we in-
terpret several additional names, we refer to L in the notation for elementary
equivalence. We write

A ≡L B
when A and B are elementary equivalent with respect to sentences in L.

The Norwegian Logician Thoralv Skolem demonstrated the limitations of the
ongoing program formalising mathematics.

Theorem 1.3 (Skolem)
Let L be the first order language of number theory, and let

N = 〈N, 0, 1,+, ·, exp,<〉

be the standard model.
Then there is another L-structure N ′ that is elementary equivalent to N , but
not isomorphic.

Proof
This is a consequence of the compactness theorem. Let c be a new name, let T
be the set of sentences in L valid in N , and let T ∗ be T extended by the axioms
ck < c for each k, where ck is the numeral in L denoting the number k.
Each finite subtheory of T ∗ may use N as a model, so by the compactness
theorem, there is a model N ′ for T ∗. This model will be elementary equivalent
to N because both are models for T , but they are clearly not isomorphic.

Remark 1.2 The completeness theorem and the compactness theorem were
not available to Skolem. His argument used another form of model theoretical
construction, something we might call a reduced ultraproduct construction.

10

By a similar argument we may show that the mathematically important concept
of a well ordering is not definable in first order logic.

Definition 1.9 Let 〈X,<〉 be a total ordering. 〈X,<〉 is a well ordering if
every nonempty subset Y ⊆ X has a least element.

Theorem 1.4 There is no first order theory T with the class of well orderings
as its models.

Proof
Any such theory must be over the language with one binary relation symbol, we
may as well denote it by <, and a sentence φ in L will be a theorem in T if and
only if φ is true for all well orderings. So let T be the theory with all sentences
φ true for all well orderings as its non-logical axioms. We will show that T has
a model that is not a well ordering.

Extend L with new names ck for each natural number k and let T ∗ be T
extended with all axioms ck+1 < ck for k ∈ N.
Each finite subtheory T0 of T ∗ will have a model, since there are arbitrarily long
finite well orderings. By the compactness theorem, T ∗ has a model

A = 〈A,<A, {cAk }k∈N〉.

Clearly the set {cAk ; k ∈ N} has no least element, so 〈A,<A〉 is not a well
ordering.
However

〈A,<A〉 |= T,

so this structure has all the first order properties shared by all well orderings.

Definition 1.10 A first order theory T over a language L is complete if T is
consistent and T ` φ or T ` ¬φ for each sentence φ in L

The following is a direct consequence of the completeness theorem:

Lemma 1.3 Let T be a first order theory over a language L. The following are
equivalent:

1. T is complete.

2. A ≡L B for all models A and B for T .

If L is a first order language,A and B are L-structures, and π is an embedding
from A to B, we may view B as a structure for L(A) using the interpretation

(ca)
B = π(a).

Definition 1.11 Let L be a first order language, and let A and B be two L-
structures.

11

a) Assume that A is a substructure of B. We say that A is an elementary
substructure of B if A ≡L(A) B.

b) Assume that π is an embedding from A to B and view B as a structure
for L(A) as above.
We call π an elementary embedding if A ≡L(A) B.

Definition 1.12 Let L be a first order language, A an L-structure. The theory
of A, Th(A), will have the sentences in L(A) that are true inA as the non-logical
axioms.

We have the following observation:

Lemma 1.4 Let L be a first order language, A and B be two L-structures. The
following are equivalent:

1. There is an elementary embedding π from A to B.

2. There is an interpretation of each new constant in L(A) as an element in
B such that B becomes a model for Th(A).

Proof
Both directions are based on establishing the equality

π(a) = (ca)
B.

The details are left for the reader.

Theorem 1.5 Let L be a first order theory, A and B two L-structures. Then
the following are equivalent:

1. A ≡L B.

2. There is an L-structure C with elementary embeddings π : A → C and
η : B → C.

Proof
2. ⇒ 1. is trivial, so assume that A and B are elementary equivalent. We will
extend L by adding names ca for each a ∈ A and a disjoint set of names db for
b ∈ B.
Let T = Th(A) ∪ Th(B). We will prove that T is consistent.

Assume not. We will use that the set of axioms in Th(A) and the set of axioms
in Th(B) are closed under ∧.
There are sentences φ in Th(A) and ψ in Th(B) such that ` ¬(φ ∧ ψ). Let
x1, . . . , xn, y1, . . . , ym be fresh and distinct variables and let φ′ and ψ′ be L-
formulas such that φ is of the form

(φ′)x1,...,xn
ca1 ,...,can

12

and ψ is of the form
(ψ′)y1 ,...,ym

db1 ,...,dbm

.
By the theorem of constants

` ¬(φ′ ∧ ψ′),
and using propositional logic and rules for quantifiers

` ∃x1 · · ·∃xnφ′ → ∀y1 · · ·∀ym¬ψ′.

Now ∃x1 · · · ∃xnφ′ will hold in A since a1, . . . , an makes φ′ true. Since A and B
are elementary equivalent, ∃x1 · · ·∃xnφ′ will be true in B as well.
As a consequence we must have that ∀y1 · · · ∀ym¬ψ′ is true in B. But this is
impossible, since there is an instance that makes ψ′ true in B, namely ψ. Thus
we have observed a contradiction.

The assumption was that T is not consistent, and our conclusion will be that T
is consistent and has a model C. By Lemma 1.4 we see that 2. holds. This ends
the proof of the theorem.

In Exercise 1.6 we give an application of this theorem.

In section 1.1 we discussed directed limits of directed systems. Such systems
where all embeddings are elementary are of a particular interest:

Definition 1.13 Let L be a first order language, 〈I,<〉 be a directed set and
let 〈{Ai}i∈I , {πij}i<j〉 be a directed system of L-structures.
We call the system elementary if each πij is an elementary embedding.

The limit embeddings of an elementary system will be elementary, see Exercise
1.7.

We will prove two important theorems about elementary extensions, the so
called Löwenheim-Skolem theorems. The theorems say that there is no way
first order logic can distinguish between infinities that dominate the size of the
language in question. One consequence will be the Skolem’s paradox;

there is an elementary countable substructure of the reals.

This is not a real paradox, it only demonstrates that first order logic is not
adequate for proving, or even stating, that R is uncountable.

Theorem 1.6 Let A be an infinite first order structure over the language L.
Let X be any set.
Then there is an elementary extension B of A and an injective map δ : X → B.
(We can find elementary extensions of A of arbitrarily large cardinality.)

Proof
Let L∗ be L(A) extended with a name db for each element b ∈ X. Let T be the
theory Th(A) extended with the axioms db 6= dc whenever b and c are distinct

13

elements of X.
Since A is infinite, A can be viewed as a model for each finite subtheory of T ∗,
so T ∗ has a model B. Using Exercise 1.4 adjusted to elementary embeddings,
we see that we may let B be an extension of A. Let δ(b) = (db)

B. δ will be
injective, and the theorem is proved.

This was the easy upwards Löwenheim-Skolem theorem. We will now face
the downwards Löwenheim-Skolem theorem. Since we will not bother to get in-
volved in too much cardinality arithmetics, we restrict ourselves to the countable
case, which in any case is the most important and best known case.

Theorem 1.7 Let L be a countable first order language, and let A be an L-
structure.
Then A has a countable elementary substructure.

Proof
Let φ be a formula in L, a1, . . . , an elements of A. In order to improve the
readability, we will let

φ(x1, . . . , xn)

mean that all free variables in φ are among x1, . . . , xn, and we will write

φ(a1, . . . , an)

instead of
φx1,...,xn
ca1 ,...,can

.

Let φ(y, x1, . . . , xn) be a formula in L. A Skolem Function for φ is a function
h : An → A such that whenever a1, . . . , an are in A then

φ(h(a1, . . . , an), a1, . . . , an) is true in A

whenever

there is some b ∈ A such that φ(b, a1, . . . , an) is true in A.

For each such formula φ, we select one such Skolem function hφ. If n = 0,
hφ will be a function of no variables, which will be just an element of A. In
particular, hy=y ∈ A.
If f is a function symbol in L, we find fA as one of the Skolem functions: Let
φ be the formula y = f(x1, . . . , xn). Then fA = hφ
Since L is countable, the set of Skolem functions will be countable.
Let B0 be the empty set, and by recursion, let

Bk+1 = {h(a1, . . . , an) ; h is a Skolem function and a1, . . . , an ∈ Bk}.

By induction on k we see that each Bk will be countable, and that Bk ⊆ Bk+1.
Let B be the union of the Bk’s. Then B is a countable subset of A, and by
construction, B is closed under all the Skolem functions. By Lemma 1.1, B is

14

the domain of a substructure B ofA. It remains to prove that B is an elementary
substructure of A, which amounts to prove that whenever a1, . . . , an are in B,
then φ(a1, . . .an) is true in B if and only if it is true in A.
This is proved by induction on the complexity of φ.
If φ is atomic, the equivalence follows from the fact that B is a substructure of
A.
If φ = ¬ψ or φ = ψ1 ∨ ψ2, the induction step is trivial.
If φ(a1, . . . , an) = ∃yψ(y, a1, . . .an), and φ(a1, . . . , an) is true in B via some b,
then, by the induction hypothesis, it will be true in A via the same b.
If on the other hand φ(a1, . . . , an) is true in A via some b, it is true in A via
hψ(a1, . . . , an).
Since hψ(a1, . . . , an) ∈ B, we may use the induction hypothesis and see that
φ(a1, . . . , an) is true in B via hψ(a1, . . . , an).
This ends the proof.

1.3 Complete Theories

In the previous section, we defined a consistent first order theory to be complete
if all sentences of the language can be proved or disproved. In this section we
will look for criteria for a theory to be complete.

1.3.1 Categorical theories

A first order theory is categorical if all models are isomorphic. If a theory is
categorical, it is a consequence of the uppwards Löwenheim-Skolem theorem
that all models are finite. Thus this concept is of a rather limited interest. The
following is more interesting:

Definition 1.14 Let L be a countable first order language, and T a theory over
L. T is ω-categorical if all countable models are isomorphic.

It is easy the see that an ω-categorical theory must be complete, see Exercise
1.8. In Exercise 1.12 we see that the converse is not true.

Example 1.2 Let DO be the first order theory over the language L with equa-
lity and one binary relation symbol <, and with the following axioms:

DO-1 ¬(x < x)

DO-2 x < y ∧ y < z → x < z

DO-3 x < y ∨ y < x ∨ x = y

DO-4 x < y → ∃u∃v∃w(u < x ∧ x < v ∧ v < y ∧ y < w)

The first three axioms tells us that < is a total ordering, while DO-4 implies
that there is no largest element, no least elements, and that the elements in the
ordering are densly ordered. DO stands for dense ordering.

15

We claim that DO is ω-categorical. We give an outline of the proof, and leave
the details as Exercise 1.9
Let 〈A,<A〉 and 〈B,<B〉 be two countable models for DO. A finite partial
isomorphism will be an order preserving map p : K → B where K ⊆ A is finite.
The set of finite partial isomorphisms have the following extension properties:

• If p is a finite partial isomorphism and a ∈ A, then p can be extended to
a finite partial isomorphism q defined on a.

• If p is a finite partial isomorphism and b ∈ B, then p can be extended to
a finite partial isomorphism q with b in its range.

Given enumerations A = {an ; n ∈ N} and B = {bn ; n ∈ N} we can con-
struct an increasing sequence of finite partial ismorphisms {pn}n∈N securing
that p2n(an) is defined and that bn is in the range of p2n+1. The limit of these
finite partial isomorphisms will be an isomorphism between the two structures.

We will discuss ω-categoricity in more depth in the paragraph on element types
and in the chapter on finite model theory. The method of proof is for obvious
reasons called a back-and-forth construction. Sometimes in the litterature, it is
called a zig-zag-construction.

1.3.2 Elimination of Quantifiers

One of the key success stories of model theory is that of proving completeness
of a theory via elimination of quantifiers, and thereby proving theorems about
algebraic theories og genuine interest. Our key example will be field theory, but
the main application is the theory of real closed fields. We have used traditional
texts on model theory as sources for our exposition in this and later sections on
model theory, in particular Sacks [2]. We will assume that the reader is familiar
with field theory, but give a brief introduction for the sake of completeness.

Field Theory

The language of field theory that we will use, will consist of three constants, 0,
1 and −1 and two binary function symbols + and ·. As logicians, we should
make a clear distinction between these symbols and the symbols we use for the
particular interpretations, but unless forced by the cirumstances, we will not do
so.
We will base field theory on the following list of axioms:

F 01 (x+ y) + z = x+ (y + z)

F 02 x+ 0 = x

F 03 x+ (−1 · x) = 0

F 05 (x · y) · z = x · (y · z)

16

F 06 x · 1 = x

F 07 x 6= 0→ ∃y(x · y = 1)

F 08 x · y = y · x

F 09 x · (y + z) = x · y + x · z

F 10 0 6= 1

We will use the standard algebraic notation like e.g. xy and −x for x · y and
(−1) · y resp.
A field will be a model for this theory. Each natural number n will have an
interpretation in a field F . If F is a field and p is a prime, we say that the field
have characteristic p if

F |= p = 0.

Zp = {0, . . . , p− 1} where addition and multiplication are carried out modulo
p (where p is a prime) is an example of a field of characteristic p. If the reader
is not familiar with this fact she/he should verify it by her/himself. A field
will be of characteristic 0 if it is not of characteristic p for any prime p (a non-
prime cannot be the characteristic of a field). The distinction between finite
and infinite characteristics cannot be made in first order logic, neither can the
distinction between finite and infinite fields. See Exercise 1.10 for more precise
statements about this.

Other familiar examples of fields are Q, R and C with the standard algebraic
structures. All these fields will have characteristic 0.

Definition 1.15 A field F is algebraically closed if each polynomial P of one
variable and degree > 0 will have a root. This can be expressed by the infinite
set of axioms

yn 6= 0→ ∃x(ynx
n + yn−1x

n−1 + · · ·+ y0 = 0),

where xn has its usual mathematical meaning, and n ≥ 1.
We let ACF denote the theory of algebraic closed fields, andACF (p) or ACF (0)
denote the extension where the characteristic of the field is specified.

Lemma 1.5 An algebraically closed field is never finite.

Proof
Let a1, . . . , an be elements of an algebraically closed field, and let

P (x) = (x− a1) · · · (x− an)− 1.

If P (x) = 0, then x 6= a1, . . . , an.

17

The isomorphisn property

Definition 1.16 Let T be a first order theory.
We say that T satisfies the isomorphism property if whenever A and B are models
for T , A0 and B0 are substructures of A and B resp. and π0 is an isomorphism
from A0 to B0, then π0 can be extended to an isomorphism between submodels
A1 and B1 of A and B.

Example 1.3 The theory DO satisfies the isomorphism property.

If we have two dense orderings and two isomorphic suborderings, either these
suborderings are themselves dense, or they will have isomorphic gap structures.
Using the proof of the ω-categoricity of DO we see that each pair of gaps can
be filled by copies of Q taken from the given dense orderings. The result will
be isomorphic submodels. We leave the details for the reader.

Example 1.4 The theory of fields satisfy the isomorphism property

A substructure of a field will contain 0, 1 and −1, and will be closed under
summation and multiplication, so a substructure is actually a subring. So the
task is to show that isomorphic subrings can be extended to isomorphic subfields
inside the given fields. This is basic algebra, we have isomorphic ”quotient-
structures” of the two rings, and interpreting each quotioent in the fields will
give isomorphic subfields.

We also use standard algebra to prove

Lemma 1.6 The theory ACF will satisfy the isomorphism property

Proof
Since this book is not a textbook in algebra, we will not give all the details.
Given a field F0 and an irreducible polynomial P (x) over that field we may
extend the field by a root of that polynomial in a purely algebraic way, by
considering the field of all polynomials Q(x) modulo P (x). If F0 is a subfield
of an algebraically closed field F , and a ∈ F is a root of P , then the map
Q(x) 7→ Q(a) is an isomorphism between the formal extension and a larger
subfield of F . (Euclied’s algorithm for the largest common divisor applied to
polynomial division is central here).
The algebraic closure of a field can be described as the result of a transfinite
sequence of such formal extensions, so the algebraic closures of isomorphic fields
within algebraically closed fields will be isomorphic.

In Exercise 1.11 we will give an alternative proof.

Lemma 1.7 Let T be a first order theory over a language L and assume that
T has the isomorphism property.
Let T ′ be obtained from T by adding new constants to L, but no new non-logical
axioms. Then T ′ has the isomorphism property.

The proof is trivial and is left for the reader.

18

The submodel property

Definition 1.17 Let φ be a formula in a first order language L. We call φ
simple if φ is of the form ∃ψ where ψ is open.

Definition 1.18 Let L be a first order language, T a theory over the language
L.
We say that T has the submodel property if whenever B is a model of T , A is
a submodel of B and φ is a simple sentence in L(A), then φ is true in A if and
only if it is true in B.

Example 1.5 The theory DO satisfies the submodel property.

Dropping formalities, let φ be the sentence ∃xψ(x, a1, . . . , an). ψ can only ex-
press that x equals some ai or that it is larger than some ai’s and smaller than
others. If one such x can be found in some dense ordering extending {a1, . . . , an}
then it can be found in all such dense orderings.

Example 1.6 Field theory does not satisfy the submodel condition

Consider the statement ∃x(x ·x = 2). This sentence is not true for the rationals,
but for the reals.

Lemma 1.8 The theory of algebraically closed fields satisfies the submodel con-
dition.

Proof
Let B be an algebraically closed field, and let A be an algebraically closed
subfield. Let φ = ∃xψ be a simple sentence in L(A). Then ψ is a Boolean
combination of atomic formulas ξ(x, a1, . . . , an), where a1, . . . , an are in A.
The function symbols are denoting plus and times, so each term t(x) in L(A)
will be equivalent to a polynomial in the variable x with coefficients from A.
Since = is the only predicate, each atomic formula ξ(x, a1, . . . , an) is equivalent
to a polynomial equation

Pξ(x) = 0

where Pξ has coefficients from A. This equation will have a root in A if and
only if it has a root in B.
If φ is true in A, the φ is trivially true in B. On the other hand, assume that
φ is true in B via b, i.e. ψ(b, a1, . . . , an) is true in B. If one of the atomic
subformulas ξ are true for x = b, then b is the root of the polynomial Pξ with
coefficients from A, so b is in A. On the other hand, if none of the subformulas
ξ of ψ are true for x = b, we use that A is infinite (see Lemma 1.5), and that
a finite set of polynomials only will have a finite set of roots. Thus let x = a,
where a is in A and a is not making any of the subformulas ξ of ψ true. Then
a and b satisfy the same atomic subformulas of ψ, so ψ(a, a1, . . . , an) must be
true. This means that φ is true in A.

19

Lemma 1.9 Let L be a first order language and let T be a theory over L that
has the submodel property. Let T ′ be obtained from T by adding new names to
L but no new non-logical axioms.
Then T ′ has the submodel property.

The proof is left for the reader.

Elimination of quantifiers

Definition 1.19 Let L be a first order language, T a theory over L.
We say that T accepts elimination of quantifiers if we for each formula φ have
an open formula ψ such that

T ` φ↔ ψ.

Lemma 1.10 Let L be a first order language and T a theory over L. Then T
accepts elimination of quantifiers if and only if each elementary formula in L is
equivalent in T to an open formula.

Proof
The ’only if’-direction is obvious, so assume that each elementary formula in L
will be equivalent in T to an open formula.
By induction on the complexity of a formula φ, we prove that it is equivalent
in T to an open formula, where we use the assumption to handle the quantifier
case.

Lemma 1.11 Let L be a first order language, T a theory over L.
Let φ be a sentence in L, and assume that whenever A and B are models for T
satisfying the same variable free sentences, then φ has the same truth values in
A and in B.
Then φ is equivalent in T to a variable free sentence in L.

Note
If a formula φ is variable free, it contains neither bound nor free variables,
and thus no quantifiers. Another way of describing such formulas are as open
sentences.

Proof
Let T0 be T extended with all variable free theorems in T ∪ {φ}. It is sufficient
to show that φ is a theorem in T0.
Assume not, and let A be a model for T0 ∪ {¬φ}.
Let ∆ be the set of variable free sentences true in A, and let B be a model for
T ∪∆. Then the same variable free sentences are true in A and in B (namely
∆), so ¬φ will hold in B as well.
B was an arbitrary model for T ∪∆, so by the completeness theorem,

T ∪∆ ` ¬φ.
Then there are ξ1, . . . , ξn ∈ ∆ such that

T, φ ` ¬(ξ1 ∧ . . .∧ ξn).

20

Now ξ1, . . . ξn will be simultaneous instances of formulas ξ′1, . . . , ξ
′
n in L, and by

the theorem of constants
T, φ ` ξ′

where
ξ′ = ¬(ξ′1 ∧ · · · ∧ ξ′n).

But then each instance of ξ′ will be true in A, contradicting that ξi is true in
A for each i.
The assumption was that φ is not a theorem in T0. This led to a contradiction,
so we are through.

Theorem 1.8 Let L be a first order language, T a theory over L that satisfies
both the isomorphism condition and the submodel condition. Then T accepts
elimination of quantifiers.

Proof
By Lemma 1.10 it is sufficient to show that if φ = ∃xψ(x, x1, . . . , xn) where ψ is
open, then φ is equivalent in T to an open formula. Extend T to T ′ by adding
names e1, . . . , en, but no new non-logical axioms. By Lemmas 1.7 and 1.9, T ′

has the isomorphism and submodel properties.
We will show that ∃xψ(x, e1, . . . , en) is equivalent in T ′ to a variable free sen-
tence ξ(e1, . . . , en). Having done this, we conclude, using the theorem of con-
stants, that ∃xψ(x, x1, . . . , xn) is equivalent in T to ξ(x1, . . . , xn).

By Lemma 1.11 it is sufficient to show that whenever A and B are two models
for T ′ satisfying the same variable free formulas, then ∃xψ(x, e1, . . . , en) will
have the same truth values in A and in B.
If A and B satisfy the same variable-free formulas, the respective minimal sub-
structures A0 and B0 consisting of all interpretations of closed terms will be
isomorphic. By the isomorphism property for T ′, this isomorphism can be
extended to an isomorphism between two submodels A1 and B1 of A and B
resp. Since T ′ has the submodel property, we have that ∃xψ(x, e1, . . . , en) will
have the same truth values in A and A1 and in B and B1. Since A1 and B1 are
isomorphic, we are through.

Prime Models

Definition 1.20 Let L be a first order language with at least one constant
symbol. Let T be a first order theory over L, and let A be an L-structure. A is
called a prime model for T if A can be embedded into any model B for T .

One important notice, a prime model for T is not neccessarily a model for T .
Actually we have

Lemma 1.12 Let L be a first order language, T a theory over L and A a prime
model for T . Then A is a prime model for any extension T ′ of T over L.

The (trivial) proof is left for the reader.

21

Example 1.7 Let L be the language of DO extended with the constants ci for
i ∈ N.
Let DO+ be the theory DO extended with the axioms ci < ci+1.
Then N with its usual ordering, and with i as the interpretation of ci, is a prime
model for DO+.

In Exercise 1.12 We will see that DO+ is a complete theory that is not
ω-categorical.

Lemma 1.13 Let T be a first order theory over a language L, and assume that
L has at least one constant symbol. Then the following are equivalent:

1. T has a prime model.

2. Each variable free formula in L is decidable in T .

Proof
First assume 1. Let A be a prime model for T . Then for any model B for T and
any variable free φ (the constant symbol in L ensures that there are variable
free formulas), the truth value of φ in B will be the same as in A. Thus the
existence of a prime model ensures that each variable free formula either is true
in all models for T , and thus is a theorem, or is false in all models, and thus is
disprovable in T . Thus they are all decidable in T , and 2. is proved.
Now assume 2. For any model A of T , let A0 be the submodel consisting of all
interpretations of closed terms t in A.
If A and B are two models for T , we define π : A0 → B0 by π(tA) = tB. Since
all variable free formulas are decidable, π is well defined and an isopmorphism.
This shows that A0 is a prime model for any A such that A |= T .

A completeness criterion

Theorem 1.9 Let L be a first order language and let T be a theory over L such
that

1. T is consistent.

2. The language L of T has at least one constant symbol.

3. T has a prime model.

4. T satisfies the isomorphism property.

5. T satisfies the submodel property.

Then T is complete.

Proof
By Theorem 1.8 we have that T accepts elimination of quantifiers.
Let φ be a sentence in L and let ψ be open such that T ` φ ↔ ψ. We may
assume that φ is variable free, since otherwise we may replace it by φ(c, . . . , c),
where c is a constant of the language.
Since T has a prime model, ψ is decidable in T by Lemma 1.13, so φ is decidable
in T .

22

1.4 Element types

Throughout this section, we will let L be a fixed countable first order language,
and we will let T be a complete theory over the language L.

Definition 1.21 An n-type is a maximal set X of formulas φ(x1, . . . , xn) such
that for all φ1, . . . , φk in X we have that

T ` ∃x1 · · ·∃xn(φ1 ∧ · · · ∧ φk).

We will use the expression maximally consistent for this property. Each consi-
stent set of formulas with at most x1, . . . , xn free can be extended to an n-type.
An n-type will be closed under ∧, and for each formula φ with at most x1, . . . , xn
free the maximality of X will ensure that φ ∈ X or ¬φ ∈ X.

Definition 1.22 Let X be an n-type and A a model for T . We say that A
realises X if for some a1, . . . , an in A, A |= φ(a1, . . . , an) for each φ ∈ X.
If A does not realise X we say that A omits X.

Example 1.8 let N be the standard model for number theory and T = Th(N).
Let X be a maximally consistent extension of {cn < x ; n ∈ N} where cn is the
numeral for n in the language. This is a 1-type that is omitted by the standard
model. The construction of a nonstandard elementary extension of N used to
prove Theorem 1.3 amounts to constructing a model realising this type.

The method used to prove Theorem 1.3 is quite general, and can be used to
prove the following

Theorem 1.10 Let X be an n-type. Then there is a model A for T realising
X.

Proof
The proof is left as Exercise 1.17. Add new names for the n variables and use
the compactness theorem.

Some n-types will be realised by every model of T .

Definition 1.23 An n-type X is principal if for some φ ∈ X we have that

T ` φ→ ψ

for all ψ ∈ X. We call φ a generating element. If X is not principal, we will use
the term nonprincipal.

Lemma 1.14 If X is a principal type, then X is realised in every model A of
T .

Proof
Any interpretation of x1, . . . , xn that satisfies the generating element will realise
the type.

23

Lemma 1.15 Let n be fixed.
Then the following are equivalent:

1. There are infinitely many n-types

2. There is a nonprincipal n-type.

Proof
First assume that there is a nonprincipal n-type X = {φi ; i ∈ N}. For each
i ∈ N there must be a ji > i such that

T 6` φ1 ∧ · · · ∧ φi → φji

since otherwise the type will be principal. Thus, {φ1, . . . , φi,¬φji} must be
consistent, and there is an n-type Xi extending this set. Clearly, if j ≥ ji, then
Xi and Xj are different, so there are infinitely many n-types.
Now assume that all types are principal. Since L is countable, we will only be
able to use countably many generating formulas, so the set of n-types is at most
countable.
With the aim of obtaining a contradiction, assume that this set is infinite.
Let {Xi}i∈N be an enumeration of all the n-types. Let φi be a generating
formula for Xi. Then, if i 6= j we must have that ¬φi ∈ Xj . In particular, if
j > max{i1, . . . , ik} we will have that ¬(φi1 ∧ . . .∧ φik) ∈ Xj.
It follows that {¬φi ; i ∈ N} is a consistent set (here we use the assumption
that there are infinitly many principal n-types), and may thus be extended to
an n-type different from all the Xi’s. This contradicts the assumption that we
have enumerated them all, and the lemma is proved.

If A is a model for T and a1, . . . , an are elements in A (possibly with repe-
tition), then a1, . . . , an realises exactly one n-type,

X = {φ(x1, . . . , xn) ; A |= φ(a1, . . . , an)}.

This indicates that the set of types may give us information about the class of
countable structures. One example of this is

Theorem 1.11 Assume that all n-types are principal for all n.
Then T is ω-categorical.

Proof
We will elaborate on the proof of the ω-categoricity for the theory DO.
Let A and B be two countable models for T with domains A and B. Let
A′ = {a1, . . . , an} ⊆ A and B′ = {b1, . . . , bn} ⊆ B be finite sets (without
repetition) and let p(ai) = bi. We call p apartial isomorphism if {a1, . . . , an}
and {b1, . . . , bn} realise the same n-type.

Claim
If p is a partial isomorphism and a ∈ A, then p can be extended to a partial
isomorphism q defined on a.

24

Let us first see how to prove the theorem from the claim. The statement is
symetric in A and B, so given b ∈ B we may as well extend p to a q with b in
its range. A and B will be elementary equivalent since T is complete. We may
consider the empty function as a partial isomorphism defined on the empty set.
Using the extensions obtained from the claim, we then use the back-and-forth
strategy and build up a sequence of partial isomorphisms ensuring that each
a ∈ A will be in the domain of one of the partial isomorphisms, and each b ∈ B
will be in the range of one of the partial isomorphisms. In the end, we have
constructed a total isomorphism.

Proof of claim
Let X be the n + 1-type of {a1, . . . , an, a}. Since we have assumed that all
n + 1-types are principal, there is a generating φ(x1, . . . , xn, xn+1) in X.
Since A |= φ(a1, . . . , an, a) we have that

A |= ∃xn+1φ(a1, . . . , an, xn+1).

Since {a1, . . . , an} and {b1, . . . , bn} realise the same n-type,

B |= ∃xn+1φ(b1, . . . , bn, xn+1).

Choose b ∈ B such that φ(b1, . . . , bn, b) holds in B and let q(a) = b.
Let ψ ∈ X. Since

T ` φ(x1, . . . , xn, xn+1)→ ψ(x1, . . . , xn, xn+1)

we see that ψ(b1, . . . , bn, b) will hold in B. This shows that X is the type realised
by {b1, . . . , bn, b}, and the claim is proved.

As a consequence we see that if the number of n-types is finite for each n,
then T is ω-categorical. We will prove the converse to this, but in order to do
so we need the theorem about omitting types.

Theorem 1.12 Let X be a nonprincipal n-type. Then there is a model for T
omitting X.

Proof
The idea of the proof is as follows: We extend the language L of T with Henkin
constants c1, c2, . . . and we extend T with Henkin axioms. Then, following
the proof of the completeness theorem, we must make a complete extension
of this extended theory and then form the term model. The term model will
consist of equivalence classes of closed terms, and in fact, via the Henkin con-
stant for ∃x(x = t), we see that each equivalence class will contain one Henkin
constant. Thus we must ensure, during the completion process, that for any
collection ci1 , . . . , cin of Henkin constants there is a formula φ ∈ X such that
¬φ(ci1 , . . . , cin) is added to the theory.

In the proof of the completeness theorem we ad Henkin constants and Henkin
axioms in waves. However, we prove that each wave is countable. Thus the set
of new constants are countable, and we may just organise them in a list as above

25

such that if cj is the Henkin constant of ∃xφ and ci occurs in φ, then i < j.
Recall that the Henkin axiom is

∃xφ(x)→ φ(cj).

For the sake of simplicity, we will assume that n = 1.
For each Henkin constant ck we will find a formula φk ∈ X such that

T ∪ {¬φ1(c1), . . . ,¬φk(ck)}

is consistent with all Henkin axioms.
From Henkin’s proof of the completeness theorem we know that adding a Henkin
axiom introducing a new Henkin constant will preserve consistency. Thus, in
the process of verifying that φk(ck) is consistent with the extended theory so
far and all the Henkin constants, we only need to be concerned with the Henkin
axioms involving c1, . . . , ck.
The ’construction’ is by recursion on k, so assume that

T ∪ {¬φ1(c1) . . . ,¬φk−1(ck−1)}

is consistent with all the Henkin axioms.
Let ξ(c1, . . . , ck) be the conjunction of all ¬φj(cj) for j < i and all Henkin
axioms introducing c1, . . . , ck.
Then T, ξ(c1, . . . , ck) is consistent.
With the aim of obtaining a contradiction, assume that T, ξ(c1, . . . , ck),¬φ(ck)
is inconsistent for all φ ∈ X.
Then T ` ξ(c1, . . . , ck)→ φ(ck) for all φ ∈ X.
By the theorem of consants

T ` ξ(y1, . . . , yk−1, x)→ φ(x)

and thus
T ` ∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x)→ φ(x)

for all φ ∈ X. Since X is maximally consistent, there are two possibilities

1. ∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x) ∈ X

2. ¬∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x) ∈ X.

Case 1. contradicts that X is non-principal.
In case 2., we let φ = ¬∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x) and see that

T ` ∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x)→ ¬∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x).

By propositional logic it follows that

T ` ¬∃y1 · · ·∃yk−1ξ(y1, . . . , yn−1, x)

26

contradicting the induction hypothesis, i.e. that T, ξ(c1, . . . , ck) is consistent.
The asssumption was that T, ξ(c1, . . . , ck),¬φ(ck) is inconsistent for each

φ ∈ X. This led to a contradiction, so there is a φk ∈ X such that

T, ξ(c1, . . . , ck),¬φk(ck)

is consistent.
The choice of ξ was such that T,¬φ1(c1), . . . ,¬φk(ck) will be consistent with all
the Henkin axioms.
Let Tω be T extended with all ¬φk(ck) and all Henkin axioms. T ω will be a
consistent Henkin theory. Let T c be a completion of Tω. Then the term model
of T c will be a model for T omitting X.

In Exercise 1.19 we will discuss why the assumption that n = 1 is a harmless
one.

Corollary 1.1 If there are infinitely many n-types for some n, then T is not
ω-categorical.

Proof
If there are infinitely many n-types, one of them must be non-principal. Let X
be non-principal Then there one model A realising X and one model B
omitting X. These models cannot be isomorphic.

Suplementary material for the advanced reader

This section can only be read with complete understanding for a
reader with a background from descriptive set theory and cardinality
arithmetics.

An n-type is a subset of the set of formulas φ(x1, . . . , xn), which is a countable
set. Via e.g. a Gödel enumeration we may consider an n-type to be a subset
of the natural numbers. The set of subsets of N forms a compact, metrizable
topological space in a natural way, homeomorphic to the Cantor space.
There are two requirements that has to be satisfied by an n-type, given

φ1, . . . , φk

we must have that T ` ∃x1 · · ·∃xn(φ1 ∧ · · · ∧ φk), and X must be maximally
consistent. The first requirement defines a Gδ-set and the second a closed set.
Thus the set of n-types is a Gδ-set of sets of formulas.
By a standard and classical result of descriptive set theory, any Gδ-set is either
finite, countable or has the cardinality of the continuum (this holds for a much
more general class than the Gδ-sets). Thus, if there are uncountably many n-
types for some n there will be as many isomorphism classes of countable models
for T as there are reals, since κ many countable models will at most realise ω×κ
many n-types, and if κ < 2ω then ω × κ < 2ω.

27

1.5 Saturated structures

In a sense we may say that the more n-types a model A for T realise, the richer
the model is. The most generous would have been if A realises every n-type for
every n. Of course, if there are uncountably many n-types for some n, this is
impossible, a countable structure can realise at most countably many n-types.

Definition 1.24 Let A be a model for T , A0 ⊆ A.
Let L(A0) be L extended with names for each a ∈ A0. By abuse of notation
we will use a both as the name and for the object. Let T [A0] be the complete
theory of all L(A0) sentences true in A.

Definition 1.25 Let A be a model for T . We call A saturated if all 1-types in
T [A0] are realised in A whenever A0 is finite.

Lemma 1.16 Assume that T has only countably many n-types for each n. Let
A |= T . Let A0 ⊆ A be finite.
Then T [A0] has only countably many 1-types.

Proof
Let A0 = {a1, . . . , an} and let X be a 1-type in T [A0].
Let X ′ = {φ(x1, . . . , xn, x) ; φ(a1, . . . , an, x) ∈ X}.
Clearly, X ′ is a consistent set, so X ′ can be extended to an n+ 1-type.
If X and Y are different 1-types in T [A0], then for some φ(x) in L(A0), φ ∈
X ∧ ¬φ ∈ Y . It follows that X ′ and Y ′ cannot be extended to the same n+ 1-
type. Since there are at most countably many n + 1-types in T , there are at
most countably many 1-types in T [A0].

Lemma 1.17 Let A be a model for T , A0 ⊆ A a finite set and X a 1-type in
T [A0]. Then there is an elementary extension of A realising X.

Proof
This is proved like Theorem 1.10.

Theorem 1.13 Assume that T has at most countably many n-types for each
n ∈ N.
Then T has a saturated model.

Proof
The final model will be the direct limit of an elementary directed system, and
if the reader has not solved Exercise 1.7 so far it is about time to do so before
further reading of this proof.
We will start with a countable model A0 with domain A0. At stage k, assume
that we have constructed a countable model Ak with domain Ak. Then we
select a finite subset Bk ⊆ Ak and a 1-type Xk in T [Bk] and let Ak+1 be an
elementary extension of Ak realising Xk. Here we use Lemma 1.17.
In order to obtain a saturated model in the end, we must organise the selection
of Bk and Xk such that the following are satisfied:

28

• Whenever B ⊆ Ak is finite, there are infinitely many k′ ≥ k such that
B = Bk′ .

• Whenever B ⊆ Ak is finite and X is a 1-type in T [B], then there is a
k′ ≥ k such that B = Bk′ and X = Xk′ .

We leave the details here for the reader.

Theorem 1.14 Let A and B be countable models for T where B is saturated.
Then there is an elementary embedding from A to B.
If both A and B are saturated, they are isomorphic.

Proof
We show how to construct an elementary embedding in the first case. The
isomorphism in the second case can be constructed by a back-and-forth con-
struction using our construction at each step.
Let A and B be the domains of A and B. Let A = {ak ; k ∈ N}, let
Ak = {a0, . . . , ak−1} and let πk : Ak → B be injective.
We say that πk is a partial elementary embedding if for all sentences φ in L(Ak),

A |= φ⇔ B |= φπk

where φπk is the sentence in L(B) obtained from φ by replacing each name for
an element a ∈ Ak by the name for πk(a). Observe that for k = 0, πk is the
empty function, and then it will be a partial elementary embedding just because
A and B are elementary equivalent.
Now let Bk = {πk(a) ; a ∈ Ak}.
Let X be the 1-type in T [Ak] realised by ak, and let X ′ be the corresponding
1-type in T [Bk] using the transformation φ 7→ φπk .
Since B is saturated, X ′ is realised by some b ∈ B.
We extend πk to πk+1 by πk+1(ak) = b where b ∈ B realises X ′. Then πk+1 is
a partial elementary embedding and the construction can go on.
At the end, the union π of all the πk’s will be an elementary embedding from
A to B.

The number of countable models

At this stage the reader is invited to write a small essay elaborating on the
following:

The possible cardinalities of the set of isomorphism classes of countable models
of a complete countable theory is fully determined, the cardinalities can be

1, 3, 4, . . . ,ℵ0, ℵ1, 2ℵ0 .

That the number 2 is left out is not a misprint, but is one of the more peculiar
results, which we will discuss further.
The theory DO+ has three different models. Elaborating on this kind of con-
struction we may find theories where the number of models are any number 6= 2.

29

The theory ACF (0) has countably many models.
There are examples of theories with continuumly many models. One example
is DO!, an extension of DO defined as follows:

• Let Ai be a new unary predicate symbol for each i ∈ Z

• Ad axioms stating that Ai is an open interval for each i ∈ Z

• Ad axioms stating that Ai < Aj whenever i < j.

Then DO! is a complete theory with 2ℵ0 many non-isomorphic models.

In order to prove that other cardinalities are out of the question, we need to
go beyond first order logic, and we need elaborate background theorems from
descriptive set theory. This is outside the scope of this text. It is just recently
established (2002) that ℵ1 is a possible alternative, even in the case that the
continuum hypothesis does not hold. The construction behind this argument is
far beyond our ambitions here.
We do however have most tools available in order to show that there are never
exactly 2 isomorphism classes of models.

Definition 1.26 A model A for T is weakly saturated if each n-type is realised
in A for each n ∈ N.

Lemma 1.18 Assume that the number of models for T is finite, but > 1. Then
T has a model that is weakly saturated, but not saturated.

Sketch of proof
T has a countable, saturated model A. Let A1, . . . ,Ak be the other models.
Assume that neither of these are weakly saturated, and for each i ≤ k, let Xi be
an ni-type not realised in Ai. Without loss of generality, we may assume that
the variables used for the types Xi are distinct, so X1 ∪ · · ·∪Xk can be viewed
as a set of formulas in the variables e.g. x1, . . . , xn where n =

∑k
i=1 ni. Let X

be an n-type extending X1 ∪ · · ·∪Xk. Then X cannot be realised in Ai for any
i ≤ k.
Let c1, . . . , cn be new names, and let T ∗ be T extended with the axioms
φ(c1, . . . , cn) for φ(x1, . . .xn) ∈ X. Since A is saturated, we may interpret A in
such a way that it becomes a model for T ∗. Moreover, two such models will be
isomorphic. Thus T ∗ is ω-categorical and there are finitely many n-types in T ∗

for each n. It follows that there are only finitely many n-types in T for each n,
which contradicts the assumption.
This ends the scetch.

Corollary 1.2 There is no complete countable theory with exactly two non-
isomorphic countable models.

30

1.6 ω-logic

The prime object of consideration in this chapter has been the model theory
of first order logic. We have seen that for many purposes, first order logic is
inadequate. Logicians have been studying other forms of logic where some of
the tools from first order logic can be used. There are at least three directions
to go, we may extend the use of quantifiers beyond the setting of first order
logic, we may consider infinitary proof trees and we may consider infinite con-
nectives. The first alternative is natural if we want to form logics adequate for
mathematical analysis or e.g. for the study of Noetherian rings. The third al-
ternative was used when the possible numbers of models for a first order theory
was characterised in full.
In this section we will consider a form of infinitary logic for models where the
natural numbers is a definable substructure. This actually requires infinite proof
trees, since we cannot have the compactness theorem to be valid in this case.

1.6.1 ω-logic

For the rest of this section, let L be a first order language with (among possibly
other symbols) a unary predicate symbol Ω, a constant 0 and a unary function
symbol S. We will let T be a first order theory over the language L.

Definition 1.27 Let A be a model for T .
We call A an ω-model if Ω is interpreted as N, 0 as zero and S as the successor-
function.

Definition 1.28 Let T be a theory as above. T is ω-sound if T has an ω-model.
A formula φ in L is ω-valid if φ is valid in all ω-models for T .

We may formulate a logical system adequate for this concept of validity:

Definition 1.29 ω-logic will be first order logic extended with four axioms and
one infinitary rule:

• Let k0 be the constant 0, and let kn+1 be the term S(kn).

• Ω(0) and Ω(x)→ Ω(S(x)) are new axioms in ω-logic.

• 0 6= S(x) and S(x) = S(y) → x = y are new axioms in ω-logic.

• If φxkn is an ω-theorem in T for all n ∈ N, then ∀x(Ω(x)→ φ) an ω-theorem
in T .

• We will write T `ω φ when φ is an ω-theorem in T .

Remark 1.3 We will not give a precise definition of an ω-proof, because in
order to do so we need to develop a theory of infinite, wellfounded trees. The
important fact is that we have used induction to define the class of ω-theorems,
and then we can prove lemmas and theorems about them using induction over
this construction.

31

ω-logic is of interest for several reasons. One reason is that the induction
axiom in number theory is provable in ω-logic. Assume that we have a proof of

φ(0)

and that we have a proof of

∀x(Ω(x) ∧ φ(x)→ φ(S(x))).

We then clearly have ω-proofs for each φ(kn) and by the ω-rule we have a proof
of

∀x(Ω(c)→ φ(x)).

In some odd respects, this is a simplification; the ω-logic version of Peano arit-
hmetic is better behaved from a proof-theoretical point of view, and analysing
the ω-logic versions of proofs in number theory gives us information about the
strength of number theory. This kind of application requires a much deeper
involvement in proof theory than we are prepared for in this text.

1.6.2 ω-completeness

We will prove the completeness theorem for ω-logic. One motivation is to de-
monstrate the power of the proof method of the first order version. We will
leave many of the details as exercises for the reader.

Definition 1.30 T is ω-consistent if there is no sentence φ ∧ ¬φ that is an
ω-theorem in T .

We have the standard equivalent versions of the completeness theorem for ω-
logic:

Lemma 1.19 The following are equivalent:

1. A formula φ is valid in all ω-models for T if and only if φ is an ω-theorem
in φ.

2. A theory T is ω-consistent if and only if T has an ω-model.

The proof is left as Exercise 1.20.

Lemma 1.20 The theorem of constants holds for ω-logic.

The proof is left as Exercise 1.21.

Lemma 1.21 Let L be as above, T be an ω-consistent theory over L and ∃xφ
be a sentence in L. Let r be a new name, not in L.
Then T, ∃xφ→ φxr is also ω-consistent.

32

The proof is left as Exercise 1.22.

Using this lemma, we may construct the Henkin-extension of an ω-consistent
theory such that all finite subtheories are ω-consistent as well. We cannot
conclude that the full Henkin extension is ω-consistent, simply since
ω-consistency is not closed under directed unions. We will see how we can avoid
this obstacle.

From now on, T is a fixed ω-consistent theory. Let r0, r1, . . . be the new
constants that we need in order to construct the Henkin extension H of T , and
let L∞ be the extended language. Let Hn be the subtheory of H where we only
added the constants r0, . . . , rn−1 to T and the corresponding Henkin axioms.
Then rn is not in the language of Hn.
Let {φn}n∈N be an enumeration of all sentences in L∞ such that φn is a sentence
in the language of Hn.

Lemma 1.22 Let S be an ω-consistent theory, φ a sentence in the language of
S. Then at least one of the theories S, φ and T,¬φ are ω-consistent.

The proof is left as Exercise 1.23.

Lemma 1.23 Let S be an ω-consistent theory, t a closed term in the language
of S and assume that S,Ω(t) is ω-consistent.
Then there is a number n such that S, t = kn is ω-consistent.

Proof
Assume that S, t = kn is inconsistent for all n.
Then t 6= kn is an ω-theorem in S for all n.
Using the ω-rule we obtain

S `ω ∀x(Ω(x)→ x 6= t).

This means that S `ω ¬Ω(t), contradicting the assumption. This ends the proof
of the lemma.

We will now construct the theory T∞.
Let T0 = H0 = T .
Assume that Tn is an ω-consistent extension of Hn within the language of Hn.
By Lemma 1.21, T ∪Hn+1 will be ω-consistent.
If Tn ∪Hn+1, φn is not ω-consistent, we let

Tn+1 = Tn ∪Hn+1,¬φn.

If Tn ∪Hn+1, φn is ω-consistent, but φn is not of the form Ω(t), let

Tn+1 = Tn,Hn+1, φn.

If Tn ∩Hn+1, φn is ω-consistent, and φn is of the form Ω(t), we choose one m
such that

Tn+1 = Tn ∪Hn+1, t = km

33

is ω-consistent.
Let T∞ be the union of all Tn. We cannot prove directly that T∞ is ω-

consistent, but Tω is a complete Henkin theory in the traditional sense, so the
term model A of T∞ will be a model for T∞, and then in particular for T .
ΩA will be the set of equivalence classes of closed terms t such that T∞ ` Ω(t).
For each such t, there will be a number n ∈ N such that T∞ ` t = kn. Thus
ΩA will be isomorphic to N . This indirect argument shows that A is an ω-
model after all, and the completeness theorem for ω-logic is proved. Thus, T∞
is actually ω-consistent.

1.7 Exercises to Chapter 1

Ex 1.1 Show that if π is an isomorphism, then π has an inverse π−1 that is
also an isomorphism.

Ex 1.2 Show that if T is an open theory, A is a model for T and π : B → A is
an embedding, then B is a model for T .

Ex 1.3 Let L be a first order language, A an L-structure and φ an L-formula
with at most x1, . . . , xn free.

a) Let s be an assignment over A. Then

A |= φ[s]⇔A |= φx1,...,xn
cs(x1),...,cs(xn)

.

b) Let t be a term with variables among x1, . . . , xn, and let u1, . . . , un and
r1, . . . , rn be two sequences of closed terms such that uAi = rAi for each i.
Then (tx1,...,xn

u1,...,un)A = (tx1,...,xn
r1 ,...,rn)A

c) Let φ be a formula with free variables among x1, . . . , xn, and let u1, . . . , un
and r1, . . . , rn be two sequences of closed terms such that uAi = rAi for each
i.
Then (φx1,...,xn

u1,...,un)A ⇔ (φx1,...,xn
r1 ,...,rn)A.

Ex 1.4 Let A and B
Show that the following are equivalent:

1. There is an embedding π from A to B.

2. A is isomorphic to a substructure A′ of B.

3. A is a substructure of some B′ isomorphic to B.

Ex 1.5 Fill in all details in the proof of Theorem 1.2.

Ex 1.6 Let L be a first order language (with equality) and let T be a complete
theory over L.

34

a) Show that either is each model of T infinite or otherwise will all models
of T have the same finite cardinality.

b) Show that if T has a finite model, then all models are isomorphic.
Hint: Use Theorem 1.5.

Ex 1.7 Let 〈{Ai}i∈I , {πij}i<j〉 be an elementary directed system with directed
limit 〈A, {πi}i∈I〉.
Uniformly in i ∈ I, show by induction on the complexity of a sentence φ in
L(Ai) that πi preserves the truth value of φ.

Ex 1.8 Show that if T is a countable, ω-categorical theory, then T is complete.

Ex 1.9 Prove in detail that DO is ω-categorical

Ex 1.10 a) Show that for each prime number p there is a finite extension
F (p) of field theory such that the models are exactly the fields of characte-
ristic p.

b) Show that there is an extension F (0) of field theory such that the models
are exactly the fields of characteristic 0

c) Let φ be a formula in field theory. Show that if φ is true in fields of arbitra-
rily large finite characteristic, then φ is valid in some field of characteristic
0.

d) Let φ be a formula in field theory. Show that if φ is valid in finite fields
of arbitrarily large cardinality, then φ is valid in some infinite field.

e) Show that the theory of finite fields or the theory of fields of finite cha-
racteristics cannot be expressed in first order logic.

f) Show that the theory F (0) or the theory of infinite fields are not finitely
axiomatizable.

Ex 1.11 (For readers familiar with Zorn’s Lemma).
Let A and B be algebraically closed fields and let A0 and B0 be isomorphic
substructures via the isomorphism π0.

a) Use Zorn’s lemma to show that π0 can be extended to a maximal isomorp-
hism π1 between substructures A1 and B1.

b) Show that A1 and B1 are algebraically closed subfields of A and B.

Ex 1.12 Let DO+ be the theory in Example 1.7.

a) The theory DO+ has three countable, non-isomorphic models. Find exam-
ples of these, and show that there are no more than three isomorphism
classes of countable models.
Hint: When you have found tree non-isomorphic examples, you may use
the proof of the ω-categoricity of DO to prove that there are no more.

35

b) Show that DO+ does not satisfy the isomorphism property, but that every
sentence nevertheless is equivalent to a variable free sentence.

c) Show that DO+ is complete.

Ex 1.13 A theory T is called model complete if T ∪D(A) is complete whenever
A |= T .
Show that if T is consistent and has the isomorphism and submodel properties,
then T is model complete.

Ex 1.14 Let T be a first order theory with both the isomorphism and submodel
properties. Let A be a model for T .
Show that T (A) = T ∪ D(A) has the isomorphism and submodel properties.

Ex 1.15 Let F be a field, Pi(x1, . . . , xk) and Qj(x1, . . . , xk) be polynomials
over F for i ≤ n and j ≤ m.
Show that there is a solution to the simultaneous set of equations

Pi(x1, . . . , xk) = 0

and inequations
Q(x1, . . . , xk) 6= 0

in any field extending F if and only if there is a solution in the algebraic closure.
(This result is known asHilbert’s Nullstellensatz.)

Ex 1.16 A subset of Ck is called algebraic if it is set of solutions to a polynomial
equation

P (x1, . . . , xk) = 0.

Show that whenever A ⊆ Ck is definable by a first order formula in the language
of field theory using parameters from C, then A is a Boolean combination of
algebraic sets.
What does this say about the expressive power of the language of field theory,
in e.g. relation to complex analysis?

Ex 1.17 Prove Theorem 1.10 in detail.

Ex 1.18 Let T be the complete theory DO+ considered in Exercise 1.12.

a) Find a nonprincipal 1-type as the completion of some infinite set of for-
mulas.

b) Hard Describe all the 1-types and show that there is exactly one non-
principal 1-type.

Ex 1.19 Fill in the details in the following sketch of a proof of the omitting
type theorem for n-types in general:

• We may enumerate all ordered n-sequences of Henkin constants in a list
{(ck1 , . . . ckn)}k∈N.

36

• By induction on k, we may find a formula φk ∈ X such that

T ∪ {¬φ1(c11 , . . . , cn1)}

is consistent with all the Henkin constants.

Ex 1.20 Prove Lemma 1.19.

Ex 1.21 Prove the theorem of constants for ω-logic.
Warning: The proof of the theorem of constants in the first order case use a
variable x that occurs nowhere in the proof. In this setting, we do not have
proofs, only provability. Moreover, if we had proofs, we might risk that all
variables are used in the proof. Discuss how we can overcome this obstacle.

Ex 1.22 Prove Lemma 1.21.

Ex 1.23 Prove Lemma 1.22.

37

Chapter 2

Finitary Model Theory

In Chapter 1 we have touched a little bit on the subject of model theory. To
a large extent we have been interested in countable structures; implicitly we
considered finite structures to be too simple and uncountable structures to be
too advanced. The main reason why we did not go on with more model theory
is that we need time and space for computability theory.
In some respects, the finite structures are simple, but in other respects they are
the only interesting mathematical structures there are. For instance, a database
is normally a finite, but dynamic, structure. Designing logical systems that are
adequate for database theory is a challenging task.

In this chapter we will offer the reader a faint look at a growing field of
logic, finite model theory. We are going to prove one of the classical results, the
so called 0-1 -law. In a sense, this result tells us that first order logic without
constants and function symbols have remarkably restricted expressive power,
and that we need higher order logic to say something intelligent about a finite
structure.
This chapter will have three sections. In the first section we will prove the 0-1
-law, in the second section we will extend the language to a 2. order language,
and see how the expressive power increases. The final section will be exercises.

2.1 The 0-1 -law

For the rest of this chapter, L will be a fixed first order language without con-
stant symbols and function symbols, and with finitely many predicate symbols.

Definition 2.1 a) A complete open description will be an open formula
M (x1, . . . , xn) that is a maximal consistent conjunction of literals in the
variables x1, . . . , xn displayed.

b) If M (x1, . . . , xn) and N (x1, . . . , xn, y1, . . . , yk) are complete open descrip-
tions, then N is an extension of N if |= N →M .

38

Sometimes it is convenient to use an alternative notation for long conjunctions
and disjunctions. In the litterature, the notations like

∧
i∈I φi and

∨
i∈I φi are

sometimes used to form infinitary formulas where conjunction and disjunctions
are taken over infinitely many subformulas. We will only use the notation when
the abreviations φi1 ∧ · · · ∧ φik and φi1 ∨ · · · ∨ φik are a bit aqward. We will
also use the notation ~x to mean the list of variables x1, . . . , xn, and ∃~x will be
an abreviation for ∃x1 · · ·∃xn.

With this notation, we will let T be the theory over L where the nonlogical
axioms are all formulas of the form

∀~x((
∧

i6=j
xi 6= xj ∧M (~x))→ ∃y(

∧

i

y 6= xi ∧N (~x, y)))

whenever M is an open complete description and N is an open complete descrip-
tion extending M .

Theorem 2.1 Let L and T be as above. Then T has no finite model, but is
consistent and ω-categorical.

Proof
The proof of consistency is left as the (nontrivial) Exercise 2.2.
If A and B are two countable models for T , we will construct an isomorphism
using a back and forth construction like the one used to prove that DO is ω-
categorical.
A partial isomorphism will, in this proof, be a map p : A0 → B0 where A0 ⊆ A,
B0 ⊆ B, p is 1-1 and onto and such that whenever a1, . . . , an are in A0 and
RA(a1, . . .an) then RB(p(a1), . . . , p(an)).
Given a1, . . . , an there is a unique complete open description M (x1, . . . , xn)
(unique up to equivalence) such that M (a1, . . . , an) holdes, and then we may
rephrase the definition of a partial isomorphism to:
If A0 = {a1, . . . , an}, B0 = {p(a1), . . . , p(an)} and M is the complete open
description of {a1, . . . , an} then M is also the complete open description of
{p(a1), . . . , p(an)}. Let p and a 6∈ A0 be given. Let M be the complete open
description of A0 described above, and let N be the complete open description
of A0 ∪ {a}. The axiom for M and N just implies that p can be extended to a
q defined on a.
Then, as before, we can construct an isomorphism between A and B by piecewise
extensions.

We will now restrict our attention to L-structures A, where the domain A is a
set {0, . . . , n − 1}. Then the number of L-structures will be finite, let k(L, n)
denote this number.

Definition 2.2 Let φ be a sentence in L.

a) Let k(φ, L, n) be the set of L-structures over {0, . . . , n − 1} satisfying φ
and let the n-probability of φ be

µL,n(φ) =
k(φ, L, n)

k(L, n)
.

39

b) Let the asymptotic probability of φ be

µL(φ) = lim
n→∞

µL,n(φ)

provided the limit exists.

We will drop the subscript L from now on.

Lemma 2.1 If φ is an axiom of T , then µ(φ) = 1.

Proof
Let φ be the axiom

∀~x(
∧

i6=j
xi 6= xj ∧M (~x)→ ∃y(

∧

i

y 6= xi ∧N (~x, y)))

where ~x = x1, . . . , xm.
Assume that m < n. We will estimate µn(¬φ) from above, i.e.

an = µn(∃x1 · · ·∃xm(
∧

i6=j
xi 6= xj ∧M (~x) ∧ ∀y(

∧

i

y 6= xi → ¬N (~x, y)))).

We will consider formulas where we have used elements from {1, . . . , n} as in-
stances, without making too much fuss about how to do this strictly according
to the book. The local probability of a sentence of this kind is defined in the
obvious way.
There are n(n− 1) · · · (n−m + 1) ways of selecting distinct elements for
x1, . . . , xm, and by symetry they are equally probable. Thus we have that an =

n(n−1) · · · (n−m+1)·µn(M (0, . . . ,m−1)∧∀y(
∧

i

y 6= i→ ¬N (0, . . . ,m−1, y)))

which is bounded by

bn = nm · µn(M (0, . . . ,m− 1) ∧ ∀y(
∧

i

y 6= i→ ¬N (0, . . . ,m− 1, y)))

which again is bounded by

cn = nm · µn(∀y(
m−1∧

i=0

y 6= i→ ¬N (0, . . . ,m− 1, y))).

Let ξ1, . . . , ξl be all the literals in N with an occurence of the variable y. Then

cn = nm · µn(∀y(
m−1∧

i=0

y 6= i→
l∨

j=1

¬ξj(0, . . . ,m− 1, y))).

40

For each k with m ≤ k ≤ n and j ≤ l, the probability of ξj(0, . . . ,m − 1, k) is
exactly 1

2
. Thus we may evaluate

cn = nm ·
n∏

i=m

µn(

l∨

j=1

¬ξj(0, . . . ,m − 1, i)) = nm(1− 1

2l
)n−m.

Since m and l are fixed and (1− 1
2l

) < 1, we have that

lim
n→∞

nm(1− 1

2l
)n−m = 0.

This proves the theorem.

Corollary 2.1 Let L and T be as above, φ a sentence in L. Then µ(φ) = 1 or
µ(φ) = 0.

Proof
If T ` φ, there are axioms φ1, . . .φk in T such that

φ1, . . . , φk ` φ.

Since

µn(φ1 ∧ · · · ∧ φk) ≥ 1−
k∑

i=1

(1− µn(φi)

it follows that µ(φ) = 1. By the same argument, if T ` ¬φ we have that
µ(φ) = 0 since µ(¬φ) = 1.

In Exercise 5.2 the reader is invited to generalise some of these results to
open theories.

2.2 Second order languages

We have shown that the first order theory of algebraically closed fields of a fixed
characteristic is complete. We have shown that the natural numbers cannot be
characterised up to isomorphism by any first order theory. And in this chapter
we have shown the 0-1 -law of finite model theory for first order formulas.
These and other results indicate that first order languages are poor in expressive
power.
These languages are called first order because we only accept quantifiers over
the domain of the structure. A standard mathematical format of the induction
axiom for number theory states

∀A(0 ∈ A ∧ ∀x ∈ N(x ∈ A→ x+ 1 ∈ A)→ ∀x ∈ N(x ∈ A)).

Here we let A vary over all sets, in particular over all subsets of N. Quantifiers
ranging over all subsets of a domain, or more generally, over all predicates of

41

some fixed arity on a domain, will be called second order. We will be more
precise in a while, but notice already now that the natural numbers can be
described up to isomorphism by second order formulas, see Exercise 2.4.

One problem with interpreting a second order quantifier is that the inter-
pretation is not absolute. By this we mean that the power set of an infinite
set is not fully understood. There are second order sentences in number theory
where the truth value will depend on chosen axiomatisations of set theory. This
is discussed at more depth in a course on axiomatic set theory. If we restrict
our attention to finite structures, the same argument against second order logic
in general is not valid, given a finite set we have, at least theoretically, a full
control of the power set.

We will show that the expressive power of second order quantifiers is such
that the 0-1 -law does not hold any more. A more systematical treatment of
second order logic and other extensions of first order logic is beyond the scope
of this text.

Definition 2.3 a) A second order language L2 will be a first order language
L extended with variables Xk

n for predicates of arity k.

b) If t1, . . . , tk are terms in L, then Xk
n(t1, . . . , tk) is a new atomic formula.

c) The class of second order formulas is closed under boolean connectives
and first order quantifiers in the same way as the first order formulas are.

d) If φ is a second order formula, then ∃Xk
nφ and ∀Xk

nφ are second order
formulas.

We will not go through the full definition of how second order formulas are
interpreted over an L-structure. The point is that they can be interpreted, and
that if A and B are isomorphic L-structures, then they will satisfy the same
second order sentences.

From now on we will restrict ourselves to the first order languale L= of
equality, and its second order extension L2

=. Then there is exactly one structure
with domain {0, . . . , n− 1} for each n.

Theorem 2.2 There is a second order sentence that is true exactly for the finite
structures with an even number of elements.

Proof
In the sentence below, X will be a predicate variable of arity 1 and Y will be a
predicate variable of arity 2.
Let us first look at the sentence, and discuss why it works afterwards:

∃X∃Y [∀x∃yY (x, y) ∧ ∀y∃xY (x, y)

∧∀x∀y∀z(Y (x, y) ∧ Y (x, z)→ y = z)

∧∀x∀y∀z(Y (x, y) ∧ Y (z, y)→ x = z)

42

∧∀x∀y(Y (x, y)→ (X(x)↔ ¬X(y)].

The first and third conjuncts express that Y is the graph of a function fY .
The second and fourth conjuncts express that fY is onto and one-to-one, i.e. a
bijection. The last conjunct expresses that fY is a bijection between X and the
complement of X. If the ground set is finite, we may find interpretations of X
and Y satisfying this exactly when the total number of elements is an even one.

Clearly the sentence above does not satisfy the 0-1 -law, so we have proved

Corollary 2.2 The 0-1 -law is not satisfied in general by second order senten-
ces.

In the proof of Theorem 2.2 we saw that we can express that Y is the graph of
a function and other properties of functions using first order expressions in the
variable Y . Other properties that we may express is

1. X1 is finite.

2. X1 is infinite.

3. 〈X1, Y 2〉 is a well ordering

4. A ring is Noetherian (which means that any degreasing sequence of ideals
is finite)

The verifications of the first three facts are left as Exercise 2.5.

2.3 Exercises to Chapter 2

Ex 2.1 Show that there is an upper bound on the length of a complete open
description M (x1, . . . , xn) depending on n and the signature of the language,
and that whenever M (x1, . . . , xn) is a complete open description and y1, . . . , yk
are new variables, them then M has an extension to a complete open description
N (x1, . . . , xn, y1, . . . , ym).

Ex 2.2 Let A be a structure for L.

a) Let A0 ⊆ A be finite, and let M be a complete open description satisfied
by the enumeration {a1, . . . , an} of the elements in A0.
Let N be any extension of M , with one more variable.
Show that we may extend A to an L-structure B (by adding at most one
element) such that the axiom relating M to N holds.

b) Use a) to show that T will have a model, by piecewise satisfying each
instance of each axiom in T .

Ex 2.3 Let L be the language with = as the only symbol.

43

a) Show that for every sentence φ in L and every n we have that µn(φ) ∈
{0, 1}.

b) Show that the function n 7→ µn(φ) will be eventually constant for each
sentence φ.

c) Evaluate from where the function n 7→ µn(φ) is eventually constant, in
terms of some number related to φ, and use this to show that the pure
theory of equality is decidable.

Ex 2.4 Find a set of first and second order sentences in the language of number
theory that will have isomorphic copies of N as the only models.

Ex 2.5 A standard set-theoretical characterisation of infinity is that a set A
is infinite exactly when there is a bijection between A and a proper subset of
A. Use this to show that we may express that a set is finite by a second order
formula.
Find a second order formula that express that Y 2 is a well ordering of X1.
If you want to go on with harder problems, we suggest that you continue with
Exercise 5.4.

44

Chapter 3

Classical Computability
Theory

3.1 The foundation, Turing’s analysis

In Leary [1] the recursive functions is defined as those that can be represented
in elementary number theory. f : Nk → N is recursive if there is a formula
φ(x1, . . . , xk, y) such that for all n1, . . . , nk,m we have that f(n1, . . . , nk) = m
if and only if

N ` φ(cn1, . . . , cnk, y)↔ y = cm.

Here cn is the numeral for n, and N is elementary number theory.
The advantage of this definition is that it is well suited for proving Gödel’s

incompleteness theorem without introducing too many new concepts. The pro-
blem is that there is absolutely no conceptual analysis of the notion of compu-
tability behind this definition.

Gödel defines a class of recursive functions by recursion. His aim is to define
a sufficiently rich class for handling algorithms for e.g. substitution of a term for
a variable, and for coding the meta-theory of a formal theory, but sufficiently
simple for us to be able to show that any recursive function will be definable,
and actually, representable as described above.

We are going to base our study of computability on an approach due to
Kleene, and we are going to restrict ourselves to computable functions defined
on the natural numbers. In many respects, computing can be described as
manipulation of symbols following a given set of rules. The symbols are not then
natural numbers, and different ways of representing natural numbers (binary,
decadic, via numerals, Roman figures etc.) might give different concepts of
computing with numbers.

The best mathematical model for computability and computations is due
to Alan Turing. He defined what is now known as Turing machines, small
finite state machines operating on an infinite one-dimentional tape and doing
symbol manipulation on this tape. The machine will, between each step of the

45

computation, be in one of finitely many stages. It will read one of the symbols
on the tape, and dependent of the stage it is in and the symbol on the tape that
it reads, it will according to a fixed rule change its state, rewrite the symbol and
move to the symbol to the right or to the left. It may of course stay in the same
state, it may of course keep the symbol on the tape as it is, and sometimes it
may be convenient to let it stay where it is. We think of the tape as consisting
of squares, like an old fashioned movie-tape.

A Turing machine M is determined by

1. A finite alphabet Σ including one special symbol Bl for an empty square
of the tape.

2. A finite set K of states, with one special state s ∈ K called the initial
state.

3. A partial function δ : (Σ × K) → (Σ × K × {L, S,R}), where L means
”left”, R means ”right” and S means ”stay where you are”.

In the litterature you will find many variations in the definition of a Turing
machine, but they all have the same computational strength. We decided to
let the function δ, which rules the action of the machine, be partial. If δ(σ, p)
is undefined, the machine will be in a halting situation, which means that the
computation commes to an end. We are not going to give a precise definition of
the operational semantics for Turing machines, but are content with an intuitive
description:

The operational semantics of Turing Machines

Let M = 〈Σ,K, s, δ〉 be a Turing machine.
The starting configuration of M will consist of a word w (called the input) in Σ
written on an otherwise blank tape that is infinite in both directions, a position
on the tape and the initial state s.
At each step, the machine M may enter a new state, rewrite the symbol at its
position on the tape and shift its position one square to the right or to the left,
all according to the function δ.
If M is in stage p and reads the symbol σ, and δ(σ, p) is undefined, M halts.
Then we who observe M will know this, and we will be able to read the content
of the tape, which will be called the output.

Normally there will be a convention that there should be no blanks in the
input word and that the machine will be started at the first blank square to the
left or to the right of the input word. Then the following makes sense

Definition 3.1 Let Σ0 be an alphabet not containing the symbol Bl
Let Σ∗0 be the set of finite words over Σ0.
Let f : Σ∗0 → Σ∗0 be a partial function.
We say that f is Turing Computable if there is a Turing Machine M over an
alphabet Σ ⊃ Σ0 such that if M is started with w ∈ Σ∗ on the tape, then it
halts if and only if f(w) is defined, and then with f(w) as the output word.

46

Turing claimed that a Turing machine can

• Search systematically for pieces of information.

• Remember pieces of information

• Rewrite contents

all according to fixed rules. As an example we may consider the map n 7→ n! and
the mapm 7→ mm. We all agree that these maps are in princple computable, but
try to think about how a computation of 1010! could be carried out: We would
need a lot of book-keeping devices in order to be at the top of the situation at
each stage, but nothing that is not covered by the three items above.

We follow Turing in claiming that his model is a good mathematical model
for algorithmic computations. We are not going to make this book into a study
of Turing Machines. The interested reader should consult other textbooks on
the subject. The two key results are:

Theorem 3.1 There is a fixed alphabet Σ such that for any alphabet Σ′, any
Turing Machine M over Σ′ may be coded as a word ”M” in σ and every word
w in Σ′ may be coded as a word ”w” in Σ such that the partial function

U (”M””w”) = ”M (w)”

is Turing computable, where we write M (w) for the output word if the input
word is w.

This is known as the existence of a Universal Turing Machine.

The Halting Problem is the following:

Given a Turing machine M and an input w, will M eventually come to a halt
when started on w?

Theorem 3.2 There is no Turing machine H that solves the Halting Problem
in the following sense:

H(”M””w”) will always halt, and will halt with an empty output word if and
only if M halts on w.

Our approach to computability will be more in the original style of Gödel, we
will study functions defined for natural numbers only. However, the results that
we obtain will be relevant for the more general approaches as well. This is based
on what is known as the Church-Turing Thesis, which we phrase like this:

All algorithms can be simulated by a Turing Machine

and the fact that Turing-computability can be reduced to the notion we will be
working with. This is left as one of the minor projects in Chapter 5.

47

3.2 Computable functions and c.e. sets

3.2.1 The primitive recursive functions

The basic definition

Recursion means ‘backtracking’, and in pre-Church/Kleene mathematics the
term recursive function was used for the functions defined by iterated recursion.
In this pre-Church/Kleene context a recursive definition will be a definition of
a function on the natural numbers, where we give one initial value f(0), and
define f(k+1) as a function of f(k) and k. E.g. Skolem used the term ‘recursive
function’ in this way. Following Kleene, we will call these functions primitive
recursive.

We let ~x and ~y etc. denote ordered sequences of natural numbers of some
fixed length. Normally the length will not be specified, but will be clear from
the context.

Definition 3.2 The primitive recursive functions f : Nn → N will be the least
class of functions satisfying:

i) f(x, ~y) = x+ 1 is primitive recursive.

ii) f(x, ~y) = x is primitive recursive.

iii) f(~x) = q is primitive recursive for each q ∈ N.

iv) If g is n-ary and primitive recursive, and f1, . . . , fn are m-ary and primitive
recursive, then the composition

h(~x) = g(f1(~x), . . . , fn(~x))

is primitive recursive.

v) If g is primitive recursive with arity n + m, and h1 and h2 are primitive
recursive with arity n, then f will be primitive recursive, where f is defined
by

f(~x, ~y) = h1(~x) if g(~x, ~y) = 0

f(~x, ~y) = h2(~x) if g(~x, ~y) 6= 0

We call this a definition by cases.

vi) If g is primitive recursive and n-ary, and τ is a permutation of
{1, . . . , n}, then f is primitive recursive, where

f(x1, . . . , xn) = g(xτ(1), . . . , xτ(n)).

vii) If g and h are primitive recursive of arity n and n + 2 resp., then f is
primitive recursive where

48

f(0, ~y) = g(~y)

f(x + 1, ~y) = h(f(x, ~y), x, ~y)

We say that f is defined by primitive recursion or by the recursion operator
from g and h.

Remark 3.1 We have made no attempts to minimize this definition. It will be
hard enough to establish a pool of primitive recursive functions rich enough to
make our life easy. The establishment of this pool is the goal of this section.
Most of the work has to be carried out as problem solving, since to a computa-
bility theorist this pool of primitive recursive functions must be an integrated
part of oneself.

The pool of primitive recursive functions and sets

Standard number theoretical functions like addition, multiplication, exponen-
tiation and factorial will all be primitive recursive. Subtraction is not primitive
recursive for the simple reason that it leads us outside N. We define a modified
subtraction. This will be primitive recursive, see Exercise 3.1.

Definition 3.3 We let ·− be the modified subtraction defined by

x ·− y = x− y if y ≤ x

x ·− y = 0 if y ≤ x.

Using parts ii) and vi) of the definition of the primitive recursive functions, we
can show that all projection maps

Ii,n(x1, . . . , xn) = xi

are primitive recursive. We can use this to consider any function of a set of
variables as a function of a larger set of variables, as in

f(x1, x2, x3) = g(I1,3(x1, x2, x3), I3,3(x1, x2, x3)) = g(x1, x3).

Thus we will not need to be concerned with the requirement that every function
in a composition must be of the same arity. This will simplify some of the
descriptions of primitive recursive functions.

Definition 3.4 Let A ⊆ Nn. The characteristic function of A will be the
function

KA : Nn → N

that is 1 on A and 0 outside A.

Definition 3.5 A set A ⊆ Nn is primitive recursive if the characteristic function
KA is primitive recursive.

49

The primitive recursive sets will form a Boolean algebra for every dimension,
see Exercise 3.2.

Every set defined from = and < using propositional calculus will be primi-
tive recursive. We may also use functions known to be primitive recursive in
the definition of primitive recursive sets, and primitive recursive sets when we
describe primitive recursive functions. We will leave the verification of most of
this to the reader, just state the properties of primitive recursion that are useful
to us. The proofs are simple, and there is no harm leaving them as exercises.
We will however prove one basic (and simple) lemma:

Lemma 3.1 Let f : N1+n → N be primitive recursive. Then the function g
defined as the bounded product

g(x, ~y) =
∏

z≤x
f(z, ~y)

will be primitive recursive.

Proof
We define g by primitive recursion as follows
g(0, ~y) = f(0, ~y)
g(x + 1, ~y) = g(x, ~y) · f(x + 1, ~y)

By the same argument we can show that the primitive recursive functions
will be closed under bounded sums. What is more important to us is that
the primitive recursive sets will be closed under bounded quantification. This
is an important strengthening of the language we may use to define primitive
recursive sets and functions.

Lemma 3.2 Let A ⊆ N1+n be primitive recursive. Then the following sets are
primitive recursive

a) B = {(x, ~y) | ∃z ≤ y((z, ~y) ∈ A)}
b) C = {(x, ~y) | ∀z ≤ y((z, ~y) ∈ A)}
The proof is left as Exercise 3.3.

In computability theory, the µ-operator is important. Within primitive
recursion theory we may often use bounded search, or a bounded µ-operator:

Lemma 3.3 Let f : N1+n → N be primitive recursive. Then

g(x, ~y) = µ<xz.(f(z, ~y) = 0)

is primitive recursive, where g(x, ~y) is the least z such that f(z, ~y) = 0 if there
is one such z < x, while g(x, ~y) = x otherwise.

g can be defined using primitive recursion and definition by cases. The details
are left as Exercise 3.4.

The interplay between the primitive recursive functions and the primitive
recursive sets is ruled by the following principles:

50

Theorem 3.3 a) Every set definable from = and < using primitive recur-
sive functions, boolean operators and bounded quantifiers will be primitive
recursive.

b) Every function defined by the schemes of primitive recursion, bounded
search over a primitive recursive set and definition by cases over a finite
partition of Nn into primitive recursive sets will be primitive recursive.

There is no need to prove this theorem, since it in a sense is the synthesis of
what has been proved so far. The consequence is the level of freedom in defining
primitive recursive functions and relations we have obtained. This freedom will
be sufficient when we later claim that certain facts are trivial to prove.

Sequence numbers

One important use of primitive recursion is the coding of finite sequences. Gödel
needed an elaborate way of coding finite sequences via the so called β-function.
As we mentioned above, it was important for Gödel to show that the recursive
functions are definable in ordinary number theory. Since this is not important
to us to the same extent, we will use full primitive recursion in coding such
sequences. All proofs of the lemmas below are trivial and can safely be left for
the reader.

Lemma 3.4 a) The set of prime numbers (starting with 2 as the least prime
number) is primitive recursive.

b) The monotone enumeration {pi}i∈N of the prime numbers is primitive
recursive.

We now define the sequence numbers:

Definition 3.6 Let x0, . . . , xn−1 be a finite sequence of numbers, n = 0 corre-
sponding to the empty sequence.
We let the corresponding sequence number 〈x0, . . . , xn−1〉 be the number

2n ·
n−1∏

i=0

pxii+1

If y = 〈x0, . . . , xn−1〉, we let lh(y) (the length of y) be n and (y)i = xi

Lemma 3.5 a) The set of sequence numbers is primitive recursive, and the
sequence numbering is one-to-one (but not surjective).

b) The function lh is the restriction of a primitive recursive function to the
set of sequence numbers.

c) The function coor(y, i) = (y)i (the i’th coordinate of y) defined for
sequence numbers y of length > i is the restriction of a primitive recursive
function of two variables.

51

d) For each n, the function

seqn(x0, . . . , xn−1) = 〈x0, . . . , xn−1〉

is primitive recursive.

e) For all sequences x0, . . . , xn−1 and i < n, xi < 〈x0, . . . , xn−1〉

f) 1 is the sequence number of the empty sequence.

It makes no sense to say that the full sequence numbering is primitive recur-
sive. However any numbering satisfying Lemma 3.5 can be used for the purposes
of this course, so there is no need to learn the details of this definition. Occa-
tionally it may be useful to assume that the sequence numbering is surjective.
This can be achieved, see Exercise 3.5.

We will sometimes use an alternative coding of pairs that is both 1-1 and
onto:

Definition 3.7 Let

P (x, y) =
1

2
((x+ y)2 + 3x+ y)

It can be shown that P : N2 → N is a bijection. Let π1 and π2 be the two
projection maps such that for any x

P (π1(x), π2(x)) = x.

P , π1 and π2 are primitive recursive. The verifications are left for the reader as
Exercise 3.5 e).

Ackermann proved that there is a total computable function in one variable
that is not primitive recursive. His observation was that in the list of functions

f0(x, y) = x+ 1, f1(x, y) = x+ y, f2(x, y) = xy, f3(x, y) = xy

each function but the first is defined as a y-iteration of the previous one.
For n ≥ 3 we may then define

fn(x, 0) = 1, fn(x, y + 1) = fn−1(fn(x, y), x)

This defines the generalised exponentiations, or the Ackermann-branches. The
important properties are given in Exercise 3.6.

52

3.2.2 The computable functions

The µ-operator

We extend the definition of the primitive recursive functions to a definition of
the computable functions by adding one principle of infinite search. We will
consider the construction

g(~x) = µx.f(x, ~x) = 0.

In order to understand this definition, we must discuss what we actually mean,
i.e. which algorithm this is supposed to represent.
Intuitivly we want µx.g(x, ~x) = 0 to be the least x such that g(x, ~x) is 0.
If g(x, ~x) ∈ N for all x, this is unproblematic, we search for this least x by
computing g(0, ~x) , g(1, ~x) and so on until we find one value of x giving 0 as the
outcome. Now, if there is no such x we will search in vain, or in more technical
terms, our procedure will be non-terminating. This forces us to introduce partial
functions, i.e. functions being undefined on certain arguments. This also forces
us to be careful about our interpretation of the µ-operator, we may in the search
for the least x such that g(x, ~x) = 0 turn into a z for which g(z, ~x) is undefined
before we find a z for which g(z, ~x) = 0. In this case we will let µx.g(x, ~x) = 0
be undefined, realizing that the algorithm for computing this number that we
have in mind will be non-terminating.
With this clarification we ad the following

Definition 3.8 The computable functions is the least class of partial functions
f : Nn → N satisfying i) - vii) in the definition of the primitive recursive
functions, together with the extra clause

viii) If g : Nn+1 → N is computable then

f(~x) = µx.g(x, ~x) = 0

is computable.

A set is computable if the characteristic function is computable.
A total computable function is a computable function terminating on all inputs
from the domain Nn.

We must have in mind that the characteristic function of a set is total, so
dealing with computable sets and with total computable functions will be much
of the same. This is made precise in the following lemma:

Lemma 3.6 Let f : Nn → N be total. Then the following are equivalent:

i) f is computable.

ii) The graph of f , seen as a subset of Nn+1, is computable.

53

Proof
Let A be the graph of f , KA the characteristic function.
If f is computable,

KA(~x, y) = K=(f(~x), y)

and K= is primitive recursive, see Exercise 3.1, g) and e).
If KA is computable, then

f(~x) = µy.1 ·−KA(~x, y) = 0

so f is computable.

Remark 3.2 This result will not hold for primitive recursion, there will be
functions with primitive recursive graphs that are not primitive recursive.

There is an interplay between the total computable functions and the compu-
table sets resembling Theorem 3.3 as follows

Theorem 3.4 a) Any set definable from computable sets and total compu-
table functions using boolean valued operators and bounded quantifiers will
be computable.

b) If A ⊆ Nn+1 is computable, then g is computable, where

g(~x) is the least number z such that (z, ~x) ∈ A.

The proof is trivial.

Kleene’s T -predicate

The definition of the computable functions is technically an inductive defini-
tion of a class of partial functions. It is, however, important to be aware of
the computational interpretation of this definition, the so to say ‘operational
semantics’. Every partial computable function is given by a term in a language
with constants for each number, the +1 function and symbols for the recursion
operator and the µ-operator.
This operational semantics then tells us that there are actual computations go-
ing on. Now we will define the concept of a computation tree. A computation
tree will be a number coding every step in a computation up to the final outcome.
In order to be able to do so, we need a Gödel numbering, or an indexing, of
the computable functions. Beware that the numbering will not be 1-1, we will
enumerate the algorithms or the terms, and then only indirectly enumerate the
computable functions.

Definition 3.9 For each number e we define the partial function φe of n vari-
ables as follows:

i) If e = 〈1〉, let φe(x, ~y) = x+ 1.

ii) If e = 〈2〉, let φe(x, ~y) = x.

54

iii) If e = 〈3, q〉, let φe(~x) = q.

iv) If e = 〈4, e′, d1, . . . , dm〉 let

φe(~x) = φe′(φd1(~x), . . . , φdn(~x)).

v) If e = 〈5, d1, d2, d3〉 then
φe(~x, ~y) = φd1 (~x) if φd3(~x, ~y) = 0
φe(~x, ~y) = φd2 (~x) if φd3(~x, ~y) 6= 0
Here we mean that φd3(~x, ~y) has a value that is different from 0. If φd3(~x, ~y)
is undefined, then φe(~x, ~y) is undefined.

vi) If e = 〈6, d, 〈τ 〉〉 where 〈τ 〉 is the sequence number of a permutation τ of
n variables, then

φe(x1, . . . , xn) = φd(xτ(1), . . . , xτ(n)).

vii) If e = 〈d1, d2〉 then
φe(0, ~y) = φd1 (~y)
φe(x+ 1, ~y) = φd2(φe(x, ~y), x, ~y).

viii) If e = 〈8, d〉 then
φe(~x) = µz.φd(z, ~x) = 0

Otherwise If neither of i) - viii) above applies, let φe(~x) be undefined.

Remark 3.3 We have defined φe(~x) for every index e and every input ~x, either
as an undefined value or as a natural number. Indeed, if we get a natural
number, this number will be unique, see Exercise 3.7.
We should have used different notation in order to distinguish between the
various interpretatons of φe as the arity varies. It is quite common in the
litterature to restrict the notation φe to the function of one variable, while we
use φne for the function of n variables with index e.

Definition 3.10 We write φe(~x)↓ if there is a y with φe(~x) = y. We then say
that φe(~x) terminates.

We are now ready to use the sequence numbering and this indexing to define
computation trees. Each terminating computation will have a unique computa-
tion tree, a number coding each step of the computation from the input to the
output. We will actually be overloading this code with information, but for our
purposes this is harmless. What is important is that information retrieval will
be easy.

Definition 3.11 Let φe(~x) = y. By primitive recursion on e we define the
computation tree of φe(~x) = y as follows, assuming that the index e will be the
index of the corresponding case:

i) 〈e, x, ~y, x+ 1〉 is the computation tree for φe(x, ~y) = x+ 1.

55

ii) 〈e, x, ~y, x〉 is the computation tree for φe(x, ~y) = x.

iii) 〈e, ~x, q〉 is the computation tree for φe(~x) = q.

iv) 〈e, t, t1, . . . , tn, y〉 is the computation tree in this case, where each ti is
the computation tree for φdi(~x) = zi and t is the computation tree for
φe′(~z) = y

v) 〈e, t1, t2, y〉 is the computation tree in this case, where t1 is the computa-
tion tree for φd3(~x, ~y) = z and t2 is the computation tree for φd1(~x) = y if
z = 0 and for φd2 (~x) = y if z 6= 0.

vi) 〈e, t1, y〉 is the computation tree in this case, where t1 is the computation
tree for φd(xτ(1), . . . , xτ(n)) = y.

vii) 〈e, 0, t, y〉 is the computation tree for φe(0, ~y) = y when t is the computa-
tion tree for φd1(~y) = y.
〈e, x + 1, t1, t2, y〉 is the computation tree for φe(x + 1, ~y) when t1 is the
computation tree for φe(x, ~y) = z and t2 is the computation tree for
φd2(z, x, ~y) = y.

viii) 〈e, t0, . . . , ty−1, ty, y〉 is the computation tree in this case, where ti is the
computation tree for φd(i, ~x) = zi 6= 0 for i < y and ty is the computation
tree for φd(y, ~x) = 0.

We are now ready to define Kleene’s T -predicate:

Definition 3.12 Let
Tn(e, x1, . . . , xn, t)

if t is a computation tree for φe(x1, . . . , xn)

We will normally write T instead of T1.

Theorem 3.5 a) For each n, Tn is primitive recursive.

b) There is a primitive recursive function U such that if t is a computation
tree, then U (t) is the output of the corresponding computation.

c) (Kleene’s Normal Form Theorem)
For every arity n and all e we have

φe(x1, . . . , xn) = U (µt.Tn(e, x1, . . . , xn)).

Proof
It is only a) that requires a proof. The proof of a) is however trivial, we construct
the characteristic function of Tn by recursion on the last variable t. Monotonisity
of the sequence numbering is important here. We leave the tedious, but simple
details for the reader.

56

Corollary 3.1 For each number n, the function

f(e, x1, . . . , xn) = φe(x1, . . . , xn)

is computable.

Remark 3.4 Corollary 3.1 is the analogue of the existence of a universal Tu-
ring Machine, we can enumerate the computable functions in such a way that
each computable function is uniformly computable in any of the numbers enu-
merating it. Beware that this universal function is partial. There is no universal
function for the total computable functions, see Problem 3.9.

The Recursion Theorem

The recursion theorem is one of the key insights in computability theory in-
troduced by Kleene. In programming terms it says that we may define a set
of procedures where we in the definition of each procedure refer to the other
procedures in a circular way. The proof we give for the recursion theorem will
be a kind of ‘white rabbit out of the hat’ argument based on the much more
intuitive Snm-theorem. So let us first explain the Snm-theorem. Let f be a com-
putable function of several variables. Now, if we fix the value of some of the
variables, we will get a computable function in the rest of the variables. The
Snm-theorem tells us that the index for this new function can be obtained in a
primitive recursive way from the index of the original function and the values
of the fixed variables. We have to prove one technical lemma:

Lemma 3.7 There is a primitive recursive function ρ such that if

φe(x1, . . . , xn) = t

and
1 ≤ i ≤ n

then
φρ(e,i,xi)(x1, . . . , xi−1, xi+1, . . . , xn) = t

Proof
We define ρ by induction on e, considering the cases i) - viii). We leave some of
the easy details for the reader, see Problem 3.11.
φe(x, ~y) = x+ 1:
If 1 < i let ρ(e, i, xi) = e, while ρ(e, 1, x1) = 〈3, x1 + 1〉.
The cases ii) and iii) are left for the reader.
If e = 〈4, e′, d1, . . . , dn〉, we simply let

ρ(e, i, xi) = 〈4, e′, ρ(d1, i, xi), . . . , ρ(dn, i, xi)〉.

Cases v) and vi) are left for the reader.
Case vii) splits into two subcases. If 1 < i, this case is easy. For i = 1 we let

57

ρ(e, 1, 0) = d1.

ρ(e, 1, x+ 1) = 〈4, d2, ρ(e, 1, x), dx, ~dIi,n〉
where dx is the index for f(~y) = x and dIi,n is the index for the function
selecting yi from ~y. In this case the primitive recursion is replaced by an iterated
composition, the depth of which is determined by the value of x.
Case viii) is again easy, and is left for the reader.

Theorem 3.6 (The Snm-theorem)
Let n ≥ 1,m ≥ 1. There is a primitive recursive function Snm such that for all
e, x1, . . . , xn, ym, . . . , ym

φe(x1, . . . , xn, y1, . . . , ym) = φSnm(e,x1,...,xn)(y1, . . . , ym)

Proof
Let ρ be as in Lemma 3.7.
Let S1

m(e, x) = ρ(e, 1, x)
Let Sk+1

m (e, x1, . . . , xk+1) = ρ(Skm+1(e, x1, . . . , xk), 1, xk+1). By an easy in-
duction on k we see that this construction works for all m.

The Snm-theorem is a handy tool in itself, and we will use it frequently
stating that we can find an index for a computable function uniformly in some
parameter. Now we will use the Snm-theorem to prove the surprisingly strong

Theorem 3.7 (The Recursion Theorem)
Let f(e, ~x) be a partial, computable function.
Then there is an index eo such that for all ~x

φe0(~x) = f(e0, ~x).

Proof
Recall that we by this equality mean that either both sides are undefined or
both sides are defined and equal. Let

g(e, ~x) = f(S1
n(e, e), ~x)

and let ĝ be an index for g. Let

e0 = S1
n(ĝ, ĝ).

Then

φe0(~x) = φS1
n(ĝ,ĝ)(~x) = φĝ(ĝ, ~x) = g(ĝ, ~x) = f(S1

n(ĝ, ĝ), ~x) = f(e0, ~x).

Remark 3.5 Readers familiar with the fixed point construction in untyped λ-
calculus may recognise this proof as a close relative, and indeed it is essentially
the same proof. The recursion theorem is a very powerful tool for constructing
computable functions by self reference. In Chapter 4 we will use the recursion
theorem to construct computable functions essentially by transfinite induction.
Here we will give a completly different application, we will prove that there is
no nontrivial set of partial computable functions such that the set of indices for
functions in the class is computable.

58

Theorem 3.8 (Riece)
Let A ⊆ N be a computable set such that if e ∈ A and φe = φd then d ∈ A.
Then A = N or A = ∅.

Proof
Assume not, and let a ∈ A and b 6∈ A.
Let f(e, x) = φb(x) if e ∈ A and f(e, x) = φa(x) if e 6∈ A.
By the recursion theorem, let e0 be such that for all x

f(e0, x) = φe0(x).

If e0 ∈ A, then φe0 = φb so e0 6∈ A.
If e0 6∈ A, then φe0 = φa so e0 ∈ A.
This is a clear contradiction, and the theorem is proved.

Corollary 3.2 (Unsolvability of the halting problem)
{(e, x) | φe(x)↓} is not computable.

Remark 3.6 Riece’s theorem is of course stronger than the unsolvability of the
Halting Problem, for which we need much less machinery.

3.2.3 Computably enumerable sets

Four equivalent definitions

An enumeration of a set is a function defined on all of N that is onto the set. For
subsets of N we may ask for computable enumerations of a set. A set permitting
a computable enumeration will be called computably enumerable or just c.e. The
standard terminology over many years has been recursively enumerable or just
r.e. , because the expression recursive was used by Kleene and many with
him. We will stick to the word computable and thus to the term computably
enumerable.
Of course there is no enumeration of the empty set, but we will call this set c.e.
nevertheless.
In this section we will give some characterisations of the c.e. sets. One important
characterisation will be as the semidecidable sets. A computable set will be
decidable, we have an algorithm for deciding when an element is in the set or
not. In a semidecidable set we will have an algorithm that verifies that an
element is in the set when it is, but when the element is not in the set, this
algorithm may never terminate. A typical semidecidable set is the solving set
of the Halting Problem

{(e, x) | φe(x)↓}.
Another example is the set of theorems in first order number theory or any
nicely axiomatisable theory, or the set of words in some general grammar. We
will show that the semidecidable subsets of N will be exactly the c.e. sets. A
third characterisation will be as the sets of projections of primitive recursive sets.

59

In the litterature this class is known as the Σ0
1-sets. A fourth characterisation

will be as the ranges of partial, computable functions.
This is enough talk, let us move to the definition:

Definition 3.13 Let A ⊆ N. We call A computably enumerable or just c.e. if
A = ∅ or A is the range of a total computable function.

Theorem 3.9 Let A ⊆ N. Then the following are equivalent:

i) A is c.e.

ii) A is the range of a partial computable function.

iii) There is a primitive recursive set S ⊆ N2 such that

A = {n | ∃m(n,m) ∈ S}

iv) There is a partial computable function with domain A.

Proof
Since the empty set satisfies all four properties, we will assume that A 6= ∅.
i) ⇒ ii):
Trivial since we in this volume consider the total functions as a subclass of the
partial functions.
ii) ⇒ iii):
Let A be the range of φe.
Then

n ∈ A⇔ ∃y(T (e, π1(y), π2(y)) ∧ n = U (π2(y)))

where ()i is i’th coordinate of a sequence number, T is Kleene’s T -predicate and
U is the function selecting the value from a computation tree. The matrix of
this expression is primitive recursive.
iii) ⇒ iv): Let

n ∈ A⇔ ∃m((n,m) ∈ S).

where S is primitive recursive. Then A is the domain of the partial computable
function

f(n) = µm.(n,m) ∈ S.
iv) ⇒ i):
Let A be the domain of φe and let a ∈ A (here we will use the assumption that
A is non-empty).
Let f(y) = π1(y) if T (e, π1(y), π2(y)), f(y) = a otherwise. Then f will be
computable, and A will be the range of f .
This ends the proof of the theorem.

Clearly characterisations ii) and iii) makes sense for subsets of Nn as well
for n > 1, and the equivalence will still hold. From now on we will talk about
c.e. sets of any dimension. The relationship between c.e. subsets of N and Nn
is given in Exercise 3.14.

The following lemma will rule our abilities to construct c.e. sets:

60

Lemma 3.8 Let A ⊆ Nn and B ⊆ Nn be c.e. Then

a) A ∩B and A ∪B are both g.e.

b) If n = m + k and both m and k are positive, then

{~x | ∃~y(~x, ~y) ∈ A}

will be c.e., where ~x is a sequence of variables of length m and ~y is of
length k.

Moreover, every computable set is c.e., the inverse image or direct image of a
c.e. set using a partial computable function will be c.e.

All these claims follow trivially from the definition or from one of the cha-
racterisations in Theorem 3.9.

Let us introduce another standard piece of notation:

Definition 3.14 Let

We = {n | φe(n)↓} = {n | ∃tT (e, n, t)}.

Let
We,m = {n | ∃t < mT (e, n, t)}.

We let K be the diagonal set

K = {e | e ∈We}.

Lemma 3.9 a) {(e, n) | n ∈We} is c.e.

b) K is c.e.

c) Each set We,m is finite.

d) {(e, n,m) | n ∈We,m} is primitive recursive.

All proofs are trivial.

Selection with consequences

From now on we will prove lemmas and theorems in the lowest relevant dimen-
sion, but clearly all results will hold in higher dimensions as well.

Theorem 3.10 (The Selection Theorem)
Let A ⊆ N2 be c.e. Then there is a partial computable function f such that

i) f(n)↓⇔ ∃m(n,m) ∈ A.

ii) If f(n)↓ then (n, f(n)) ∈ A.

61

Proof
This time we will give an intuitive proof. Let A be the projection of the primitive
recursive set B ⊆ N3 (characterisation iii).). For each n, search for the least m
such that (n, π1(m), π2(m)) ∈ B, and then let f(n) = π1(m).

Intuitively we perform a parallell search for a witness to the fact that (n,m) ∈
A for some m, and we choose the m with the least witness.

Corollary 3.3 Let A and B be two c.e. sets. Then there are disjoint c.e. sets
C and D with

C ⊆ A, D ⊆ B and A ∪B = C ∪D.

Proof
Let E = (A × {0}) ∪ (B × {1}) and let f be a selection function for E.
Let C = {n | f(n) = 0} and D = {n | f(n) = 1}.
Then C and D will satisfy the properties of the corollary.

Corollary 3.4 A set A is computable if and only A and the complement of A
are c.e.

One way is trivial, since the complement of a computable set is computable and
all computable sets are c.e. So assume that A and its complement B are c.e.
Let E be as in the proof of the corollary above, and f the selection function.
Then f is the characteristic function of A, so A is computable.

Corollary 3.5 Let f : N → N be a partial function. Then the following are
equivalent:

i) f is computable.

ii) The graph of f is c.e.

Proof
If the graph of f is c.e., then f will be the selection function of its own graph,
which is computable by the selection theorem. If f on the other hand is compu-
table, then the graph of f will be the domain of the following function g(n,m):
Compute f(n) and see if the result equals m.

Computably inseparable c.e. sets

In Exercise 3.16 we will see that two disjoint complements of c.e. sets can be
separated by a computable set. Here we will show that a similar separation
property does not hold for c.e. sets, and we will draw some consequenses of this
fact.

Definition 3.15 Let A and B be two disjoint subsets of N. We say that A and
B are computably separable if there is a computable set C such that A ⊆ C and
B ∩ C = ∅. Otherwise A and B are computably inseparable.

62

Theorem 3.11 There is a pair of computably inseparable c.e. sets.

Proof
Let A = {e | φe(e) = 0} and B = {e | φe(e) = 1}.
Assume that C is a computable set that separates A and B, and assume that
e0 is an index for the characteristic function of C.
Then, if e0 ∈ C, φe0(e0) = 1. Then e0 ∈ B which is disjoint from C.
Likewise, if e0 6∈ C we show that e0 ∈ A ⊆ C. In both cases we obtain a
contradiction, so the existence of C is impossible.

Now this theorem has some interesting consequences concerning the diffe-
rence between classical and constructive mathematics. We will end our general
introduction to the basics of computability theory discussing some of the con-
sequences.

Definition 3.16 a) A binary tree is a non-empty set D of finite 0-1 -sequences
such that any initial segment of an element in D is also in D. A binary
tree is computable if the set of sequence numbers of the sequences in D is
computable.

b) An infinite branch in a binary tree D is a function f : N → {0, 1} such
that (f(0), . . . , f(n− 1)) ∈ D for all n.

Lemma 3.10 (König’s Lemma)
An infinite binary tree has an infinite branch.

The proof of König’s lemma is trivial, but has very little to do with compu-
tability theory. One constructs a branch by allways extending the sequence in
a direction where the tree is still infinite.
Well known theorems proved by similar arguments will be that a continuous
function on a closed bounded interval will obtain its maximum and that any
consistent first order theory has a complete extension.

Remark 3.7 The version of König’s Lemma given above, restricting ourselves
to binary trees, is often called Weak Königs lemma. The full lemma then refers
to infinite trees with finite branching, not just binary branching. There are
results showing that Weak König’s lemma is equivalent, relative to some very
weak theory, to the mentioned theorems from analysis and topology.

We will show a failure of a constructive version of König’s lemma:

Lemma 3.11 There is an infinite, computable binary tree without a compu-
table, infinite branch.

Proof
Let A and B be two computably inseparable c.e. sets and let {An}n∈N and
{Bn}n∈N be primitive recursive sequences of sets An and Bn contained in
{0, . . . , n− 1}, with A =

⋃
n∈NAn and B =

⋃
n∈NBn.

If σ is a 0-1 -sequence of length n, we let σ ∈ D if for all i < n: i ∈ An ⇒ σ(i) = 1

63

and i ∈ Bn ⇒ σ(i) = 0. σ will be a characteristic function on {0, . . . , n − 1}
separating An and Bn.
Now the characteristic function of any set separating A and B will be an infi-
nite branch in D. Since A and B are disjoint, D will be an infinite, binary tree.
Moreover, D will be primitive recursive. A computable, infinite branch will on
the other side be the characteristic function of a computable set separating A
and B, something assumed not to exist. This ends the proof.

3.3 Degrees of Unsolvability

3.3.1 m-reducibility

Discussion

Having introduced the main concepts of computability theory there are several
directions to move in. One direction will be to give a further analysis of the
computable functions and subclasses of them. This will lead us to complexity
theory or to subrecursive hierarchies (see Section 3.6. One key concept then will
be that one set or function can be reduced to another in some simple way.
We will not consider such a fragmentisation of the computable functions into
interesting subclasses yet. Instead we will ask for reductions between possible
non-computable functions and sets, using the complexity of computability itself
for defining the notion of reduction. The connection between this area and the
ones mentioned above is that both the formation of interesting concepts and
the methodology of those directions of computability theory are based on the
experience gained from investigating computable reductions in general. Thus,
in an introductory course, where one should learn the computability theorists
way of thinking, this section is basic.

Definition 3.17 Let A and B be two subsets of N.
We say that A is m-reducible to B, A <m B, if there is a total computable
function f such that for all n:

n ∈ A⇔ f(n) ∈ B.

We read this as ‘many-one-reducible’, since f may be a many-one function. If
we insist on f being injective, we will get 1-reducibility.

There is no way we can reduce N to ∅ and vice versa, and we will exclude
those trivial sets from our further discussion. We then get the observations:

Lemma 3.12 a) If A is computable and B 6= N, ∅, then A <m B.

b) A <m B ⇔ (N \A) <m (N \B).

c) <m is transitive.

The proofs are easy and are left for the reader.

64

Definition 3.18 We call two sets A and B m-equivalent if A <m B and B <m
A. We then write A ≡m B.

Clearly ≡m will be an equivalence relation with a partial ordering inherited
from <m. We call the set of equivalence classes with this induced ordering the
m-degrees. The m degrees have some properties easy to establish:

Lemma 3.13 a) Let X be a finite set of m-degrees. Then X has a least
upper bound.

b) Let X be a countable set of m-degrees. Then X has an upper bound.

Proof
The computable sets will form the minimal m-degree. Thus the empty set has
a least upper bound. In order to prove the rest of a) it is sufficient to show that
{A,B} will have a least upper bound. Let

A⊕ B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}.

This will define the least upper bound, see Problem 3.20.
In order to prove b), Let {An | n ∈ N} be a countable family of sets. Let

A = Σn∈NAn = {〈n,m〉 | m ∈ An}.

Then the m-degree of A will bound the m-degrees of An for each n ∈ N.

We will invest most of our efforts in analysing the Turing degrees below. We
will however prove one negative result, the m-degrees do not represent a linear
stratification of all nontrivial sets into complexity classes.

Lemma 3.14 There are two nontrivial sets A and B such that A 6<m B and
B 6<m A.

Proof
We will construct two increasing sequences {σk}k∈N and {τk}k∈N of 0-1 -functions
approximating the characteristic functions of A and B resp. The construction
will be in steps:
Let σ0 = τ0 be the empty sequence.
Step k = 2e: If φe is not total, increase the lengths of σk and τk by one, letting
σk+1(x) = 1 for the new entry x and τk+1(y) = 0 for the new entry y, this to
ensure that the sets we construct are nontrivial. If φe is total, let x be the least
element for which σk(x) is undefined.
We then extend σk to σk+1 and τk to τk+1 such that σk+1(x) and τk+1(φe(x))
both are defined, and

σk+1(x) 6= τk+1(φe(x)).

This will ensure that A is not reducible to B via φe.
In step k = 2e + 1 we ensure in a similar way that B is not reducible to A via
φe. This ends the proof of the lemma.

65

An m-complete c.e. set

We proved that the computable inverse of a c.e. set is c.e. A reformulation of
this will be

Lemma 3.15 Let A <m B. If B is c.e., then A is c.e.

Thus the c.e. sets form an initial segment of all sets preordered by m-reductions.
First we will show that this set has a maximal element:

Lemma 3.16 Let K = {e | φe(e)↓}. Then any other c.e. set is m-reducible to
K.

Proof
Let A = {d | φe(d) ↓}. Adding a dummy variable we can without loss of
generality assume that A = {d | φe(d, x)↓} where the outcome of φe(d, x) is
independent of x. Then A <m K by

A = {d | S1
1 (e, d) ∈ K}.

A natural question is now if there are c.e. sets that are not m-equivalent
to K or the computable sets; are there more m-degrees among the c.e. sets?
This was answered by Emil Post, when he classified a whole class of c.e. sets
‘in between’.

Simple sets

Definition 3.19 A c.e. set A is simple if the complement of A is infinite, but
does not contain any infinite c.e. sets.

A simple set cannot be computable (why?). We will prove that there exist
simple sets, and that K cannot be reduced to any simple sets.

Lemma 3.17 There exists a simple set.

Proof
Let B = {(e, x) | 2e < x ∧ φe(x)↓}.
Let g be a computable selection function for B, i.e. g(e)↓ when (e, x) ∈ B for
some x, and then g(e) selects one such x.
Let A be the image of g. Then A is c.e.
Since g(e) > 2e when defined, the complement of A will be infinite.
If We is infinite, We will contain a number > 2e, and g(e) will be defined. Then
A ∩We 6= ∅. This shows that A is simple.

Lemma 3.18 Let K <m A.
Then the complement of A contains an infinite c.e. set.

66

Proof
Let f be total and computable such that

e ∈ K ⇔ f(e) ∈ A.

We will construct a computable sequence {xi}i∈N of distinct numbers outside
A, and use the recursion theorem to glue the whole construction together.
The induction start will be the empty sequence.
Assume that Bn = {x0, . . .xn−1} has been constructed, Bn disjoint from A.
Let ρ(n) be such that Wρ(n) = {e | f(e) ∈ Bn}. By the uniformity of the
construction, ρ will be computable. We will let xn = f(ρ(n)).
If xn ∈ Bn we have that xn 6∈ A, so ρ(n) 6∈ K, and ρ(n) 6∈ Wρ(n). This
contradicts the assumption that x ∈ Bn and the definition of Wρ(n). Thus
xn 6∈ Bn.
On the other hand, if xn ∈ A, then ρ(n) ∈ K, ρ(n) ∈Wρ(n) and by construction,
xn ∈ Bn, which we agreed was impossible. Thus xn is a new element outside A.
We can then continue the process and produce an infinite c.e. set outside A.

Corollary 3.6 There is a non-computable c.e. set A such that K is not m-
reducible to A.

3.3.2 Turing degrees

Relativised computations

In the previous section we considered a notion of reducibility between sets base
on the idea ‘A is simpler than B if we can gain information about A by making
one computable call about membership in B’. Now, if we imagine that we
are given the superhuman ability to decide membership in B, we must also
permit ourselves to ask more intricate questions about B in order to decide
membership in A, and still claim that we use our superhuman power to make
A decidable. There are several notions of reductions based on the idea that
we may be allowed any computable set of questions about membership in B
and draw the conclusions from the answers. We will not consider any of those
intermediate notions of reduction in this introductory course, but take the most
drastic approach: We extend the definition of the computable functions by
adding some extra functions as initial ones. This is technically described in the
following definition:

Definition 3.20 Let f1, . . . , fk be a finite list of partial functions fi : N→ N.

a) We extend the definition of φe(~x) to a definition of

φf1,...,fk
e (~x)

by adding a nine’th clause
ix) If e = 〈9, i, k〉 then φf1,...,fk

e (x, ~x) = fi(x). If fi(x) is undefined, then
this computation does not terminate.

67

b) The computation tree will in this case be 〈9, i, k, x, fi(x)〉.

We call these algorithms relativised algorithms meaning that the concept of
computation has been relativised to f1, . . . , fk. One important aspect of this
definition is the finite use principle. Even if we in reality accept functions as
inputs in algorithms as well, no terminating algorithm will use more than a
finite amount of information from the functions involved.

Lemma 3.19 Assume that φf1,...,fk
e (~x) = z. Then there are finite partial sub-

functions f ′1, . . . , f
′
k of f1, . . . , fk resp. such that

φ
f ′1,...,f

′
k

e (~x) = z

with the same computation tree.

The proof is by a tedious but simple induction on e, using the fact that a
sequence number is larger than all parts of the sequence.

We have given and used an enumeration of all ordered sequences of natural
numbers. In the same fashion we can construct an enumeration {ξi}i∈N of
all finite partial functions such that the following relations will be primitive
recursive:
ξi(x)↓
ξi(x) = y
dom(ξi) ⊆ {0, . . . , n}.

The reader is free to ad any other important properties, as long as they
are correct. The properties above are sufficient to prove the extended Kleene
T-predicate:

Lemma 3.20 For each n and k the following relation is primitive recursive:

Tn,k(e, ~x, i1, . . . , ik, t)⇔ t is the computation tree of φ
ξi1 ,...,ξik
e (~x).

In order to save notation we will from now on mainly consider computations
relativised to one function. Using the coding

〈f0, . . . , fk−1〉(x) = fπ1(x)(mod k)(π2(x))

we see that there is no harm in doing this.

Lemma 3.21 There is a primitive recursive function c such that for any partial
functions f , g and h, if for all x, f(x) = φge(x) and for all x, g(x) = φhd(x),
then for all x, f(x) = φhc(e,d)(x).

Proof
c(e, d) is defined by primitive recursion on e, dividing the construction into cases
i) - xi).
For cases i) - iii), we let c(e, d) = e.
For the cases iv) - viii) we just let c(e, d) commute with the construction of
e from its subindices, i.e., if the case is e = expr(e1, . . . , en) then c(e, d) =

68

expr(c(e1, d), . . . , c(en, d)), where expr can be any relevant expression.
If e = 〈9, 1, 1〉 we have φge(x, ~x) = g(x) = φhd(x), so we let c(e, d) = d′ where
φhd′ (x, ~x) = φhd(x). d′ is primitive recursive in d.

We can use the concepts introduced here to talk about computable functio-
nals, and not just about computable functions.

Definition 3.21 Let F : NN → N, a functional of type 2.
We call F computable if there is an index e such that for all total f : N→ N we
have

F (f) = φfe (0).

All computable functionals of type 2 will be continuous with respect to the
canonical topologies. Kleene extended the notion of relativised computation to
cover all functionals of any finite type as possible inputs. This will be discussed
briefly in Chapter 4.

Turing Degrees

We will now restrict ourselves to total functions.

Definition 3.22 Let f and g be two functions. We say that f is computable
in g if there is an index e such that for all x,

f(x) = φge(x).

We write f <T g. This relation is also called Turing reducible to.

The key properties of Turing reducibility is given by

Lemma 3.22 a) <T is a transitive relation.

b) If f is computable and g is any function, then f <T g.

c) If f and g are functions, there is a function h such that for any other
function h′:

f <T h and g <T h.

If f <T h
′ and g <T h

′ then h <T h
′.

Proof
a) is a consequence of Lemma 3.21, b) is trivial, and to prove c), let
h(2n) = f(n) and h(2n+ 1) = g(n).

Definition 3.23 Let f and g be two functions. f and g are Turing equivalent ,
in symbols f ≡T g, if f <T g and g <T f .

≡T will be an equivalence relation. The equivalence classes will be called Turing
degrees or Degrees of unsolvability. We will simply call them degrees. We will
let bold-face low case letters early in the alphabet , a, b, etc. denote degrees.
The set of degrees has a canonical ordering < inherited from <T .

We can summarize what we have observed so far in

69

Lemma 3.23 The ordered set of degrees is an upper semilattice with a least
element such that every countable set is bounded, and every initial segment is
countable.

We leave the verifications for the reader. There is no maximal degree:

Lemma 3.24 Let a be a degree. Then there is a degree b such that

a < b.

Proof
Let f ∈ a. Let g(x) = φfπ1(x)(π2(x)) + 1 if φfπ1(x)(π2(x))↓, otherwise g(x) = 0.

The proof of the unsolvability of the halting problem can be relativised to f so
g is not computable in f . On the other hand, clearly f is computable in g.

The g constructed in the proof above is called f ′, the jump of f . The jump
operator is indeed a degree-operator, see Exercise 3.21.

We have shown that there are incomparable m-degrees. The same method
can be used to show that there are incomparable Turing degrees, see Exer-
cise 3.22. We will prove a stronger result, showing that no strictly increasing
sequence of degrees will have a least upper bound.

Theorem 3.12 Let {ai}i∈N be a strictly increasing sequence of degrees. Then
there are two degrees b and c that are both upper bounds for the sequence, such
that for any degree d, if d < b and d < c, then d < ai for some i ∈ N.

A pair b, c as above is called a perfect pair for the sequence. The degrees in
a perfect pair for a sequence will be incomparable. Further, the existence of a
perfect pair shows that the sequence will have no least upper bound.

Proof
Let {fi}i∈N be a sequence of total functions of increasing Turing degrees. We
will construct the functions g and h as the limits of approximations gx and hx,
where we in the construction of gx+1 and hx+1 want to ensure that if e1 = π1(x)
and e2 = π2(x) and φge1

= φhe2
are total, then φge1

is recursive in fx. In order to
simplicate notation, we let g and h be defined on N2, but this will alter nothing.
In the construction we will preserve the following properties:

1. If i < x, then gx(i, n) and hx(i, n) are defined for all n.

2. If i < x, then gx(i, n) = fi(n) for all but finitely many n.

3. If i < x, then hx(i, n) = fi(n) for all but finitely many n.

4. gx(i, n) is defined only for finitely many (i, n) with x ≤ i.

5. hx(i, n) is defined only for finitely many (i, n) with x ≤ i.
This will ensure that gx and hx are equivalent to fx−1 for x ≥ 0.
Let g0 and h0 both be the empty function.
Now, let x ≥ 0 and assume that gx and hx are defined satisfying 1. - 5. above.

70

Let e1 = π1(x) and e2 = π2(x). What we will do next will depend on the answer
to the following question:
Can we find an x and finite extensions g′ of gx and h′ of hx such that
φg
′
e1

(x) 6= φh
′
e2

(x) and both are defined?.
If the answer is ‘no’, we extend gx to gx+1 by letting gx+1(x, n) = fx(n) whene-
ver this is not in conflict with the construction of gx (a conflict that can appear
at at most finitely many places), and we construct hx+1 from hx and fx in the
same way.
If the answer is ‘yes’, we first choose two such finite extensions, and then we
construct gx+1 and hx+1 from these extensions as above. This ends our con-
struction.

We let g(x, n) = gx+1(x, n) and h(x, n) = hx+1(x, n). In the construction
we have tried as hard as possible to avoid that φge = φhd . The point is that we
have tried so hard that if they after all turn out to be equal, they will both be
computable in one of the fi’s.
Claim 1
fi is computable in both g and h.
Proof
We have that fi(n) = g(i, n) except for finitely many i, so fi is computable in
g. The same argument holds for h.
Claim 2
For x ≥ 0 we have that gx and hx both are computable in fx−1

Proof
This is a trivial consequence of properties 1. - 5.
Claim 3
If φge = φhd and both are total, then φge is computable in fx for some x.
Proof
Let x = P (e, d) where P is the pairing from Definition 3.7. Then in the con-
struction of gx+1 and hx+1 we ask for a y and finite extensions g′ and h′ of gx
and hx such that φg

′
e (y) 6= φh

′
d (y). If we had found some, we would let g and h

be further extensions of one such pair of finite extensions, and then we would
have preserved that φge(y) 6= φgd(y), contradicting our assumption on e and d.
On the other hand, for every y we can, by the assumption and the finite use
principle, find finite extensions such that φg

′
e (y)↓ and φh

′
d (y)↓. The point is that

all these values must be equal, otherwise we could have found two extensions
giving different values. Thus we can give the following algorithm for computing
φge(y) from gx which again is recursive in fx−1: Search for any finite extension
(by searching through the finite partial functions consistent with gx) g′ of gx
such that φg

′
e (y)↓ The value we obtain will be the correct value.

This ends the proof of our theorem.

71

3.4 A minimal degree

3.4.1 Trees

In the constructions of degrees we have performed so far, we have been using
brute force. For instance, when we want to construct a minimal pair, we start
with three properties:

1. f is not computable.

2. g is not computable

3. If h is computable in both f and g, then h is computable.

We then split these properties into infinite lists of requirements, which we try
to satisfy during the construction:

R1,e If φe is total, then f 6= φe.

R2,e If φe is total, then g 6= φe.

R3,e,d If φfe = φgd is total, then φfe is computable.

Now, for any of these requirements and any pair σ and τ of finite sequences
there will be finite extensions σ′ and τ ′ such that any further total extension f
and g of σ′ and τ ′ resp. will satisfy the requirement. Thus by a step-by-step
construction we can construct f and g via finite approximations satisfying one
requirement at the time. The reader is invited to work out the full proof, see
Exercise 3.23.

We will now face a problem which we cannot solve by this simple method.
We will show that there is a non-computable function f such that there is no
function of complexity strictly between f and the computable functions. Again
we will set up the relevant properties of f , and fragmentise them into a sequence
of requirements we want to satisfy during the construction. The problem will be
that we cannot ensure that these requirements are satisfied by considering just
a finite approximation of f . Instead we will use trees, and we will satisfy the
various requirements by insisting that f is a branch in a given binary tree. Before
we can go into details with the argument, we will reconsider our definition of a
binary tree, give a formulation that will be handy for this particular application.
We will not distinguish between finite sequences and sequence numbers here, but
whenever we say that a function defined from a set of finite sequences to the set
of finite sequences is computable, we mean that the corresponding function on
sequence numbers is computable.

Definition 3.24 Let D be the set of finite 0-1 -sequences.

a) If σ ∈ D we let σ ∗ 0 and σ ∗ 1 be σ extended by 0 or 1 resp. We extend
this to the concatenation σ ∗ τ in the canonical way.

b) If σ and τ are two sequences, and i < lh(σ), i < lh(τ) and σ(i) 6= τ (i), we
say that σ and τ are inconsistent.

72

c) f : D → D is monotone if f(σ) is a proper subsequence of f(τ) whenever
σ is a proper subsequence of τ .

d) A tree is a monotone function T : D → D mapping inconsistent sequences
to inconsistent sequences.

e) If S and T are trees, then S is a subtree of T if there is a tree T ′ such that
S = T ◦ T ′.

f) If T is a tree and f : N → {0, 1}, then f is a branch in T if for every n
there is a sequence σ of length n such that T (σ) is an initial segment of g.

Remark 3.8 These trees will sometimes be called perfect trees, the set of
branches will form a perfect subset of the set {0, 1}N in the topological sense,
i.e. a set that is closed and without isolated points.
Our intuition should be focused on the set Set(T) of sequences that are initial
seqments of the possible T (σ)’s. This will be a binary tree in the traditional
sense, and we will have the same set of infinite branches. If S is a subtree of T ,
then Set(S) ⊆ Set(T). The converse will not hold in general.

One key lemma is a simple topological result:

Lemma 3.25 Let {Tn}n∈N be a sequence of trees such that Tn+1 is a subtree
of Tn for all n. Then there is a function f that is a branch in all trees Tn.

Proof
Consider the set X of σ such that σ ∈ Set(Tn) for all n.
X will be a binary tree. The empty sequence is in X. If σ ∈ X, then for all
n, σ ∗ 0 ∈ Set(Tn) or σ ∗ 1 ∈ Set(Tn). At least one of these has to hold for
infinitly many n, and since we are dealing with subtrees, for all n. Thus X is
not a finite tree and by König’s Lemma has an infinite branch, which will be a
common branch for all Tn’s.

Remark 3.9 Using topology we might just say that the intersection of a decrea-
sing sequence of nonempty compact sets is nonempty.

We will now see that certain computable trees can be used to meet natural
requirements. As a first case, let us prove:

Lemma 3.26 Let T be a computable tree and assume that φe is total. Then
there is a computable subtree S of T such that φe is not a branch in S.

Proof
If φe is not a branch in T , we can use S = T . If φe is a branch in T , one of T (0)
and T (1) will be inconsistent with φe, since they are inconsistent themselves.
(here 0 is the sequence of length 1 with entry 0). Assume that φe is inconsistent
with T (0).
Let S(σ) = T (0∗σ). Then S is a subtree as desired. The other case is analogue.

73

3.4.2 Collecting Trees

Now we will describe a property on computable trees that will ensure that if f
is a branch in the tree and φfe is total, then φfe is computable.

Definition 3.25 Let T be a computable tree, e an index.

T is e-collecting if for all finite sequences σ, τ and all x ∈ N, if φ
T (σ)
e (x)↓ and

φ
T (τ)
e (x)↓, then

φT (σ)
e (x) = φT (τ)

e (x).

Lemma 3.27 Let T be a computable e-collecting tree and let f be a branch in
T . If φfe is total, then φfe is computable.

Proof
We will give an algorithm for computing φfe (x) from x.

Since φfe (x)↓, there will be a 0-1 -sequence σ such that φ
T (σ)
e (x)↓, and since T

is e-collecting, the value φ
T (σ)
e (x) will be independent of the choice of σ. Thus

our algorithm will be:

Search for a finite sequence σ such that φ
T (σ)
e (x)↓ and let the answer be the

output of our algorithm.

Remark 3.10 There is more information to be gained from this proof. We see
that the function φfe itself is independent of f as long as it is total and f is a
branch in an e-collecting tree.

3.4.3 Splitting Trees

We will now find a criterion that will ensure that f is computable in φfe whenever
f is a branch in a computable tree and φfe is total:

Definition 3.26 Let T be a computable tree, and let e be an index.
We call T e-splitting if for all finite 0-1 -sequences σ and τ , if σ and τ are
inconsistent, then there exists a number x such that

φ
T (σ)
e (x)↓ , φ

T (τ)
e (x)↓ with φ

T (σ)
e (x) 6= φ

T (τ)
e (x).

Lemma 3.28 Let T be an e-splitting computable tree , let f be a branch in T
and assume that φfe is total. Then f is computable in φfe .

Proof
We will compute an infinite 0-1 -sequence {ki}i∈N from φfe such that T (σn) is an
initial segment of f for all n, where σn = (k0, . . . , kn−1). The empty sequence
σ0 of course satisfies this. Assume that σn is constructed. Then one of T (σn∗0)
and T (σn ∗ 1) will be an initial seqment of f . We will just have to determine

which one. Now φ
T (σn∗1)
e and φ

T (σn∗1
e) will be inconsistent, so exactly one of

them will be inconsistent with φfe . We can then use φfe to find the inconsistent
one, which means that we can decide which direction is along f and which is
not. This provides us with the induction step, and we can move on. This ends
the proof of the lemma.

74

Remark 3.11 In the case of T being an e-splitting tree, we see that φfe is a
one-to one-function of the branch f , and what we just argued for is that we can
compute the inverse.

3.4.4 A minimal degree

Using Lemmas 3.25, 3.26, 3.27 and 3.28 we can show the existence of a minimal
degree from the following:

Lemma 3.29 Let T be a computable tree and let e be an index. Then there is
a computable subtree S that is either e-collecting or e-splitting.

Proof

Case 1: There is a sequence σ such that for all τ and τ ′ extending σ, φ
T (τ)
e and

φ
T (τ ′)
e are equal where both are defined. Let S(τ) = T (σ ∗ τ). Then S will be a

subtree of T and S will be e-collecting.
Case 2: Otherwise. Then for every σ there will be extensions τ0 and τ1 such

that φ
T (τ0)
e and φ

T (τ1)
e are inconsistent. Further, we can find these τ0 and τ1 as

computable functions t0(σ) and t1(σ).
We then define the subtree S by

S(()) = T (()), i.e. S and T are equal on the empty sequence.

If S(σ) is defined, let S(σ ∗ 0) = T (t0(σ)) and S(σ ∗ 1) = T (t1(σ)).

This defines a subtree that will be e-splitting.

We have now proved all essential steps needed in the construction of a mi-
nimal degree:

Theorem 3.13 There is a non-computable function f such that if g <T f then
either g is computable or g is equivalent to f .

Proof
Using the lemmas above we construct a family {Tn} of computable trees such
that Tn+1 is a subtree of Tn for all n, and such that for all e

If φe is total, then φe is not a branch in T2e+1

T2e+2 is either e-collecting or e-splitting.

Then by Lemma 3.25 there is an f that is a branch in all Tn’s, and this f will
have the property wanted.

75

3.5 A priority argument

3.5.1 C.e. degrees

In the constructions of minimal pairs and functions of minimal degrees we have
not been concerned with the complexity of the sets and functions constructed.
We can decide upper bounds on the objects constructed in the proofs by ana-
lysing the complexity of properties like φe is total and counting in depth how
many number quantifiers we will need in order to write out a definition of the
object constructed. If we, however, are interested in results about degrees with
some bounded complexity, we must be more careful in our constructions. In
this section we will be interested in degrees with at least one c.e. set in it:

Definition 3.27 Let a be a degree.
a is an c.e. degree if a contains the characteristic function of a c.e. set. We say
that f is of c.e. degree if the degree of f is a c.e. degree.

There is a nice characterisation of the functions of c.e. degree. We leave the
proof as an exercise for the reader, see Exercise 3.26

Theorem 3.14 Let f be a function. Then the following are equivalent:

i) f is of c.e. degree.

ii) There is a primitive recursive sequence {fi}i∈N converging pointwise to f
such that the following function

g(x) = µn.∀m ≥ n(fm(x) = f(x))

is computable in f .

3.5.2 Post’s Problem

So far we only know two c.e. degrees, O, the degree of the computable sets and
functions, and O′, the degree of the halting problem. Post’s Problem asks if
there are more c.e. degrees than those two. This is of course a nice, technical
problem, but it has implications beyond that. One of the reasons why c.e.
sets are so interesting is that the set of theorems in an axiomatisable theory
is c.e. If there were no more c.e. degrees than those two known to us, a
consequence would be that there are two kinds of axiomatisable theories, those
that are decidable and those that share the complexity of Peano Arithmetic.
As a consequence of Gödel’s proof of the incompleteness theorem, the set of
Gödel-numbers of theorems in Peano Arithmetic is a complete c.e. set, i.e. of
even the same m-degre as K.

Now, in 1957 two young mathematicians, Friedberg and Muchnic, indepen-
dently constructed c.e. sets of inbetween degrees. They both developed what
is now known as the priority method . The problem we have to face when con-
structing c.e. sets is that we must give an argorithm for adding elements to the

76

set, but we cannot give an algorithm for keeping objects out of the set. If we
did that, the set constructed would become computable. Thus when we have
made an attempt to approximate a set with positive and negative information,
we must be allowed to violate the negative information. However, we must not
violate the negative information to such an extent that we ruin our global goal.
We solve this dilemma by introducing priorities to our requirements. If an effort
to satisfy one requirement will ruin the attempt to satisfy another requirement,
we let the requirement with highest priority winn. This idea will work when two
properties are satisfied by the construction: If we make an attempt to satisfy
a requirement and we never ruin this attempt, we actually manage to satisfy
the requirement. Further, if we after a stage in the construction never make
an attempt to satisfy a requirement, the requirement will authomatically be
satisfied.

Thus we are bound to satisfy the requirement of highest priority, either
because we make an attemp which will not be ruined, or because there is no
need to make an attempt.
Then we are bound to satisfy the next requirement, either because we make an
attempt after the final attempt for the first requirement, or because there is no
need to make such an attempt,
and so on.... In the finite injury lemma we will give a full proof along this line
of arguing.

3.5.3 Two incomparable c.e. degrees

Theorem 3.15 There are two c.e. sets A and B that are not recursive in each
other.

Remark 3.12 If A and B are not computable in each other, neither can be
computable, because any computable set will be computable in any set. More-
over neither can have the same degree as K, because every r.e. set is computable
in K. Thus we have not just produced an in-between degree, but two in-between
degrees. In Exercise 3.27 we will see that there are infinitly many in-between
degrees, and that any countable partial ordering can be embedded into the
ordering of the c.e. degrees.

Proof
We will construct two c.e. sets A and B satisfying

R2e: N \A 6= WB
e

R2e+1: N \B 6= WA
e

or in other terms: The complement of A is not c.e. relative to B and vice versa.
If we achieve this for all e, we will have proved the theorem, since a set A is
computable in B if and only if both A and the complement of A are c.e. in
B, and since A is c.e. we have that A is computable in B if and only if the
complement of A is c.e. in B.

77

We will construct two primitive recursive increasing sequences {An}n∈N and
{Bn}n∈N of finite sets . We let

A0 = B0 = ∅.

We call each step in the process a stage. If n = 〈1, e, x〉 we will consider to make
an attempt to satisfy R2e at stage n, while if n = 〈2, e, x〉 we will consider to
make an attempt to satisfy R2e−1.

An attempt to satisfy R2e will consist of selecting a q ∈ An+1 ∩WBn+1
e , and

then put up a protection, the set of points used negatively in the verification of

q ∈ WBn+1
e . If we can keep all objects in this protection out of B throughout

the construction, we will have

q ∈ A ∩WB
e

and R2e will be satisfied. We call the protection active at a later stage m if Bm
is disjoint from this protection.

There is some little minor trick to observe, we will use disjoint infinite sup-
plies of numbers that we may put into A (or B) in order to satisfy R2e (or
R2e+1). We will use this to show that if we make only finitly many attempts,
we will succeed after all.

Now let n = 〈1, e, x〉 and assume that An and Bn are constructed. Assume
further that we constructed certain protections, some of them active at stage n,
others not. We write the following procedure for what to do next:
Let Bn+1 = Bn.
Question 1: Is there a protection for R2e active at stage n?
If the answer is ‘yes’, let An+1 = An. and continue to the next stage.
If the answer is ‘no’, ask
Question 2: Is there a y < n such that φBne,n(〈y, e〉) ↓ and y is in no active
protection for any requirement R2d+1 where 2d+ 1 < 2e?
If the answer is ‘no’, let An+1 = An and proceed to the next stage.
If the answer is ‘yes’, choose the least y, let An+1 = An ∪ {〈y, e〉}, construct a
protection {0, . . . , n} \Bn for R2e and move on to the next stage.

If n = 〈2, e, x〉 we act in the symmetric way, while for other n we just move on
to the next stage, not adding anything to A or B.
This ends the construction.

Claim 1 (The Finite Injury Lemma)
For each requirement Rs there is a stage ns after which we do not put up or
injure any protection for Rs.
Proof
We prove this by induction on s, and as an induction hypothesis we may assume
that there is a stage ms after which we never put up a protection for any
requirement Rt with t < s. Then we will never after stage ms injure a protection
for Rs. Thus if we never put up a protection for Rs after stage ms we can let
ns = ms, while if we construct a protection, this will never be injured and we
can let ns be the stage where this protection is constructed.

78

Now let A =
⋃
n∈NAn and B =

⋃
n∈NBn. Then A and B are c.e. sets.

Claim 2
Each requirement Rs will be satisfied.
Proof
We prove this for s = 2e. There are two cases.
1. There is a protection for Rs active at stage ns.
If this is the case, there will be a y such that 〈y, e〉 ∈ Ans ∩WBn

e . Since the
protection is not injured, we will have that 〈y, e〉 ∈ A∩WB

e and the requirement
is satisfied, A and WB

e are not complementary.
2. There is no such protection.
There is only finitely many objects of the form 〈y, e〉 in A, because we ad at
most one such object for each stage before ns, and never any at a stage after
ns.
On the other hand, there can be only finitly many objects of the form 〈y, s〉 in
WB
e , since otherwise we could choose one that is not in any protection for any

Rt for t < s, and sooner or later we would at some stage after ns make a new
attempt to satisfy Re, which we are not. Thus A ∪WB

e contains only finitly
many objects of the form 〈y, e〉 and the sets are not the complements of each
other. Thus the requirement will be satisfied in this case as well.

We have shown that all the requirements are satisfied in this construction,
so the theorem is proved.

3.6 Subrecursion theory

3.6.1 Complexity

What is to be considered as complex will be a matter of taste. Actually, the
same logician may alter her/his taste for complexity several times a day. This
logician may give a class on aotomata theory in the morning, and then the re-
gular languages will be the simple ones, while context free languages are more
complex. Still, context free languages are decidable in polynomial time, and
while our logician spends an hour contemplating on the P = NP-problem any
context free language is much more simple than the satisfiability problem for
propositional logic. If our logician is working mainly in classical computability
theory, all decidable languages are simple, while the undecidable ones are the
complex ones. If our logician is a set theorist, all definable sets are simple, may
be all subsets of subsets of subsets of R are simle, we have to move high up in
cardinality in order to find sets of a challenging and interesting complexity.
In this section, our view on complexity will be one shared by many proof theo-
rists. One of the aims in proof theory is to characterise the functions and sets
provably computable in certain formal theories extending elementary number
theory. The idea is that if we know the functions provably computable in T , we
know something about the strength of the theory T worth knowing.

We will not be concerned with proof theory in this book, and any references
to proof-theoretical results should not be considered as a part of any curriculum

79

based on this text.

3.6.2 Ackermann revisited

In Section 3.2.1 we defined the Ackermann branches. The idea of Ackermann
was that each use of the scheme for primitive recursion involves an iteration of
a previously defined function. Then diagonalising over a sequence of functions
defined by iterated iteration would break out of the class of primitive recursive
functions.

The Ackermann branches were defined using functions of two variables. We
will be interested in pushing his construction through to the transfinite level, in
order to describe more complex functions from below. Then it will be conveni-
ent, from a notational point of view, to use functions of one variable.

Definition 3.28 • Let F0(x) = x+ 1

• Let Fk+1(x) = F xk (x)

For the sake of illustration, let us compute F2(2):

F2(2) = F1(F1(2)) = F1(F 2
0 (2)) = F1(4) = F 4

0 (4) = 8.

The reader is challenced to show that F2(x) = x · 2x. In Exercise 3.30 we will
see that diagonalising over the Fk’s will lead us outside the class of primitive
recursive functions.

From now on in this section we will let PA be Peano Arithmetic; i.e. ele-
mentary number theory with the first order induction axiom scheme. Our first
order language L will be the language of PA.

Definition 3.29 A function f : N → N is provably computable if there is a
formula A(x, y) in L with only bounded quantifiers such that A defines the
graph of f and

PA ` ∀x∃yB(x, y).

This definition is extended in the obvious way to functions of several variables.

We will assume that the reader is familiar with the method of arithmetisa-
tion, sequence numbering and so forth.

Lemma 3.30 Let f(k, x) = Fk(x). Then f is provably computable.

Outline of proof
Essentially we have to prove that F0 is total and that if Fk is total then Fk+1

is total as well. This induction step is proved by induction, where we actually
must prove

∀x∀y∃zF yk (x) = z

by induction on y.
In order to write a complete proof, we have to write down the formal definition
of the graph of f and the establish a proof three for the formula required to be
a theorem in PA. This is tedious and not very exiting; the exiting part is to
decide how much induction that is required.

80

3.6.3 Ordinal notation

The concept of an ordinal number will be properly introduced in a course on
set theory. We have defined the concept of well orderings. An ordinal number
will be a set that in a canonical way represents an isomorphism class of well
orderings. For our purposes it will be sufficient to think about order types of
well orderings, and we will use a term language for such order types.

Definition 3.30 ω is the smallest infinite ordinal number, and it denotes the
ordertype of N with the standard ordering.

All natural numbers will be ordinals as well.
We may extend the arithmetical operations plus, times and exponentiation to
operations on orderings, or actually, on order types. The sum of two orderings
〈A,<A〉 and 〈B,<B〉 will be the set

C = A ⊕B = ({0} ×A) ∪ ({1} × B)

with the ordering <C defined by

• 〈0, a〉 <C 〈1, b〉 whenever a ∈ A and b ∈ B.

• 〈0, a1〉 <C 〈0, a2〉 if and only if a1 <A a2.

• 〈1, b1〉 <C 〈1, b2〉 if and only if b1 <B b2.

The product of two orderings will for our purposes be the antilexicographical
ordering on the product of the domains.

The formal definition of the exponential of orderings is less intuitive, but it helps
to think of exponentiation as iterated multiplication. Our definition only works
for special orderings 〈A,<A〉, including all well orderings.

Definition 3.31 Let 〈A,<A〉 and 〈B,<B〉 be two orderings where A has a least
element a0.
Let p ∈ C if p is a map from B to A such that p(b) = a0 for all but finitely
many b ∈ B.
If p 6= q are in C, there will be a maximal argument b such that p(b) 6= q(b).
We then let p <C q⇔ p(b) < q(b) for this maximal b.

Lemma 3.31 If 〈A,<A〉 and 〈B,<B〉 are two well orderings then the sum,
product and exponential will be well orderings.

The proof is left as Exercise 3.31

As a consequence, every arithmetical expression in the constant ω and con-
stants for the natural numbers, and using ’plus’, ’times’ and ’exponents’ will
have an interpretation as an ordinal number.
The least ordinal number that cannot be described by an expression as above
is baptized ε0. As for ordinary arithmetics, ω0 = 1. This is a special case of the
more general rule

ωα · ωβ = ωα+β .

81

A consequence is that each ordinal α < ε0 can be written in a unique way as

α = ωαn + · · ·+ ωα0

where {α0, · · · , αn} is an increasing (not neccessarily strictly) sequence of ordi-
nals less than α. We call this the Cantor Normal Form of α. If α0 = 0 the
ordinal α will be a successor ordinal, otherwise it will be a limit ordinal.

We extended the Ackermann hierarchy to the first transfinite level by diagona-
lising over the Ackermann branches. One advantage with the Cantor normal
form is that we may find a canonocal increasing unbounded sequence below
every limit ordinal between ω and ε0. Actually, it is possible to do so for ordi-
nals greater than ε0 too, but readers interested in how this is done and why are
reccommended to follow a special course on proof theory and ordinal denota-
tions.

Definition 3.32 Let
α = ωαn + · · ·+ ωα0

be given on Cantor normal form, and assume that α0 > 0.
We define the n’th element α[n] of the fundamental sequence for α as follows:

Case 1 α0 = β + 1:
Let α[n] = ωαn + · · ·ωα1 + n · ωβ .

Case 2 α0 is a limit ordinal:
We may then assume that α0[n] is defined, and we let

α[n] = ωαn + · · ·ωα1 + ωα0[n]

We may consider the map α 7→ α[n] as an extension of the predecessor function
to limit ordinals:

Definition 3.33 Let 0 < α < ε0. We define the n-predecessor of α by

a) If α is a successor ordinal, the n-predecessor of α is the predecessor of α.

b) If α is a limit ordinal, the n-predecessor of α will be α[n].

c) We say that β <n α if β can be reached from α by iterating the n-
predecessor map.

Lemma 3.32 Let α < ε0, β <m α and m < n. Then β <n α

Proof
It is sufficient to prove that if m < n and α is a limit ordinal, then α[m] <n α.
This is left as a non-trivial exercise for the reader, see Exercise 5.7.

Lemma 3.33 Let α < ε0 and let β < α. Then there is an n such that β <n α.

Proof
This is proved by induction on α with the aid of Lemma 3.32. The details are
left as a nontrivial exercise for the reader, see Exercise 5.7

82

3.6.4 A subrecursive hierarchy

We will now extend the alternative Ackermann hierarchy to all ordinals less
than ε0:

Definition 3.34 Let α < ε0. We define Fα(x) by recursion on α as follows:

• F0(x) = x+ 1

• Fβ+1(x) = F xβ (x)

• Fα(x) = Fαx when α is a limit ordinal.

Proof theorists have shown that if a function f : N→ N is provably computable,
then f will be bounded almost everywhere by one of the Fα’s where α < ε0.
The proof involves the translation of a proof in PA to a proof in ω-logic, then
a cut-elimination procedure in ω-logic and finally an analysis of cut-free proofs
in ω-logic of the totality of computable functions. This analysis is far beyond
the scope of this volume, and the reader is not recommended to work out the
details.
In Exercises 5.8 and Exercise 5.7 the reader is challenced to prove that each Fα
is provably computable and establish the hierarchial properties of the {Fα}α<ε0-
hierarchy. The main results are:

Lemma 3.34 Let n < x and β <n α < ε0.
Then

Fβ(x) ≤ Fα(x).

Theorem 3.16 If β < α < ε0, then

∃x0∀x > x0(Fβ(x) < Fα(x)).

Remark 3.13 There are many aspects about subrecursive hierarchies that we
have not discussed in this section. We have not discussed complexity classes.
For instance, the class Hα of functions computable in polynomial time relative
to a finite iteration of Fα represents a stratification of the set of all provably
computable functions into a complexity hierarchy, where each complexity class
is closed under composition and closed under polynomial time reductions. We
will not discuss such matters further here.

3.7 Exercises

Ex 3.1 Prove that the following functions are primitive recursive:

a) f(x, y, ~z) = x+ y

b) f(x, y, ~z) = x · y

c) f(x, y, ~z) = xy

83

d) f(x, ~y) = x!

e) f(x, ~y) = x ·−1

f) f(x, y, ~z) = x ·−y

g) f(x, y, ~z) = 0 if x = y

f(x, y, ~z) = 1 if x 6= y

h) f(x, y, ~z) = 0 if x < y

f(x, y, ~z) = 1 if x ≥ y

Ex 3.2 Prove the following facts:

a) Nn and ∅ are primitive recursive as subsets og Nn.

b) The complement of a primitive recursive set is primitive recursive. More-
over, the union and intersection of two primitive recursive subsets of Nn
will be primitive recursive.

Ex 3.3 a) Prove Lemma 3.2.

b) Prove that we can replace the inequalities by strict inequalities in Lemma
3.2.

Ex 3.4 Prove Lemma 3.3.

Ex 3.5 a) Prove Lemma 3.5.

b) Prove that the sequence numbering is monotone in each coordinate.

c) Prove that the monotone enumeration SEQ of the sequence numbers is
primitive recursive.
Hint: Find a primitive recursive bound for the next sequence number and
use bounded search.

d) Define an alternative sequence numbering as follows:
〈〈x0, . . . , xn−1〉〉 is the number z such that

SEQ(z) = 〈x0, . . . , xn−1〉.

Show that this alternative numbering is surjective and still satisfies Lemma
3.5

e) Prove that the pairing function P in Definition 3.7 is 1-1 and onto.

Ex 3.6 Let fn be the n’the Ackermann branch.

a) Prove that for any primitive recursive function h there are numbers n and
m such that h(x) < fn(m,x) for all x.

84

b) Show that the diagonal
f(x) = fx(x, x)

is not primitive recursive.

Ex 3.7 Prove that if φe(~x) = y and φe(~x) = z, then y = z.
Hint: Use induction on e.
Discuss why this is something that needs a proof.

Ex 3.8 Show that in the definitions of the primitive recursive functions and the
recursive functions we can replace ii) and vi) by:
ii*) Ii,n(x1, . . . , xn) = xi is primitive recursive (recursive)

for all i and n.

Ex 3.9 Let {fn}n∈N be a sequence of total functions such that

g(n,m) = fn(m)

is computable.
Show that each fn is computable, and that there is a total computable function
not in the sequence.
Hint: Use a diagonal argument.

Ex 3.10 Show that there is a total computable function Φ(n, x) of two variables
that enumerates all primitive recursive functions of one variable.
Is it possible to let Φ be primitive recursive?

Ex 3.11 Complete the proof of Lemma 3.7

Ex 3.12 Prove Corollary 3.2

Ex 3.13 a) Prove that every non-empty c.e. set is the image of a primitive
recursive function (easy) and that every infinite c.e. set is the image of an
injective computable function (not that easy, but still...).

b) Prove that the range of a strictly increasing total computable function is
computable.

Ex 3.14 Let A ⊆ Nn. Show that A is c.e. (by characterisation ii) or iii) in
Theorem 3.9) if and only if

{〈x1, . . . , xn〉 | (x1, . . . , xn) ∈ A}

is c.e.

Ex 3.15 Give an explicit description of the selection function in the proof of
Theorem 3.10.

Ex 3.16 Let A and B be two disjoint sets whose complements are c.e.
Show that there is a computable set C such that A ⊆ C and B ∩ C = ∅.
Hint:Use Corollary 3.3.

85

Ex 3.17 Let L be the language of propositional calculus over an infinite set
{Ai}i∈N of propositional variables. Discuss the following statement:
There is a primitive recursive consistent set of propositions with no computable
completion.

Ex 3.18 a) Show that there is an enumeration {In}i∈N of all rational inter-
vals contained in [0, 1] such that the relations In ⊆ Im, In ∩ Im = ∅ and
|In| < 2−m are computable, where |In| is the length of the interval.

A real number x is computable if there is a computable function h such
that

i) |Ih(n)| < 2−n

ii) For all n, x ∈ Ih(n)

b) Let f : [0, 1]→ [0, 1] be a continuous function.
We say that f is computable if there is a total computable function g :
N→ N such that

i) In ⊆ Im ⇒ Ig(n) ⊆ Ig(m)

ii) x ∈ In ⇒ f(x) ∈ Ig(n)

iii) For all x and m there is an n with x ∈ In and |Ig(n)| < 2−m.

Show that any computable function will be continuous. Show that there
is a computable function that does not take its maximal value at any
computable real.

Ex 3.19 Show that there is a non-trivial set A that is not m-reducible to its
complement.
Hint: Let {fn}n∈N be an enumeration of all the total computable functions.
Approximate A and its complement by finite characteristic functions to ensure
at step n that fn will not reduce A to its complement.

Ex 3.20 Show that if A ≡m B and C ≡m D, then A⊕C ≡m B⊕D. Show that
if A <m E and B <m E then A⊕ B <m E. Show that A ⊕B then represents
the least upper bound of A and B in the m-degrees.

Ex 3.21 Show that if f1 ≡T f2, then the jumps f ′1 and f ′2 are also Turing
equivalent.

Ex 3.22 Perform a direct construction and show that there are two total functions
f and g such that f 6<T g and g 6<T f .

Ex 3.23 Prove that there is a minimal pair of Turing degrees, i.e. a pair {a,b}
of degrees of non-computable functions, such that the degree O of computable
functions is the greatest lower bound of a and b.
Hint: We may use the main idea in the proof of Theorem 3.12, this theorem is
simpler to prove. You may also get some ideas from the discussion of this proof
in the text.

86

Ex 3.24 Let O be the degree of the computable functions.
Recall the definition of the jump operator cfr. Exercise 3.21. We define the
arithmetical hierarchy as follows:

A Σ0
1-set is an c.e. set (of any dimension).

A Π0
1-set is the complement of a Σ0

1-set

A Σ0
k+1-set is the projection of a Π0

k-set

A Π0
k+1-set is the complement of a Σ0

k+1-set

A ∆0
k set is a set that is both Σ0

k and Π0
k.

Let O(n) be the degree obtained from O using the jump-operator n times.

a) Prove that if A is Σ0
k or A is Π0

k, then (the characteristic function of) A
has a degree a ≤ O(k).

b) Show that for k ≥ 1 we have that A is ∆0
k+1 if and only if the degree of A

is bounded by O(k).
Hint: Use the relativised version of the fact that a set is computable if
and only if both the set and its complement are c.e.

Ex 3.25 Show that there are continuumly many minimal degrees.
Hint: Instead of constructing one tree Tn at level n we might construct 2n trees
Tσ,n for lh(σ) = n, ensuring for each e that the branches of different trees will
not be computable in each other via index e. The proof requires some clever
book-keeping.

Ex 3.26 Prove Theorem 3.14.

Ex 3.27 Let B ⊆ N2 be a set. For each n ∈ N, we let Bn = {m | (n,m) ∈ B}
and we let B−n = {(k,m) ∈ B | k 6= n}.

a) Show that there is a c.e. set B such that for all n, Bn is not computable
in B−n.
Hint: Use an enumeration of N2 to give all the requirements

R(n,e) : N \Bn 6= WB−n
e

a priority rank.

b) Consider a computable partial ordering ≺ on the natural numbers.
Show that there is an order-preserving map of ≺ into the c.e. degrees.
Hint: Use the construction in a), and let
Cn = {(k,m) ∈ B | k � n}.

There is one computable partial ordering ≺ such that any other partial ordering
of any countable set can be embedded into ≺, see Exercise 5.3. Thus this shows
that any countable partial ordering can be embedded into the ordering of the
c.e. degrees.

87

Ex 3.28 Fill in the details in the proof of the following theorem:

Theorem 3.17 Let a > O be an c.e. degree. Then there are two incomparable
c.e. degrees b and c such that a = b⊕ c.

This theorem is called The splitting theorem. We split the c.e. degree a into
two simpler c.e. degrees.
Proof
Let A be a nonrecursive r.e. set. It is sufficient to construct two disjoint r.e.
sets B and C such that
A = B ∪ C, A is not recursive in B and A is not recursive in C.
Let f be a 1-1 enumeration of A. At each stage n we will put f(n) into B or
f(n) into C, but not into both.
Let Bn be the numbers put int B before stage n and Cn be the set of numbers
put into C before stage n. Further, we let
An = {f(0), . . . , f(n− 1)}, so An = Bn ∪ Cn.
We put up requirements

R2e : KA 6= φBe .

R2e+1 : KA 6= φCe .

which we give priorities in the usual way.
For each requirement Rs we define three auxilliary functions. For s = 2e they
will be:
The match function m(s, n) = µk < n.∀x ≤ kφBne,n(x) = KAn(x).
The bar function b(s, n) = max{m(s, n′) | n′ ≤ n}
The protection function p(s, n) = {y | y is used negativly in computing φBne,n(x)
for some x ≤ b(s, n)}.
In this case we call this a protection of B.

Now the construction at stage n is as follows: If f(n) 6∈ p(s, n) for any s ≤ n, put
f(n) into B. Otherwise, consider the requirement Rs of highest priority such
that f(n) ∈ p(s, n). If this is a protection of B, we put f(n) into C, otherwise
we put f(n) into B.
When we put an element into a protection of B we injure that requirement. We
will prove that for any requirement Rs there is a stage ns after which we will
never injure that requirement, and simultaneously that the bar-function b(s, n)
is bounded when s is fixed.
Assume that this holds for all s′ < s. Then there is a stage ns after which f(n)
is not in the protection for any s′ < s, and then, after stage ns, Rs will not be
injured.
This in turn means that if x < b(s, n) for n ≥ ns and φBne,n↓, then φBe (x) = φBne,n.
Now, if limn→∞ p(s, n) =∞ we can use the increasing matching and the stability
of φBne,n to show that A is recursive, which it is not.

On the other hand, if KA = φBe we will get increasing matching. Thus at
the same time we prove that the construction of the bar and protection for Rs
terminates and that the requirement is satisfied at the end.

88

Ex 3.29 Post hoped to prove that a simple set cannot be of the same degree as
the complete c.e. set K. This will however not be the case, which will be clear
when you have solved this problem.

LetA be a non-computable c.e. set and f a total computable 1-1-enumeration
of A. We know that f cannot be increasing (why?).
Let

B = {n | ∃m > n(f(m) < f(n))}
This is called the deficiency set of the enumeration.

a) Show that B is c.e. and that B is computable n A.

b) Show that A is computable in B.
Hint: In order to determine if x ∈ A it is sufficient to find n 6∈ B such
that f(n) > x.

c) Show that B is simple.
Hint: If the complement ofB contains an infinite c.e. set, the algorithm for
computing A from B in b) can be turned into an algorithm for computing
A.

Ex 3.30 Let Fk be the alternative Ackermann branch. Show that every primi-
tive recursive function f is bounded almost everywhere by some Fk and that
the diagonal function Fω(x) = Fx(x) is not primitive recursive.

Ex 3.31 Prove Lemma 3.31

Ex 3.32 Let P be the set of polynomials P (x) where we only use + (not ’mi-
nus’) and where all coefficients are natural numbers.
We order P by

P (x) ≺ Q(x)⇔ ∃n∀m ≥ n(P (m) < Q(m)).

Show that ≺ is a well ordering of ordertype ωω.

89

Chapter 4

Generalized Computability
Theory

4.1 Computing with function arguments

4.2 Computing relative to a functional of type
2

4.3 2E versus continuity

4.4 Hyperarithmetics

4.5 Typed λ-calculus and PCF

4.6 Exercises to Chapter 4

90

Chapter 5

Non-trivial exercises and
minor projects

In this chapter we have collected some exercises or minor projects that is based
either on the material in more than one chapter or that is too hard to be
considered as an exercise in the ordinary sense. We call them exercises, though
some of the items in this chapter are much more demanding than ordinary
exercises.

Ex 5.1 Let L be a finite language. Show that the relation ’φ is true in all finite
L-structures’ is decidable if all predicates are unary, while that it in general is
complete co-c.e.

Ex 5.2 Let L be a finite language void of constants and function symbols. Let
T be an open theory over L. Show that there is an ω-categorical extension T ∗

of T .
Show that if T has only finitely many non-logical axioms, then T ∗ may be chosen
to be decidable.
Discuss how your general construction is related to the step from the open theory
of total orderings to DO.

Ex 5.3 In view (and improvement) of Exercise 5.2 show that there is a com-
putable partial ordering (N,≺) such that every other countable partial ordering
(X ′, <′) can be embedded into (N,≺).

Ex 5.4 For the sake of notational simplicity we extend the second order langu-
ages with variables for functions as well.

a) Find a second order formula that expresses that if X is a set, f : X → X
and x ∈ X then Y = {fn(x) ; n ∈ N}.

b) Discuss to what extent our formal definition of a finite set is in accordance
with your intuition about set theory.

91

c) It is a fact of set theory that every set accepts a total ordering. Use
this and our formal definition of infinity to show that the following are
equivalent.

1. X is finite.

2. Every total ordering of X is a well ordering.

.

Ex 5.5 Let L= be the language of equality. We say that s subset of N is
definable in second order finitary logic if there is a sentence φ in L2

= such that
n ∈ A if and only if {0, . . . , n− 1} |= φ.
Discuss the properties of the class of sets definable in second order finitary logic
in terms of decidability, complexity and closure properties.

Ex 5.6 Let Σ be a fixed alphabet. Show that there is an enumeration {Mi}i∈N
of the set of Turing Machines over Σ and a one-to-one enumeration {wj}j∈N of
the set of words in Σ∗ such that the function f satisfying the equation

f(i, j) ∼ k ⇔Mi(wj) = wk

is computable, where ∼ means that either is both sides undefined, or both sides
are defined and with the same value.

Ex 5.7 In the text we have indicated how to establish some of the properties of
the hierarchy {Fα}α<ε0. Work out all the details and write a small essay about
it. You may well combine this with Exercise 5.8

Ex 5.8 Show that if α < ε0 then Fα is provably computable. Suggest a funda-
mental sequence for ε0 and thus a function Fε0 . If properly defined, Fε0 will not
be provably computable in PA, but in some seccond order extension. Discuss
how we may formulate a proof of the totality of Fε0 in some 2. order extension
of PA.

92

Chapter 6

Appendix:
Some propositions from a
beginners course in logic

Proposition 1 The Completenes Theorem, two versions

a) Let T be a first order theory. Then T is consistent if and only if T has a
model.

b) Let T be a first order theory over the language L and let φ be a formula
in L. Then

T ` φ⇔ T |= φ

Proposition 2 The Compactness Theorem
Let T be a first order theory. Then T has a model if and only if each finite
subtheory T0 of T has a model.

Proposition 3 The Deduction Theorem
Let T be a first order theory over a language L, let φ be a sentence in L and ψ
a formula in L. Then

T, φ ` ψ ⇔ T ` φ→ ψ.

Proposition 4 The Theorem of Constants
Let T be a first order theory over a language L and let c1, . . . , cn be constants
that are not in L. Let L′ be the extended language.
Let T ′ be the theory over L′ with the same nonlogical axioms as T , and let φ be
a formula in L. Then for all lists x1, . . . , xn of variables

T ` φ⇔ T ′ ` φx1,...,xn
c1,...,cn

.

93

Index

substructure 3

94

Bibliography

[1] Christopher C. Leary, A Friendly Introduction to Mathematical Logic, Pren-
tice hall, 2000.

[2] G. E. Sacks, Saturated model theory, W.A. Benjamin Inc. 1972.

95

