Exercise 3, Exam 2010

A PROCESS $X_0, X_1, X_2, ...$ takes values on $\{0, 1, 2\}$ and we will suppose that it behaves as a Markov process with transition probability matrix

$$P = \begin{pmatrix} 1 - p & p & 0 \\ 1 - p & 0 & p \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix},$$

where p is a parameter in (0,1).

- (a) Justify whether the states are recurrent or transient. What is the period of this Markov chain?
- (b) Compute the probability $P_{0,0}^{(2)}$ that $X_2 = 0$ given that $X_0 = 0$.
- (c) Find the probabilities

$$P(X_{88} = i | X_{87} = 0, X_{89} = 0)$$
 for $i = 0, 1, 2$.

(d) Write down the equations to determine (π_0, π_1, π_2) , the Markov chain's limiting probabilities. These equations are not difficult to solve, but you do not need to do this within exam's scheduled time; the solution is

$$(\pi_0, \pi_1, \pi_2) = \left(\frac{2-p}{2+p+3p^2}, \frac{2p}{2+p+3p^2}, \frac{3p^2}{2+p+3p^2}\right).$$

- (e) Assume that the chain starts at $X_0 = 0$, and let T_0 be the time spent before the chain attains 0 again. What is the expected value of T_0 ?
- (f) Let W denote the time when the Markov chain visits state 2 for the first time, that is, $\min\{n \ge 0: X_n = 2\}$ and define

$$u_i = E[W|X_0 = i]$$
 for $i = 0, 1, 2$.

What is u_2 ? Derive the equations to determine u_0 and u_1 and solve these equations if you have time.