Exercise 3, Exam 2010

A process $X_{0}, X_{1}, X_{2}, \ldots$ takes values on $\{0,1,2\}$ and we will suppose that it behaves as a Markov process with transition probability matrix

$$
P=\left(\begin{array}{ccc}
1-p & p & 0 \\
1-p & 0 & p \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

where p is a parameter in $(0,1)$.
(a) Justify whether the states are recurrent or transient. What is the period of this Markov chain?
(b) Compute the probability $P_{0,0}^{(2)}$ that $X_{2}=0$ given that $X_{0}=0$.
(c) Find the probabilities

$$
P\left(X_{88}=j \mid X_{87}=0, X_{89}=0\right) \text { for } j=0,1,2 .
$$

(d) Write down the equations to determine $\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$, the Markov chain's limiting probabilities. These equations are not difficult to solve, but you do not need to do this within exam's scheduled time; the solution is

$$
\left(\pi_{0}, \pi_{1}, \pi_{2}\right)=\left(\frac{2-p}{2+p+3 p^{2}}, \frac{2 p}{2+p+3 p^{2}}, \frac{3 p^{2}}{2+p+3 p^{2}}\right) .
$$

(e) Assume that the chain starts at $X_{0}=0$, and let T_{0} be the time spent before the chain attains 0 again. What is the expected value of T_{0} ?
(f) Let W denote the time when the Markov chain visits state 2 for the first time, that is, $\min \left\{n \geqslant 0: X_{n}=2\right\}$ and define

$$
u_{i}=E\left[W \mid X_{0}=i\right] \text { for } i=0,1,2
$$

What is u_{2} ? Derive the equations to determine u_{0} and u_{1} and solve these equations if you have time.

