
STK2130: Some of the problems for 06.05.2016

Exercise 6.10

Consider two machines. Machine i operates for an exponential time with rate λi and then fails;
its repair time is exponential with rate µi, i = 1, 2. The machines act independently of each
other. Define a four-state continuous-time Markov chain that jointly describes the condition of
the two machines. USe the assumed independence to compute the transition probabilities and
then verify Kolmogorov backward equations.

Consider the state space S = {(0, 0), (1, 0), (0, 1), (1, 1)} and denote by P k
(i,j) the probability

that machine k = 1, 2 makes a transition from i to j, where i, j ∈ {0, 1} (fail/function). Then
by independence

P(i,j),(k,l) = P (X(t) = (k, l)|X(t) = (i, j)) = P 1
(i,k)(t)P

2
j,l(t)

for all i, j, k, l ∈ {0, 1}.
To compute the probabilities, let us say, P 1

i,k(t) we consider the problem The functions for
P 1
ik(t) and P 2

jl(t) can be found in page 388. They are found by using BKE for the single problem.
We compute for instance P 1

00(t) and P 1
10.

P 1
00
′(t) =

∑
k 6=0

q0kPk0(t)− v0P
1
00(t) = µ1P10(t)− µ1P00(t)
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P 1
10
′(t) =

∑
k 6=1

q1kPk0(t)− v1P
1
10(t) = λ1P00(t)− λ1P10(t)

We check that Kolmogorov’s backward equation holds for P(0,1),(0,0)(t), for instance.

P ′(0,1),(0,0)(t) = P 1
(0,0)

′(t)P 2
10(t) + P 1

00(t)P 2
10
′(t)

= λ1

(
P 1

10(t)− P 1
00(t)

)
P 2

10(t) + P 1
00(t)µ2

(
P 2

00(t)− P 2
10(t)

)
On the other hand,

P ′(0,1),(0,0)(t) =
∑

(k,l)6=(0,1)

q(0,1),(k,l)P(k,l),(0,0)(t)− v(0,1)P(0,1),(0,0)(t)

= q(0,1),(0,0)P(0,0),(0,0)(t) + q(0,1),(1,1)P(1,1),(0,0)(t)− v(0,1)P(0,1),(0,0)(t)

= λ2P
1
00(t)P 2

00(t) + µ1P
1
10(t)P 2

10(t)− (µ1 + λ2)P 1
00(t)P 2

10(t)

= P 2
10(t)µ1

(
P 1

10(t)− P 1
00(t)

)
P 2

10(t) + P 1
00(t)λ2

(
P 2

00(t)− P 2
10(t)

)
Exercise 6.8

The number of failed machines is a birth and death process with λ0 = 2λ λ1 = λ µ1 = µ2 = µ
also note that µn+1 = λn = 0,∀n > 1 Simply plug this into the Forward and/or Backward
equations

Exam June 2005

On a very contaminated garbage dump all the rats become sterile, however, the population will
not die out since there is immigration of rats from the area outside the dump.

Let X(t) be the number of rats on the dump at time t. We assume that {X(t), t > 0} is a
time homogeneous Markov process with continuous time, state space S = {0, 1, 2, . . . } and

pji(∆t) =


ν∆t+ o(∆t) if j = i+ 1

iµ∆t+ o(∆t) if j = i− 1

1− (ν + iµ)∆t+ o(∆t) if j = i

o(∆t) if |j − i| > 1

where pji(t) = P (X(t+ u) = j|X(u) = i).
Note: First observe tat this is a birth and death process with immigration (with no births

but only immigration) so µn = µ, n > 1 and λn = ν, n > 0, so example 6.4 can be of help.
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(a) Derive qii = p′ii(0) and qji = p′ji(0) for j 6= i. Set up the matrix Q = (qji)j,i∈S.

Simply, by definition of derivative

qii = p′ii(0) = lim
∆t→0

pii(∆t)− pii(0)

∆t
= −(ν + iµ).

For j = i+ 1

qi+1,i = p′i+1,i(0) = lim
∆t→0

pi+1,i(∆t)− pi+1,i(0)

∆t
= ν.

For j = i− 1

qi−1,i = p′i−1,i(0) = lim
∆t→0

pi−1,i(∆t)− pi−1,i(0)

∆t
= iµ.

For j s.t. |j − i| > 1

qji = p′ji(0) = lim
∆t→0

pji(∆t)− pji(0)

∆t
= 0.

Hence the matrix looks like

Q =



−ν ν 0 0 · · · 0 0 0 0 · · ·
µ −(ν + µ) ν 0 · · · 0 0 0 0 · · ·
0 2µ −(ν + 2µ) ν · · · 0 0 0 0 · · ·
...

...
...

... . . . 0
...

...
... · · ·

0 0 0 0 · · · iµ −(ν + iµ) ν 0 · · ·
...

...
...

... · · · ...
... . . . ... · · ·


(0.1)

(b) Set up equations to determine the stationary distribution π = (π0, π1, . . . )
t, for {X(t), t >

0}. Show that

πi =
1

i!

(
ν

µ

)i
π0, i = 1, 2, . . .

fit into the equations, and finally determine π.

We have to solve the system of equatins:

viPi =
∑
k 6=j

qkjPk

for all j ∈ S. A mnemonic rule for this is "outbound rates = sum of neighbours out-
bounds". So for each i > 0

(iµ+ ν)Pi = νPi−1 + (i+ 1)µPi+1.

Finally, check that Pi = 1
i!

(
ν
µ

)i
P0 satisfy the equations.
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(c) Let X(0) = 0 and derive a set of differential equations to determine pj0(t), j ∈ S. (Hint:
Use Chapman-Kolmogorov equations pj0(t+ u) =

∑∞
k=0 pjk(u)pk0(t) with u = ∆t.)

pj0(t+ u)− pj0(u) =
∞∑
k=0

pjk(u)pk0(t)− pj0(u)

=
∑
k 6=0

pjk(u)pk0(t) + pj0(u)p00(u)− pj0(u)

=
∑
k 6=0

pjk(u)pk0(t)− (1− p00(u))pj0(u)

Therefore

p′j0(t) = lim
∆t→0

pj0(t+ ∆t)− pj0(t)

∆t
= lim

∆t→0

∑
k 6=0

pjk(∆t)

∆t
pk0(t)− lim

∆t→0

1− p00(∆t)

∆t
pj0(t)

=
∑
k 6=0

qjkpk0(t)− νpj0(t)

See Lemma 6.2 as well.

(d) Show that m(t) = E[X(t)|X(0) = 0] satisfies the differential equation

m′(t) = −µm(t) + ν, m(0) = 0

and find m(t).

Write E[X(t + ∆t)|X(t)] for a small time change ∆t. Then, given we know X(t), at
time X(t+ ∆) we might have gone up by one with probability ν∆t+ o(∆t), or down by
one with probability X(t)µ∆t+ o(∆t) or just stay with X(t) individuals with the rest of
probability. Hence,

E[X(t+ ∆t)|X(t)] = X(t) (1− (ν +X(t)µ)∆t+ o(∆t)) + (X(t) + 1) (ν∆t+ o(∆t))

+ (X(t)− 1) (X(t)µ∆t+ o(∆t))

= X(t) + ν∆t− µX(t)∆t+ C · o(∆).

Apply E[·] and then

E[X(t+ ∆t)]− E[X(t)]

∆t
= ν − µE[X(t)]

which gives
m′(t) = ν − µm(t)

and since X(0) = 0 we have m(0) = 0.

(1) We solve the homogeneous eq. m′(t)+µm(t) = 0 (the characteristic poly. is x+µ = 0
with root x = −µ, so mh(t) = e−µt. A particular solution should be a polynomial since
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the independent term is a polynomial, so mp(t) ≡ C (because the independent term is of
degree 0). So

m′p(t) + µmp(t) = 0 + µC = ν ⇒ C = ν/µ

so mp(t) = ν
µ
.

Finally, m(t) = Kmh(t) +mp(t) with 0 = m(0) = K + ν
µ

= 0⇒ K = − ν
µ
. Hence

m(t) = −ν
µ

(
e−µt − 1

)
.

(2) If we define h(t) := −µm(t) + ν then h′(t) = −µ(−µm(t) + ν) = −µh(t) with
h(0) = −µm(0) + ν = ν. So

h(t) = Ce−µt, h(0) = ν ⇒ h(t) = νe−µt.

Hence
m(t) =

ν − h(t)

µ
=
ν

µ
(1− e−µt).

Note on Erlang Distribution and its CDF

Please see https://en.wikipedia.org/wiki/Erlang_distribution to discover that Erlang
is a particular case of Gamma when the shape is a natural number (positive integer).
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