STK2130: Rest of the problems for 29.01.2016

Exercise 4.4

Consider a process $\left\{X_{n}, n \geqslant 0\right\}$ which takes on the values 0,1 or 2 . Suppose

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=\left\{\begin{array}{l}
P_{i j}^{I}, n \text { even } \\
P_{i j}^{I I}, n \text { odd }
\end{array}\right.
$$

where $\sum_{j=0}^{2} P_{i j}^{I}=\sum_{j=0}^{2} P_{i j}^{I I}=1$ for all $i=0,1,2$. Is $\left\{X_{n}, n \geqslant 0\right\}$ a Markov chain? If not, then show how, by enlarging the state space, we may transform it into a Markov chain.

The process $\left\{X_{n}, n \geqslant 0\right\}$ is a Markov chain, but not time-homogeneous, since the transition probabilities depend on "time" n. Nevertheless, by enlarging the state space we may transform our Markov process into a time-homogeneous process so that, for example, the ChapmanKolmogorov equation is fulfilled. Take $S=\{01,2, \overline{0}, \overline{1}, \overline{2}\}$ and define a new process Y_{n} such that

$$
Y_{n}=i \Longleftrightarrow X_{n}=i \text { and } n \text { even }
$$

and

$$
Y_{n}=\bar{i} \Longleftrightarrow X_{n}=i \text { and } n \text { odd. }
$$

Then we can write a transition probability matrix (enlarged) $P=\left(P_{i j}\right)_{i, j \in S}$

$$
P=\left(\begin{array}{c|c}
0 & A \\
\hline B & 0
\end{array}\right)
$$

where $A=\left(P_{i j}^{I}\right)_{i j \in\{0,1,2\}}$ and $B=\left(P_{i j}^{I I}\right)_{i j \in\{0,1,2\}}$.

Exercise 4.13

Let P be the transition probability of a Markov chain. Argue that if for some positive integer r, P^{r} has all positive entries (is regular) then so does P^{n+r} for all $n \geqslant r$.

Let $A=: P^{r}=\left(a_{i j}\right)_{i, j \in S}$ and $P=\left(p_{i j}\right)_{i, j \in S}$. Then

$$
P^{r+1}=A P=\left(\sum_{k \in S} a_{i k} p_{k j}\right)_{i, j \in S} .
$$

Now, fix an arbitrary element of the matrix P^{r+1}, row i and column j. We have $a_{i k}>0$ for all $k \in S$ so $\sum_{k \in S} a_{i k} p_{k j}=0$ if, and only if $p_{k j}=0$ for all $k \in S$. In such a case, P^{r} could never have positive entries for any $r \geqslant 0$.

