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Abstract

The paper shows how Monte Carlo methods can be improved signifi-
cantly by conditioning on a suitable variable or vector. In particular this
principle is applied to system reliability evaluation. Different choices of
variables to condition on lead to different approaches. We start out by us-
ing upper and lower bounds on the structure function of the system, and
develop an efficient method for sampling from the resulting conditional
distribution. Another approach is to use the sum of the component state
variables. In relation to this an efficient algorithm for simulating a vector
of independent Bernoulli variables given their sum is presented. By using
this algorithm one can generate such a vector in O(n) time, where n is the
number of variables. Thus, simulating from the conditional distribution
can be done just as efficient as simulating from the unconditional distri-
bution. The special case where the Bernoulli variables are i.i.d. is also
considered. For this case the reliability evaluation can be improved even
further. In particular, we present a simulation algorithm which enables us
to estimate the entire system reliability polynomial expressed as a func-
tion of the common component reliability. If the component reliabilities
are not too different from each other, a generalized version of the im-
proved conditional method can be used in combination with importance
sampling. Finally we outline how the two conditioning methods can be
combined in order to get even better results.

1 INTRODUCTION

As a result of the availability of high-speed computers, the use of Monte Carlo
methods have accelerated. In many cases, however, it is necessary to use various
clever tricks in order to make the estimates converge faster. In particular this
is true in situations where one needs to estimate something that involves events
with very low probabilities. One such area is system reliability estimation. Since
failure events often have very low probability, a large number of simulations is
needed in order to obtain stable results. Sometimes, however, conditioning can
be used to improve the convergence.

In the general case the principle of conditioning can be stated as follows:
Let X = (Xn, . . . ,Xn) be a random vector with a known distribution, and
assume that we want to calculate the expected value of φ = φ(X). We denote
this expectation by h. Assume furthermore that the distribution of φ cannot
be derived analytically in polynomial time with respect to n. Using Monte
Carlo simulations, however, we can proceed by generating a sample of size N ,
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of independent vectors X1, . . . ,XN , all having the same distribution as X, and
then estimate h with the simple Monte Carlo estimate:

ĥMC =
1

N

N
∑

r=1

φ(Xr), where Var
(

ĥMC

)

= Var(φ)/N (1.1)

Now, assume that S = S(X) is some other function whose distribution can
be calculated analytically in polynomial time w.r.t. n. More specifically, we
assume that S is a discrete variable with values in the set {s1, . . . , sk}. We also
introduce:

θj = E[φ | S = sj ], j = 1, . . . , k . (1.2)

We then have:

h =

k
∑

j=1

θj Pr(S = sj) (1.3)

Instead of generating N samples from the distribution of Xas in (1.1), we
divide the set into k groups, one for each θj , where the j-th group has size
Nj , j = 1, . . . , k, and N1 + · · · + Nk = N . The data in the j-th group are
sampled from the conditional distribution of X given that S = sj , and are used
to estimate the conditional expectation θj , j = 1, . . . , k. Denoting the data in
the j-th group by {Xr,j : r = 1, . . . , Nj}, θj is estimated by:

θ̂j =
1

Nj

Nj
∑

r=1

φ(Xr,j), j = 1, . . . , k . (1.4)

By combining these estimates, we get the conditional Monte Carlo estimate:

ĥCMC =

k
∑

j=1

θ̂j Pr(S = sj), (1.5)

where:

Var(ĥCMC) =

k
∑

j=1

Var(φ | S = sj)[Pr(S = sj)]
2/Nj .

We observe that the variance of the conditional estimate depends on the
choices of the Nj ’s. Ideally we would like Nj to be large if the product of the
conditional variance and the squared probability is large, and small otherwise,
as this would yield the most efficient partition of the total sample with respect
to minimizing the total variance. In practice, however, this is difficult, since the
conditional variance is typically not known. In order to compare the result with
the variance of the original Monte Carlo estimate, we let Nj ≈ N · Pr(S = sj),
j = 1, . . . , k. With this choice we get:

V ar(ĥCMC) ≈
k

∑

j=1

Var(φ | S = sj) Pr(S = sj)
/

N (1.6)

= E[Var(φ | S)]
/

N

= {Var(φ) − Var[E[φ | S)]}
/

N ≤ Var(φ)/N = Var(ĥMC).
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From the above equation we see that the conditional estimate has smaller
variance than the original Monte Carlo estimate provided that Var[E(φ | S)] is
positive. This quantity can be interpreted as a measure of how much information
S contains relative to φ. Thus, when looking for good choices for S we should
look for variables containing as much information about φ as possible. However,
there are some other important points that need to be considered. First of all
S must have a distribution that can be derived analytically in polynomial time.
Next, the number of possible values of S, i.e., k, must be polynomially limited
by n. Finally, it must be possible to sample efficiently from the distribution of
X given S.

The problem of sampling from conditional distributions has been studied
recently by several authors. Lindqvist and Taraldsen[11] proposes a general
method for sampling from conditional distributions in cases where S is a suf-
ficient statistic. Of special relevance to the present paper, is Broström and
Nilsson[2] who consider the problem of sampling independent Bernoulli vari-
ables given their sum. See also Nilsson[13]. In the remaining part of this paper
we shall focus on applications in reliability theory, where X typically is a vector
of independent Bernoulli variables. In relation to this we shall derive our own
conditional sampling methods.

We now apply the above ideas in the context of system reliability. That is,
we assume that X is a vector of independent Bernoulli variables, interpreted as
the component state vector relative to a system of n components. A component
is failed if its state variable is 0, and functioning if the state variable is 1. The
function φ is also assumed to take values 0, 1, and interpreted as the system

state. If φ is 0, the system is failed, and if φ is 1, the system is functioning. The
function φ is referred to as the structure function of the system, and is assumed
to be a nondecreasing function of the component state vector, X. In general the
calculation of φ for a given component state vector depends very much on the
representation of this function. If e.g., the system is represented as some sort
of communication network its state can usually be evaluated in O(n) time or
better. If on the other hand the system is specified in terms of a list of minimal
path (or cut) sets, the evaluation can be very slow since the number of such sets
in the worst cases grows exponentially with the number of components. For this
study, however, we assume that φ can be calculated in O(n) time for a given
component state vector.

The expectation h is called the system reliability, and is of course equal to
Pr(φ = 1). For an introduction to reliability theory, we refer to Barlow and
Proschan[1].

There are of course many different choices for the variable S which can
be used in a reliability setting. In the next two sections we will consider two
possible such choices.

2 Conditioning on upper and lower bounds on

the structure function

In this section, which is based on the results of V̊arli[15], we let S = (φL, φU ),
where φL and φU are the structure functions of two simpler systems such that
φL ≤ φ ≤ φU . If these two functions are close approximations to φ, a lot can
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be gained. For similar approaches, see Cancela and Khadari[3], [4], [5] and
Fishman[6], [7].

With this choice of S the set of possible values of S is {(0, 0), (0, 1), (1, 1)}.
Moreover, E[φ | φL = φU = 0] = 0 and E[φ | φL = φU = 1] = 1. Thus, the only
quantity we need to estimate is E[φ | φL = 0, φU = 1]. We also observe that:

Pr(S = (0, 1)) = Pr(φL = 0 ∩ φU = 1) (2.1)

= Pr(φU = 1) − Pr(φL = 1) = E[φU ] − E[φL] = hU − hL,

where hU and hL denote the reliabilities of the upper and lower bound
systems respectively. Similarly, we have that:

Pr(S = (1, 1)) = Pr(φL = 1 ∩ φU = 1) = Pr(φL = 1) = E[φL] = hL. (2.2)

By inserting these relations into (1.5), we see that in this case the conditional
Monte Carlo estimate takes the following form:

ĥCMC = (hU − hL)
1

N

N
∑

r=1

φ(Xr) + hL, (2.3)

where X1, . . . ,XN are sampled from the conditional distribution of X given
that φL = 0 and φU = 1. Denoting this distribution by Q, we obtain the
following expression for the variance of the estimate:

Var Q(ĥCMC) =
1

N
(hU − hL)2 Var Q[φ(X)] (2.4)

=
1

N
(hU − hL)2[EQφ(X) − (EQφ(X))2]

=
1

N
(hU − hL)2[

h − hL

hU − hL

− (
h − hL

hU − hL

)2]

=
1

N
(hU − h)(h − hL)

where EQ and VarQ denote expectation and variance with respect to the
distribution Q. This variance gets its maximum value when h is equal to the
mean of hU and hL, i.e., when h = (hU + hL)/2. Moreover, this maximum is
given by:

max{Var Q} =
(hU − hL)2

4N
(2.5)

From (2.5) we see that the best results are obtained when hU and hL are as
close to each other as possible, which of course is intuitively obvious.

We now turn to the problem of sampling from the conditional distribution.
Before we present this, we introduce the (unconditional) component reliabilities
pi = Pr(Xi = 1), i = 1, . . . , n. We also need the following notation: (xi,p) =
(x1, . . . , xi, pi+1, . . . , pn).

By writing the conditional distribution Q as:

Pr(X1 = x1, . . . ,Xn = xn | φU (X) − φL(X) = 1) (2.6)

=
n

∏

i=1

Pr(Xi = xi | φU (X) − φL(X) = 1,
i−1
⋂

k=1

Xk = xk),
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we see that the sampling problem is reduced to sampling each component
state variable Xi from its corresponding conditional probability distribution
relative to this expansion, i.e., by using Pr(Xi = xi | φU (X) − φL(X) =

1,
⋂i−1

k=1 Xk = xk). Since the component state variables are assumed to be
independent unconditionally, these probabilities can be calculated as follows:

Pr(Xi = xi | φU (X) − φL(X) = 1,

i−1
⋂

k=1

Xk = xk) (2.7)

=
Pr(φU (X) − φL(X) = 1 |

⋂i

k=1 Xk = xk)

Pr(φU (X) − φL(X) = 1 |
⋂i−1

k=1 Xk = xk)
Pr(Xi = xi |

i−1
⋂

k=1

Xk = xk)

=
E(φU |

⋂i

k=1 Xk = xk) − E(φL |
⋂i

k=1 Xk = xk)

E(φU |
⋂i−1

k=1 Xk = xk) − E(φL |
⋂i−1

k=1 Xk = xk)
Pr(Xi = xi)

=
hU (xi,p) − hL(xi,p)

hU (xi−1,p) − hL(xi−1,p)
pxi

i (1 − pi)
1−xi

From (2.7) it follows that if φL and φU are chosen so that their respective
reliabilities can be calculated in polynomial time, then it is possible to sample
from the conditional distribution Q in polynomial time as well. In the remaining
part of this section we will present three different methods for obtaining such
structure functions.

2.1 The disjoint path and cut sets method

This approach, introduced by Fishman[6], starts out by considering the collec-
tions of minimal path and cut sets of the system, which we denote respectively
by P and C. Both these collections uniquely determines the system, and hence
can in principle be used to calculate the system reliability e.g., by applying the
following well-known relations:

h = E[
∐

P∈P

∏

i∈P

Xi] = E[
∏

C∈C

∐

i∈C

Xi] (2.8)

In practice, however, evaluating this formula is difficult, partly because the
path sets (or cut sets) typically are not pairwise disjoint, and partly because
the number of path and cut sets in the system may in the worst cases grow
exponentially with the number of components in the system.

Now, let P ′ and C′ be subcollections of P and C respectively, and assume
that both these subcollections consist only of pairwise disjoint sets. It is of
course always possible to construct such subcollections by leaving out sufficiently
many of the sets in the original collections. In fact it is usually possible to
generate such subcollections directly without generating the complete collections
of minimal path or cut sets first. Moreover, the number of sets in P ′ is always
less than or equal to the number of components in the system. The same holds
true for C′ as well. Thus, the sizes of these subcollections are relatively small.

We then define φL and φU as follows:

φL(X) =
∐

P∈P′

∏

i∈P

Xi, (2.9)

φU (X) =
∏

C∈C′

∐

i∈C

Xi.
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The lower bound structure, φL, is a type of structure which we will refer
to as a disjoint path sets structure, i.e., a collection of disjoint series structures
organized in a parallel structure (see Figure 1). Similarly, the upper bound
structure, φU , is a type of structure which we will refer to as a disjoint cut sets

structure, i.e., a collection of disjoint parallel structures organized in a series
structure (see Figure 2).

Figure 1: A disjoint paths structure.

Figure 2: A disjoint cuts structure.

Since P ′ ⊆ P and C′ ⊆ C, it follows that φL ≤ φ ≤ φU . Moreover, by using
that the subcollections consist only of pairwise disjoint sets, the reliabilities of
φL and φU can be calculated in O(n) time by using the following formulas:

hL(p) =
∐

P∈P′

∏

k∈P

pk, (2.10)

hU (p) =
∏

C∈C′

∐

k∈C

pk.

Hence, all the conditional expectations needed in the distribution Q can be
calculated for r = i − 1, i as follows:

E(φL |
r

⋂

k=1

Xk = xk) = hL(xr,p) =
∐

P∈P′

[
∏

k∈P\Er

pk][
∏

k∈P
⋂

Er

xk] (2.11)

E(φU |
r

⋂

k=1

Xk = xk) = hU (xr,p) =
∏

C∈C′

[
∐

k∈C\Er

pk][
∐

k∈C
⋂

Er

xk], (2.12)

where we define Er = {1, . . . , r}, r = 1, . . . , n.
Note that since φL and φU are constructed from subcollections of P and C,

it may happen that some of the components are irrelevant w.r.t. these systems.
If i is irrelevant w.r.t both systems, it follows that:

hU (xi,p) = hU (xi−1,p), (2.13)

hL(xi,p) = hL(xi−1,p).
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Thus for this component we get that:

hU (xi,p) − hL(xi,p)

hU (xi−1,p) − hL(xi−1,p)
= 1 (2.14)

By inserting (2.14) into (2.7), we see that the resulting sampling probability
becomes equal to the unconditional probability. Thus, for components which
are irrelevant w.r.t. to the upper and lower bound structures, the sampling
procedure is slightly simplified since we do not have to calculate any of the
values of hL or hU . Still for the remaining set of components, these quantities
need to be computed. However, as pointed out in Fishman[6], it is possible to
carry out these computations sequentially so that one conditional probability
is calculated from the previous one by a simple updating scheme. In order to
explain this in more details we introduce the following notation:

ρP (xr,p) = [
∏

k∈P\Er

pk][
∏

k∈P
⋂

Er

xk], P ∈ P ′, r = 1, . . . , n, (2.15)

κC(xr,p) = [
∐

k∈C\Er

pk][
∐

k∈C
⋂

Er

xk], C ∈ C′, r = 1, . . . , n.

Using this notation we can rewrite hL(xr,p) and hU (xr,p) as:

hL(xr,p) =
∐

P∈P′

ρP (xr,p), (2.16)

hU (xr,p) =
∏

C∈C′

κC(xr,p).

We then assume that we have calculated hU (xi−1,p) and hL(xi−1,p), and
that we want to calculate hU (xi,p) and hL(xi,p). Since the sets in P ′ are
disjoint, there exists at most one set in P ′, say P ∗, such that i ∈ P ∗. Similarly
there exists at most one set in C′, say C∗, such that i ∈ C∗. Then by (2.15) it
follows that:

ρP∗(xi,p) =
xi

pi

ρP∗(xi−1,p), (2.17)

κC∗(xi,p) = 1 −
1 − xi

1 − pi

[1 − κC∗(xi−1,p)].

For the other path and cut sets going from i − 1 to i has no effect. That is
we have:

ρP (xi,p) = ρP (xi−1,p), ∀P ∈ P ′, P 6= P ∗, (2.18)

κC(xi,p) = κC(xi−1,p), ∀C ∈ C′, C 6= C∗.

By inserting (2.17) and (2.18) into (2.16) we finally get:

hL(xi,p) = 1 −
1 − ρP∗(xi,p)

1 − ρP∗(xi−1,p)
[1 − hL(xi−1,p)], (2.19)

hU (xi,p) =
κC∗(xi,p)

κC∗(xi−1,p)
hU (xi−1,p).

Summarizing this we see that all the calculations needed to arrive at hL(xi,p)
and hU (xi,p) assuming that we have calculated hL(xi−1,p) and hU (xi−1,p)
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(and stored the values of both these functions as well as the corresponding val-
ues of all the ρP - and κC-functions), can be done in constant time by using the
updating formulas (2.17) and (2.19). Thus, the sampling procedure using this
method can be carried out in O(n) time.

2.2 The k-out-of-n method

This approach is based on using k-out-of-n structures as upper and lower bounds
on the system. Thus, we assume as before that φ is a structure function of a
system of n components, and introduce the size of the smallest path set of
the system denoted by d, and the size of the smallest cut set denoted by c.
We proceed by defining φL and φU as structure functions such that φL is an
(n− c + 1)-out-of-n system, and φU is a d-out-of-n system. From this it follows
easily that φL ≤ φ ≤ φU .

Before we calculate the sampling distribution Q, we introduce the following
random variables:

Sm =

n
∑

i=m

Xi , m = 1, . . . , n . (2.20)

The distributions of S1, . . . , Sn can be calculated recursively using the fol-
lowing formula (modified in the obvious way in the limiting cases where s = 0
or s = m):

Pr(Sm = s) = pm Pr(Sm+1 = s − 1) + (1 − pm) Pr(Sm+1 = s). (2.21)

Thus, we start out by determining the distribution of Sn being equal to
the distribution of Xn. We then proceed recursively by calculating the distri-
bution of Sn−1, etc. A table containing all these distributions (including the
distribution of S = S1) can thus be derived in O(n2)-time.

Using this all the conditional expectations needed in the distribution Q can
be calculated for r = i − 1, i as follows by defining zr =

∑r

j=1 xj , r = 1, . . . , n
that:

E(φL |
r

⋂

k=1

Xk = xk) = Pr(

n
∑

k=1

Xk ≥ n − c + 1 |
r

⋂

k=1

Xk = xk) (2.22)

= Pr(

n
∑

k=r+1

Xk ≥ n − c + 1 −
r

∑

j=1

xj)

= Pr(Sr+1 ≥ n − c + 1 − zr)

E(φU |
r

⋂

k=1

Xk = xk) = Pr(
n

∑

k=1

Xk ≥ d |
r

⋂

k=1

Xk = xk) (2.23)

= Pr(
n

∑

k=r+1

Xk ≥ d −
r

∑

j=1

xj)

= Pr(Sr+1 ≥ d − zr)
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By inserting (2.22) and (2.23) into (2.7) we get the following sampling prob-
abilities for the k-out-of-n method:

Pr(Xi = xi | φU (X) − φL(X) = 1,

i−1
⋂

k=1

Xk = xk) (2.24)

=
Pr(Si+1 ≥ d − zi) − Pr(Si+1 ≥ n − c + 1 − zi)

Pr(Si ≥ d − zi−1) − Pr(Si ≥ n − c + 1 − zi−1)
pxi

i (1 − pi)
1−xi

The tail probabilities of the partial sums, S1, . . . , Sn, needed in (2.24) can
be calculated from the distributions of S1, . . . , Sn in O(n2) time. Assuming that
this is done before running the simulations, each iteration of the simulation can
be done in O(n) time.

2.3 The factoring method

In this subsection we will use s − p-structures (series-parallel structures) as
upper and lower bounds on system. An s − p-structure is a system which
can be reduced to a single component by using s − p-reductions (series-parallel
reductions). Thus, the reliability of such a structure can be calculated in O(n)
time. Since a disjoint path (or cut) sets structure can be reduced to a single
component by using s − p-reductions, it follows that such systems are special
cases of s − p-structures. Hence, the approach used in this subsection can be
viewed as a generalization of the disjoint path and cut sets method. However,
the method we use to construct the upper and lower bounds is different. We
start out by introducing the following notation: Let x be a vector with index
set E = {1, . . . , n}, and let A ⊆ E. Then (1A,x) denotes a vector obtained
from x by replacing xi by 1 for all i ∈ A. Similarly (0A,x) denotes a vector
obtained from x by replacing xi by 0 for all i ∈ A. Furthermore, we denote by
xA the subvector obtained from x by deleting all entries xi such that i /∈ A.

Since every structure function is assumed to be nondecreasing, it follows
that we always have:

φ(0A,x) ≤ φ(x) ≤ φ(1B ,x), ∀A,B ⊆ E. (2.25)

Thus, φL(xE\A) = φ(0A,x) is a lower bound on φ while φU (xE\B) =
φ(1B ,x) is an upper bound. Moreover, by choosing the sets A and B in a
clever way, the reliabilities of the lower and upper bounds may be easy to com-
pute. In the following we will assume that these sets are chosen so that the
resulting lower and upper bounds are s − p-structures. It is easy to see that
it is always possible to find such sets. From (2.5) we see that the best re-
sults are obtained when the sets A and B are chosen so that the difference
h(1B ,X) − h(0A,X) is as small as possible. As one might expect, however,
finding the optimal sets can be very difficult. A simpler, but still reasonable
approach is to try minimizing the cardinalities of A and B. In order to do so,
a variant of the well-known factoring algorithm can be used. (See Huseby[8] or
Satyanarayana and Chang[14].)

Assuming that the system under consideration is regular in the sense of
Huseby[9], the computational complexity of the factoring algorithm is charac-
terized by an invariant called the domination. The domination of a system with
structure function φ, denoted by D(φ), can be defined as the absolute value

9



of the coefficient of the highest order term in φ. The following are well-known
properties of the domination of regular systems. (See Huseby[8] and Huseby[9].)

D(φ) > 0, if and only if φ is a coherent structure. (2.26)

D(φ) = 1, if and only if φ is a coherent s − p-structure. (2.27)

D(φ) = D(φr), if φr is an s − p-reduction of φ. (2.28)

D(φ) = D(φ+e) + D(φ−e), if e is relevant, (2.29)

where φ+e = φ+e(x
E\e) = φ(1e,x) and φ−e = φ−e(x

E\e) = φ(0e,x).
We now explain heuristically how this can be applied to choose the set A

used in the lower bound. Choosing B can be found by a dual approach. We start
out with the original structure function φ and component set E, and assume
that this system is coherent and not an s−p-structure. We then have to choose
the first component, say e ∈ E, which will be left out of the system in order
to produce a lower bound, denoted φ−e = φ−e(x

E\e) = φ(0e,x). In order to
minimize the number of components being left out, there are two things we need
to take into account. If e is chosen so that φ−e is not coherent, this is essentially
equivalent to deleting e as well as the resulting irrelevant components from the
system. Thus, whenever possible, we should choose e so that φ−e is coherent.
On the other hand we want to choose e so that φ−e is as simple as possible,
i.e., such that D(φ−e) is as small as possible. Since D(φ−e) = D(φ) − D(φ+e),
we should also choose e so that D(φ+e) > 0. That is, e should be chosen so
that φ+e is coherent as well. If φ does not contain any components in series or
parallel, i.e., φ is s−p-complex, it can be shown that it is always possible to find
e so that both φ−e and φ+e are coherent. (See Huseby[8].) If on the other hand
φ is s−p-reducible, it may happen that no such single component exists. In such
cases we must remove a minimal s − p-module of components instead (i.e., a
minimal module of the system whose structure function is an s−p-structure). By
repeating this process of removing either single components or s − p-modules,
each time ensuring that the domination is reduced to a smaller but positive
number, we finally arrive at a system which is a coherent s− p-structure which
can be used as a lower bound for φ.

Since the factoring method allows to use general s − p-structures as upper
and lower bounds instead of just disjoint path and cut sets structures, this
method typically will produce better bounds than the disjoint path and cut sets
method. However, with general s−p-structures we may not be able to carry out
the sampling probability calculations as efficient as was the case with the disjoint
path and cut sets method. To analyze this closer we represent the calculations
needed to compute the reliability of an s−p-structure in a tree-structure (similar
to a fault tree representation). The leaves of the tree represent the component
reliabilities, while the other nodes of the tree represent reliabilities of s − p-
modules of the system. To each of these nodes we assign either a product
operator or a coproduct operator. The root of the tree represents the reliability
of the system. We illustrate this by considering the s − p-structure shown
in Figure 3. The corresponding tree-structure representing the calculations is
shown in Figure 4.

Before sampling from the conditional distribution (2.7), the leaves of the
tree are initialized with the component reliabilities, and the rest of the tree is
calculated using the assigned operators. As we sample the component state
variables, we update the tree by replacing the component reliabilities by the
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corresponding component state variables, and recalculate the nodes above. The
number of operations needed for each update, is proportional to the length of
the path from the updated leaf up to the root. For a perfectly balanced binary
tree, the height is of order log(n). Thus for such systems, the simulations can
be done in O(n log(n)) time. On the other hand, for the disjoint path or cut
sets systems considered earlier, all the paths are of length 2, so for this case we
see that the simulations can be done in just O(n) time as stated before. More
generally, if the average path length is λ, then the simulations can be done in
O(nλ) time. In the worst case λ is proportional to n, in which case the order
of the simulation procedure is O(n2).

1


2


3


4


5


6


Figure 3: An s − p-structure of six components.

1
 2


3
 4


5


6


C
 C


C


P


P


Figure 4: The calculations represented as a tree, where P represents a product
operation while C represents a coproduct operation (i.e., the ip-operation).

Having presented three different methods for constructing upper and lower
bounds on a system, a natural question is which method is the best. As one
could expect, the answer to this question depends on the system under consid-
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eration. For a detailed study of this we refer to V̊arli[15]. We close this section,
however, by presenting a simple example where we compare the disjoint path
and cut sets method to the factoring method. The system we consider is a
2-terminal undirected network system illustrated in Figure 5. The components
of the system are the edges. The system is said to be functioning if the two
terminal nodes can communicate through the network.

1


2
 6


3
 5
 7


4


Figure 5: A 2-terminal undirected network system, where the terminals are the
two black nodes.

Using the disjoint path and cut sets method we find the following collections
of disjoint minimal path sets: P1 = {1, 4, 7}, P2 = {2, 6}, and disjoint minimal
cut sets: C1 = {1, 2}, C2 = {6, 7}. (There are other possible choices as well, but
these collections are optimal in the sense that they give us the best bounds.)
Denoting the corresponding reliabilities of the lower and upper bounds by h1,L

and h1,U respectively, we get that:

h1,L(p) = (p1p4p7) q (p2p6), (2.30)

h1,U (p) = (p1 q p2)(p6 q p7).

On the other hand if we use the factoring method, we get a lower bound
s − p-structure by replacing the reliability of component 4 by 0, and an upper
bound s−p-structure by replacing the reliability of component 3 by 1. Denoting
the lower and upper bounds by h2,L and h2,U respectively, we get that:

h2,L(p) = [(p1p3) q p2)][(p5p7) q p6)], (2.31)

h2,U (p) = (p1 q p2)(p6 q (p7(p4 q p5))).

In Figure 6 we have plotted the four functions together with the exact relia-
bility as functions of a common component reliability, p, which is varied from 0.0
to 1.0. We see that we do get better bounds by using the factoring method. On
the other hand the upper and lower bounds of this method become somewhat
more difficult to compute. The average computational path lengths for h2,L and
h2,U are 16/6 and 17/6 respectively, compared to just 2 for h1,L and h1,U . Still
spending a little more time on each simulation is definitely worthwhile in this
case thanks to the increased precision.
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Figure 6: Reliability of upper and lower bound structures using disjoint path
and cut sets method and factoring method.

3 Conditioning on the sum of the component

state variables

For the remaining part of the paper we focus on the case where S is the sum of
all the component state variables. This approach was taken in in Naustdal[12].
In this situation the random variable S takes values in the set {0, 1, . . . , n}.
Thus, the uncertain quantities we need to estimate, are:

θs = E[φ | S = s], s = 0, 1, . . . , n . (3.1)

As in the previous section, we need to have an efficient way of sampling
from the conditional distribution of X given S = s, s = 0, 1, . . . , n. In relation
to this we need the use of the partial sums, S1, . . . , Sn, introduced in (2.20).
Using these quantities, we can develop the algorithm for sampling from the
distribution of X given S = s. The idea is simply to start out by sampling X1

from the conditional distribution of X1 | S = s. We then continue by sampling
X2 from X2 | S = s, X1 = x1, where x1 denotes the sampled outcome of X1,
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and so on. This turns out to be easy noting that:

Pr(Xm = xm | X1 = x1, . . . ,Xm−1 = xm−1, S = s) (3.2)

=
Pr(Xm = xm, S = s | X1 = x1, . . . ,Xm−1 = xm−1)

Pr(S = s | X1 = x1, . . . ,Xm−1 = xm−1)

=
Pr(Xm = xm, Sm+1 = s −

∑m
j=1 xj)

Pr(Sm = s −
∑m−1

j=1 xj)

=
pxm

m (1 − pm)1−xm Pr(Sm+1 = s −
∑m

j=1 xj)

Pr(Sm = s −
∑m−1

j=1 xj)
,

Assuming that the distributions of S1, . . . , Sn are all calculated before run-
ning the simulations, by using (2.21), we see that all the necessary conditional
probabilities can be calculated when needed during the simulations without im-
posing additional computational complexity. Note that we only calculate those
conditional probabilities we really need along the way during the simulations,
not the entire set of all possible conditional probabilities corresponding to all
possible combinations of values of the Xj ’s. Thus, in each simulation run we
calculate n probabilities, one for each Xj . Moreover, each probability can be
calculated using a fixed number of operations (independent of n). Hence, it
follows that sampling from the conditional distribution of X given S = s, can
be done in O(n) time.

The CMC-algorithm can now be summarized as follows: Divide the N sim-
ulations into (n + 1) groups, one for each θs, where the s-th group has size
Ns, s = 0, 1, . . . , n. The data in the s-th group is sampled from the condi-
tional distribution of X given that S = s, and is used to estimate the condi-
tional expectation θs, s = 0, 1, . . . , n. Denoting the data in the s-th group by
{Xr, s : r = 1, . . . , Ns}, θs is estimated essentially by using (1.4), and combined
into the CMC-estimate by using (1.5).

A remaining problem is of course how to choose the sample sizes for each
of the (n + 1) groups. One possibility is to proceed as we did in Section 1 and
let Ns ≈ N · Pr(S = s), s = 0, 1, . . . , n. In this case, however, it is possible to
improve the results slightly. As in the previous section we denote the size of the
smallest path set by d, and the size of the smallest cut set by c. By examining
the system, it is often easy to determine d and c. Given these two numbers
it is easy to see that θs = 0 for s < d, and θs = 1 for s > n − c. Moreover,
Var(φ | S = s) = 0 for s < d, or s > n− c. Hence, there is no point in spending
simulations on estimating θs for s < d, or s > n− c, so we let Ns = 0 for s < d,
or s > n − c. As a result, we have more simulations to spend on the remaining
quantities.

An extreme situation occurs when the system is a k-out-of-n-system, i.e.,
when φ(X) = I(S ≥ k). For such systems d = k, and c = (n − k + 1). In this
situation all the θs’s are known. Specifically, θs = 0 for s < k and θs = 1 for
s ≥ k. Thus, the CMC-estimate is equal to the true value of the reliability, and
can be calculated without doing any simulations at all. The reason for this is
of course that in this case φ depends on X only through S.

For all other nontrivial systems, however, it is easy to see that we always
have that d ≤ n− c. In order to ensure that we get improved results, we assume
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that Pr(d ≤ S ≤ n − c) > 0, and let:

Ns ≈ N · Pr(S = s)/Pr(d ≤ S ≤ n − c), s = d, . . . , n − c . (3.3)

Using a similar argument as we did in (1.6) we now get that:

Var(ĥCMC) ≤ Pr(d ≤ S ≤ n − c)Var(ĥMC) (3.4)

Hence, we see that if d and (n − c) are close, i.e., there are few unknown
θs’s, the variance is reduced considerably.

4 System Reliability when All the Component

State Variables Have Identical Reliabilities

If all the components in the system have the same reliability, i.e., p1 = · · · =
pn = p, it is possible to improve things even further. In this case we note that S
has a binomial distribution. Moreover, the conditional distribution of X given
S is given by:

Pr(X = x | S = s) =
p

∑ n
i=1

xi(1 − p)n−
∑ n

i=1
xi

(

n
s

)

ps(1 − p)n−s
=

1
(

n
s

) , (4.1)

for all x such that
∑n

i=1 xi = s.
From this it follows that:

θs = E[φ | S = s] =
∑

{x|
∑

n
i=1

xi=s}

φ(x) Pr(X = x | S = s) =
bs

(

n
s

) , (4.2)

where bs = the number of path sets with s components, s = 0, . . . , n.
Finally, the system reliability, h, expressed as a function of p, is given by:

h(p) =
n

∑

s=0

θs Pr(S = s)

=

n
∑

s=0

bs
(

n
s

)

(n

s

)

ps(1 − p)n−s =

n
∑

s=0

bsp
s(1 − p)n−s. (4.3)

Note that the desired quantities, θ0, . . . , θn, do not depend on p. Thus,
by estimating these quantities, we get an estimate of the entire h(p)-function.
Moreover, we see that θs can be interpreted as the fraction of path sets of
size s among all sets of size s, for s = 0, 1, . . . , n. Thus, θs can be estimated by
sampling random sets of size s and calculating the frequency of path sets among
the sampled sets. It turns out that this can be done very efficiently as follows:

The idea is to sample sequences of sets of increasing size by sampling from
the component set, C = {1, . . . , n}, without replacements. The only set of size
0 is of course ∅. If ∅ is a path set, we have a trivial system which is always
functioning. Obviously, θ0 = 1 in this case. Moreover, the reliability of such a
system is 1. If ∅ is not a path set, it follows that θ0 = 0. In both cases we do
not need to sample anything to determine the value of θ0. Thus, we can focus
on estimating θ1, . . . , θn by sampling sets of size s, for s = 1, . . . , n.

Let T = (T1, . . . , Tn) be a vector for storing results from the simulations.
Before we start the simulations, this vector is initialized as (0, . . . , 0). The
simulation algorithm now runs as follows:
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For i = 1, . . . , N do

Step 1 Sample a component from the set C, say component i1, and define
A1 = {i1}. If A1 is a path set, T1 is incremented with 1.

Step 2 Sample a component from the set C \A1, say component i2, and define
A2 = {i1, i2}. If A2 is a path set, T2 is incremented with 1.

Step n Sample the last remaining component, say component in, and define
An = C. If An is a path set, Tn is incremented with 1.

When all the simulations are carried out, the vector T contains the number of
observed path sets of sizes 1, . . . , n. From this we get the resulting estimates of
θ1, . . . , θn simply as:

θs = Ts/N, s = 1, . . . , n. (4.4)

It is easy to see that sampling components randomly without replacements
is equivalent to sampling the components according to a random permutation,
(i1, . . . , in), of the component set {1, . . . , n}. Such a permutation can easily be
generated using a well-known algorithm described in Knuth[10]. This algorithm
works as follows:

Assume that we start out with a vector representing an initial arbitrary
permutation of the components, say (i1, . . . , in). One may e.g., simply use
(1, . . . , n). We then generate a random permutation vector by modifying this
initial permutation vector by running through n steps. In the k-th step we
consider the element currently being the k-th element of the vector. We then
sample a random index, j, in the interval k, . . . , n, and let the k-th and the
j-th elements switch places in the permutation vector. When all the n steps
are completed, it is easy to see that the resulting vector is indeed a random
permutation (regardless of the initial state of the vector).

By using this algorithm, we are able to generate a complete sequence of n
sets in just O(n) time. However, since all sets in a sequence are derived from
the same permutation, the θs-estimates become correlated. Still, the effect of
this is more than compensated for since each θs-estimate now can be based on
all N simulations, compared to just a subset of size Ns as was the case in the
previous section.

When running this algorithm, much of the time is spent on the steps where
the system state is evaluated. Thus, in order to minimize the running time of
the algorithm, one would like to reduce the number of such evaluations. Since
A1 ⊂ A2 ⊂ · · · ⊂ An, it follows by the monotonicity of the structure function, φ,
that if Ak is a path set, then so is Ak+1. Thus, we can stop evaluating the state
of the system as soon as we have generated a path set, since we then know that
all the remaining sets will be path sets as well. Still it is obviously important to
carry out the system state evaluations as efficient as possible. The methodology
for doing this may typically depend strongly on the representation of the given
system. In order to show how this can be done, we consider two different classes
of systems.
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The first class of systems is called threshold systems, which have the property
that the structure function can be written in the following form:

φ(X) = I
(

n
∑

i=1

aiXi ≥ b
)

, (4.5)

where a1, . . . , an and b are positive numbers. The ai’s are called the weights

associated with the components, while the number b is called the threshold value.
Notice that if a1 = · · · = an = 1 and b = k, we get a standard k-out-of-n-system.
For such systems it is very easy to carry out all the system state evaluations.
To do so we keep track of the sum of the weights associated with the sampled
components. When a new component is sampled, the sum is updated by adding
the weight associated with this component. When the sum of weights is greater
than or equal to the threshold value, we know that we have generated a path set.
Using this method, each system evaluation is carried out in constant time. Thus,
in this case the total computational complexity of the simulation algorithm is
just O(nN), where n is the number of components in the system, and N is the
number of simulations.

The second class of systems is called K-terminal undirected network systems.
The components of such a system are the edges of an undirected network. An
edge is functioning if its end-nodes can “communicate” through it. The system
is functioning if a subset of the nodes (with K elements), called the terminals,
can communicate through the network.

If all the edges are functioning, we assume that the network is connected,
i.e., all nodes can communicate with each other. If only a subset of the edges
are functioning, however, the node set is partitioned into a set of equivalence
classes such that a pair of nodes can communicate if and only if they belong to
the same equivalence class. Moreover, the system is functioning if and only if
all the terminals belong to the same equivalence class.

In order to minimize the running time spent on system state evaluation, we
maintain lists of nodes belonging to each equivalence class as we sample the
edges. For each list we also keep track of the number of terminals contained
in the list. When a new edge is sampled, we investigate its end-nodes. If they
belong to the same equivalence class, the system state is not changed. On the
other hand, if the end-nodes belong to different equivalence classes, we merge
the two classes and calculate the number of terminals included in the merged
class. When we arrive at an equivalence class containing K terminals, (i.e., all
the terminals), we know that we have generated a path set.

The most time-consuming part of this algorithm is the merging of equivalence
classes. Assuming that the classes are stored as linked lists, the actual merging
of the lists can be done in constant time. However, in order to minimize the
time spent on checking whether or not two nodes belong to the same class, the
nodes should be marked with a reference to its class list. When two classes,
say A and B, are merged, all the nodes in the smallest class, say B must be
marked with a reference to the class list of A instead. Updating such references
can be done in O(v) time, where v is the number of nodes in the network. It
should be noted, however, that this is a very pessimistic estimate, as in most
cases the number of updating operations is much smaller. Anyway, the total
computational complexity of the simulation algorithm is O(nvN) in this case.

We close this section by illustrating the effect of the improved method on
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two specific examples. The system considered in the first example, is a threshold
system with 20 components with the following structure function:

φ(X) = I(2X1 + 2X2 + 3X3 + 3X4 + 3X5 + 3X6 + 4X7 + 4X8

+4X9 + 4X10 + 4X11 + 4X12 + 4X13 + 5X14 + 5X15

+5X16 + 5X17 + 5X18 + 5X19 + 6X20 ≥ 49) (4.6)

The resulting estimates using the simple Monte Carlo method are shown in
Figure 7, while the corresponding results for the improved CMC-method are
shown in Figure 8.

For this type of system we see that the improved method actually produces
nearly perfect results already after 10 simulations, while the corresponding re-
sults for the simple Monte Carlo method, is not satisfactory even after 100
simulations. In addition the simple Monte Carlo method requires separate esti-
mates for each value of p. Thus, in order to obtain estimates for say 99 different
values of p, this method actually uses 9900 simulations with significantly poorer
results than we get with only 10 simulations using the improved CMC-method.
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Figure 7: System reliability of a threshold system as a function of component
reliability (dotted line), estimated using a simple Monte Carlo method with 10
(upper left), 25 (upper right), 50 (lower left) and 100 (lower right) simulations.
The true reliability function is shown as a solid line.

In the second example we consider a simple bridge structure with 5 compo-
nents shown in Figure 9.

The components of the system are the edges of the network, denoted by
1, 2, . . . , 5. The system is functioning if the terminal nodes, S and T, can com-
municate through the network.
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Figure 8: System reliability of a threshold system as a function of component
reliability (dotted line), estimated using the improved CMC-method with 10
(upper left), 25 (upper right), 50 (lower left) and 100 (lower right) simulations.
The true reliability function is shown as a solid line.

Our objective is to estimate the reliability h as a function of the common
component reliability p. To illustrate the strength of the CMC-estimate, we will
compare it to a simple Monte Carlo estimate. When using the latter method,
one has to estimate h separately for each value of p.

In Figure 10 we have plotted the estimated values of h for p = 0.01, . . . , 0.99
obtained after 10, 25, 50 and 100 simulations for each p-value.

By using the improved method, we only need to estimate the θs’s. Based on
these estimates the entire curve can be calculated. The corresponding results
are shown in Figure 11.

While the simple Monte Carlo method produces a jagged curve even after
100 simulations, the improved CMC-method gives excellent results already after
50 runs. In fact the improved method always produces a smooth S-shaped curve
which rapidly converges to the true curve.

5 General Sequential Sampling Methods

The sampling method presented in the previous section was an example of what
we shall refer to as a sequential sampling method. The strength of this method
makes it tempting to investigate whether or not this idea can be generalized
to a situation where the components have different reliabilities. A generalized
sequential sampling method can be described as follows:

Let C = {1, . . . , n} be a set of components. We then sample an ordered
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Figure 9: A bridge structure.

sequence, (i1, . . . , in) of components without replacements as follows: Assume
that we have sampled the s first components in the sequence, i.e., i1, . . . , is,
and denote the corresponding unordered set {i1, . . . , is} by As. Then the next
component is sampled from the set of remaining components, i.e., C \As, with
probability:

αAs,i = Pr (The (s + 1)-th sampled component is i | As),

for all i ∈ C \ As. (5.1)

The probability of a sampling a given ordered sequence, (i1, . . . , in) is then:

αA0,i1 · αA1,i2 · · ·αAn−1,in
, (5.2)

where A0 = ∅.
The sequential sampling method is characterized by the sampling probability

distributions used in each sampling step, i.e., by the αAs,i’s.
Using such a sampling method, the probability that after having sampled s

components, we have sampled the set A, where |A| = s, is given by:

Pr(As = A) =
∑

(i1,...,is)∈π(A)

α∅,i1 · · ·α{i1},i2 · · ·α{i1,...,is−1},is
, (5.3)

where π(A) denotes the set of all permutations of A.
Now, ideally we want the sequential sampling method to produce a sequence

of sets A1, . . . , An with the “correct” probabilities. That is, we want the αAs,i’s
to be chosen such that:

Pr(As = A) = Pr(X = x(A) | S = s), s = 1, . . . , n (5.4)

where x(A) denotes the vector x = (x1, . . . , xn) such that xi = 1 if i ∈ A,
and 0 otherwise. If such a sampling method can be found, we could use the same
method as in the previous section in order to obtain estimates for θ0, . . . , θn.

In the special case considered in the previous section where all the compo-
nents have equal reliability, this is easily accomplished by using a simple uniform

sampling method , i.e., by letting:

αAs,i =
1

n − |As|
=

1

n − s
, for all i ∈ C \ As (5.5)
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Figure 10: System reliability of a bridge system as a function of component
reliability (dotted line), estimated using a simple Monte Carlo method with 10
(upper left), 25 (upper right), 50 (lower left) and 100 (lower right) simulations.
The true reliability function is shown as a solid line.

With this choice we get from (5.3) by applying (4.1) that:

Pr(As = A) =
s!

n(n − 1) · · · (n − s + 1)
=

1
(

n
s

) (5.6)

= Pr(X = x(A) | S = s), s = 1, . . . , n .

However, when the components have different reliabilities, it is much more
difficult to find the right sampling probability distributions. In principle it is
possible to establish a set of equations for the αAs,i’s from which these quantities
could be derived. Still the very large number of unknowns makes this approach
unfeasible. In fact it is not even clear whether it is possible in general to find
any solution to the equations.

To proceed we will instead assume that we have found a sequential sam-
pling method which is a reasonable approximation to the correct distribution,
and then use importance sampling to correct the results. More specifically we
introduce the true conditional distribution function defined for all vectors x of
binary variables and for s = 0, 1, . . . , n:

fs(x) = Pr(X = x | S = s). (5.7)

Moreover, we introduce the corresponding sequential sampling distribution
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Figure 11: System reliability of a bridge system as a function of component
reliability (dotted line), estimated using the improved CMC-method with 10
(upper left), 25 (upper right), 50 (lower left) and 100 (lower right) simulations.
The true reliability function is shown as a solid line.

function also defined for all vectors x of binary variables and for s = 0, 1, . . . , n:

gs(x) = Pr(As = A(x))

=
∑

(i1,...,is)∈π(A(x))

α∅,i1 · α{i1},i2 · · ·α{i1,...,is−1},is
, (5.8)

where A(x) = {i : xi = 1}.
We assume that gs(x) is a “close” approximation to fs(x), and that gs(x) 6=

0 for all x. Under this assumption an unbiased estimator for the unknown
quantity θs is given by the following importance sampling estimator:

θ̂s,I =
1

N

N
∑

i=1

φ(xi,s)
fs(xi,s)

gs(xi,s)
, s = 1, . . . , n (5.9)

where x1,s, . . . ,xN,s are generated from the distribution gs.
A serious difficulty with this method is that calculating gs(x) implies com-

puting a sum of s! terms. If s is large, this takes a very long time, and as a result
the efficiency of the algorithm is destroyed. In order to avoid this problem, we
will instead extend our stochastic experiments by considering ordered samples.

An ordered set, Ao = (i1, . . . , is), sampled according to the sequential method,
has the following probability of occurring:

Pr(Ao = (i1, . . . , is)) = αA0,i1 · αA1,i2 · · ·αAs−1,is
, (5.10)
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where A0 = ∅, A1 = {i1}, . . . , As−1 = {i1, . . . , is−1}. We denote this
probability by gs(A

o).
It is easy to see that the matching “correct” probability, which we denote

by fs(A
o), is given by:

fs(A
o) = (s!)−1 · fs(x(Ao)), (5.11)

where x(Ao) is defined in the same way as for unordered sets.
An unbiased importance sampling estimator for θs is then given by:

θ̂s,I =
1

N

N
∑

i=1

φ(x(Ao
i,s))

fs(A
o
i,s)

gs(Ao
i,s)

, s = 1, . . . , n, (5.12)

where Ao
1,s, . . . , A

o
N,s are generated from the distribution gs(A

o).
The variance of this estimator is:

Var(θ̂s,I) =
1

N
Var

(

φ(Ao
s)

fs(A
o
s)

gs(Ao
s)

)

, (5.13)

where Ao
s is distributed according to the sequential sampling distribution,

gs. From this it follows that this variance is bounded, and that it converges
towards 0 as N goes to infinity. Using standard methods it can easily be shown
that the estimator will converge almost surely to the correct value.

By choosing the sequential sampling distribution, gs, in a clever way one
may reduce the variance of the importance sampling estimator. Still finding the
optimal distribution is typically a difficult task. This is especially true in this
case, since we need a sampling distribution which produces stable results for all
the unknown quantities simultaneously. A reasonable strategy, however, can be
to look for distributions which are good approximations to fs. In particular one
would like the ratio between fs and gs to be as stable as possible. This ratio is
referred to as the importance function, and can be interpreted as a correction
factor compensating for the fact that we sample from an incorrect distribution.

In general defining a sequential sampling method involves specifying a very
large number of sampling probability distributions, one for each possible sam-
pling situation occurring during the sampling sequences. In order to simplify
this process, we will restrict ourselves to considering classes of distributions
which can be described with only a limited set of parameters. One such class
is weighted sampling without replacement. This class is constructed by assign-
ing weights to each component. Let wi be the weight assigned to component
i, i = 1, . . . , n. The sampling probability distributions are then given by the
following:

αAs,i =
wi

∑

j 6∈As
wj

, for all i ∈ C \ As (5.14)

We observe that if all the component weights are equal, this method reduces
to the uniform sampling method.

In order to apply this scheme, we need an efficient way of generating samples
from such distributions. We recall that for the case of uniform sampling, we
used the algorithm described in Knuth[10]. It is possible to generalize this
algorithm to a situation where the components have unequal weights. The
critical issue here is to make sure that at each step in the procedure, the sampling
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probabilities of each of the remaining components are proportional to their
weights. This is easily done as follows:

Assume that the set of remaining components from which we want to sample
from is {i1, . . . , ik}, and denote the sum of weights of these components by Wk.
We then generate a random number from the continuous uniform distribution
on the interval [0,Wk], and choose the next sampled component, say component
ij , so that j is the smallest number satisfying:

j
∑

r=1

wj = Wk (5.15)

It is easy to see that this procedure makes the sampling probabilities propor-
tional to their weights as requested. The problem with this method, however, is
that searching for the component ij may take as much as O(n) time. Since this
has to be done for each sampled component, the computational complexity of
the generalized algorithm becomes O(n2). This means that we can just as well
use the method introduced in (3.2).

Fortunately, it is possible to find a better solution.
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Figure 12: References to the components of a system stored as leaves in a binary
tree.

Assume that references to all the components of the system are stored as
leaves in a binary tree, as in Figure 12. For each leaf in the tree we also assign the
weight of the corresponding component. We then proceed by assigning weights
to the nodes in the level above the leaves by adding the weights of the attached
leaves. The same procedure is applied to the next level of nodes, and so on all
the way up to the root of the tree. Thus, the sum of all the weights assigned to
the nodes in a level is the same for all levels. In particular, the weight assigned
to the root is equal to the sum of the weights of all the leaves. As an example
consider the binary tree shown in Figure 12. Assume that the weights assigned
to the eight leaves in the tree, are w1, . . . , w8 respectively. Then the four nodes
at the next level will be assigned the weights w1+w2, w3+w4, w5+w6, w7+w8,
respectively. Similarly, the two nodes above these will be assigned the weights
w1 + · · ·+ w4, w5 + · · ·+ w8, respectively. Finally, the root will be assigned the
weight w1 + · · · + w8.

If the number of components is a power of 2, the tree can be constructed
to be perfectly balanced. If not, it may happen that some of the nodes only
have a single node attached to it at the level below. Still it is always possible to
structure the tree so that the total number of nodes in the tree is O(n) and the
height of the tree is O(log(n)). Thus, in particular, all the weight assignments
can be done in O(n) time.
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Having assigned all the weights we now sample the first component by gen-
erating a random walk from the root of the tree down towards a leaf following
a branch of the tree. At each step of the walk there are (at most) two possible
nodes to choose between. The choice is made at random so that the probability
of each node is proportional to the weight assigned to it. It is easy to see that
this implies that the probability of ending up at a particular leaf is proportional
to its weight. Moreover, the number of steps in the walk is O(log(n)).

Having sampled the first leaf and component, we repeat the same procedure
for the second leaf and component. However, in order to avoid ending up at
the same leaf, we replace its weight by zero, and update all the nodes above it
accordingly. The number of updates needed is equal to the height of the tree,
i.e., O(log(n)).

By repeating the same process over and over until all the components are
sampled, the procedure is completed. The computational complexity of this
procedure is O(n log(n)). Thus, this algorithm is indeed better than the first
one.

We close this section by presenting an example of a weighted sampling with-
out replacement scheme. The idea behind this approach is to use a sampling
distribution where components with high reliabilities have a greater chance of
being selected than those with low reliabilities. This is achieved by using the
component reliabilities as weights. That is, we use the following distributions:

αAs,i =
pi

∑

j 6∈As
pj

, for all i ∈ C \ As (5.16)

Now, assume that Ao
s = (i1, . . . , is), and let:

A0 = ∅, A1 = {i1}, A1 = {i1, i2}, . . . , As−1 = {i1, . . . , is−1}. (5.17)

Then gs can be written as:

gs(A
o
s) =

∏

i∈Ao
s
pi

∏s−1
k=0

∑

j 6∈Ak
pj

(5.18)

After a few intermediate steps, we arrive at the following importance func-
tion:

fs(A
o
s)

gs(Ao
s)

=

(

∏s−1
k=0

1
n−k

∑

j 6∈Ak
pj

)(

∏

i6∈{Ao
s}

(1 − pi)
)

(

n
s

)−1
Pr(S = s)

(5.19)

We observe that the first factor of the numerator is a product of s average
component reliabilities, where the averages are taken over the sets (C \A0), (C \
A1), . . . , (C \ As). This averaging tends to make the importance function more
stable. The second factor, however, may vary a lot. Assume e.g., that the
system under consideration contains ten components of which five of them have
reliabilities equal to 0.9, while the remaining components have reliabilities 0.99.
If s = 5, we see that the second factor of the numerator varies between 10−5

and 10−10. As a result the variance of the importance function becomes very
large.

The above sampling method along with some others are studied in more
detail in Naustdal[12]. The main result from this study is that the proposed
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methods work very well as long as the component reliabilities are not too differ-
ent. However, when there are considerable differences between these numbers,
the importance function becomes unstable, and the resulting estimates converge
much slower.

6 Conclusions

In this paper we suggest several improved simulation methods with application
to system reliability estimation. For the case where all the components have the
same reliability, the best approach is to apply the sequential sampling method
described in Section 4. If the component reliabilities are not too different, the
proportional sequential sampling method described in Section 5 combined with
importance sampling produces good results. When there are significant differ-
ences between these reliabilities, however, the unsequential conditional Monte
Carlo method suggested in Sections 2 and 3 appears to be better. Still we
believe that the importance sampling methods can be improved further by find-
ing sampling methods which produce closer approximations to the “correct”
distributions.

We close this section by briefly indicating how the methods of Section 2
and 3 can be combined. In order to do so we start out by using the factoring
method to derive upper and lower bounds on the structure function. When we
discussed this method in Section 2, we allowed the sets A and B to be different.
Now, however, we assume that we have found a common set, say D ⊆ E, such
that both φL(xE\D) = φ(0D,x) and φU (xE\D) = φ(1D,x) are s−p-structures.
This is always possible. We may e.g., let D = A∪B, where A and B are derived
using the method explained in Section 2.

We then define ZD =
∑

i∈D Xi, and consider the vector S = (φL, φU , ZD).
We observe that if ZD = 0, then we know that φ = φL, while if ZD = |D|,
it follows that φ = φU . Thus, the only values of S we need to condition on
during the simulations are {S = (0, 1, z) : z = 1, . . . , |D| − 1}. This approach
combines the best properties from the upper and lower bound method as well
as the sum method. Thus, one would expect the results to be even better than
the ones obtained using the methods suggested in this paper. We will return to
this approach in a future paper.
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