
UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Examination in: STK4050/9050 — Statistical
simulations and computation

Day of examination: Trial exam fall 2009

Examination hours: ?? – ??

This examination set consists of 8 pages.

Appendices: None.

Permitted aids: ??

Make sure that your copy of the examination set is
complete before you start solving the problems.

Problem 1.

Consider first the standard Weibull distribution with density function

f0(x0) = αxα−1
0 e−xα

0

and cummulative distribution function

F0(x0) = 1 − e−xα

.

(a) Explain how the inversion method can be used to generate samples
from f0.

Consider now the general Weibull distribution with density function

p(x) =
α

β

(
x

β

)α−1

e−(x/β)α

(b) Show that if x0 has a standard Weibull density then x = βx0 has a
general Weibull density. Discuss how this result can be used to generate
random variables from the general Weibull distribution.

(Continued on page 2.)
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Assume now we want to generate two dependent random variables that have
marginal distributions that are of the Weibull form. Direct specification of
dependence for the Weibull distribution can be difficult, but can be greatly
simplified through transformation (this is called a copula approach in the
literature).

(c) Let Φ() be the cummulative distribution function for the standard Nor-
mal distribution. Show that if y ∼ N(0, 1), then

x = F−1
0 (Φ(y))

has a standard Weibull distribution.

(d) Assume now that you are able to simulate y = (y1, y2) from a bivariate
Normal distribution N(0,Σ) where Σ1,1 = Σ2,2 = 1 and Σ1,2 = Σ2,1 =
ρ. Explain how you can use this to simulate two dependent Weibull
distributed variables.

Problem 2.

Consider the following algorithm, which we will call Barker’s algorithm (after
Barker (1965) who suggested it):
Given the current state x

(t):

• Draw y from the proposal distribution K(x(t), y) (or transition kernel).

• Draw U ∼ Uniform[0, 1] and update

x
(t+1) =

{
y, if U ≤ rB(x(t), y)

x
(t) otherwise

where

rB(x, y) =
π(y)K(y, x)

π(x)K(x, y) + π(y)K(y, x)
.

We will assume that K(x, y) > 0 for all x, y.

(a) Show that {xt} is a Markov chain with invariant distribution π(x).

(b) Explain how we can used the simulations {x(t)} to estimate Eπh =∫
x

h(x)π(x)dx.

What kind of properties of the Markov chain will influence on the
precision of such an estimate?

(Continued on page 3.)
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Assume A1 and A2 are two transition-kernels for Markov chains with the
same stationary distribution π. Let v1 be the variance of the estimate on
Eπh based on simulations using A1 and v2 the variance of the estimate of
Eπh using A2.
Assume A1(x, y) ≥ A2(x, y) for all y 6= x. One can then show that v1 ≤ v2

(this you do not have to prove).

(c) Let

rM(x, y) = min

{
1,

π(y)K(y, x)

π(x)K(x, y)

}
.

Show that rM(x, y) ≥ rB(x, y) for all x, y.

Use this to argue that the Metropolis-Hastings algorithm is more effi-
cient than Barker’s algorithm.

Based on the differences between these two algorithms, do you think
this is a reasonable result?

Problem 3.

The Gibbs sampler applies to vectors of random variables. We shall in this
exercise consider random pairs (X, Y ). The algorithm is as follows:

Algorithm

Select X (initialization)
Repeat

Sample Y from its conditional distribution given X.
Sample X from its conditional distribution given Y .

It can under general conditions be proved that a simulation of (X, Y ) appears
in the limit as the loop is continued on and on. We shall below actually prove

this result in the simple example considered.
Let (X, Y ) be bivariate normal, with means E(X) = E(Y ) = 0, variances
var(X) = var(Y ) = 1 and correlation corr(X, Y ) = ρ. The conditional
distribution of Y given X = x is then normal with mean ρx and variance
1 − ρ2, and the conditional distribution of X given Y = y is defined by
symmetry. Let {Zn} and {Vn} be sequences of independent normal variables
(0, 1). Also assume independence between sequences.

(a) Show that the Gibbs sampler sets up the double recursion

Yn = ρXn +
√

1 − ρ2Zn, Xn = ρYn−1 +
√

1 − ρ2Vn.

(Continued on page 4.)
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It will be proved that as n → ∞, (Xn, Yn) converges to a sample of (X, Y )
for any starting point X0 = µ0. We shall also study the rate of convergence.
Consider {Xn} first.

(b) Show that Xn = ρ2Xn−1 + εn, where εn =
√

1 − ρ2(ρZn−1 + Vn).

Note that εn is normal with mean 0 and variance σ2
ε = 1 − ρ4. Stochastic

processes of the form Xn = aXn−1 + εn is known as autoregressive of order
one (or AR(1) for short). They are known to converge in distribution to a
limit if |a| < 1. Take this result for granted. Explain why it applies here.

(c) Why is E(Xn) = ρ2E(Xn−1)? Use this to establish that E(Xn) =
ρ2nµ0.

(d) Show that var(Xn) = ρ4var(Xn−1) + σ2
ε . Since varX0 = 0, this yields

var(Xn) =
σ2

ε

1 − ρ4
(1 − ρ4n).

Prove it.

(e) What is the limit for E(Xn) and var(Xn) when n → ∞? Insert for σ2
ε .

(f) Explain by reason of symmetry that the same results applies to {Yn}.

(g) Show that E(XnYn) = ρE(X2
n) and use this to show that E(XnYn)

converges to the right value. (Note that in this case E(XnYn) =
corr(Xn, Yn).)

(h) Summarize your findings. What is the limit distribution of (Xn, Yn)?
Discuss the convergence speed. What is its dependence on ρ?

Problem 4.

Consider the following state space model:

xt =φxt−1 + εt state equation

yt ∼Poisson(exp{1 + xt}) observation equation

where x0 and ε1, ε2, ... are independent and standard normal distributed. We
want to estimate φ based on observations y1, ..., yT . We will do this in a
Bayesian way and assume we have a prior distribution N(0, σ2

φ) on φ.

(Continued on page 5.)
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A possible way to estimate φ in such situations is to extend the state model
to the following model:

φt =φt−1 state equation 1

xt =φt−1xt−1 + εt state equation 2

yt ∼Poisson(exp{1 + xt}) observation equation

where φ0 ∼ N(0, σ2
φ). Non-linear filters try to compute the posterior distri-

bution for (φt, xt) based on y1, ..., yt. Since φ = φT , the posterior distribution
for (φT , xT ) based on y1, ..., yT gives us the posterior distribution for φ given
y1, ..., yT .
Simulation methods for non-linear filters can therefore be used on the bivari-

ate state vector (φt, xt).

(a) Explain the general principles behind sequential importance sampling
(SIS).

Discuss why resampling in general is important in connection to SIS
algorithms.

(b) Simulations from the posterior distribution for (φt, xt) based on y1, ..., yt

was performed through the following SIS algorithm:

• Draw x̃j
t from N(φj

t−1x
j
t−1, 1) for j = 1, ..., M

• Put φ̃j
t = φj

t−1 for j = 1, ..., M .

• Calculate the weights wj
t = p(yt|xt = x̃j

t ) for j = 1, ..., M and the

normalized weights qj
t = wj

t/
∑

j′ w
j′

t .

• Draw (x1
t , φ

1
t ), ..., (x

M
t , φM

t ) from {(x̃1
t , φ̃

1
t ), ..., (x̃

M
t , φ̃M

t )} with re-
placement and with probabilities q1

t , ..., q
M
t .

The figure below shows simulations of φt for t = 1, ..., T based on a
SIS algorithm with resampling. Each curve corresponds to a sequence
of simulated φ’s, φj

1, ..., φ
j
T . The different simulations φj

t , j = 1, ..., M
for a fixed t are (approximately) from the posterior distribution for φt

given y1, ..., yt. Here T = 30 and M = 50.

(Continued on page 6.)
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Why do the number of different values of the simulated φ’s decrease
with t? What kind of problems do this make in the estimation of φ?

(c) A more efficient algorithm can be obtained by integrating out the un-
known φ when simulating the x-process.

One can show (you do not have to do this) that

p(φ|x1, ..., xt, y1, ..., yt) = N(φ̂t, σ
2
t )

where

φ̂t =
σ2

φ

∑t
i=2 xixi−1

1 + σ2
φ

∑t
i=2 x2

i−1

, σ2
t =

σ2
φ

1 + σ2
φ

∑t
i=2 x2

i−1

Use this to explain how you can simulate from the distribution
p(xt+1|x1, ..., xt, y1, ..., yt).

(d) Consider now the SIS algorithm (with resampling) which at time t goes
through the following steps:

• Draw x̃j
t from p(xt|x1, ..., xt−1, y1, ..., yt−1) for j = 1, ..., M .

• Calculate the weights wj
t = p(yt|xt = x̃j

t ) for j = 1, ..., M and the

normalized weights qj
t = wj

t/
∑

j′ w
j′

t .

• Draw x1
t , ..., x

M
t from {x̃1

t , ..., x̃
M
t } with replacement and the prob-

abilities q1
t , ..., q

M
t .

• Draw φj
t ∼ p(φ|xj

1, ..., x
j
t , y1, ., yt)

The figure below shows simulations of φt based on this algorithm.

(Continued on page 7.)
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Which advantages does this algorithm have compared to the one given
in (b)?

In order to estimate the posterior expectation of φ, is it necessary to
simulate the φ’s at all? If not, explain how inferense on φ then can be
performed. What is this technique called?

(Continued on page 8.)
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