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This note, on non-linear maximization problems, has two purposes.

1. To describe 2 different methods of finding admissible candidates that sat-
isfy the Kuhn-Tucker conditions.

2. To help you familiarize with the complementary slackness conditions.

Consider this maximization problem, with the admissible set sketched in Figure
1.

max f(x, y) s.t.


g1(x, y) ≤ c1

g2(x, y) ≤ c2

g3(x, y) ≤ c3

Figure 1: Admissible set
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Suppose that you are asked to find all admissible points that satisfy
the Kuhn-Tucker conditions. (Non-admissible points are not interesting! )

λ1, λ2, λ3 are the multipliers associated with constraints 1, 2 and 3 respec-
tively and the Lagrange function is:

L(x, y) = f(x, y)− λ1[g1(x, y)− c1]− λ2[g2(x, y)− c2]− λ3[g3(x, y)− c3]

Before you continue reading, write down the Kuhn-Tucker conditions and the
admissibility conditions.

1 Active vs inactive constraints
Any admissible point falls into one of the following four categories. A method
for finding the admissible candidates that satisfy the Kuhn-Tucker conditions,
is to consider each of the cases separately.

• Points where no constraints are active

• Points where only 1 constraint is active

• Points where 2 constraints are active

• Points where 3 constraints are active

See 14.9 in EMEA or 8.8 in MAII for an example with two constraints.

1.1 Points where no constraints are active
These are the interior points. By the complementary slackness conditions, such
points have multipliers equal to zero (i.e. λ1 = λ2 = λ3 = 0).

This means that any interior points that satisfy the Kuhn-Tucker conditions
must be stationary points for f(x, y). (Check the Kuhn-Tucker conditions to
convince yourself of this.) And remember that stationary points, by definition,
satisfy the following system of equations:{

f ′x(x, y) = 0

f ′y(x, y) = 0

Hence, we can say that interior, stationary points satisfy the Kuhn-Tucker
conditions with all multipliers equal to zero. (In fact, this holds for all admissible
stationary points, whether they are interior points or boundary points.)

Claim: All unconstrained maximum, minimum and saddle points of f(x, y)
satisfy the Kuhn-Tucker conditions. (Q1: Why? )
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1.2 Points where only 1 constraint is active.
Here we have 3 separate sub-cases to consider. In each of these sub-cases, there
will be at least 2 multipliers equal to zero.

For example, if only the first constraint is active we get:
g1(x, y) = c1

g2(x, y) < c2

g3(x, y) < c3

This means that λ2 = λ3 = 0. (Q2: Why? )
If there are any admissible points here, with λ1 ≥ 0 then these are candidates

that satisfy the Kuhn-tucker conditions. This means that you need to find the
value of the first multiplier and make sure that it is non-negative before you can
claim that you have found a candidate.

Note: You may find λ1 = 0. In that case you have found a stationary point,
which is not in the interior of the admissible set S.

1.3 Points where only 2 constraints are active
This gives 3 cases, namely the 3 intersection points. It remains to check whether
they have non-negative multipliers.

For example, let’s consider the case with only constraints 2 and 3 active.
g1(x, y) = c1

g2(x, y) = c2

g3(x, y) < c3

Then the multiplier associated with constraint 3 is zero (i.e. λ3 = 0). (Q3:
Why? ) You need to check whether the point has λ1 ≥ 0 and λ2 ≥ 0.

1.4 Points where 3 constraints are active
According to the graph, there are no such points.

2 An alternative
Another method of solving the problem is the following.

Search for admissible candidates in each of these cases:

• All multipliers equal to zero (λ1 = λ2 = λ3 = 0)

• Only 2 multipliers equal to zero (3 sub-cases)

• Only 1 multiplier equal to zero (3 sub-cases)

• All multipliers non-zero (λ1 > 0, λ2 > 0, λ3 > 0)
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Using the complementary slackness conditions, you can determine which con-
straints are active in each of the possible combinations (there is a total of 8).

Note that there is not a one-to-one correspondence between the cases in this
method and the cases in the previous method. For example, the first bullet
points in both methods consider stationary points. But only one of them in-
cludes stationary points on the boundary of the admissible set. (Q4: Is that the
first bullet point in method 1 or method 2? )

3 What should you use?
Which of these methods you use is completely up to you.

Also, depending on the problem at hand, there may be other ways of solving,
which may be more time-efficient. In Example 5, on the lecture of 11.09.2013, I
used a somewhat different method than those above. I approached the problem
by considering admissible stationary points first. This is equivalent to λ1 =
λ2 = λ3 = 0 (i.e. the first bullet point in method 2). Then I deviated away
from method 2, by considering the boundaries of the admissible set.

However, the advantage of the 2 methods described above is that they give
a systematic approach to searching for candidates.

Example 5 from lecture on 11.09.2013.
Find all the (admissible) points that satisfy the Kuhn-Tucker conditions in the
following maximization problem.

max
1

2
(x2 + y2) s.t.


y ≤ 1− a(x− 1)

x ≥ 0

y ≥ 0

, for each a > 0

Find the points using one of the systematic methods, described in Parts 1 and
2 above.

4


