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Preface
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are supplied at the back. A few minor errors in the 2004 printing have been corrected.
We thank Li Cen for excellent help with this booklet.
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For this new edition we have added two sections of problems on difference equations and
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1. Linear Algebra

Problem 1-01

(a) Let the matrix A be defined by A =
(

1 2
3 0

)
. Compute A2 and A3.

(b) Find the eigenvalues of A and corresponding eigenvectors.

(c) Let P =
(

2 1
−3 1

)
. Compute P−1, and show that A = P

(−2 0
0 3

)
P−1.

Problem 1-02

(a) Find the eigenvalues of the matrix Aa =

⎛
⎝ 2a 0 0

0 0 −a
2 − a 1 2

⎞
⎠, a ≤ 1

(b) Find corresponding eigenvectors in the cases (i) a = 1 and (ii) a = −3.

Problem 1-03

Given three linearly independent vectors a, b and c in R
n.

(a) Are a − b, b − c and a − c linearly independent?

(b) Let d = 4a − b − c. Is it possible to find numbers x, y and z such that

x(a − b) + y(b − c) + z(a − c) = d ?

Problem 1-04

Let A be the matrix A =
(

1 2
2 1

)
.

(a) Find the eigenvalues and a set of corresponding eigenvectors of A.

(b) Let x0, x1, x2, . . . be a sequence of vectors given by

x0 =
(

1
2

)
and xt+1 = Axt for t = 0, 1, 2, . . .

Show that x0 can be written as a linear combination of eigenvectors of A. Use this
to find xt for t = 1, 2, 3, . . .

Problem 1-05

Determine the eigenvalues of the matrix

Aa =

⎛
⎝ 2a 0 0

0 0 −a
2 − a 1 2

⎞
⎠ , a ≤ 1

Find also the corresponding eigenvectors when a = 1 and when a = −3.
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Problem 1-06

(a) Find the rank of Dt =

⎛
⎜⎝

t 0 0 1
0 2 t 3
1 −2 t 0
2t 1 0 3

⎞
⎟⎠ for all values of t.

(b) Let A, B and C be n×n matrices where A and C are invertible. Solve the following
matrix equation for X:

CB + CXA−1 = A−1

Problem 1-07

(a) Let A =

⎛
⎝ a 0 0

0 b 0
0 0 c

⎞
⎠ where a, b, and c are different from 0. Find A−1.

(b) Given a 3×3 matrix B whose column vectors b1, b2 and b3 are mutually orthogonal
and different from the zero vector. Put A = B′B and show that A is a diagonal
matrix.

(c) Find B−1 expressed in terms of A = B′B and B.

(d) Prove that the columns of P =

⎛
⎝ 1 −8 4

−8 1 4
4 4 7

⎞
⎠ are mutually orthogonal. Find P−1

by using the results above.

Problem 1-08

Consider the matrix A =

⎛
⎝ 3 −1 1

−1 3 1
1 1 3

⎞
⎠.

(a) Show that the characteristic polynomial of A can be written in the form
(4 − λ)(λ2 + aλ + b) for suitable constants a and b. Find the eigenvalues of A.

(b) Show that

⎛
⎝ 1/

√
2

0
1/

√
2

⎞
⎠,

⎛
⎝ 1/

√
6

−2/
√

6
−1/

√
6

⎞
⎠, and

⎛
⎝ 1/

√
3

1/
√

3
−1/

√
3

⎞
⎠ are eigenvectors of A.

Let C be the matrix with the three vectors from part (b) as columns.

(c) Show that CC′ = I3 (the identity matrix of order 3), and use this to find the inverse
of C. Compute C−1AC. (This will be a diagonal matrix.)

(d) Let D = diag(d1, d2, d3) be a diagonal matrix, and let B = CDC−1. Show that

B2 = CD2C−1, and that B2 = A for suitable values of d1, d2 and d3.

Problem 1-09

(a) Find the rank of

⎛
⎜⎝

1 2 0 3
1 1 2 0
0 −1 2 −3
1 0 −2 0

⎞
⎟⎠.

(b) For what values of x, y and z are the three vectors (x, 1, 0, 1), (2, y,−1, 0) and
(0, 2, 2x, z) linearly independent?
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Problem 1-10

Let the matrices Ak and P be given by

Ak =

⎛
⎝ 1 k 0

3 −2 −1
0 −1 1

⎞
⎠ and P =

⎛
⎝ 1/

√
10 −3/

√
35 3/

√
14

0 5/
√

35 2/
√

14
3/

√
10 1/

√
35 −1/

√
14

⎞
⎠

(a) Determine the rank of Ak for all values of k.
(b) Find the characteristic equation of Ak and determine the values of k that make all

the eigenvalues real.
(c) Show that the columns of P are eigenvectors of A3, and compute the matrix product

P′A3P.

Problem 1-11

(a) Consider the equation system

a11x1 + a12x2 + · · · + a15x5 = c1

a21x1 + a22x2 + · · · + a25x5 = c2

a31x1 + a32x2 + · · · + a35x5 = c3

(∗)

where the coefficient matrix has rank 3 and x1, . . . , x5 are the unknowns. Does (∗)
always have a solution? And if so, how many degrees of freedom are there?

(b) Add the equation a41x1 + · · · + a45x5 + a46x6 = c4 to system (∗), where x6 is an
additional unknown. Describe possible solutions, including the degrees of freedom,
in the new system. (Explicit solutions are not required.)

Problem 1-12

(a) Consider the matrix D(s) =

⎛
⎜⎝

1 2s 1 1
−2 1 −2 3s

1 1 − s −1 5
−1 2 s −3

⎞
⎟⎠. Find a necessary and suf-

ficient condition for D(s) to have rank 4. What is the rank if s = 1?
(b) Determine the number of degrees of freedom for the equation system

x + 2y + z + w = 0
−2x + y − 2z + 3w = 0

x − z + 5w = 0
−x + 2y + z − 3w = 0

Problem 1-13

(a) Let A be a symmetric n × n matrix with |A| �= 0, let B be a 1 × n matrix, and let
X be an n × 1 matrix. Consider the expression

(X + 1
2A

−1B′)′A(X + 1
2A

−1B′) − 1
4BA−1B′ (∗)

Expand and simplify.
(b) Suppose that A is symmetric and positive definite (i.e. Y′AY > 0 for all n × 1

matrices Y �= 0). Using (∗), find the matrix X that minimizes the expression
X′AX + BX.

3
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Problem 1-14

Given the matrix A =
(

1 1 1
1 2 3

)
.

(a) Find the rank of A, show that (AA′)−1 exists, and find this inverse.

(b) Compute the matrix C = A′(AA′)−1, and show that ACb = b for every 2 × 1
matrix (2-dimensional column vector) b.

(c) Use the results above to find a solution of the system of equations

x1 + x2 + x3 = 1
x1 + 2x2 + 3x3 = 1

(d) Consider in general a linear system of equations

Ax = b, where A is an m × n matrix, m ≤ n (∗)

It can be shown that if r(A) = m, then r(AA′) = m. Why does this imply that
(AA′)−1 exists? Put C = A′(AA′)−1, and show that if v is an arbitrary m × 1
vector, then ACv = v. Use this to show that x = Cb must be a solution of (∗).

Problem 1-15

Define the matrix Aa for all real numbers a by Aa =

⎛
⎝ a 0 1

a a 1
1 1 1

⎞
⎠.

(a) Compute the rank of Aa for all values of a.

(b) Find all eigenvalues and eigenvectors of A0. (NB! Here a = 0.) Show that eigenvec-
tors corresponding to different eigenvalues are mutually orthogonal.

(c) Discuss the rank of the matrix product AaAb for all values of a and b.

Problem 1-16

Let A =

⎛
⎜⎝

4 1 1 1
1 4 1 1
1 1 4 1
1 1 1 4

⎞
⎟⎠.

(a) Compute the eigenvalues of A. (Hint: You can use (without proof) the formula

∣∣∣∣∣∣∣∣
a + b a . . . a

a a + b . . . a
...

...
. . .

...
a a . . . a + b

∣∣∣∣∣∣∣∣
= bn−1(na + b)

where n is the order of the determinant.)

(b) One of the eigenvalues has multiplicity 3. Find three linearly independent eigenvec-
tors associated with this eigenvalue. Find also an eigenvector associated with the
fourth eigenvalue.

4
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Problem 1-17

Given the matrices A =

⎛
⎝ a b b

b a b
b b a

⎞
⎠ and E =

⎛
⎝ 1 1 1

1 1 1
1 1 1

⎞
⎠.

(a) Find the eigenvalues and eigenvectors of E.
(b) Find numbers p and q such that A = pI3 + qE.
(c) Show that if x0 is an eigenvector of E, then x0 is also an eigenvector of A.
(d) Find the eigenvalues of A.

Problem 1-18

Given the matrix A =

⎛
⎝−2 −1 4

2 1 −2
−1 −1 3

⎞
⎠.

(a) Show that x1 =

⎛
⎝ 1

0
1

⎞
⎠, x2 =

⎛
⎝ 1

−1
0

⎞
⎠, and x3 =

⎛
⎝ 1

1
1

⎞
⎠ are eigenvectors of A, and

find the corresponding eigenvalues.
(b) Let B = AA. Show that Bx2 = x2 and Bx3 = x3. Is Bx1 = x1?
(c) Let C be an arbitrary n × n matrix such that C3 = C2 + C. Show that if λ is an

eigenvalue of C, then λ3 = λ2 + λ. Show that C + In has an inverse.

Problem 1-19

(a) Find the eigenvalues of the matrix A =

⎛
⎝−a2b 0 ab

0 c 0
−ab 0 b

⎞
⎠.

(b) Let H be a 3× 3 matrix with eigenvalues λ1, λ2 and λ3, and let α be a number �= 0.
Show that αλ1, αλ2 and αλ3 are eigenvalues of the matrix K = αH.

(c) Find the eigenvalues of B =
1

1 − a2

⎛
⎝−4a2 0 4a

0 1 − a2 0
−4a 0 4

⎞
⎠, a �= ±1.

(d) Find a matrix P such that P−1BP =

⎛
⎝ 0 0 0

0 1 0
0 0 4

⎞
⎠ = D, where B is the matrix in

(c). Find then a matrix C such that C2 = B. (Hint: Find first a diagonal matrix
E such that E2 = D. Make use of the formula PE2P−1 = PEP−1PEP−1 to find
C expressed in terms of E and P.)

2. Multivariable Calculus

Problem 2-01

Decide if the following functions are (strictly) concave/convex, quasiconcave/quasiconvex
in their domains. (In (a) and (c) you should not differentiate.)
(a) (i) f(x, y) = 10x0.5y0.3, x ≥ 0, y ≥ 0 (ii) g(x, y) = 10x1/3y5/3, x ≥ 0, y ≥ 0
(b) F (x1, x2, x3) = 3 − x2

1 − x1x2 − 2x2
2 + x1x3 − 5x2

3

(c) G(x, y) =
√

ln(x + y − 4). (Where is G defined?)
(d) H(x1, x2, x3) = 3x2

1 − 2x1x2 − 4x1x3 + x2
2 + 2x2

3

5
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Problem 2-02

For which values of the constants a and b is f(x, y) = eax+by2
defined for all x and y

concave/convex?

Problem 2-03

Let f be defined for all x and y by f(x, y) = 2x − y − ex − ex+2y. Is f concave/convex?

Problem 2-04

Prove that f(x, y) = e−x
√

1 + y2 is strictly convex for |y| < 1.

Problem 2-05

Define the function f for all x, y by f(x, y) = 3 sin 2x + 3y − 3y2 + 8. Show that f is
concave in the rectangle R =

{
(x, y) : 0 < x < π/2, 0 < y < 1

}
.

Problem 2-06

Let D be the set of points (x, y) with −1 < x < 1 and −1 < y < 1, and let

f(x, y) =
1
12

(x − y)4 − (x − y)2 − (x + y)2

(a) Show that f is neither convex nor concave in D.
(b) Find the subset of D at which f is concave.

Problem 2-07

Let f(x, y) = (lnx)a(ln y)b, defined for x > 1, y > 1. Assume that a > 0, b > 0 and
a + b < 1. Compute the Hessian matrix H of f and show that f is strictly concave.

3. Static Optimization. Kuhn-Tucker Theory

Problem 3-01

Solve the problem maxx1/2y1/3 subject to 3x + 4y ≤ 25.

Problem 3-02

Consider the problem

max f(x, y) = x2 + y2 subject to g(x, y) = 5x2 + 6xy + 5y2 ≤ 1

(a) Write out the necessary Kuhn–Tucker conditions for a point (x, y) to solve the
problem, and find all points that satisfy the conditions. Do any of those points
solve the problem?

(b) The admissible set is the set of points inside an ellipse in the xy-plane. Explain why
the problem can be interpreted as that of finding the point or points on the ellipse
g(x, y) = 1 with the greatest distance from the origin.

(c) Determine the approximate changes in the maximum value of f(x, y) if the constraint
g(x, y) ≤ 1 is replaced by g(x, y) ≤ 1.1.

6
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Problem 3-03

(a) Write down the Kuhn–Tucker conditions for the problem

max x + xy subject to y + x2ey ≤ 1

(b) Prove that (0,−1) and (1, 0) both satisfy the conditions and find the associated
Lagrange multipliers.

Problem 3-04

Solve the following problem:

minimize f(x, y) = ex+y + ey + 2x + y s.t. x ≥ −1, y ≥ −1, x + y ≥ 0

Problem 3-05

Consider the problem

maximize x2ye−x−y s.t. x ≥ 1, y ≥ 1, x + y ≥ 4

(a) Write down the Kuhn–Tucker conditions for the problem.

(b) Find all the solutions to these conditions.

(c) (Optional.) Have you in (b) found the solution to the problem?

Problem 3-06

(a) Solve the nonlinear programming problem

maximize f(x, y, z) = x + ln(1 + z) subject to

{
x2 + y2 ≤ 1

x + y + z ≤ 1

(b) What is the approximate change in the optimal value of f(x, y, z) if the second
constraint is replaced by x + y + z ≤ 1.02 ?

Problem 3-07

Consider the problem

(∗) max (2x + y) s.t.

{
(x + 1)2 + y2 ≤ 4

x2 + (y + 1)2 ≤ 4
x ≥ 0, y ≥ 0

(a) Let S be the set of all (x, y) which satisfy all the four constrains. Sketch S in the
xy-plane, and draw some level curves for f(x, y) = 2x + y.

(b) Solve problem (∗) by a geometric argument.

(c) Write down the Kuhn–Tucker conditions. Verify that the point (x0, y0) you found
in (b) satisfies the Kuhn–Tucker conditions.

(d) Suppose that x2 + (y + 1)2 ≤ 4 in (∗) is replaced by x2 + (y + 1)2 ≤ 4.1. Estimate
the approximate change in the maximum value of 2x + y.

7
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Problem 3-08

Solve the problem

max
[
ln(x2 + 2y) − 1

2
x2 − y

]
subject to y ≥ 2/x, x ≥ 1, y ≥ 1

Problem 3-09

Consider the nonlinear programming problem

maximize x5 − y3 subject to x ≤ 1, x ≤ y

(a) Find the only possible solution to this problem.
(b) Solve the problem by using iterated optimization: Find first the maximum value

f(x) in the problem to maximize x5 − y3 s.t. x ≤ y, where x is given and y varies.
Then maximize f(x) subject to x ≤ 1.

Problem 3-10

Let f be a function of two variables given by

f(x, y) = −x4 − cx2 + 6xy − 6y2

where c is a constant.
(a) For which values of c will f be concave in the whole plane?

Consider next the problem:

(∗) max (−x4 − y4 − 4x2 + 6xy − 6y2 + ax + by) s.t. x + y2 ≤ 1 and y ≥ −1.

Here are a and b constants.
(b) Write down the Kuhn–Tucker conditions for a point (x, y) to solve (∗).
(c) Find necessary and sufficient conditions on a and b for the maximum point in (∗) to

be (x, y) = (0,−1).

Problem 3-11

Let f and g be functions of two variables given by

f(x, y) = ax + by − 6x2 − 5xy − 5y2, g(x, y) = 3 − (x2 + y2)2

where a and b are constants.
(a) Show that f and g are both concave in the whole plane.

Next we study the problem:

(∗) max
(
f(x, y) + g(x, y)

)
s.t. x ≥ 1 and y ≤ √

x

(b) Write down the Kuhn–Tucker conditions for a point (x, y) to solve (∗).
(c) Find necessary and sufficient conditions on a and b for the maximum point in (∗) to

be (x, y) = (1, 0).
(d) Let a = 300. For which value of b will (∗) have the solution (x, y) = (4, 2)?

8
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Problem 3-12

(a) Solve the nonlinear programming problem

maximize −
(

x +
1
2

)2

− 1
2
y2 subject to

{
y ≥ e−x

y ≤ 2/3

(Hint: You may need the fact that the equations e−2x = 2x+1 and y2 = e1−y2
have

the solutions x = 0 and y = ±1, respectively.)

(b) Can you give a geometric interpretation of the problem?

Problem 3-13

Consider the problem

(∗)
maximize a ln(z + 1) − z − 2x − y

s.t. x ≥ 0, y ≥ 0, z ≥ 0 and z2 ≤ x + y

where a is a positive constant.

(a) Write down the Kuhn-Tucker conditions for the solution of (∗).

(b) Find the solutions of the Kuhn-Tucker conditions. Consider the cases a > 1 and
a ≤ 1 separately.

(c) Prove that the points you found in (b) really solve problem (∗).

Problem 3-14

(a) Solve the problem minimize [(x − 2)2 + (y − 2)2] s.t.

{
x + y ≤ 2,

x2 − 4x + y ≤ −2.

(b) Can you give a geometric interpretation of the problem and thereby confirm the
answer in (a)?

Problem 3-15

Consider the nonlinear programming problem

(P) maximize 4x + y s.t.

⎧⎪⎨
⎪⎩

y − (x − 1)2 ≤ 1

y − (x − 2)2 ≤ −1
x ≥ −2, y ≥ 0, x ≤ 2

(a) Sketch the admissible region, and draw some level curves for the criterion function.

(b) Make use of the figure from (a) to show that (1, 0) solves problem (P).

(c) Write down the necessary Kuhn–Tucker-conditions for the solution of (P), and show
that (1, 0) satisfies these conditions.

9
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Problem 3-16

Solve the problem

maximize (2x − x2 + 2y − y2 + z) s.t.

⎧⎪⎨
⎪⎩

1 − xy ≤ 0
x + y + z ≤ 4

x ≥ 0, y ≥ 0, z ≥ 0

Prove that you have really found the maximum.

Problem 3-17

Maximize ln(x + y + 3) subject to x2 + y2 + z2 ≤ 1, x + y + z ≤ 1.

Problem 3-18

Solve the problem

minimize (x + y)2 s.t. y ≥ (x − 2)2, xy ≥ 1

(Hint: Use the fact that x = 1 is a solution of the equation x(x − 2)2 = 1.)

Problem 3-19

Find the maximum of xy + ex+z subject to 0 ≤ x + z ≤ 1 − x2 − 2y2.

Problem 3-20

Consider the problem

maximize x + y − 1 s.t.

⎧⎨
⎩

x + y + z2 ≤ a

3x2 + 2y +
1
3
z ≤ 0

Here a is a constant.
(a) Write down the Kuhn–Tucker conditions for a point (x, y, z) to solve the problem.

Show that if (x, y, z) solves the problem, then z ≤ 0.
(b) Solve the problem when a = 0.
(c) Solve the problem when a = 1.

Problem 3-21

Consider the nonlinear programming problem

maximize f(x, y) = (x − c)α(y − d)1−α subject to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) x ≥ c

(2) y ≥ d

(3) x + y ≤ 2
(4) x ≤ c + d

(∗)

Here α, c, and d are constants with α ∈ (0, 1), c ≥ 0, d ≥ 0 and 2d < 2 − c.
(a) Sketch the set S consisting of all (x, y) that satisfy (1)–(4). Explain why (1) and (2)

cannot be binding at the optimum.

10
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(b) Show that the problem is equivalent to

maximize
[
α ln(x − c) + (1 − α) ln(y − d)

]
subject to

{
(3) x + y ≤ 2
(4) x ≤ c + d

(∗∗)

(c) Write down the Kuhn–Tucker-conditions for the solution to (∗∗) and show that (3)
must be binding at the optimum. Solve the problem.

Problem 3-22

Consider the problem

max (4z − x2 − y2 − z2) s.t.

{
z ≤ xy

x2 + y2 + z2 ≤ 3

(a) Write down the Kuhn–Tucker conditions for the problem.
(b) Verify that the problem has a solution, and find the solution.
(c) What is the approximate change in the maximum value of 4z − x2 − y2 − z2, if the

first constraint is changed to z ≤ xy + 0.1?

Problem 3-23

(a) Find the maximum of xyz subject to

⎧⎪⎨
⎪⎩

x + y + z ≤ 5
xy + xz + yz ≤ 8

x ≥ 0, y ≥ 0, z ≥ 0

(b) Prove that the problem in part (a) does not have a solution if we drop the nonneg-
ativity conditions on x, y, and z.

4. Integration

Problem 4-01

Define the function F for all T ≥ 0 by F (T ) =
∫ T

0 f(t)e−r(t−T ) dt, where f is a
given function and r is a given number. Find an expression for F ′(T ) and show that
F ′(T ) − rF (T ) = f(T ).

Problem 4-02

Define the function F for all x > 0 by F (x) =
∫ x

0
ext2 dt.

(a) Find expressions for F ′(x) and F ′′(x) by using Leibniz’s formula.
(b) Show that F is strictly convex on (0,∞).

Problem 4-03

Define the function g by g(x) =
∫ 2π

π

sin(xt)
t

dt for all x. Show that g′(1) = 0.

11
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Problem 4-04

Let y(t) be defined by y(t) =
∫ t

0
sin2(t + x) dx. By differentiating y(t) twice, show that

ÿ(t) = 6 sin 2t cos 2t + 2t − 4y(t).

Problem 4-05 Compute the integral
∫ 1

0

(∫ 1

0
xeydy

)
dx.

Problem 4-06 Compute the integral
∫ 1

0

(∫ 4

0
(
√

xy + 2x + y) dy
)
dx.

Problem 4-07 Compute the integral
∫ 1

0

(∫ 1

0
(x
√

x2 + y dx
)
dy.

Problem 4-08

Compute the integral
∫ 1

0

(∫ π/2

0
xy2 cos(x2y) dy

)
dx.

Problem 4-09

Compute the double integral
∫ 2π

π

∫ π

0

x

y3 cos
(x2

y

)
dx dy.

Problem 4-10

Let V (t) =
∫ t

1

(∫ t

1 F (t, x, y) dx
)
dy. Use Leibniz’s formula to find an expression for V ′(t).

Problem 4-11

In a model by T. Haavelmo the following equations appear∫ t

t1

z(τ) dτ =
∫ t+T (t)

t1+T (t1)
x(τ) dτ for all t ≥ t1 (∗)

∫ t+T (t)

t

ȳ(τ) dτ = 1 for all t ≥ t1 (∗∗)

In both cases find an expression for dT/dt, assuming that z(τ), x(τ), T (t), and ȳ(τ) are
well-behaved and t1 is a constant.
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5. Differential Equations of the First Order

Problem 5-01

Solve the differential equations

(a) ẋ + 4x = 3et, x(0) = 1 (b) ẋ =
e−3x

3 +
√

t + 8
, x(1) = 0

Problem 5-02

Solve the differential equation ẋ =
3
√

ax + b

x
t2, where the constant a is �= 0.

Problem 5-03

Find the solution of the following differential equation that satisfies the given initial
condition:

ẋ = t(x − 1)2, x(0) = 3

Problem 5-04

(a) Solve the differential equation ẋ + 4x = 4e−2t, x(0) = 1.
(b) Suppose that y = (a+αk)

√
t + 1 denotes production as a function of capital k, where

the factor
√

t + 1 is due to technical progress. Suppose that a constant fraction
s ∈ (0, 1) is saved, and that capital accumulation is equal to savings, so that we
have the separable differential equation

k̇ = s(a + αk)
√

t + 1, k(0) = k0

The constants a, α and k0 are positive. Find the solution.

Problem 5-05

(a) Find the general solution of the differential equation ẋ + 2x = 2.

(b) Find a function w = w(t) such that

ẅ + 2ẇ = 2, w(0) = 0 and w
(−1

2
)

=
1
2

− e.

Problem 5-06

In a growth model production Q is a function of capital K and labour L. Suppose that

(i) K̇ = γQ (investment is proportional to production)
(ii) Q = KαL

(iii) L̇ = β (the rate of change of L with respect to t is constant)
Here γ, α, and β are positive constants, α < 1.
(a) Derive a differential equation to determine K.
(b) Solve this equation when K(0) = K0 and L(0) = L0.
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Problem 5-07

Find the solution of the differential equation ẋ + 3x = t2.

Problem 5-08

Determine the solution of the differential equation

x
dx

dt
= −1

2
(x2 − 25), x > 5 (∗)

that passes through the point P = (0, 10). What is the slope of the solution curve at P?
Show that every solution of (∗) is decreasing.

Problem 5-09

Find the solution of the differential equation 3x2ẋ = (x3+9)3/2 ln t whose solution curve
passes through the point (t, x) = (1, 3).

Problem 5-10

Find the solution of the differential equation

ẋ = (2x + 1)4 · t3 · sin(t2)

whose integral curve passes through (t, x) = (0, 0).

Problem 5-11

Find the solution of the differential equation

e2tẋ + e2t(2 − 2t)x =
et2+t

√
1 + et

whose integral curve passes through (t0, x0) = (0, 3).

Problem 5-12

Find the solution of the differential equation

ẋ + 3t2x = tet2−t3

whose integral curve passes through (t0, x0) = (−1, 0).

Problem 5-13

(a) Find the general solution of the differential equation ẋ =
2

t + 1
x.

(b) Consider the differential equation

(t + 1)ẋ − 2(t + 1) = 2x + (t + 1)5 (∗)

Introduce a new variable u = u(t) by putting x = (t + 1)2u, and transform equation
(∗) into a simple differential equation in the unknown function u = u(t). Use this
to find the general solution of (∗).
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Problem 5-14

Find the general solution of the differential equation ẋ = x3+3x2−2. (Hint: Put x = y+a
and find a differential equation for y. Choose an a such that this equation becomes a
Bernoulli equation.)

6. Differential Equations of the Second Order

Problem 6-01

Find the general solutions of the following differential equations:

(a) ẍ − 8ẋ + 17 = 0 (b) ẍ + 2ẋ + 5x = 0

Problem 6-02

Find the general solutions of the differential equations

(a) ẍ +
7
2
ẋ − 2x = 0 (b) ẍ +

7
2
ẋ − 2x = t + sin t

(Hint: (b) has a particular solution of the form u∗ = At + B + C sin t + D cos t.)

Problem 6-03

Find the general solutions of the following differential equations:

(i) 4ẍ − 15ẋ + 14x = 0 (ii) 4ẍ − 15ẋ + 14x = t + sin t

Problem 6-04

Find the general solution of ẍ − 6ẋ + 25x = t.

Problem 6-05

Find the general solution of the differential equation 3ẍ+10ẋ+3x = f(t) in the following
three cases:

(i) f(t) = 0, (ii) f(t) = 8e−t + 6, (iii) f(t) = −8e−3t.

Problem 6-06

Find the general solution of the differential equation ẍ + ẋ + 2x = t2 + 2.

Problem 6-07

Solve the differential equations

ẍ − aẋ + (a − 2)x = 0 (i)
ẍ − aẋ + (a − 2)x = t (a �= 2) (ii)
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Problem 6-08

In connection with a problem in utility theory the following differential equations are
encountered:

(i) g′′(t) = −1
4

g′(t) (ii) g′′(t) = − 2
t + 1

g′(t)

Find the general solutions of these equations.

Problem 6-09

In an economic model one encounters the differential equation

Ÿ + (αl + β)Ẏ + αβ(l + m)Y = −αβt − αl + β

l + m
(∗)

where α, β, l and m are positive constants.

(a) Find a particular solution of (∗).

(b) Put α = 1/4, β = 3/4, l = 1 and m = 17/3, and find the general solution to the
equation in this case.

(c) Discuss conditions that ensure that the solutions of (∗) give oscillations. What can
you then say about the behaviour of the solutions as t approaches infinity?

Problem 6-10

A model describing the market behaviour of firms includes the differential equation

1
2σ2x2V ′′(x) + μxV ′(x) − ρV (x) = w − x (x > 0) (∗)

Here σ, μ, ρ, and w are positive constants, ρ �= μ, while V (x) is an unknown function.

(a) Show that the homogeneous equation corresponding to (∗) has solutions of the form
V (x) = xa. Find the general solution of the homogeneous equation.

(b) Find a particular solution of (∗).

(c) Find the general solution of the equation x2V ′′(x) + xV ′(x) − 4V (x) = 10 − x.

Problem 6-11

Consider the differential equation

ẍ − 2(k − 1)ẋ + (k2 − 4)x = 2e(4−k)t (∗)

where k is a real number.

(a) Find the general solution of the homogeneous equation corresponding to (∗) for all
values of k.

(b) Find a particular solution of (∗) for each value of k.

(c) Let k = 3. Find the integral curve for (∗) that passes through the origin and is tan-
gent to the t-axis at that point. Is t = 0 a local extreme point for the corresponding
function?
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Problem 6-12

In an economic problem the price function p = p(t) satisfies the equation

ṗ(t) = β

∫ t

−∞

[
D(p(τ)) − S(p(τ))

]
e−α(t−τ) dτ

where D(p) = a − bp is a demand function, S(p) = −c + dp is a supply function, and α,
β, a, b, c, and d are positive constants.

(a) Show that p satisfies the differential equation

p̈ + αṗ + β(b + d)p = β(a + c) (1)

(b) Determine the equilibrium value p∗ for (1), and find the general solution of (1).

(c) Show that (1) is stable. Decide for what values of the parameters the solution
exhibits damped oscillations about p∗.

Problem 6-13

Given the second-order differential equation

t2ẍ + tẋ − x = 0, t > 0 (∗)

(a) Introduce the substitution z = tx and derive a second-order differential equation
for z. Solve this equation and find the general solution of (∗).

(b) Find the solution of (∗) with x(1) = 1 and ẋ(1) = 1.

Problem 6-14

Solve the differential equation ẍ + 10ẋ + 25x = 5ekt + sin t for all values of k.

Problem 6-15

(a) Find the general solution of the differential equation 2ẍ + 8ẋ + 26x = e2t.

(b) Explain how to find the general solution if e2t is replaced by sin 3t.

7. Systems of Differential Equations

Problem 7-01

Given the following system of differential equations:

ẋ = x + y + t

ẏ = −x + 2y

Deduce a second-order differential equation for x. Solve this equation and then find the
general solution (x(t), y(t)) of the system.
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Problem 7-02

Consider the differential equation system

ẋ = ax + 2y + α

ẏ = 2x + ay + β
(∗)

where a, α and β are constants.
(a) Find the general solution of (∗) for all values of the constants.
(b) Assuming that a2 �= 4, find the equilibrium point. Find sufficient conditions for (∗)

(i) to be locally asymptotically stable, (ii) to have a saddle point equilibrium.
(c) Let a = −1, α = −4 and β = −1. Draw a phase diagram of the system (∗), and

determine a solution curve that converges to the equilibrium point.

Problem 7-03

(a) Consider the following system of differential equations:

ẋ = −x2 − x − y

ẏ = −y2 − 2xy
(S)

The points (−1, 0), (0, 0) and (1,−2) are equilibrium points for the system. Try to
decide if they are locally asymptotically stable or saddle points.

(b) The system (S) has a solution (x(t), y(t)) with x(0) = 1 and y(0) = −1 and such
that x(t) + y(t) is a constant. Find this solution, and draw a sketch that indicates
how (x(t), y(t)) traces out a curve in the xy-plane as t runs through [0,∞).

Problem 7-04

Consider the differential equation system

ẋ = y − x2 − xy

ẏ = x − y2 − xy
(∗)

(a) Find the equilibrium points. If possible, decide if they are locally asymptotically
stable or saddle points.

(b) Put z = x + y and find a differential equation for z. Find the general solution of
this equation.

(c) Find solutions of (∗) through (1, 1), (1/4, 1/4), and (−1,−1), respectively. (Hint:
Try to find a differential equation for w = x − y.)

Problem 7-05

Consider the differential equation system

ẋ = 1
2x3 − y, ẏ = 2x − y

(a) Find all equilibrium points and classify each of them (if possible).
(b) Draw a phase diagram and indicate some possible integral curves.
(c) The system has a saddle point in the first quadrant. What is the limit of the slope

of the two integral curves that converge towards this saddle point?
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Problem 7-06

Consider the differential equation system

ẋ = −x

ẏ = −xy − y2 (∗)

(a) Draw a phase diagram and draw some typical solution curves.
(b) Find the equilibrium points and classify them, if possible.
(c) Solve the equation system (∗) with x(0) = −1, y(0) = 1. (One of the integrals

cannot be evaluated.) Find limt→∞(x(t), y(t)).

8. Calculus of Variations

Problem 8-01

Consider the variational problem

max
∫ 1

0
(2xe−t − 2xẋ − ẋ2) dt, x(0) = 0, x(1) = 1

(a) Write down the Euler equation for the problem.
(b) Find the solution of the problem, assuming it has one.

Problem 8-02

Solve the variational problem

max
∫ 1

0
(4xe−t − 5x2 − ẋ2)e−4t dt, x(0) = 5/3, x(1) = 2e−1

Problem 8-03

Consider the variational problem

max
∫ T

0

(
1

100
tx − ẋ2

)
e−t/10 dt, x(0) = 0, x(T ) = S

(a) Find the Euler equation and its general solution.
(b) Put T = 10 and S = 20 and find the solution to the problem in this case. Show that

you really have found the optimal solution.

Problem 8-04

Consider the variational problem

max
∫ T

0
(a − bK2 − cKK̇ − dK̇2)e−rt dt, K(0) = 0, K(T ) ≥ KT

where a, b, c, d, r, T , and KT are positive constants.
(a) Find the Euler equation.
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(b) Find a necessary and sufficient condition for F (t, K, K̇) = (a−bK2−cKK̇−dK̇2)e−rt

to be concave in (K, K̇).

(c) Let a = 100, b = c = 1, d = 2, r = 1, T = 10, and K10 = 4. Verify that the Euler
equation is K̈ − K̇ − 3

4K = 0. Find the only solution of the Euler equation that
satisfies the boundary conditions. Why is this the optimal solution to the variational
problem?

Problem 8-05

Consider the variational problem

min
∫ 2

1
(x2 + txẋ + t2ẋ2) dt, x(1) = 0, x(2) = 1

(a) Find the Euler equation.

(b) The Euler equation has two solutions of the form x = ta, for suitable values of the
constant a. Use this information to solve the problem.

Problem 8-06

Consider the variational problem

min
∫ T

0

[
px2 + q

(1
b
(ẋ − ax)

)2]
dt, x(0) = x0, x(T ) = xT

where p, q, a, b, T , x0, and xT are nonnegative constants, b �= 0, q �= 0.

(a) Write down the Euler equation for the problem and find its general solution.

(b) Choose p = 0, q = 1, a = 1, b = 1, T = 1, x0 = 0 and xT = 1. Find the solution of
the problem in this case.

Problem 8-07

(a) Find the Euler equation for the following variational problem:

min
∫ t1

t0

(b(t)x + a(t)ẋ2) dt, x(t0) = x0, x(t1) = x1

Here t0, t1, x0, and x1 are constants, while a(t) and b(t) are given positive, differ-
entiable functions.

(b) Show that the general solution of the Euler equation can be written in the form

x(t) =
∫ (

C

a(t)
+

1
2a(t)

∫
b(t) dt

)
dt + D,

where C and D are arbitrary constants.

(c) Find x(t) if a(t) = t, b(t) = t2, t0 = 1, t1 = 3, x(1) = 0, and x(3) = 2.
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Problem 8-08

(a) Consider the variational problem

max
∫ 1

0
(−2ẋ − ẋ2)e−t/10 dt, x(0) = 1, x(1) = 0 (1)

Find the associated Euler equation, and find the general solution of that equation.
Then solve problem (1).

(b) At time t = 0 a certain oil field contains x̄ barrels of oil. It is desired to extract all
of the oil during a given time interval [0, T ]. If x(t) is the number of barrels of oil
left at time t, then −ẋ is the extraction rate (which is ≥ 0 when x(t) is decreasing).
We assume that the world market price per barrel of oil is given and equal to aeαt.
The extraction costs per unit of time are assumed to be (ẋ(t))2eβt. The profit per
unit of time is then π = −ẋ(t)aeαt − (ẋ(t))2eβt. Here a, α, and β are constants,
a > 0. This leads to the variational problem

max
∫ T

0

[−ẋ(t)aeαt − (ẋ(t))2eβt
]
e−rt dt, x(0) = x̄, x(T ) = 0 (2)

where r is a positive constant. Find the Euler equation for problem (2), and show
that at the optimum ∂π/∂ẋ = cert for some constant c.

Problem 8-09

Consider the variational problem

min
∫ 1

0
(x2 + 2xtẋ + ẋ2) dt, x(0) = 1, x(1) = 1

(a) Find the Euler equation for the problem, and the only admissible solution of it.

(b) Show that

∫ 1

0

[
(x(t))2 + 2x(t) · t · ẋ(t) + (ẋ(t))2

]
dt = 1 +

∫ 1

0
(ẋ(t))2 dt

for all admissible functions x(t) in the problem. (Hint:
d

dt
(tx2) = x2 + 2txẋ.)

(c) Can we conclude from (b) that the function found in (a) solves the problem?

Problem 8-10

Consider the variational problem

minimize
∫ T

0
e−rt

[
g(ẋ) + c(t)x

]
dt, x(0) = 0, x(T ) = B

where g and c are given functions, T , r and B are given positive numbers, and x = x(t)
is the unknown function.

(a) Write down the Euler equation for this problem.

(b) Find the solution of the problem if r > 0, g(ẋ) = ẋ2, c(t) = 2.
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(c) The problem above can be given the following interpretation: One wants to produce
B units of a product during the time interval [0, T ]. Production per unit of time
is ẋ, g(ẋ) is the production cost per unit of time, c(t) is the storage cost per unit
of time and unit of product, and r is the interest rate. This interpretation works
well only if the solution of the problem has ẋ(t) ≥ 0 in [0, T ]. Find necessary and
sufficient conditions on the parameters for ẋ(t) to be nonnegative for all t in [0, T ]
in the case in part (b).

9. Control Theory

Problem 9-01

Solve the control problem

max
∫ 2

0
(2x − 3u − αu2) dt, ẋ = x + u, x(0) = 5, x(2) free, u ∈ (−∞,∞)

where α is a positive constant.

Problem 9-02

Consider the control problem

max
u(t)∈R

∫ T

0
−[x(t) − u(t) + 2]2e−rt dt, ẋ = u(t) − δx(t), x(0) = x0, x(T ) = xT

Here T , r, δ, x0, and xT are fixed positive numbers.
(a) Write down the conditions of the maximum principle.
(b) Show that the Hamiltonian function is concave in (x, u).
(c) Solve the problem with T = 10, r = 0.1, δ = 0.5, x0 = 0, and x10 = 8.

Problem 9-03

(a) Solve the optimal control problem

max
∫ 2

0

(
x(t)−(u(t))2

)
dt, ẋ(t) = x(t)+u(t), x(0) = 0, x(2) free, u(t) ∈ (−∞,∞)

(b) What is the optimal solution x∗(t) if we require that u(t) ∈ [0, 1] for all t in [0, 2]?

Problem 9-04

(a) Solve the control problem

max
∫ 5

0
−3u2e−0.15t dt, ẋ = u, x(0) = 0, x(5) = 1500, u ≥ 0

(b) A municipality wishes to cultivate a plot over a period of 5 years. Let x(t) be the
number of acres cultivated up to time t and let u(t) be the rate of cultivation, so
that ẋ(t) = u(t). Let the cultivation cost per unit of time be given by the function

22
4145ex3 29.4.2008 621



C(u, t). If the interest rate is r, the total discounted cost of cultivation over the
period from t = 0 to t = 5 is

∫ 5
0 C(u, t)e−rt dt. Consider the problem

min
∫ 5

0
C(u, t)e−rt dt, ẋ = u, x(0) = 0, x(5) ≥ 1500, u ≥ 0

Write down the conditions given by the maximum principle.
(c) Solve the problem when r = 0 and C(u, t) = g(u), with g(0) = 0, g(u) ≥ 0 and

g′′(u) > 0

Problem 9-05

Consider the variational problem

max
∫ T

0
(ax2 + 2bxẋ + cẋ2 + dt2ẋ)e−rt dt, x(0) = x0, x(T ) = xT (∗)

(a) For what values of the constants a, b, c, d, and r is (ax2 + 2bxy + cy2 + dt2y)e−rt

concave with respect to (x, y)?
(b) Find the Euler equation associated with (∗).
(c) Solve the problem

max
∫ 1

0
(−9x2 + 2xẋ − ẋ2 + 3t2ẋ) dt, x(0) = 0, x(1) = 0 (∗∗)

(You can use the result in (b).)
(d) Transform the problem (∗∗) in (c) into a control problem and find the optimal

solution when the terminal condition is changed from x(1) = 0 to

(i) x(1) free, (ii) x(1) ≥ 2.

Problem 9-06

Consider the control problem (T is a fixed positive number)

max
∫ T

0

(
2x2 − 1

2
u2) dt, ẋ = u, x(0) = 1, x(T ) free, u(t) ∈ (−∞,∞)

(a) Write down the conditions given by the maximum principle for this problem.
(b) Assume that T = π/8, and find the only possible optimal solution. (Take for granted

that an optimal solution exists.)
(c) Find the only possible solution of the necessary conditions when T = π + π/8. Is

this solution optimal? (Hint: Consider the control function u(t) = c if t ∈ [0, 1],
u(t) = 0 if t ∈ (1, π + π/8].)

Problem 9-07

Consider the optimal control problem

maximize
∫ T

0
(1 − u)x2 dt s.t. ẋ = ux, u ∈ [0, 1], x(0) = 1, x(T ) is free (∗)

(a) Write down the conditions that the maximum principle gives for an admissible pair
(x∗(t), u∗(t)) to be a solution of problem (∗).
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(b) Show that the adjoint function p(t) must be strictly decreasing.
(c) It can be shown (but you are not supposed to do so) that (∗) has an optimal solution.

Find this solution when T > 1/2.

Problem 9-08

In growth theory we encounter the optimal control problem

max
I∈R

∫ T

0
(aK − bK2 − cI2)e−rt dt, K̇ = I − δK, K(0) = K0, K(T ) free

where all the parameters are positive, K (capital) is the state variable, and I (investment)
is the control variable.
(a) Write down the conditions in the maximum principle for a pair (K∗(t), I∗(t)) to

solve the problem. Use the “current-value” formulation.
(b) Deduce a second-order differential equation for the optimal state variable.
(c) Show that when a = 12, b = 0.256, c = 10, r = 0.2, and δ = 0.02, the differential

equation in (b) reduces to

K̈∗ − 0.2K̇∗ − 0.03K∗ = −0.6

Solve the control problem in this case with K0 = 0 and T = 10.
(d) With the choice of parameters in (c), replace the objective function by∫ 10

0
(12K − 0.256K2 − 10I2)e−0.2t dt + K(10)

Explain how to find the solution in this case. In particular, find the transversality
condition. You are not required to determine the constants.

Problem 9-09

Consider the control problem

max
∫ T

0
(x − u) dt, ẋ = aue−2t − x, x(0) = x0, x(T ) is free, u ∈ [0, 1]

where T , a, and x0 are positive constants.
(a) Write down the conditions given by the maximum principle. Find an explicit expres-

sion for the adjoint function p(t), and determine the possible values of an optimal
control.

(b) Put T = ln 10, a = 5 and x0 = 5 and solve the problem in this case.
(c) What is the solution if T = ln 10, a = 1/2 and x0 = 5?

Problem 9-10

Consider the control problem (a is a given constant)

max
∫ 1

0
−(x − u − a)2 dt, ẋ = u − x, x(0) = 1, x(1) free, u ∈ [0,∞)

(a) Put a = 4. Show that u∗(t) = 0 for all t is an optimal control by showing that all
the conditions in Mangasarian’s sufficiency theorem are satisfied.

(b) Put a = 1/3. Find the optimal control in this case. (Hint: Try u∗(t) > 0 for all t.)
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Problem 9-11

Solve the control problem

maximize
∫ 2

0
(x − 1

2u) dt, u ∈ [0, 1],

ẋ = u, ẏ = u, x(0) = 0, y(0) = 0, x(2) free, y(2) ≤ 1

Here u is the control variable.

Problem 9-12

Find the only possible solution to the control problem

max
∫ 2

0
(u2 − x) dt s.t. ẋ = u, x(0) = 0, x(2) is free, 0 ≤ u ≤ 1

that is, find the only admissible pair (x(t), u(t)) that satisfies the conditions in the max-
imum principle.

Problem 9-13

Consider the control problem (T is a given positive constant)

max
∫ T

0
(x2 − x) dt, ẋ = u, x(0) = 0, x(T ) free, u = u(t) ∈ [0, 1]

(a) Write down the conditions given by the maximum principle.
(b) Prove that p(t) is concave. Study possible behaviours of p(t). Assuming that an

optimal solution exists, find it.

Problem 9-14

Consider the control problem

max
∫ T

0
(ax − bu) dt, ẋ = x + u, x(0) = x0, x(T ) free, u ∈ [0, 2]

where all the constants are positive.
(a) Solve the problem. (Hint: You will have to distinguish between the cases b <

a(eT − 1) and b ≥ a(eT − 1).)
(b) Let J(x0, T ) denote the optimal value function. Show that ∂J(x0, T )/∂x0 = p(0),

where p(t) is the adjoint function, and that ∂J(x0, T )/∂T = H∗(T ), when we let
H∗(t) denote the Hamiltonian evaluated “along” the optimal path.

Problem 9-15

Consider the control problem

maximize
∫ T

0
(24x − ux) dt s.t. ẋ = ux3, u ∈ [0, 1], x(0) = 1, x(T ) free

Find the only possible solution of the problem when T = 1/3. (Hint: Show that
p(t)(x∗(t))2 must be strictly decreasing.)
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Problem 9-16

Find the only possible solution of the control problem

max
∫ 2

0
x3 dt, ẋ = u ∈ [−1, 1], x(0) = 0, x(2) = 0

Problem 9-17

(a) Solve the optimal control problem

max
∫ 1

0
(x + u) dt, ẋ = 1 − 1

2u2, x(0) = 0, x(1) ≥ 0, u ∈ (−∞,∞)

(b) (Difficult.) Solve the problem if we require that u ≥ 1.

10. Difference Equations

Problem 10-01

Find the general solution of the difference equation xt+2 + 6xt+1 + 10xt = 0.

Problem 10-02

Find the general solution of the difference equation xt+2 − 6xt+1 + 25xt = 1.

Problem 10-03

Find the general solution of the difference equation xt+2 + xt+1 − 6xt = 5t + t.

Problem 10-04

Find the solution of the difference equation xt+2 + 4xt+1 − 12xt = 7t2 + 2t − 6 that
satisfies x0 = −3 and x1 = 9.

Problem 10-05

(a) Solve the difference equation

xt+2 − 5
2
xt+1 + xt = 10 · 3t, t = 0, 1, 2, . . .

Determine the solution that gives x0 = 0, x1 = 2.
(b) The following difference equation appears in dynamic consumer theory:

−αxt+1 + (1 + α2)xt − αxt−1 = Kβt, t = 1, 2, . . .

Here α, K and β are constants, α and β positive. Determine the general solution of
the equation when α �= 1, β �= α and β �= 1/α.
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Problem 10-06

(a) Solve the difference equation xt+2 −xt+1 −6xt = c with x0 = 1 and x1 = 1 for c = 0
and for c = 1.

(b) Consider the following system of difference equations:

xt+1 = xt + 2yt

yt+1 = 3xt

(∗)

where t = 0, 1, 2, . . . , x0 = 1, y0 = 0. Derive a second-order difference equation for
xt, and solve this equation and the system.

11. Dynamic Programming

Problem 11-01

Consider the dynamic programming problem

max

{
T−1∑
t=0

(−u2
t ) − x2

T

}
subject to xt+1 = xt + ut ut ∈ (−∞,∞)

(a) Let Js(x) be the value function, and find JT (x), u∗
T (x), JT−1(x), u∗

T−1(x), JT−2(x),
and u∗

T−2(x).

(b) Find general expressions for JT−k(x) and u∗
T−k(x).

Problem 11-02

Consider the problem

max
T∑

t=0

(xt − ut) subject to xt+1 = xt + ut, ut ∈ [0, 1]

(a) Find the optimal control functions u∗
t (x) and the corresponding value functions Jt(x)

for t = T , t = T − 1, . . . , t = T − 4.

(b) Try to find expressions for u∗
T−k(x) and JT−k(x) for all k = 0, 1, 2, . . . , T .

Problem 11-03

Consider the problem

max
T−1∑
t=0

lnut + lnxT subject to xt+1 = xt − ut, x0 > 0, ut ∈ (0, xt)

(a) Find Js(x) and u∗
s(x) for s = T, T − 1, T − 2.

(b) Prove that JT−k(x) = (k +1) ln
x

k + 1
for all k = 0, 1, . . . , T , and find the associated

optimal control.
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Problem 11-04

Consider the problem

max
T∑

t=0

x2
t (1 + ut) subject to xt+1 = xt(1 − ut), ut ∈ [0, 1]

with x0 given.

(a) Find JT (x) and JT−1(x) and the corresponding optimal controls u∗
T (x) and u∗

T−1(x).

(b) Show by induction that JT−n(x) = (n+2)x2 for n = 0, 1, 2, . . . , T . Find the optimal
pair (x∗

t , u
∗
t ) for the problem and the maximum value of the objective function.

Problem 11-05

Consider the dynamic programming problem

max
T−1∑
t=0

√
ut − xT subject to xt+1 = 2(xt + ut), ut ∈ (0,∞)

(a) Find JT (x), JT−1(x), and JT−2(x).

(b) Find Jt(x) for all t = 1, . . . , T . Find the optimal pair (x∗
t , u

∗
t ) for the problem and

the maximum value of the objective function.

Problem 11-06

Consider the dynamic programming problem

max
T∑

t=0

(xt + lnut) when xt+1 = xt − ut, ut ∈ (0, 1], x0 given,

(a) Find JT (x), u∗
T (x), JT−1(x), u∗

T−1(x), JT−2(x), and u∗
T−2(x).

(b) Prove by induction that JT−k(x) = (t + 1)x − t − ln(1 · 2 · 3 · · · t), t = 1, 2, . . . , T .

Problem 11-07

Consider the dynamic programming problem

max
T−1∑
t=0

2
√

utxt +
√

xT subject to xt+1 = xt − utxt, ut ∈ [0, 1]

(Interpretation: My wealth today is x0 ≥ 0. Every day, i.e. for every t < T , I spend utxt

dollars on consumption. On day T I spend the remaining wealth, xT .

(a) Find JT−1(x) and JT−2(x) and the corresponding controls u∗
T−1(x) and u∗

T−2(x).

(b) Show that J∗
t (x) can be written in the form J∗

t (x) = kt
√

x, and find a difference-
equation for kt.
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Answers

1-01. (a) A2 =
(

7 2
3 6

)
, A3 =

(
13 14
21 6

)
(b) λ1=3, v1=

(
1
1

)
; λ2= − 2, v2=

(−2
3

)

(c) P−1 = 1
5

(
1 −1
3 2

)
1-02. (a) λ1 = 2a, λ2 = 1 +

√
1 − a, λ3 = 1 − √

1 − a.

(b) (i) v1 =

(
1

−1
2

)
, v2,3 =

(
0
1

−1

)
; (ii) v1 =

(
3
1

−2

)
, v2 =

(
0
1
1

)
, v3 =

(
0

−3
1

)
.

1-03. (a) No, a − c = (a − b) + (b − c). (b) No.

1-04. (a) λ1 = 3 with eigenvector
(

1
1

)
; λ2 = −1 with eigenvector

(
1

−1

)
.

(b) With u =
(

1
1

)
and v =

(
1

−1

)
, x0 = 3

2u − 1
2v, xt = 1

2

(
3t+1 + (−1)t+1

3t+1 − (−1)t+1

)
.

1-05. If a = 1, the eigenvalues are λ1 = λ2 = 1, λ3 = 2. The eigenvectors are s(0,−1, 1)′

and t(1,−1, 2)′, with s �= 0, t �= 0. (In this case it is not possible to find three
linearly independent eigenvectors.)
If a = −3, the eigenvalues are λ1 = −6, λ2 = −1, λ3 = 3. Eigenvectors r(−3,−1, 2)′,
s(0,−3, 1)′, t(0, 1, 1)′, with r �= 0, s �= 0, t �= 0. (When an n×n matrix has n distinct
eigenvalues, one can always find n linearly independent eigenvectors.)

1-06. (a) r(Dt) =
{

4 if t �= 0 and t �= 1
3 if t = 0 or t = 1

(b) X = C−1 − BA

1-07. (a) A−1 =

⎛
⎝ 1/a 0 0

0 1/b 0
0 0 1/c

⎞
⎠ (b) A =

⎛
⎝ ‖b1‖2 0 0

0 ‖b2‖2 0
0 0 ‖b3‖2

⎞
⎠

(c) B−1 = A−1B′ (d) P−1 = 1
81P

1-08. (a) a = −5, b = 4. The eigenvalues are λ = 4 (multiplicity 2) and λ = 1.
(b) Direct verification.

(c) C−1 = C′, C−1AC =

⎛
⎝ 4 0 0

0 4 0
0 0 1

⎞
⎠ (d) B2 = A when d2

1 = d2
2 = 4 and d2

3 = 1,

so one can choose, for example, d1 = d2 = 2 and d3 = 1.

1-09. (a) 3 (b) Linearly independent in the following three cases: (i) x �= 0 and z �= 4,
(ii) z = 4 and xy �= 1, (iii) x = 0 and z �= 2.

1-10. (a) r(Ak) = 3 for k �= −1; r(Ak) = 2 for k = −1 (b) The characteristic equation:
(1 − λ)(λ2 + λ − 3(1 + k)) = 0. All roots are real ⇐⇒ k ≥ −13/12.

(c) P′A3P =

⎛
⎝ 1 0 0

0 −4 0
0 0 3

⎞
⎠

1-11. (a) (∗) always has solutions. There are 2 degrees of freedom.
(b) The new system has solutions ⇐⇒ r(Ã) = r(Ãc), where

Ã =

⎛
⎜⎝

a11 a12 . . . a15 0
a21 a22 . . . a25 0
a31 a32 . . . a35 0
a41 a42 . . . a45 a46

⎞
⎟⎠ and Ãc =

⎛
⎜⎝Ã

c1
c2
c3
c4

⎞
⎟⎠

If a46 �= 0, the system has solutions with 2 degrees of freedom. If a46 = 0, the
following holds: If r(Ã) = 4, then the system has solutions with 2 degrees of freedom
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(remember that x6 is an unknown!). If r(Ã) = 3, then the system has solutions if
r(Ãc) = 3 too. The number of degrees of freedom is then 2. If r(Ã) = 3 and
r(Ãc) = 4, there are no solutions.

1-12. D(s) has rank 4 ⇐⇒ 9s3 + 16s2 − 15s − 10 �= 0, r(D(1)) = 3.
(b) 1 degree of freedom.

1-13. (a) X′AX + BX (b) X = − 1
2A

−1B′

1-14. (a) r(A) = 2, (AA′)−1 =
1
6

(
14 −6
−6 3

)
(b) C =

1
6

⎛
⎝ 8 −3

2 0
−4 3

⎞
⎠

(c) AC = I ⇒ A(Cb) = b. x1 = 5/6, x2 = 1/3, x3 = −1/6 (d) r(AA′) = m
implies that |AA′| �= 0, so AA′ has an inverse.

1-15. (a) r(Aa) = 3 if a �= 0 and a �= 1. If a = 0 or a = 1, r(Aa) = 2.

(b) λ1 = 0, x1 = α

⎛
⎝ 1

−1
0

⎞
⎠; λ2 = −1, x2 = β

⎛
⎝ 1

1
−1

⎞
⎠; λ3 = 2, x3 = γ

⎛
⎝ 1

1
2

⎞
⎠

(c) If a �= 0, a �= 1, b �= 0, and b �= 1, then r (AaAb) = 3. Otherwise the rank is 2.
1-16. (a) λ = 3 (multiplicity 3), λ = 7 (multiplicity 1)

(b)

⎛
⎜⎝

1
−1

0
0

⎞
⎟⎠,

⎛
⎜⎝

1
0

−1
0

⎞
⎟⎠, and

⎛
⎜⎝

1
0
0

−1

⎞
⎟⎠ for λ = 3;

⎛
⎜⎝

1
1
1
1

⎞
⎟⎠ for λ = 7.

1-17. (a) λ1 = 3 with v1 = t

⎛
⎝ 1

1
1

⎞
⎠. λ2 = λ3 = 0, with w = r

⎛
⎝ 1

−1
0

⎞
⎠+ s

⎛
⎝ 1

0
−1

⎞
⎠.

(b) p = a − b, q = b (c) Easy verification. (d) μ1 = a + 2b, μ2 = μ3 = a − b.
1-18. (a) λ1 = 2, λ2 = −1, λ3 = 1 (b) No, Bx1 = 4x1 (c) C + In has an inverse iff −1

is not an eigenvalue of C. But λ = −1 does not satisfy λ3 = λ2 + λ, so C + In has
an inverse.

1-19. (a) λ1 = 0, λ2 = c, λ3 = (1 − a2)b. (b) Direct verification. (c) λ1 = 0, λ2 = 1,

λ2 = 4. (d) P =

⎛
⎝ 1 0 a

0 1 0
a 0 1

⎞
⎠ , C =

1
1 − a2

⎛
⎝−2a2 0 2a

0 1 − a2 0
−2a 0 2

⎞
⎠

2-01. (a) (i) Strictly concave since 0.5 + 0.3 < 1. (ii) Quasiconcave.

(b) The Hessian matrix is

⎛
⎝−2 −1 1

−1 −4 0
1 0 −10

⎞
⎠. The leading principal minors are

D1 = −2, D2 = 7 and D3 = −66. So F is strictly concave. (c) G is defined pro-
vided ln(x + y − 4) is defined and greater than or equal to 0, i.e. if x + y − 4 ≥ 1,
and so x + y ≥ 5. Here ln(x + y − 4) is an increasing concave function of a concave
function, so concave. Since u �→ √

u is increasing and concave, G is concave.

(d) The Hessian matrix is

⎛
⎝ 6 −2 −4

−2 2 0
−4 0 4

⎞
⎠. The determinant is 0, so H is not

strictly concave/convex. The 3 principal minors of order 2 are all equal to 8. The
three principal minors of order 1 (the diagonal elements) are all positive. We con-
clude that H is convex. (In fact, H = (x1 − x2)2 + 2(x1 − x3)2 ≥ 0 everywhere, but
for (say) x1 = x2 = x3 = 1 we have H = 0. So H is not positive definite.)

2-02. The Hessian matrix is
(

f ′′
11 f ′′

12
f ′′
21 f ′′

22

)
=
(

a2eax+by2
2abyeax+by2

2abyeax+by2
2b(1 + 2by2)eax+by2

)
. We
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see that Δ = f ′′
11f

′′
22 − (f ′′

12)
2 = 2a2be2ax+2by2

. For b ≥ 0, f ′′
11 ≥ 0, f ′′

22 ≥ 0 and
Δ = f ′′

11f
′′
22 − (f ′′

12)
2 ≥ 0, so f is convex. If b < 0 and a �= 0, then Δ < 0, so f is

neither convex nor concave. If b < 0 and a = 0, f(x, y) = eby2
, which is quasiconcave,

but neither convex nor concave.
For b ≥ 0 we can also argue in this way: u = ax + by2 is then convex, and

u �→ eu is increasing and convex, so f(x, y) is convex.

2-03. f(x, y) is concave as a sum of concave functions. (Alternatively: Look at the Hes-
sian.)

2-04. The Hessian is H =
(

e−x
√

1 + y2 −ye−x/
√

1 + y2

−ye−x/
√

1 + y2 e−x/(1 + y2)3/2

)
, and we see that

|H| = e−2x(1 − y2)/(1 + y2). The conclusion follows.

2-05. The Hessian is H =
(−12 sin 2x 0

0 −6

)
. Then |H| = 72 sin 2x. The conclusion

follows since 2x ∈ (0, π).

2-06. (a) The Hessian matrix is here
(

f ′′
11 f ′′

12
f ′′
21 f ′′

22

)
=
(

(x − y)2 − 4 −(x − y)2

−(x − y)2 (x − y)2 − 4

)
.

Thus Δ = f ′′
11f

′′
22 − (f ′′

12)
2 = 8(2 − (x − y)2). We see that if (say) x is close to

−1 and y is close to 1, then Δ < 0, so f is neither convex nor concave in D.
(b) The function is concave in that part of D which is between the lines x−y = −√

2
and x − y =

√
2. Firstly, f ′′

11 = f ′′
22 = (x − y)2 − 4 ≤ 0 for all (x, y) because (x − y)2

is obviously less than 4 in D. Secondly, Δ ≥ 0 iff 2 − (x − y)2 ≥ 0 iff (x − y)2 ≤ 2
iff −√

2 ≤ x − y ≤ √
2.

2-07. H =
(

a(lnx)a−2(ln y)b(a − 1 − lnx)/x2 ab(lnx)a−1(ln y)b−1/xy

ab(lnx)a−1(ln y)b−1/xy b(lnx)a(ln y)b−2(b − 1 − ln y)/y2

)
, and

|H| = abx−2y−2(lnx)2a−2(ln y)2b−2[1− (a+ b)+ (1− a) ln y +(1− b) lnx+ lnx ln y].
The conclusion follows.

3-01. x = 5, y = 2.5

3-02. (a) The Kuhn–Tucker conditions: There must exist a λ such that 2x−10λx−6λy = 0,
2y − 6λx − 10λy = 0, λ ≥ 0, and λ = 0 if 5x2 + 6xy + 5y2 < 1. The points that
satisfy these conditions are: (i) (0, 0) with λ = 0; (ii) (1/4, 1/4) and (−1/4,−1/4)
with λ = 1/8; (iii) (1/2,−1/2) and (−1/2, 1/2) with λ = 1/2. The points in (iii)
solve the problem. (b) f(x, y) measures the square of the distance from (x, y) to
(0, 0). (c) Δfmax ≈ 1

2 · 0.1 = 0.05, Δfmin ≈ 1
8 · 0.1 = 0.0125

3-03. (a) (i) 1 + y − 2λxey = 0 (ii) x − λ − λx2ey = 0 (iii) λ ≥ 0 (λ = 0 if y + x2ey < 1)
(b) (x, y) = (0,−1) with λ = 0, (x, y) = (1, 0) with λ = 1/2.

3-04. x = 0, y = 0, λ1 = 3, λ2 = λ3 = 0. (L = −ex+y − ey − 2x − y − λ1(−x − y) −
λ2(−x) − λ3(−y). Look at the eight possibilities: All λ’s are 0, any two of them are
0, any one of them is 0, none of them are 0.)

3-05. There exist numbers λ ≥ 0, μ ≥ 0 and σ ≥ 0 such that

2xye−x−y − x2ye−x−y + λ + σ = 0
x2e−x−y − x2ye−x−y + μ + σ = 0

λ(x − 1) = 0
μ(y − 1) = 0

σ(x + y − 4) = 0

(b) The only solution: (x, y) = (8/3, 4/3) (c) Yes
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y1

-1

1

2

x1
-1 1 2

r = 2

r = 2

(x0, y0)

Figure 3-07

3-06. (a) (x, y, z) = (1
2

√
2, − 1

2

√
2, 1), λ = 1

4

√
2, μ = 1

2
(b) The maximum value of f increases by approximately 0.01.

3-07. (a) See Figure 3-07.The curved lines are arcs of circles around (−1, 0) and (0,−1).
(b) x0 = y0 = 1

2 (
√

7 − 1).
(c) The Kuhn–Tucker-conditions: There exist numbers λ ≥ 0 and μ ≥ 0 such that

2 − λ2(x0 + 1) − μ2x0 ≤ 0
1 − λ2y0 − μ2(y0 + 1) ≤ 0

x0(2 − λ2(x0 + 1) − μ2x0) = 0
y0(1 − λ2y0 − μ2(y0 + 1)) = 0

λ((x0 + 1)2 + y2
0 − 4) = 0

μ(x2
0 + (y0 + 1)2 − 4) = 0

(d) The change ≈ μ · 0.1 =
3 − √

7
4
√

7
· 0.1 ≈ 0.003.

3-08. (x, y) = ( 3
√

2, ( 3
√

2 )2) with λ1 = 1 − 2(
3
√

2
)2 +

(
3
√

2
)5 , λ2 = λ3 = 0

3-09. (a) (x, y) = (− 1
5

√
15,− 1

5

√
15 ) (b) f(x) = x5 − x3, x ≤ 1. Max. at x = − 1

5

√
15.

3-10. (a) c ≥ 3
2 (b) (i) ∂L/∂x = −4x3 − 8x + 6y + a − λ = 0

(ii) ∂L/∂y = −4y3 + 6x − 12y + b − 2λy + μ = 0 (iii) λ ≥ 0 (= 0 if x + y2 < 1)
(iv) μ ≥ 0 (= 0 if y > −1) (c) a ≥ 6, 2a + b ≤ −4

3-11. (b) (i) ∂L/∂x = a − 12x − 5y − 4x(x2 + y2) + λ +
1

2
√

x
μ = 0

(ii) ∂L/∂y = b − 5x − 10y − 4y(x2 + y2) − μ = 0 (iii) λ ≥ 0 (λ = 0 if 1 − x < 0)
(iv) μ ≥ 0 (μ = 0 if y − √

x < 0) (c) a ≤ 16, b = 5 (d) b = 512

3-12. (a) (x∗, y∗) = (ln(3/2), 2/3) (b) See Figure 3-12. The problem is to find the
minimal distance from (− 1

2 , 0) to the admissible set.

3-13. (a) (i) ∂L/∂x = −2 + λ ≤ 0 (= 0 if x > 0) (ii) ∂L/∂y = −1 + λ ≤ 0 (= 0 if y > 0)
(iii) ∂L/∂z =

a

z + 1
− 1 − 2λz ≤ 0 (= 0 if z > 0) (iv) λ ≥ 0 (λ = 0 if z2 < x + y)

(b) For a ≤ 1, x = y = z = 0 satisfy all the conditions if 0 ≤ λ ≤ 1. For a > 1,
x = 0, y = z2 and z = 1

4 (−3 +
√

1 + 8a ) satisfy all the conditions with λ = 1.

3-14. (a) Minimum at (x∗, y∗) = (1, 1). (b) Find the point in the admissible domain with
the minimal distance to (2, 2).
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y

1

2

x
1 2

y = 2/3

y = e−x

Figure 3-12
y

-2

2

4

6

8

10

x
-4 -2 2 4

y

x

Figure 3-15

3-15. (a) See Figure 3-15. (b) Maximum at (x, y) = (1, 0)
(c) With L = 4x + y − λ1(y − (x − 1)2) − λ2(y − (x − 2)2) − λ3(−x) − λ4(−y) − λ5x,
the necessary conditions are :
(i) L′

1 = 4 + 2λ1(x − 1) + 2λ2(x − 2) + λ3 − λ5 = 0 (ii) L′
2 = 1 − λ1 − λ2 + λ4 = 0

(iii) λ1 ≥ 0 (λ1 = 0 if y − (x − 1)2 < 1) (iv) λ2 ≥ 0 (λ2 = 0 if y − (x − 2)2 < −1)
(v) λ3 ≥ 0 (λ3 = 0 if x > −2) (vi) λ4 ≥ 0 (λ4 = 0 if y > 0) (vii) λ5 ≥ 0 (λ5 = 0
if x < 2)

3-16. (x∗, y∗, z∗) = (1, 1, 2)

3-17. (x∗, y∗, z∗) = (2/3, 2/3, −1/3), with Lagrange multipliers λ = 3/26 and μ = 1/13.

3-18. (x∗, y∗) = (1, 1)

3-19. (x, y, z) = (0, 0, 1), λ = 0, μ = e

3-20. (a) With the Lagrangian L = x + y − 1 − λ(x + y + z2) − μ(3x2 + 2y + 1
3z), the

necessary conditions are:

L′
x = 1 − λ − 6xμ = 0 (1)

L′
y = 1 − λ − 2μ = 0 (2)

L′
z = −2λz − 1

3μ = 0 (3)
λ ≥ 0 (λ = 0 if x + y + z2 < a) (4)
μ ≥ 0 (μ = 0 if 3x2 + 2y + 1

3z < 0) (5)

(b) For a = 0: 0 ≤ x ≤ 2/3, y = −x, z = 0, λ = 1, μ = 0.
(c) For a = 1: x = 1/3, y = −1/36, z = −5/6, λ = 1/11, μ = 5/11.
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Figure 3-21

3-21. (a) For x = c or y = d, f(x, y) = 0. For x slightly greater than c and y slightly
greater than d, (x, y) still lies in S and f(x, y) > 0. Therefore (1) and (2) cannot be
binding at the optimum. The set S of admissible points is shown in Figure 3-21.
(b) Note that α ln(x − c) + (1 − α) ln(y − d) = ln f(x, y).
(c) If α(2 − d) ≤ d + αc, then x∗ = α(2 − d) + c(1 − α) and y∗ = 2 − x∗.

If α(2 − d) > d + αc, then x∗ = c + d and y∗ = 2 − c − d.

3-22. (a) (i) ∂L/∂x = −2x + λy − 2μx = 0 (ii) ∂L/∂y = −2y + λx − 2μy = 0
(iii) ∂L/∂z = 4 − 2z − λ − 2μz = 0 (iv) λ ≥ 0 (λ = 0 if z < xy)
(v) μ ≥ 0 (μ = 0 if x2 + y2 + z2 < 3) (vi) z ≤ xy (vii) x2 + y2 + z2 ≤ 3
(b) (x, y, z) = (1, 1, 1) and (x, y, z) = (−1,−1, 1) both solve the problem, with λ = 2,
μ = 0. (c) λ · Δb1 = 2 · 0.1 = 0.2

3-23. (a) (x∗, y∗, z∗) =
(
2
√

6/3 , 2
√

6/3 , 2
√

6/3
)

with λ = 0 and μ =
√

6/3.
(b) If we let y = 1 and z = −1, then (x, y, z) = (x, 1,−1) is an admissible point for
all x ≤ 5, and xyz = −x can be made arbitrary large by choosing x a sufficiently
large negative number.

4-01. F ′(T ) = f(T ) + r

∫ T

0
f(t)e−r(t−T ) dt = f(T ) + rF (T ).

4-02. (a) F ′(x) = ex3
+
∫ x

0
t2ext2 dt, F ′′(x) = 4x2ex3

+
∫ x

0 t4ext2 dt

(b) F ′′(x) is ≥ 0 on (0,∞).

4-03. g′(x) =
2π∫
π

cos(xt) dt, g′(1) =
2π∫
π

cos t dt = 0.

4-04. ẏ = sin2 2t +
∫ t

0
2 sin(t + x) cos(t + x) dx. Differentiate once more w.r.t. t.

4-05. 1
2 (e − 1)

4-06. 140/9

4-07. 4
15 (2

√
2 − 1)

4-08. 1/2. (Hint: Change the order of integration.)

4-09.
1

2π2 . (The innermost integral is
∫ π

0

x

y3 cos
(x2

y

)
dx =

1
2y2 sin

π2

y
.)

34
4145ex3 29.4.2008 621



4-10. V ′(t) =
∫ t

1
F (t, x, t) dx +

∫ t

1
F (t, t, y) dy +

∫ t

1

(∫ t

1

∂F (t, x, y)
∂t

dx
)

dy

4-11.
dT (t)

dt
=

z(t)
x(t + T (t))

− 1,
dT (t)

dt
=

ȳ(t)
ȳ(t + T (t))

− 1

5-01. (a) x = 1
5 (2e−4t + 3et)

(b) x = 1
3 ln
(
6
√

t + 8 − 18 ln(3 +
√

t + 8 ) + C
)
, C = 18 ln 6 − 17.

5-02. The solution is given implicitly by
3

5a2 (ax + b)5/3 − 3b

2a2 (ax + b)2/3 =
1
3
t3 + C,

where C is a constant. The left-hand side of this equation can also be written as
3x

2a
(ax + b)2/3 − 9

10a2 (ax + b)5/3 or
3

10a2 (ax + b)2/3(2ax − 3b). The differential

equation also has the constant solution x ≡ −b/a (provided b �= 0).
5-03. x(t) = 1 − 2/(t2 − 1)

5-04. (a) x(t) = 2e−2t − e−4t (b) k(t) =
(
k0 +

a

α

)
e(2αs/3)[(t+1)3/2−1] − a

α
5-05. (a) x = Ce−2t + 1. (b) w(t) = −e−2t + t + 1.

5-06. (a) K̇ = γKα(βt + L0) (b) K =
(
(1 − α)γ

(
β
2 t2 + L0t

)
+ K1−α

0

)1/(1−α)

5-07. x = Ce−3t + 1
3 t2 − 2

9 t + 2
27

5-08. x = 5
√

3e−t + 1, ẋ(0) = −15/4

5-09. x =
( 4

ϕ(t)2
− 9
)1/3

, where ϕ(t) = t ln t − t + 2/3.

5-10. x = 1
2

[
3t2 cos(t2) − 3 sin(t2) + 1

]−1/3 − 1
2 .

5-11. x = et2−2t(3 − 2
√

2 + 2
√

1 + et )

5-12. x(t) = − 1
2e1−t3 + 1

2et2−t3

5-13. (a) x = C(t + 1)2 (b) Differential equation for u: u̇ = 2(t + 1)−2 + (t + 1)2. The
general solution of (∗): x = C(t + 1)2 − 2(t + 1) + 1

3 (t + 1)5.

5-14. x = −1 ± (Ae6t + 1
3 )−1/2 or x ≡ −1.

6-01. (a) x = C1e
8t + C2 + 17t/8 (b) x = e−t(A sin 2t + B cos 2t)

6-02. (a) x = C1e
−4t + C2e

1
2 t (b) x = C1e

−4t + C2e
1
2 t − 1

2 t − 7
8 − 12

85 sin t − 14
85 cos t

6-03. (i) x = C1e
2t + C2e

7t/4 (ii) x = C1e
2t + C2e

7t/4 + 1
14 t + 15

196 + 2
65 sin t + 3

65 cos t

6-04. x(t) = e3t(A cos 4t + B sin 4t) + 1
25 t + 6

625

6-05. x = C1e
−3t + C2e

−t/3 + u∗(t) with (i) u∗(t) = 0, (ii) u∗(t) = −2e−t + 2,
(iii) u∗(t) = te−3t.

6-06. x = e−t/2
(

C1 cos
(√

7
2

t
)

+ C2 sin
(√

7
2

t
))

+
t2

2
− t

2
+

3
4

6-07. (i) x = Aer1t + Ber2t, r1,2 = 1
2a ±

√
1
4a2 − a + 2

(ii) x = Aer1t + Ber2t +
t

a − 2
+

a

(a − 2)2

6-08. (i) g(t) = Ae−t/4 + B (ii) g(t) = C/(t + 1) + D

6-09. (a) Y ∗ = − 1
l + m

t is a particular solution. (b) Y = e−t/2(A cos t + B sin t) − 3
20 t.

(c) Oscillations if 1
4 (αl + β)2 < αβ(l + m). For every solution Y we then have

Y (t) +
1

l + m
t → 0 as t → ∞, that is, Y will approach the linear function Y ∗.
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6-10. (a) V (x) = Axa1 + Bxa2 , where a1,2 = −
( μ

σ2 − 1
2

)
±
√( μ

σ2 − 1
2

)2
+

2ρ

σ2 .

(b) V ∗(x) =
1

ρ − μ
x − w

ρ
(c) V (x) = Ax2 +

B

x2 +
1
3
x − 5

2
6-11. (a) x = Aer1t + Ber2t with r1,2 = k − 1 ± √

5 − 2k for k < 5
2 ,

x = Ae(3/2)t + Bte(3/2)t for k = 5
2 ,

x = e(k−1)t
(
A cos

√
2k − 5 t + B sin

√
2k − 5 t

)
for k > 5

2 .

(b) For k �= 2, k �= 5/2: u∗ =
1

2k2 − 9k + 10
e(4−k)t. For k = 2: u∗ = te2t.

For k = 5/2: u∗ = t2e3t/2.
(c) x = e2t(sin t − cos t) + et. t = 0 is a local minimum point.

6-12. (a) Use Leibniz’s rule. (b) p∗ =
a + c

b + d
. If D = 1

4α2 − β(b + d) > 0 and r1,2 =

− 1
2α±√

D, then p(t) = C1e
r1t +C2e

r2t +p∗. If D = 0, p(t) = (C1 +C2t)e−αt/2 +p∗.
If D < 0 and γ =

√−D, p(t) = e−αt/2(C1 cos γt + C2 sin γt) + p∗.
(c) Oscillations if and only if D = 1

4α2 − β(b + d) < 0.

6-13. (a) x =
1
2
At +

B

t
(b) x(t) = t

6-14. If k �= −5, x = Ae−5t + Bte−5t + 5
(k+5)2 ekt + 6

169 sin t − 5
338 cos t.

For k = −5, x = Ae−5t + Bte−5t + 5
2 t2e−5t + 6

169 sin t − 5
338 cos t.

6-15. (a) x = e−2t(A cos 3t + B sin 3t) + 1
50e2t.

(b) Look for a particular integral of the form C sin 3t + D cos 3t.

7-01. ẍ − 3ẋ + 3x = 1 − 2t. x = e3t/2
(
C1 cos

√
3

2
t + C2 sin

√
3

2
t
)

− 2t

3
− 1

3
,

y = e3t/2
(C1 + C2

√
3

2
cos

√
3

2
t +

C2 − C1
√

3
2

sin
√

3
2

t
)

− t

3
− 1

3
.

7-02. (a) For a �= ±2,

x = Ae(a−2)t + Be(a+2)t +
2β − aα

a2 − 4
, y = −Ae(a−2)t + Be(a+2)t +

2α − aβ

a2 − 4
.

For a = 2, x = A + Be4t + 1
2 (α − β)t, y = −A + Be4t − 1

2 (α − β)t − 1
4 (α + β).

For a = −2, x = Ae−4t + B + 1
2 (α + β)t, y = −Ae−4t + B + 1

2 (α + β)t + 1
4 (β − α).

(b) (x∗, y∗) =
(2β − aα

a2 − 4
,

2α − aβ

a2 − 4

)
. If a < −2, (x∗, y∗) is (globally) asymptotically

stable. If −2 < a < 2, (x∗, y∗) is a saddle point. (c) x = e−3t + 2, y = −e−3t + 3

7-03. (a) (−1, 0): no decision; (0, 0): no decision; (1,−2): saddle point.
(b) x(t) = 1/(t + 1), y(t) = −1/(t + 1)

7-04. (a) (0, 0) is a saddle point; (1/2, 1/2) is locally asymptotically stable.
(b) ż = z − z2; z = Aet/(1 + Aet) or z ≡ 1. (c) (i) x(t) = y(t) = et/(2et − 1),
(ii) x(t) = y(t) = et/(2 + 2et), (iii) x(t) = y(t) = et/(2et − 3).

7-05. (a) (0, 0) is a locally asymptotically stable equilibrium point. (2, 4) and (−2,−4)
are saddle points. (b) See Figure 7-05(a) and (b). (c) 1

2 (7 +
√

41 ) ≈ 6.702.

7-06. (a) See Figure 7-06. (b) The only equilibrium point is (0, 0). Not stable.
(c) x(t) = −e−t, y(t) = (z(t))−1, where z(t) = ee−t

(e−1 +
∫ t

0 e−e−τ

dτ).
(x(t), y(t)) → (0, 0) as t → ∞.

8-01. (a) ẍ = −e−t (b) x = −e−t + e−1 · t + 1

8-02. The Euler equation is ẍ − 4ẋ − 5x = −2e−t. Solution: x∗ = 1
3 (5 + t)e−t
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Figure 7-05(a). An “arrow diagram”. Figure 7-05(b). Some integral curves.
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Figure 7-06.

8-03. (a) ẍ − 1
10 ẋ = − 1

200 t. The general solution is x = A + Bet/10 + 1
40 t2 + 1

2 t.

(b) A =
25

2(1 − e)
, B = −A.

8-04. (a) K̈ − rK̇ − [(2b + rc)/2d]K = 0 (b) 4bd ≥ c2

(c) K∗(t) = 4(e15 − e−5)−1(e3t/2 − e−t/2)

8-05. (a) 2t2ẍ + 4tẋ − x = 0 (b) x∗(t) =
ta1 − ta2

2a1 − 2a2
with a1,2 = 1

2 (−1 ± √
3 ).

8-06. (a) ẍ − pb2 + qa2

q
x = 0, x = Aeλt + Be−λt if λ =

√
pb2 + qa2

q
> 0, x = At + b if

λ = 0. (b) x =
et − e−t

e − e−1 .

8-07. (a) a(t)ẍ+ȧ(t)ẋ− 1
2b(t) = 0. (b) Put y = ẋ and solve the linear differential equation

in y. (c) x(t) =
5

9 ln 3
ln t +

t3 − 1
18

.

8-08. (a) The Euler equation for (1) is ẍ− 1
10 ẋ = 1

10 . General solution x(t) = Aet/10+B−t.
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Solution of the problem: x = 1 − t. (b) ẍ − (β − r)ẋ = − 1
2a(α − r)e(α−β)t.

8-09. (a) The Euler equation is ẍ ≡ 0, and the solution is x∗(t) ≡ 1. (c) Yes.

8-10. (a) g′′(ẋ)ẍ − rg′(ẋ) − c(t) = 0 (b) x =
(
B +

T

r

) ert − 1
erT − 1

− t

r

(c) ẋ(t) ≥ 0 for t in [ 0, T ] ⇐⇒ Br2 ≥ erT − 1 − rT

9-01. x∗(t) = − 1
2αe2−t+ 5

2α +5et+ 1
2αe2+t− 5

2αet, p(t) = 2e2−t−2, u∗(t) = 1
2α (p(t)−3)

9-02. (a) Necessary conditions:
(1) u = u∗(t) maximizes H = −(x∗(t) − u + 2)2e−rt + p(t)(u − δx∗(t)) for u in R,

(2) ṗ(t) = −∂H∗

∂x
= 2(x∗(t) − u∗(t) + 2)e−rt + δp(t),

(3) ẋ∗(t) = u∗(t) − δx∗(t), x∗(0) = x0, x∗(T ) = xT .
(c) u∗(t) = Be0.5t − 2 − 1

18Ae−0.4t, x∗(t) = Be0.5t − 4 − 5
9Ae−0.4t,

p(t) = Ae−0.5t, where A =
36(3 − e5)
5(e5 − e−4)

, B =
4(3 − e−4)
e5 − e−4 .

9-03. (a) u∗(t) = 1
2 (e2−t − 1), x∗(t) = 1

4 (e2+t − e2−t) − 1
2 (et − 1), p(t) = e2−t − 1

(b) x∗(t) =
{

et − 1 if 0 ≤ t ≤ t∗,
et − 1

4e2−t − 9
4et−2 + 1

2 if t∗ ≤ t ≤ 2,
with t∗ = 2 − ln 3.

9-04. (a) u∗(t) =
225

e3/4 − 1
e0.15t, x∗(t) =

1500
e3/4 − 1

(
e0.15t − 1

)
, p(t) =

1350
e3/4 − 1

.

(b) (i) u = u∗(t) maximizes
[−C(u, t)e−rt + p(t)u

]
for u ≥ 0,

(ii) ṗ(t) = −∂H∗/∂x = 0, (iii) p(5) ≥ 0 (= 0 if x∗(5) > 1500).
(c) u∗(t) = 300, x∗(t) = 300t, p(t) = g′(300).

9-05. (a) a ≤ 0, c ≤ 0 and ac − b2 ≥ 0 (b) ẍ − rẋ − [(a + br)/c]x = 1
2 (dr/c)t2 − (d/c)t

(c)
e3t − e−3t

3(e3 − e−3)
− t

3
9-06. (a) (1) u = u∗(t) maximizes 2(x∗(t))2 − 1

2u2 + p(t)u for u in (−∞,∞),
(2) ṗ(t) = −4x∗(t), p(T ) = 0.
(b) u∗(t) = p(t) = 2(cos 2t − sin 2t), x∗(t) = sin 2t + cos 2t
(c) The maximum principle gives the same suggestion as in (a), but no optimal
control exists. (For the suggested control the objective function tends to infinity as
c tends to infinity.)

9-07. (a) (i) u = u∗(t) maximizes (p(t) − x∗(t))x∗(t)u for u in [0, 1]
(ii) ṗ(t) = −2(1 − u∗(t))x∗(t) − p(t)u∗(t) (iii) p(T ) = 0 (iv) ẋ∗(t) = u∗(t)x∗(t)
(c) For t ∈ [0, t∗] = [0, T − 1

2 ], we have u∗(t) = 1, x∗(t) = et, p(t) = e2t∗−t.
For t ∈ (t∗, T ] = (T − 1

2 , T ] we have u∗(t) = 0, x∗(t) = et∗
, p(t) = 2(T − t)et∗

.
9-08. (a) (1) I = I∗(t) maximizes −cI2 + λI for I in R,

(2) λ̇(t) − rλ(t) = −a + 2bK∗(t) + δλ(t), (3) λ(T ) = 0.
(b) K̈∗ − rK̇∗ − (δ(δ + r) + b/c

)
K∗ = −a/2c

(c) K∗(t) = Ae−0.1t + Be0.3t + 20, A =
5e − 80e4

4e4 + 1
, B = −(A + 20) =

5e + 20
4e4 + 1

.

(d) We have the same differential equation for K as in part (c), and with the same
initial condition, K(0) = 0, so once again K∗(t) = Ce−0.1t − (C + 20)e0.3t + 20
for a suitable constant C. However, the transversality condition is now λ(10) = e2.
(With S(t, K) = Ke0.2t, we have S′

2(t, K) = e0.2t and so S′
2(10, K(10)) = e2.)

Hence, K̇∗(10) + 0.02K∗(10) = 1
20 . This equation determines the value of C.

9-09. (a) The adjoint function is p(t) = 1 − et−T , and u∗(t) = 1 if ap(t) > e2t, u∗(t) = 0
if ap(t) < e2t.
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(b) t ≤ ln 2 =⇒ u∗(t) = 1 and x∗(t) = 10e−t − 5e−2t,
t > ln 2 =⇒ u∗(t) = 0 and x∗(t) = (15/2)e−t.

(c) u∗(t) ≡ 0, x∗(t) = 5e−t.

9-10. (b) x(t) = 1 − 1
3 t, u = 2

3 − 1
3 t

9-11. u∗(t) =
{

1 if t ≤ 1,
0 if t > 1, x∗(t) =

{
t + 1 if t ≤ 1,
1 if t > 1, y∗(t) =

{
t if t ≤ 1,
1 if t > 1, p1(t) =

2 − t, p2(t) = −1/2.

9-12. u = 0, x = 0 for t in [0, 1]; u = 1, x = t − 1 for t in (1, 2].

9-13. (a) (i) u = u∗(t) maximizes
(
x∗(t)

)2 − x∗(t) + p(t)u for u in [0, 1],
(ii) ṗ(t) = −∂H∗/∂x = −2x∗(t) + 1, p(T ) = 0.
(b) Solution: For T < 3

2 : u∗(t) = 0, x∗(t) = 0, p(t) = t − T .
For T ≥ 3

2 : u∗(t) = 1, x∗(t) = t, p(t) = −t2 + t + T 2 − T .

9-14. (a) For b ≥ a(eT − 1): u∗(t) = 0, x∗(t) = x0e
t and p(t) = a(eT−t − 1).

For b < a(eT − 1): u∗(t) = 2, x∗(t) = (x0 + 2)et − 2 and p(t) = a(eT−t − 1) in [0, t∗],
while u∗(t) = 0, x∗(t) = (x0 + 2)et − 2et−t∗

and p(t) = a(eT−t − 1) in (t∗, T ], where
t∗ = T − ln(1 + b/a).

9-15. u∗(t) = 1, x∗(t) =
1√

1 − 2t
, p(t) = 12

√
11(1 − 2t)3/2 + 46t − 23 if t ∈ [0, 7/22],

u∗(t) = 0, x∗(t) = 1
2

√
11, p(t) = 8 − 24t if t ∈ (7/22, 1/3].

9-16. u∗(t) =
{

1 if 0 ≤ t ≤ 1,
−1 if 1 < t ≤ 2, x∗(t) =

{
t if 0 ≤ t ≤ 1,
2 − t if 1 < t ≤ 2.

9-17. u∗(t) =
1

C − t
, x∗(t) = t − 1

2(C − t)
+

1
2C

, p(t) = C − t, with C = 1
2 (1 +

√
3 )

(b) u∗(t) =
{ 1

A−t if t > A − 1
1 if t ≤ A − 1

, x∗(t) =

{
t − 1

2(A−t) + 1 − 1
2A if t > A − 1

1
2 t if t ≤ A − 1

,

with A = 1
2 (5 − √

5 ).

10-01. xt = (
√

10 )t(A cos(θt) + B sin(θt)), with cos θ = −3
√

10/10.

10-02. x(t) = 5t(C1 cos θt + C2 sin θt) + 1
20 with cos θ = 3

5 .

10-03. xt = A(−3)t + B 2t + 1
24 5t − 1

4 t − 3
16

10-04. xt = 2t − 2(−6)t − t2 − 2t − 2.

10-05. (a) xt = A 2t + B
( 1

2

)t + 4 · 3t. If x0 = 0 and x1 = 2, then A = − 16
3 , B = 4

3 .

(b) xt = A αt + B α−t − βK

αβ2 − (1 + α2)β + α
βt

10-06. (a) For c = 0: xt = 2
5 (−2)t + 3

53t. For c = 1: xt = 7
15 (−2)t + 7

10 3t − 1
6 .

(b) We obtain the equation from part (a) with c = 0, x0 = 1 and x1 = 1, and
yt = 3

5 (−(−2)t + 3t).

11-01. (a) JT (x) = −x2, with u∗
T (x) undetermined. JT−1(x) = −x2/2 with u∗

T−1 = −x/2.
JT−2(x) = −x2/3 with u∗

T−2 = −x/3.
(b) We claim that JT−k = −x2/(k + 1) with u∗

T−k = −x/(k + 1). This is true
for k = 1. Suppose it is true for k = s. Then JT−(s+1)(x) = maxu∈R(−u2 +
JT−s(x + u)) = maxu∈R(−u2 − (x + u)2/(k + 1)). The maximizer for the g(u) =
−u2 − (x + u)2/(k + 1) is u = −x/(s + 2). (Note that g is concave.) It follows that
JT−(s+1)(x) = −u2 − (x + u)2/(k + 1) = −x2/(s + 2), which is the given formula for
t = s + 1. It follows by induction that the suggested formula is valid for all k.
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11-02. (a) JT (x) = x with u∗
T (x) = 0, JT−1(x) = 2x with u∗

T−1(x) undetermined, JT−2(x)=
3x + 1 with u∗

T−2(x) = 1, JT−3(x) = 4x + 3 with u∗
T−3(x) = 1, JT−4(x) = 5x + 6

with u∗
T−4(x) = 1

(b) JT−k(x) = (k + 1)x + 1
2k(k − 1) with u∗

T−k(x) = 1 for k ≥ 2.
11-03. (a) JT (x) = lnx with u∗

T (x) undetermined. JT−1(x) = 2 ln(x/2) with u∗
T−1 = x/2.

JT−2(x) = 3 ln(x/3) with u∗
T−2 = x/3. (b) u∗

T−k = x/(k + 1)
11-04. (a) JT (x) = 2x2 for u∗

T (x) = 1. JT−1(x) = 3x2 for u∗
T−1 = 0.

(JT−1(x) = maxu∈[0,1]{x2(1+u)+JT (x(1−u))} = x2 maxu∈[0,1](1+u+2(1−u)2}.
The function to be maximized is convex in u and has its maximum 3x2 at u = 0.)
JT−2(x) = 4x2 with u∗

T−2 = 0.
(b) x∗

t = x0 for all t and u∗
t = 0 for t = 0, . . . , T − 1, u∗

T = 1. The maximum value
of the objective function is J0(x0) = (T + 2)x2

0.
11-05. (a) f0(s, x, u) =

√
u for s < T , f0(T, x, u) = −x.

JT (x) = maxu∈(0,∞)(−x) = −x, with u∗
T (x) undetermined.

JT−1(x) = maxu∈(0,∞)
{√

u + JT

(
2(x + u)

)}
= maxu∈(0,∞) {√

u − 2(x + u)}.
Put gT−1(u) =

√
u − 2x − 2u. Then g′

T−1(u) = 1/2
√

u − 2 = 0 for u = 1/16,
and g′′

T−1(u) = −1/4u
√

u < 0 for u > 0, so u = 1/16 is the maximizer, and
JT−1(x) = −2x + 1/23 for u∗

T−1(x) = 1/24.
JT−2(x) = maxu∈(0,∞)

{√
u+JT−1

(
2(x+u)

)}
= maxu∈(0,∞)

{√
u−4x−4u+ 1

23

}
. It

is easy to see that the function gT−2(u) =
√

u−4x−4u+1/23 attains its maximum
for u = 1/26, and JT−2(x) = −22x + (22 − 1)/24 for u∗

T−2 = 1/26.
(b) JT−k(x) = −2kx + (2k − 1)/2k+2, by induction.

11-06. (a) JT (x) = maxu∈(0,1](x + lnu) = x for u∗
T (x) = 1. JT−1(x) = maxu∈(0,1](x +

lnu + JT (x − u)) = maxu∈(0,1](2x + lnu − u). The maximum is attained at u = 1,
so JT−1(x) = 2x − 1 for u∗

T−1(x) = 1. Further, JT−2(x) = maxu∈(0,1](x + lnu +
JT−1(x − u)) = maxu∈(0,1](3x + lnu − 2u − 1). We see that JT−2(x) = 3x − 2 − ln 2
for u∗

T−1(x) = 1/2.
(b) Suppose the formula is valid for t = s. Then JT−(s+1)(x) = maxu∈(0,1](x +
lnu + JT−s(x − u)) = maxu∈(0,1](x + lnu + (s + 1)(x − u) − s − ln(1 · 2 · · · s). We
see that the maximizer is u = 1/(s + 1), and it follows easily that JT−(s+1)(x) =
(s + 2)x − (s + 1) − ln(1 · 2 · · · s · (s + 1)), which is the given formula for t = s + 1.

11-07. (a) JT (x) =
√

x with u∗
T (x) undetermined. JT−1(x) =

√
5
√

x with u∗
T−1 = 4/5.

JT−2(x) = 3
√

x with u∗
T−2 = 4/9. (b) Inserting Jt(x) = kt

√
x into the fundamental

equation and cancelling
√

x yields kt−1 = maxu∈[0,1]{2
√

u+kt

√
1 − u}. The optimal

choice of u is u = 4/(k2
t + 4), and it follows that kt−1 =

√
k2

t + 4. (Note that with
kT = 1, kT−1 =

√
5 and kT−2 = 3.)
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