An infinite-horizon dynamic programming problem: Let $q \in(0,1)$ and $p \in \mathbb{R}$ be given constants, and consider the dynamic programming problem

$$
J_{0}(x)=\max _{u_{t} \in[0,1]}\left[\sum_{t=0}^{T-1} 2 q^{t} \sqrt{u_{t} x_{t}}+p q^{T} \sqrt{x}\right], \quad \text { where } x_{t+1}=x_{t} \cdot\left(1-u_{t}\right), \quad x_{0}=x \geq 0 .
$$

This problem is not unlike 11-07. A look at that problem could be helpful.
(a) Consider first the finite-horizon problem with $T$ a finite natural number. Show that its value function $J_{t}(x)$ can be written on the form $a_{t} q^{t} \sqrt{x}$ - whether or not $p$ is positive, zero or negative.
(You need not find any difference equation for $a_{t}$ to do this!)
(b) Let $T=+\infty$ and $p=0$.

- State the Bellman equation for the value function.
- Show that it is satisfied by a function $A \sqrt{x}$ for some $A>0$.

