ECON5150 Mathematics 4

Monday 14 December 2009, 14:30-17:30
There are 3 pages of problems to be solved.
All printed and written material may be used, as well as pocket calculators.
Give reasons for all your answers.
Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Consider the dynamic programming problem

$$
\max \mathrm{E}\left[\sum_{t=0}^{T-1}\left(\frac{1}{2}\right)^{t}\left(\sqrt{u_{t}}+u_{t}\right)+\left(\frac{1}{2}\right)^{T}\left(\sqrt{x_{T}}+x_{T}\right)\right]
$$

subject to

$$
x_{t+1}=\left(x_{t}-u_{t}\right) V_{t+1}, \quad x_{0}>0
$$

Here $V_{t} \in\{0,4\}$, all V_{t} are i.i.d., T is fixed, $u_{t}>0$ is the control, $\operatorname{Pr}\left[V_{t}=4\right]=1 / 2$, $\operatorname{Pr}\left[V_{t}=0\right]=1 / 2$. Let $K=\mathrm{E}\left[\ln \left(V_{t}\right)\right]$.
(a) Solve the above problem. (Assume that we get $x_{t}>0$ and $x_{t}-u_{t}>0$ all the time. Check this at the end.) (Hint: The formula for $J_{t}(x)$ does not change with t, except for one time-dependent constant.)
(b) Let $T=\infty$. Write out the Bellman equation. Try to solve the problem in this case. (Hint: For $J(x)$, make a guess, by using the results in part (a).)
(c) What do you need to show in order to know that you have found an optimal solution in part (b)?

Problem 2

Let C be the union of $(-\infty, 0]$ and the intervals $\left[\frac{1}{2^{2 k}}, \frac{1}{2^{2 k-1}}\right], k=1,2, \ldots$ Show that C is closed.

Problem 3

Let X_{t} be a Markov chain random walk on $\{0,1, \ldots, N-1, N\}$, with transition probabilities $p_{i j}$ defined by

$$
p_{i, i+1}=p, \quad p_{i, i-1}=1-p \quad(i=1, \ldots, N-1) ; \quad \text { states } 0 \text { and } N \text { are absorbing. }
$$

The Markov chain X can be thought of as a gamble with bet 1 and $\operatorname{Pr}[$ win $]=p=$ $1-\operatorname{Pr}[$ loss $]$, repeated until the player has 0 or N. Throughout this problem, we will assume $0<p<1$.

Define $T=\min \left\{t \geq 0 ; X_{t} \in\{0, N\}\right\}$, the first time of absorption.
(a) Let $\eta_{i}=\operatorname{Pr}\left[X_{T}=N \mid X_{0}=i\right]$ and $\theta_{i}=\mathrm{E}\left[T \mid X_{0}=i\right]$. Use first-step analysis to show that for $i=1, \ldots, N-1$, both η_{i} and θ_{i} must satisfy linear second-order difference equations of the form

$$
p v_{i+1}-v_{i}+(1-p) v_{i-1}=K
$$

and determine the constants $K=K_{\eta}$ for the equation for η, and $K=K_{\theta}$ for the equation for θ.
(b) Find the general solution of the difference equation for v, and find the particular solutions $\eta=\left(\eta_{0}, \eta_{1}, \ldots, \eta_{N}\right)$ with $K=K_{\eta}$ and $\theta=\left(\theta_{0}, \theta_{1}, \ldots, \theta_{N}\right)$ with $K=K_{\theta}$.

We now modify the gamble in two ways:
First, at state i, the player bets b_{i}, chosen as large as possible subject to the constraints $b_{i} \leq i$ (keeping the Markov chain positive) and $b_{i} \leq N-i$ (preventing the Markov chain from exceeding N; with this $b_{i}=\min \{i, N-i\}$, we either have $i-b_{i}=0$ or $i+b_{i}=N$ (or both).

Second, when a player hits 0 or N, (s)he will exit the gambling house and a new player will enter at state 1.

The resulting Markov chain Z_{t} then has transition probabilities $\tilde{p}_{i j}$ defined by

$$
\tilde{p}_{i, i+b_{i}}=p, \quad \tilde{p}_{i, i-b_{i}}=1-p \quad(i=1, \ldots, N-1) ; \quad \tilde{p}_{0,1}=\tilde{p}_{N, 1}=1
$$

so that for the cases $N=5$ and $N=6$ the transition matrix $\widetilde{\mathbf{P}}$ becomes

									0	1	2		4		
	0	1	2	3	4	0)		0	0	1	0	0	0		
	(0	1	0	0	0	0		0	$1-$	0		0	0		
			p		0			2	1 -	0	0		p		
	-	${ }^{0}$	0		p	0		3		0	0				
	0		0	0	0								0		
				0	0	p		5	0						
												0			

respectively.
(c) For each case $N=5$ and $N=6$, find the communication classes for Z, and decide for each class whether it is recurrent or transient.
(Specify at the following level of detail: For X, we have the accessibility relations $1 \rightarrow 2 \rightarrow \cdots \rightarrow N-2 \rightarrow N-1 \rightarrow N-2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, so that $\{1,2, \ldots, N-1\}$ all communicate; furthermore 0 only communicates with itself, and so does N; this gives three classes.)
(d) Let $N=5$, and define $R=\min \left\{t \geq 1 ; Z_{t}=1\right\}$. Find the distribution of R, conditional on $Z_{0}=1$ (i.e. find the numbers $\rho_{n}=\operatorname{Pr}\left[R=n \mid Z_{0}=1\right]$ for all positive integers n) and the conditional expectation $\mathrm{E}\left[R \mid Z_{0}=1\right]$. (Conditional on $Z_{0}=1, R$ is the first return time to 1 .)
(e) Let $N=5$ still. Find the long-term mean occupation time m_{1} of state 1 for Z, i.e.

$$
m_{1}=\lim _{t \rightarrow \infty}\left(\frac{1}{t} \sum_{s=0}^{t-1} 1_{Z_{s}=1}\right) .
$$

