University of Oslo Department of Economics

ECON5150 Mathematics 4

Monday 14 December 2009, 14:30–17:30

There are 3 pages of problems to be solved.

All printed and written material may be used, as well as pocket calculators.

Give reasons for all your answers.

Grades given run from A (best) to E for passes, and F for fail.

Problem 1

Consider the dynamic programming problem

$$\max \mathsf{E}\Big[\sum_{t=0}^{T-1} \left(\frac{1}{2}\right)^t \left(\sqrt{u_t} + u_t\right) + \left(\frac{1}{2}\right)^T \left(\sqrt{x_T} + x_T\right)\Big]$$

subject to

$$x_{t+1} = (x_t - u_t)V_{t+1}, \quad x_0 > 0.$$

Here $V_t \in \{0, 4\}$, all V_t are i.i.d., T is fixed, $u_t > 0$ is the control, $\Pr[V_t = 4] = 1/2$, $\Pr[V_t = 0] = 1/2$. Let $K = \mathsf{E}[\ln(V_t)]$.

- (a) Solve the above problem. (Assume that we get $x_t > 0$ and $x_t u_t > 0$ all the time. Check this at the end.) (*Hint:* The formula for $J_t(x)$ does not change with t, except for one time-dependent constant.)
- (b) Let $T = \infty$. Write out the Bellman equation. Try to solve the problem in this case. (*Hint:* For J(x), make a guess, by using the results in part (a).)
- (c) What do you need to show in order to know that you have found an optimal solution in part (b)?

Problem 2

Let C be the union of $(-\infty, 0]$ and the intervals $\left[\frac{1}{2^{2k}}, \frac{1}{2^{2k-1}}\right]$, $k = 1, 2, \ldots$. Show that C is closed.

(Cont.)

5150xh09 10.12.2009 878

Problem 3

Let X_t be a Markov chain random walk on $\{0, 1, \ldots, N-1, N\}$, with transition probabilities p_{ij} defined by

 $p_{i,i+1} = p$, $p_{i,i-1} = 1 - p$ (i = 1, ..., N - 1); states 0 and N are absorbing.

The Markov chain X can be thought of as a gamble with bet 1 and $\Pr[\text{win}] = p = 1 - \Pr[\text{loss}]$, repeated until the player has 0 or N. Throughout this problem, we will assume 0 .

Define $T = \min\{t \ge 0; X_t \in \{0, N\}\}$, the first time of absorption.

(a) Let $\eta_i = \Pr[X_T = N | X_0 = i]$ and $\theta_i = \mathsf{E}[T | X_0 = i]$. Use first-step analysis to show that for $i = 1, \ldots, N-1$, both η_i and θ_i must satisfy linear second-order difference equations of the form

$$pv_{i+1} - v_i + (1-p)v_{i-1} = K$$

and determine the constants $K = K_{\eta}$ for the equation for η , and $K = K_{\theta}$ for the equation for θ .

(b) Find the general solution of the difference equation for v, and find the particular solutions $\eta = (\eta_0, \eta_1, \dots, \eta_N)$ with $K = K_\eta$ and $\theta = (\theta_0, \theta_1, \dots, \theta_N)$ with $K = K_\theta$.

We now modify the gamble in two ways:

First, at state *i*, the player bets b_i , chosen as large as possible subject to the constraints $b_i \leq i$ (keeping the Markov chain positive) and $b_i \leq N - i$ (preventing the Markov chain from exceeding N; with this $b_i = \min\{i, N-i\}$, we either have $i - b_i = 0$ or $i + b_i = N$ (or both).

Second, when a player hits 0 or N, (s)he will exit the gambling house and a new player will enter at state 1.

The resulting Markov chain Z_t then has transition probabilities \tilde{p}_{ij} defined by

$$\tilde{p}_{i,i+b_i} = p,$$
 $\tilde{p}_{i,i-b_i} = 1-p$ $(i = 1, \dots, N-1);$ $\tilde{p}_{0,1} = \tilde{p}_{N,1} = 1$

so that for the cases N = 5 and N = 6 the transition matrix $\tilde{\mathbf{P}}$ becomes

(Cont.)

5150xh09 10.12.2009 878

Page	3
------	---

	0	1	ი	9	4	-			0	1	2	3	4	5	6		
	0	1	2	3	4	Э		0	(0	1	0	0	0	0	0)		
0	(0	1	0	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \end{pmatrix}$		1		1	0	0	0	0	0		
1	1-n	0	\boldsymbol{n}	0	0			1	1-p	0	p	0	0	0	0		
-		0	P O	0			Õ	0		2	1-p	0	0	0	p	0	0
Ζ	1-p	0	0	0	p	0	and	3	1 - p	0	0	0	0	0	p		
3	0	1-p	0	0	0	p		4	0	0	1 m	Ο	0	Ο	- -		
4	0	0	0	1 - p	0	p		4	0	0	1 - p	0	0	0	p		
5		1	Ο	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$		5	0	0	0	0	1-p	0	p		
0		1	0	0	0	07		6	0	1	0	0	0	0	0/		

respectively.

(c) For each case N = 5 and N = 6, find the communication classes for Z, and decide for each class whether it is recurrent or transient.

(Specify at the following level of detail: For X, we have the accessibility relations $1 \rightarrow 2 \rightarrow \cdots \rightarrow N - 2 \rightarrow N - 1 \rightarrow N - 2 \rightarrow \cdots \rightarrow 2 \rightarrow 1$, so that $\{1, 2, \ldots, N - 1\}$ all communicate; furthermore 0 only communicates with itself, and so does N; this gives three classes.)

- (d) Let N = 5, and define $R = \min\{t \ge 1; Z_t = 1\}$. Find the distribution of R, conditional on $Z_0 = 1$ (i.e. find the numbers $\rho_n = \Pr[R = n | Z_0 = 1]$ for all positive integers n) and the conditional expectation $\mathsf{E}[R|Z_0 = 1]$. (Conditional on $Z_0 = 1$, R is the first return time to 1.)
- (e) Let N = 5 still. Find the long-term mean occupation time m_1 of state 1 for Z, i.e.

$$m_1 = \lim_{t \to \infty} \left(\frac{1}{t} \sum_{s=0}^{t-1} 1_{Z_s=1} \right).$$