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1. Motivation

Sometimes we do not know or are in doubt whether a variable specified as a right-

hand side variable in an econometric equation, is exogenous or endogenous. Con-

sider the following equation, with i as subscript for the observation unit (individual,

time period, etc.),

(1) yi = xiβ + ziγ + ui

We assume that exogeneity of the vector xi is not subject to discussion. Exogeneity

also of the scalar variable zi relative to this equation then implies that both xi and

zi are uncorrelated with the (zero mean) disturbance ui. We believe, however, that

zi may be endogenous and therefore (in general) correlated with ui. We want to

test for this. We want to make a decision by means of a statistical test. Our null

hypothesis is therefore

(2) H0 : cov(zi, ui) = E(ziui) = 0,

and the alternative hypothesis is

(3) H1 : cov(zi, ui) = E(ziui) 6= 0,

Assume that an instrument for zi relative to (1) is available. It is the scalar

variable wi, i.e., wi is correlated with zi and uncorrelated with ui:

(4) cov(wi, ui) = E(wiui) = 0,

Both zi and wi may be correlated with xi. Assume that ui is non-autocorrelated

and has constant variance. We then know the following:

1. If zi is exogenous andH0 holds, then we know from Gauss-Markov’s theorem that

applying OLS on (1) gives the MVLUE (the Minimum Variance Linear Unbiased

Estimators) of β and γ. These estimators, denoted as (β̂OLS, γ̂OLS), are therefore

consistent.

2. If zi is correlated with ui and H0 is violated, then (β̂OLS, γ̂OLS) are both incon-

sistent.
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3. Estimating (1) by the two-stage least squares (2SLS), using wi as an instrument

for zi gives consistent estimators of β and γ, denoted as (β̂2SLS, γ̂2SLS). Consistency

is ensured regardless of whether H0 or H1 holds.

4. We then have two sets of estimators of β and γ: (i) (β̂2SLS, γ̂2SLS), is consistent

both under H0 and H1, but inefficient under the former. (ii) (β̂OLS, γ̂OLS), is

consistent and efficient under H0, but inconsistent underH1. Hence, (β̂2SLS, γ̂2SLS)

is more robust to inconsistency than (β̂OLS, γ̂OLS). The price we have to pay when

applying the former is, however, its loss of efficiency if H0 is in fact true. Intuition

then says that the “distance” between (β̂2SLS, γ̂2SLS) and (β̂OLS, γ̂OLS) should “on

average” be “smaller” under H0 than under H1.

From the last statement in 4 we might proceed by estimating (1) by both OLS

and 2SLS and investigate whether their discrepancy “seems large or small”. The

former suggests rejection and the latter non-rejection of exogeneity of zi. Some

people follow this strategy, but it can at most be an informal approach, and not

strictly a test, since we do not know which distances should be denoted as “large”

and which “small”. A formal method is obviously needed.

Essentially, the Wu-Hausman test is a method for investigating whether the

discrepancy is statistically large enough to call H0 into doubt and accept H1.

2. A simple implementation of the Wu-Hausman test

We formulate the assumed relationship between the instrument, the regressor vector

xi and the instrument wi for zi in (1) as follows:

(5) zi = xiδ + wiλ+ vi,

and assume that

(6) ui = viρ+ εi,

where

(7) cov(εi, vi) = cov(εi, wi) = cov(xi, vi) = cov(εi, xi) = 0.

Remark 1: Equation (5) may be the reduced form for zi in a multi-equation model

to which (1) belongs, yi is without doubt endogenous and zi is potentially endoge-

nous and determined jointly with yi. Then (xi, wi) are the exogenous variables in

the model. It is supposed that (1) is identified.

Remark 2: It is perfectly possible that zi is a regressor variable affected by a

random measurement error, where wi is an instrument for the true (unobserved)

value of zi, and hence also for zi itself.
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From (4)–(7) it follows that:

(8) cov(zi, ui) = cov(xiδ + wiλ+ vi, vi ρ+ εi) = ρ var(vi)

and therefore

(9)
H0 =⇒ ρ = 0,

H1 =⇒ ρ 6= 0,

Inserting (6) into (1) gives

(10) yi = xiβ + ziγ + viρ+ εi

Let the OLS estimates of (δ, λ) in (5) be (δ̂OLS, λ̂OLS), and compute the residuals

(11) v̂i = zi − xiδ̂OLS − wiλ̂OLS.

Replace vi with v̂i in (10), giving

(12) yi = xiβ + ziγ + v̂iρ+ ǫi

Estimate the coefficients of (12), (β, δ, ρ), by OLS i.e., by regressing yi on

(xi, zi, v̂i). Test, by means of a t-test whether the OLS estimate of ρ is signifi-

cantly different from zero or not.

3. Conclusion

This leads to the following prescription for performing a Wu-Hausman test and

estimating (1):

Rejection of ρ = 0 from OLS and t-test on (12) =⇒ rejec-
tion of H0, i.e., rejection of exogeneity of zi in (1). Stick
to 2SLS estimation of (1).

Non-rejection of ρ = 0 from OLS and t-test on (12) =⇒
non-rejection of H0, i.e., non-rejection of exogeneity of zi
in (1). Stick to OLS estimation of (1).
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4. A more general exposition (Optional)

Consider the following, rather general, situation: We have two sets of estimators

of a (K × 1) parameter vector β based on n observations: β̂0 and β̂1. We want to

test a hypothesis H0 against a hypothesis H1. A frequently arising situation may

be that a regressor vector is uncorrelated with the equation’s disturbance under H0

and correlated with the disturbance under H1. The latter may be due to endoge-

nous regressors, random measurement errors in regressors, etc. The two estimators

have the following properties in relation to the two hypotheses:

(i) β̂0, is consistent and efficient for β under H0, but inconsistent under H1.

(ii) β̂1 is consistent for β both under H0 and H1, but inefficient under H0.

Hence, β̂1 is more robust to inconsistency than β̂0. The price we have to pay when

applying β̂1 is, however, its loss of efficiency when H0 is in fact true and the latter

estimator should be preferred.

Intuition says that the ‘distance’ between the estimator vectors β̂0 and β̂1

should ‘on average’ be ‘smaller’ when H0 is true than when H1 is true. This

intuition suggests that we might proceed by estimating β by both methods and

investigate whether the discrepancy between the estimate vectors seems ‘large’ or

‘small’: β̂1− β̂0 ‘large’ suggests rejection, and β̂1− β̂0 small suggests non-rejection

of H0. Such a ‘strategy’, however can at most be an informal approach, not a

statistical test, since we do not know which distances should be judged as ‘large’

and which be judged as ‘small’. A formal method determining a critical region

criterion is needed. At this point the Hausman specification test comes in.

Essentially, the Hausman test to be presented below is a method for investigat-

ing whether the discrepancy between β̂1 and β̂0 is statistically large enough to call

H0 into doubt and accept H1.

Lemma, J.A. Hausman: Econometrica (1978):

We have that:

(a)
√
n(β̂0 − β)

d→ N (0,V 0) under H0

(b)
√
n(β̂1 − β)

d→ N (0,V 1) under H0

(c) V 1 − V 0 is positive definite under H0

Then:

(d) S = V(β̂1 − β̂0) = V(β̂1)− V(β̂0) is positive definite under H0,

(e) Q = n(β̂1 − β̂0)
′Ŝ

−1

(β̂1 − β̂0)
d

→ χ2(K) under H0,
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where Ŝ is a consistent estimator of S = V(β̂1 − β̂0), i.e., the variance-covariance

matrix of the estimator difference vector β̂1− β̂0. Here Q is a quadratic form (and

therefore a scalar) measuring the distance between the two estimator vectors. A

crucial part of the lemma is that under H0, Q is distributed as χ2 with K degrees

of freedom, K being number of parameters under test, and tends to be larger under

H1 than under H0.

Test criterion: Reject H0, at approximate significance level ε, when Q>χ2
1−ε(K).

Further readings, proofs etc.

Davidson, R. and MacKinnon, J.G. (1993): Estimation and Inference in Economet-

rics. Oxford University Press, section 7.9.

Greene, W.H. (2008): Econometric Analysis, Sixth edition. Prentice-Hall, section 12.4.

Hausman, J.A. (1978): Econometrica, 46 (1978), 1251-1272.

Wooldridge, J.M. (2002): Econometric Analysis of Cross Section and Panel Data.

The MIT Press, Section 6.2.1.

Wu, D.M. (1973): Econometrica, 41 (1973), 733-750.
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Setting:

Consider the following equation, with i as subscript for the observation unit,

(1) yi = ziγ + ui, i = 1, . . . , n.

Assume that we believe that the 1×k vector zi contains endogenous variables and is

therefore (in general) correlated with ui. Some of the elements in zi may, however,

be exogenous. Assume that an instrument vector (IV vector for zi relative to (1)

is available. It is the 1 × q vector wi, with q ≥ k. If wi is a valid instrument, it

should by assumption be correlated with zi and uncorrelated with ui. If zi includes

exogenous variables, say the subvector xi (confer the notation in Lecture note WH,

section 2), then wi should also contain xi as a subvector. The assumption that wi

and ui are uncorrelated is called the orthogonality assumption.

Since q ≥ k, the equation is identified, exactly identified if q = k and overidentified

if q > k – in both cases provided that the orthogonality conditions – wi and ui be-

ing uncorrelated – hold. Under overidentification, q−k overidentifying restrictions

are imposed. Remember:

[1] Overidentification implies that we have more instruments than needed for es-

timability (consistent estimation).

[2] In a simultaneous equation model where the model’s exogenous (predetermined)

variables are candidates for being valid IVs, the system’s structural form (SF) im-

poses restrictions on the coefficient of the system’s reduced for (RF). For examples

of such overidentifying restrictions for linear simultaneous systems, see Lecture

Note E in “Six notes”, section 10 [in particular (E-68)–(E-69)].

[3] Asserting that a set of IVs contribute to overidentification may be correct of

wrong.

Assume that (1) is estimated by the Two-Stage Least Squares (2SLS), which is

equivalent to using wi as an instrument for zi chosen in the optimal way. This
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gives consistent estimators of γ, denoted as γ̂2SLS. If q = k, there are no overiden-

tifying restrictions to test. If q > k, we may want to test the q − k overidentifying

restrictions.

Testing of overidentifying restrictions:

A simple test of these overidentifying restrictions (several others exist) can then be

performed as follows [see Davidson & MacKinnon (2004) for elaboration]:

Step 1: Compute the residuals from the 2SLS estimation, assuming wi – with q > k

– to be a valid IV vector for zi:

(2) ũi = yi − ziγ̂2SLS i = 1, . . . , n.

Step 2: Regress ũi on the full IV vector, wi.

Step 3: Compute R2 from this regression. Denote it as R2
ũ

Step 4: If the orthogonality condition is valid, then nR2
ũ ∼ χ2(q−k) holds approx-

imately, χ2(q−k) denoting the χ2-distribution with q−k degrees of freedom. If

nR2
ũ > χ2

1−α(q−k), where χ2
1−α(q−k) is the (1−α)-quantile of this distribution, the

overidentifying restrictions are rejected at a significance level α.

Further readings, proofs, etc.:

Davidson & MacKinnon (1993): Estimation and Inference in Econometrics. Oxford

University Press, section 7.8.

Davidson & MacKinnon (2004): Econometric Theory and Methods. Oxford University

Press, section 8.6.

Testing of orthogonality conditions:

See Lecture note WH.

On the ‘weak instrument’ problem:

“Archimedes said, “Give me the place to stand, and a lever long enough, and I will move the
Earth”...... Economists have their own powerful lever: the instrumental variable estimator. The
instrumental variable estimator can avoid the bias that ordinary least squares suffers when an
explanatory variable in a regression is correlated with the regression’s disturbance term. But, like
Archimedes lever, instrumental variable estimation requires both a valid instrument on which to
stand and an instrument that isn’t too short (or “too weak”).” [M.P. Murray (2006, p.111)].
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Further readings:

Bound, Jaeger & Baker (1995). Problems with instrumental variables estimation

when the correlation between the instruments and the endogenous explanatory variables

is weak. Journal of the American Statistical Association 90, 443-450.

Murray (2006). Avoiding Invalid Instruments and Coping with Weak Instruments.

Journal of Economic Perspectives 20, Number 4, 111-132.

Nelson & Startz (1990). The distribution of the instrumental variables estimator and

its t-ratio when the instrument is a poor one. Journal of Business 63, S125-S140.

Staiger & Stock (1997). Instrumental variables regression with weak instruments.

Econometrica 65, 557-586.

Stock, Wright, & Yogo (2002): A Survey of weak instruments and weak identifica-

tion in Generalized Method of Moments. Journal of the American Statistical Association

20, 518-529.
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1. A reinterpretation of the regression model

Consider a static regression equation for time series data:

(1) yt = α + β0xt + β1zt + ut, t = 1, . . . , T.

We know that it is possible to let, for example, zt = x2
t , zt = ln(xt), etc. Econo-

metrically, we then consider xt and zt as two different variables, even if they are

functions of the same basic variable, x. Usually, x and z thus defined are correlated,

but they will not be perfectly correlated. (Why?)

Let us now choose zt = xt−1 and treat xt and zt econometrically as two different

variables. We then say that zt is the value of xt backward time-shifted, or lagged,

one period. Then xt and zt will usually be correlated, but not perfectly, unless

xt = a+ bt, in which case xt = xt−1 + b. When zt = xt−1, (1) reads

(2) yt = α + β0xt + β1xt−1 + ut, t = 2, . . . , T,

where we, for simplicity, assume that ut is a classical disturbance. We than say

that (2) is a distributed lag equation. By this term we mean that the effect on y of

a change in x is distributed over time. We have:

∂yt
∂xt

= β0 = short-run, immediate effect,

∂yt
∂xt−1

= β1 = effect realized after one period,

∂yt
∂xt

+
∂yt
∂xt−1

= β0 + β1 = long-run effect

= total effect of a change lasting for at least two periods.

Unsually, there are no problems in estimating such a model. We treat it formally as

a regression equation with two right hand side (RHS) variables. We may then use

classical regression, OLS (or GLS), as before. Note that when (yt, xt) are observed

for t = 1, . . . , T , eq. (2) can only be estimated from observations t = 2, . . . , T since

one observation is “spent” in forming the lag.
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Eq. (2) may be generalized to a distributed lag equation with K lags :

yt = α + β0xt + β1xt−1 + · · ·+ βKxt−K + ut(3)

= α +
∑K

i=0
βixt−i + ut, t = K+1, . . . , T.

Neither are there any problems, in principle, with estimating such a model. We

treat it formally as a regression equation with K+1 RHS variables plus an intercept.

Note that (3) can only be estimated from observations t = K+1, . . . , T since K

observations are disposed of in forming the lags. In the model we may include

other variables, zt, qt, . . . , with similar lag-distributions. The lag distribution in

(3) is characterized by the coefficient sequence β0, β1, . . . , βK , and we have

∂yt
∂xt

= β0 = short-run effect,

∂yt
∂xt−i

= βi = effect realized after i periods (i = 1, . . . , K),

K∑

i=0

∂yt
∂xt−i

=

K∑

i=0

βi = long-run effect

= total effect of a change lasting for at least K+1 periods.

It follows that we also have

∂yt+i

∂xt
= βi (i = 1, . . . , K),

K∑

i=0

∂yt+i

∂xt

=
K∑

i=0

βi.

Eq. (3) exemplifies a finite lag distribution. The entire process is exhausted in

the course of a finite number of periods, K+1. We loose K observations when

we form the lags. Estimating (3) by OLS involves estimating K + 2 coefficients

(α, β0, β1, . . . , βK) from T −K observations. The number of degrees of freedom we

dispose of in the estimation is thus T −K −K − 2 = T − 2(K+1). We see that

we spend two degrees of freedom for each additional lag we include in the equation.

This may give rise to multicollinearity problems and imprecise estimates. In order

to have a positive number of degrees of freedom, we must have T > 2(K+1).

2. Why are distributed lag equations interesting?

Distributed lag equations can be used to model:

• Technical lags: Ex.: Dynamic production processes.

• Behavioural lags: Delays from a signal is received by an agent until he/she

responds.

• Institutional lags: Ex.: Delays from the time a sum of money is paid from

the paying institution until it is received by or registered in the accounts of

the receiving institution.
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• Dynamization of theories : We have a static theory which we want to

“dynamize” in order to take account of, estimate, or test for possible slug-

gishness in the responses predicted by the theory.

Examples:

1. Relationship between investment and scrapping of capital.

2. Delays in the shifting of cost changes into output prices.

3. Delays in the shifting of consumer price changes into changes in wage rates.

4. Delays in production to order. Lags from an order is delivered until produc-

tion starts. Lags from production starts until it is finished.

5. Production processes in Ship-building, Building and Construction industries.

Note that the necessity of modeling lag distributions and the way we model

such distributions is more important the shorter the unit observation period in our

data set is. That is, the modeling related to a given problem is, cet. par., more

important for quarterly data than for annual data, more important for monthly

data than for quarterly data, more important for weekly data than for monthly

data, and so on.

3. Imposing restrictions on distributed lag equations

Because of the potentially low number of degrees of freedom and the potential

multicollinearity problem that arise when the coefficients in the lag distributions

are unrestricted, we may want to impose restrictions on the lag coefficients. In this

way we may “save” coefficients and at the same time ensure that the coefficient

sequence β0, β1, . . . , βK exhibits a more “smooth” pattern. We shall illustrate this

idea by means of two examples.

Example 1: Polynomial lag distributions. Finite lag distribution

Assume that the K+1 coefficients in the lag distribution are restricted to lie on a

polynomial of degree P , i.e.,

(4) βi = γ0 + γ1i+ γ2i
2 + · · ·+ γP i

P = γ0 +
P∑

p=1

γpi
p, i = 0, 1, . . . , K; P < K,

where γ0, γ1, . . . , γK are P + 1 unknown coefficients. It is important that P is

smaller than (and usually considerably smaller than) K. Inserting (4) into (3), we

obtain

yt = α +
K∑

i=0

(
γ0 +

P∑

p=1

γpi
p

)
xt−i + ut(5)

= α + γ0

K∑

i=0

xt−i + γ1

K∑

i=0

ixt−i ++ · · ·+ γP

K∑

i=0

iPxt−i + ut, t = K+1, . . . , T.
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This is an equation of the form

(6) yt = α + γ0z0t + γ1z1t + γ2z2t + · · ·+ γPzPt + ut, t = K+1, . . . , T,

where the P+1 (observable) RHS variables are

z0t =
∑K

i=0
xt−i, zpt =

∑K
i=0

ipxt−i, p = 1, . . . , P.

We see that z0t is a non-weighted sum of the current and the lagged x values, and

z1t, . . . , zPt are weighted sums with the weights set equal to the lag length raised

to powers 1, . . . , P , respectively.

If ut is a classical disturbance, we can estimate α, γ0, γ1, . . . , γP by applying

OLS on (6). The number of degrees of freedom is then T −K −P − 2, i.e. we gain

K − P degrees of freedom as compared with free estimation of the β’s. Let the

estimates be α̂, γ̂0, γ̂1, . . . , γ̂P . We can then estimate the original lag coefficients by

inserting these estimates into (4), giving

(7) β̂i = γ̂0 + γ̂1i+ γ̂2i
2 + · · ·+ γ̂P i

P = γ̂0 +
∑P

p=1
γ̂pi

p, i = 0, 1, . . . , K; P < K.

Exercise: Show that these estimators are unbiased and consistent. Hint: Use

Gauss-Markov’s and Slutsky’s theorems. Will these estimators be Gauss-Markov

estimators (MVLUE)? How would you proceed to test whether a third degree

polynomial (P = 3) gives a significantly better fit than a second degree polynomial

(P = 2)?

Let us consider the special case with linear lag distribution and zero restriction and

the far endpoint of the distribution. Let P = 1 and

γ1 = − γ0
K+1

,

and let γ0 be a free parameter. Inserting these restrictions into (4), we get

βi = γ0

(
1− i

K+1

)
, i = 0, 1, . . . , K.

Then (5) becomes

yt = α + γ0

K∑

i=0

(
1− i

K+1

)
xt−i + ut, t = K+1, . . . , T.

This lag distribution has only two unknown coefficients, so that we can estimate α

and γ0 by regressing yt on
∑K

i=0
(1 − i/(K+1))xt−i from the T −K observations

available. Finally, we estimate βi by β̂i = γ̂0(1− i/(K+1))

Exercise: Find, by using the formula for the sum of an arithmetic succession, an

expression for the long-run effect in this linear lag distribution model. How would

you estimate it?
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Example 2: Geometric lag distribution. Infinite lag distribution

We next consider the equation

(8) yt = α + βxt + λyt−1 + εt, |λ| < 1, t = 2, . . . , T,

in which we have included the value of the LHS variable lagged one period as an

additional regressor to xt, let x = (x1, . . . , xT ), and assume that

(9) E(εt|x) = 0, E(εtεs|x) =
{

σ2, t = s,

0, t 6= s.

We call (8) an autoregressive equation of the first order in yt with an exogenous

variable xt. What kind of lag response will this kind of model involve?

Let us in (8) insert backwards for yt−1, yt−2, . . ., giving

yt = α + βxt + λ(α+ βxt−1 + λyt−2 + εt−1) + εt
= α(1 + λ) + β(xt + λxt−1) + λ2((α+ βxt−2 + λyt−3 + εt−2) + εt + λεt−1

...

= α(1 + λ + λ2 + · · · ) + β(xt + λxt−1 + λ2xt−1 + · · · ) + εt + λεt−1 + λ2εt−2 + · · · ,

since |λ| < 1. Hence, using the summation formula for a convergent infinite geo-

metric succession, we have at the limit

(10) yt =
α

1−λ
+ β

∞∑

i=0

λixt−i +

∞∑

i=0

λiεt−i.

Comparing this equation with (3), we see that y is related to x via a lag distribution

with an infinitely large number of terms (K → ∞), with the lag coefficients given by

(11) βi = βλi, i = 0, 1, . . . ,

and with a disturbance

(12) ut =

∞∑

i=0

λiεt−i.

Eq. (11) implies:

(13) β0 = β, β1 = βλ, β2 = βλ2, β3 = βλ3, . . . .
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The short-run effect is thus β0 = β. The long-run effect is

(14)

∞∑

i=0

βi = β

∞∑

i=1

λi =
β

1−λ
,

when exploiting the assumption |λ| < 1 and the formula for the sum of an infinite

convergent geometric succession.

We denote a lag distribution with an infinite number of terms an infinite lag dis-

tribution. Since the lag coefficients in (10) decline as a convergent infinite geometric

succession in the lag number. We denote the lag distribution in (9) a geometric

lag distribution. Geometric lag distributions play an important role in dynamic

econometrics. An advantage with it is that we do not need to be concerned with

specifying the maximal lag K, which may often be difficult. For practical purposes,

we consider K → ∞ as an approximation.

We can write (10) as

(15) yt =
α

1−λ
+ β

∞∑

i=0

λixt−i + ut.

Since (12) implies

ut−1 =

∞∑

i=0

λiεt−i−1 =

∞∑

j=1

λj−1εt−j

and

ut = λ

∞∑

i=1

λi−1εt−i + εt

it follows that

(16) ut = λut−1 + εt.

This shows that ut defined by (12) is an autoregressive process of the first or-

der, an AR(1)-process. We can the state the following conclusion: A first order

autoregressive equation in yt with an exogenous variable xt and with the autoregres-

sive parameter |λ| < 1 is equivalent to expressing yt as an infinite, geometric lag

distribution in xt with an AR(1) disturbance with autoregressive parameter λ.

How could we estimate this kind of model? First, application of OLS on (10)

will not work, because it has an infinite number of RHS variables. Now, we know

that

cov(xt, ut) = 0,
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since xt is exogenous. Moreover, since lagging (10) one period yields

yt−1 =
α

1−λ
+ β

∞∑

i=0

λixt−i−1 +
∞∑

i=0

λiεt−i−1,

we have that

cov(yt−1, εt) = cov

(
α

1−λ
+ β

∞∑

i=0

λixt−i−1 +

∞∑

i=0

λiεt−i−1, εt

)
= 0,

because, in view of (9), εt is uncorrelated with all past ε’s. Application of OLS

on (8) is therefore consistent, since its disturbance is uncorrelated with both of its

RHS variables. After having obtained the estimates α̂, β̂, and λ̂, we can estimate

the intercept of (10) by α̂/(1−λ̂) and the coefficients in (10), i.e. the lag responses,

using (13), by means of

β̂0 = β̂, β̂1 = β̂λ̂, β̂2 = β̂λ̂2, β̂3 = β̂λ̂3, . . . .

The long-run effect can be estimated as

∞∑

i=0

β̂i =
β̂

1−λ̂
.

Exercise: Show that β̂0, β̂1, β̂2, and β̂3 as well as the corresponding estimator of

the long-run coefficient are consistent.
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1. Background

Several economic variables are observed as the results of individuals’ choices be-

tween a limited number of alternatives. In this note, we shall assume that only two

alternatives are available, e.g.: purchase/not purchase a car, apply for/not apply

for a job, obtain/not obtain a loan, travel to work by own car/public transport.

These are examples of genuine qualitative choices. Since there are two alternatives,

we call it a binomial (or binary) choice. We represent the outcome of the choice by

a binary variable. We are, from more basic courses in econometrics, familiar with

using linear regression analysis in connection with models with binary right-hand-

side (RHS) variables (dummy regressor variables). The models we now consider,

have binary left-hand-side (LHS) variables.

Let the two possible choices be denoted as ‘positive response’ and ‘negative

response’, respectively, assume that n individuals are observed, and let

(1) yi =

{
1 if individual i responds positively,

0 if individual i responds negatively,
i = 1, . . . , n.

Moreover, we assume that the individuals are observed independently of each other.

How should we model the determination of yi? As potential explanatory (exoge-

nous) variables we have the vector xi = (1, x1i, x2i, . . . , xKi), some of which are

continuous and some may be binary variables.

2. Why is a linear regression model inconvenient?

Let us first attempt to model the determination of yi by means of a standard linear

regression model:

(2) yi = xiβ + ui, i = 1, . . . , n,

where β = (β0, β1, . . . , βK)
′. Which consequences will this have?

First, the LHS variable is, by nature, different from the RHS variables. By (2)

we attempt to put “something discrete” equal to “something continuous”.

Second, the choice of values for yi, i.e., 0 and 1, is arbitrary. We might equally

well have used (1,2), (5,10), (2.71,3.14), etc. This would, however, have changed

the β’s, which means that the β’s get no clear interpretation.
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Third, let us imagine that we draw a scatter of points exhibiting the n y and

x values, the former being either zero or one, the latter varying continuously. It

does not seem very meaningful, or attractive, to draw a straight line, or a plane,

through this scatter of points in order to minimize a squared distance, as we do in

classical regression analysis.

Fourth, according to (1) and (2), the disturbance ui can, for each xi, only take

one of two values:

ui =

{
1− xiβ if individual i responds positively,

−xiβ if individual i responds negatively.

Let Pi denote the probability that individual i responds positively, i.e., P (yi =

1) = P (ui = 1− xiβ). It is commonly called the response probability and 1− Pi is

called the non-response probability. The last statement is then equivalent to

(3) ui =

{
1− xiβ with probability Pi = P (yi = 1),

−xiβ with probability 1− Pi = P (yi = 0).

For this reason, it is, for instance, impossible that ui can follow a normal distribu-

tion, even as an approximation.

Fifth, let us require that the expectation of ui, conditional on the exogenous

variables, is zero, as in standard regression analysis. Using the definition of an

expectation in a discrete probability distribution, this implies

E(ui|xi) = (1− xiβ)Pi + (−xiβ)(1− Pi) = Pi − xiβ = 0.

Hence

(4) Pi = xiβ, i = 1, . . . , n,

so that (2) is equivalent to

(5) yi = Pi + ui, i = 1, . . . , n,

i.e., the disturbance has the interpretation as the difference between the binary

response variable and the response probability. The response probability is usually

a continuously varying entity. The variance of the disturbance is, in view of (3) and

(4), when we use the definition of a variance in a discrete probability distribution,

(6) var(ui|xi) = (1− xiβ)
2Pi + (−xiβ)

2(1− Pi) = (1− xiβ)xiβ.

We note that this disturbance variance is a function of both xi and β. This means,

on the one hand, that the disturbance is heteroskedastic, on the other hand that

its variance depends on the slope coefficients of (2).
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Sixth, we know that any probability should belong to the interval (0,1), but

there is no guarantee that the RHS of (4) should be within these two bounds. This

is a serious limitation of the linear model (2) – (4).

We can therefore conclude that there are considerable problems involved in

modeling the determination of the binary variable yi by the linear regression equa-

tion (2).

3. A better solution: Modeling the response probability

We have seen that there is no guarantee that Pi = xiβ belongs to the interval

(0,1). A more attractive solution than (2) is to model the mechanism determining

the individual response by choosing, for the response probability, a (non-linear)

functional form such that it will always belong to the interval (0,1). We therefore

let

(7) Pi = F (xiβ)

and choose F such that its domain is (−∞,+∞) and its range is (0,1). Moreover,

we require that F is monotonically increasing in its argument, which means that

F (−∞) = 0, F (+∞) = 1, F ′(xiβ) ≥ 0.

Two choices of such an F function have become popular: The first is

(8) Pi = P (yi = 1) = F (xiβ) =
exiβ

1 + exiβ
=

1

1 + e−xiβ
,

which is the cumulative distribution function (CDF) of the logistic distribution.

The second is

(9) Pi = P (yi = 1) = F (xiβ) =

∫ xiβ

−∞

1√
2π

e−u2/2du,

which is the CDF of the standardized normal distribution, i.e., the N(0,1) distribu-

tion. Both these distributions are symmetric. The response mechanism described

by (8) is called the Logit model. The response mechanism described by (9) is

called the Probit model. Their non-response probabilities are, respectively

1− Pi = P (yi = 0) = 1− F (xiβ) =
1

1 + exiβ
=

e−xiβ

1 + e−xiβ

and

1− Pi = P (yi = 0) = 1− F (xiβ) =

∫
+∞

xiβ

1√
2π

e−u2/2du.
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4. A closer look at the logit model’s properties

Let us take a closer look at the logit model, its interpretation and estimation

procedures. An advantage with this model is that it, unlike the Probit model,

expresses the response probability in closed form, i.e., by an explicit algebraic

expression, not by an integral.

From (8) it follows that the ratio between the response and the non-response

probabilities in the Logit model, often denoted as the odds-ratio, is

Pi

1− Pi

=
P (yi = 1)

P (yi = 0)
= exiβ.

This ratio is monotonically increasing in Pi from zero to infinity as Pi increases

from zero to one. Taking its logarithm we get the log-odds-ratio, i.e., the logarithm

of the ratio between the response and the non-response probabilities,

(10) ln

(
Pi

1− Pi

)
= ln

(
P (yi = 1)

P (yi = 0)

)
= xiβ.

This shows that the Logit-model is parametrized in such a way that the log-odds

ratio is linear in the explanatory variables (possibly after a known transformation).

The coefficient βk represents the effect on the log-odds ratio of a one unit increase in

xki. The log-odds ratio has the general property of being monotonically increasing

in Pi from minus infinity to plus infinity as Pi increases from zero to one. This is

reassuring as, in principle, xiβ may take any value.

Since (8) implies

ln(Pi) = xiβ − ln(1 + exiβ), ln(1− Pi) = − ln(1 + exiβ),

it is not difficult to show that

(11)
∂ ln(Pi)

∂(xiβ)
= 1− Pi,

∂ ln(1− Pi)

∂(xiβ)
= −Pi,

from which it follows that the effect on the log of the response probabilities of a

change in the k’th explanatory variable is

(12)
∂ ln(Pi)

∂xki

= (1− Pi)βk,
∂ ln(1− Pi)

∂xki

= −Piβk,

or equivalenly,

(13)
∂Pi

∂xki
= Pi(1− Pi)βk,

∂(1 − Pi)

∂xki
= −Pi(1− Pi)βk.

Obviously, the latter derivatives add to zero, as they should.
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5. A random utility-based interpretation of the model

We next give a utility-based interpretation of the qualitative response model. In

doing this, we introduce the concept of a random utility. The choice of the in-

dividuals is not determined deterministically, but as the outcome of a stochastic

process.

Assume that individual i’s (perceived) utility of taking a decision leading to the

response we observe is given by

(14) y∗i = c0 + xiβ − ǫi,

where y∗i is the random utility of individual i, xi is a vector of observable variables

determining the utility, c0 is a “threshold value” for the utility, common to all

individuals, and ǫi is a disturbance with zero mean, conditional on xi, not to be

confused with the disturbance ui in (2). The utility y∗i , unlike yi, is a latent (un-

observed) variable, which is assumed to vary continuously. Two individuals with

the same xi vector have the same (expected) y∗i . Finally, ǫi is a stochastic variable,

with CDF conditionally on xi equal to F (ǫi). We assume that ǫi has a symmetric

distribution, so that it is immaterial whether we assign a positive or negative sign

to it in the utility equation (14). The latter turns out to be the most convenient.

What we, as econometricians, observe is whether or not the latent random util-

ity is larger than or smaller than its “threshold value”. The former leads to a

positive response, the latter to a negative response. This is the way the individuals

preferences for the commodity or the decision is revealed to us. Hence, (14) implies

(15) yi =

{
1 if y∗i ≥ c0 ⇐⇒ ǫi ≤ xiβ,

0 if y∗i < c0 ⇐⇒ ǫi > xiβ.

This equation formally expresses the binary variable yi as a step function of the

latent, continuous variable y∗i . From (15) we find that the reponse probability can

be expressed as follows:

(16) Pi = P (yi = 1) = P (y∗i ≥ c0) = P (ǫi ≤ xiβ) = F (xiβ),

since ǫi has CDF given by F .

The above argument gives a rationalization of assumption (7).

1. If ǫi follows the logistic distribution, i.e., if F (ǫi) = eǫi/(1 + eǫi), then we get

the Logit model.

2. If ǫi follows the normal distribution, i.e., if F (ǫi) is the CDF of the N(0,1)

distribution, then we get the Probit model.

Some people (economists, psychologists?) like this utility based interpretation and

find that it has intuitive appeal and improves our understanding. Other people
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(statisticians?) do not like it and think that we can dispense with it. Adhering

to the latter view, we may only interpret the model as a way of parameterizing or

endogenizing the response probability.

Remark: Since the variance in the logistic distribution can be shown to be equal

to π2/3 and the variance of the standardized normal distribution, by construction,

is one, the elements of the coefficient vector β will not have the same order of

magnitude. Although the general shape of the two distributions, the bell-shape, is

approximately the same (but the logistic has somewhat “thicker tails”), we have

to multiply the coefficients of the Probit model by π/
√
3 ≈ 1.8 to make them

comparable with those from the Logit model: β̂logit ≈ 1.8β̂probit.

6. Maximum Likelihood estimation of the Logit model

Assume that we have observations on (yi, xi) = (yi, 1, x1i, . . . , xKi) for individuals

i = 1, . . . , n. We assume that ǫ1, . . . , ǫn are stochastically independent. Then

(y1|x1), . . . , (yn|xn) will also be stochastically independent. Consider now

(17) Li = P yi
i (1− Pi)

1−yi =

{
Pi for yi = 1,

1− Pi for yi = 0.

We define, in general, the Likelihood function as the joint probability (or proba-

bility density function) of the endogenous variables conditional on the exogenous

variables. In the present case, since the n individual observations are independent,

it is the point probability of (y1, . . . , yn) conditional on (x1, . . . , xn), which is, in

view of (17),

(18) L =
n∏

i=1

Li =
n∏

i=1

P yi
i (1− Pi)

1−yi =
∏

{i:yi=1}

Pi

∏

{i:yi=0}

(1− Pi),

where Pi is given by (8) and where
∏

{i:yi=1} and
∏

{i:yi=0} denotes the product

taken across all i such that yi = 1 and such that yi = 0, respectively.

Maximum Likelihood (ML) method is a general method which, as its name indi-

cates, chooses as the estimators of the unknown parameters of the model the values

which maximize the likelihood function. Or more loosely stated, the method finds

the parameter values which “maximize the probability of the observed outcome”.

Maximum Likelihood is a very well-established estimation method in economet-

rics and statistics. In the present case, the ML problem is therefore to maximize

L, given by (18) with respect to β0, β1, . . . , βK . Since the logarithm function is

monotonically increasing, maximizing L is equivalent to maximizing ln(L), i.e.,

(19) ln(L) =
n∑

i=1

ln(Li) =
n∑

i=1

[yi ln(Pi) + (1− yi) ln(1− Pi)],
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which is a simpler mathematical problem. Since (11) implies

(20)
∂ ln(Pi)

∂βk

= (1− Pi)xki,
∂ ln(1− Pi)

∂βk

= −Pixki,

it follows, after a little algebra, that

(21)
∂ ln(L)

∂βk

=
n∑

i=1

(yi − Pi)xki =
n∑

i=1

(
yi −

exiβ

1 + exiβ

)
xki,

after inserting from (8). The first-order conditions for the ML problem,

(∂ ln(L))/(∂βk) = 0, k = 0, 1, . . . , K, defining the ML estimators of β0, β1, . . . , βK ,

are thus

(22)
n∑

i=1

yixki =
n∑

i=1

(
exiβ

1 + exiβ

)
xki, k = 0, 1, . . . , K.

This is a non-linear equation system which can be solved numerically, and the

solution is not particularly complicated when implemented on a computer. The

ML estimators cannot, however, be expressed in closed form.

From the estimates, we can estimate the effects of changes in the exogenous

variables on the response and non-response probabilities for a value of the xi vector

we might choose (e.g. its sample mean), by inserting the estimated βk’s in (13).

This may give rise to interesting interpretations of an estimated discrete choice

model. We may, for instance, be able to give statements like the following: “A

one per cent increase in the price ratio between public and private transport will

reduce the probability that an individual (with average characteristics) will use

public transport for his/her next trip by p per cent”.

Remark: In the particular case where the response probability is the same for all

individuals and equal to P for all i, and hence independent of xi, then we have a

classical binomial situation with, independent observations, two possible outcomes

and constant probability for each of them. Then (21) simplifies to

∂ ln(L)

∂βk
=

n∑

i=1

(yi − P ),

so that the first order conditions become

n∑

i=1

yi = nP̂ ⇐⇒ P̂ =

∑n
i=1

yi
n

=
y

n
,

where y =
∑n

i=1
yi is the number of individuals responding positively. The latter

is the familiar estimator for the response probability in a binomial distribution.


