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ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note A:

EXOGENEITY AND AUTONOMY

Erik Biørn
Department of Economics

Version of July 5, 2011

1. A model with stochastic regressors

Consider the regression equation

(A-1) yi = β0 + β1 x1i + β2 x2i + ui, i = 1, . . . , n,

where (yi, x1i, x2i, ui) are all assumed to be stochastic, They then have a joint

probability distribution. We assume in the simplest, ‘classical’ regression model

that

E(ui|x1i, x2i) = 0, i = 1, . . . , n,(A-2)

E(uiuj|x1i, x2i, x1j , x2j) =

{
σ2 for j = i,

0 for j 6= i,
i, j = 1, . . . , n.(A-3)

It follows from these assumptions that

E(yi|x1i, x2i) = β0 + β1 x1i + β2 x2i + E(ui|x1i, x2i) = β0 + β1 x1i + β2 x2i,(A-4)

var(yi|x1i, x2i) = var(ui|x1i, x2i) = σ2,(A-5)

cov(yi, yj|x1i, x2i, x1j , x2j) = cov(ui, uj|x1i, x2i, x1j , x2j) = 0,(A-6)

i, j = 1, . . . , n, j 6= i.

In deriving (A-4)–(A-6) from (A-1)–(A-3), we exploit the following:

(a) When considering a conditional distribution, we can proceed and reason as if

the variables on which we condition are constant, non-stochastic parameters.

(b) The expectation of a non-stochastic entity is the entity itself.

(c) The variance of a non-stochastic entity and the covariance between two non-

stochastic entities are zero.

Equations (A-4) and (A-5) summarize our assumptions about the joint distribution

of (yi, x1i, x2i).

Let us represent this distribution by the density function

(A-7) f(yi, x1i, x2i) = fy(yi|x1i, x2i) g(x1i, x2i), i = 1, . . . , n,

where fy(yi|x1i, x2i) is the conditional density function of yi, given (x1i, x2i), and

g(x1i, x2i) is the simultaneous (marginal) density function of (x1i, x2i). The essence
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of the model description above is that we postulate that the con-

ditional distribution (yi|x1i, x2i) has certain properties, that is, that

the function fy(·) has certain properties, but do not postulate any-

thing about the function g(·).

2. Formal definitions of exogeneity in relation to regression models

In economic theory we say that a variable is exogenous if it is ‘determined out-

side the model’. This is interesting also in econometrics, but it is too vague and

imprecise.

We will now refer four alternative definitions which can be used for regres-

sion models: We consider the RHS (Right Hand Side) variables in (A-1) as stochas-

tic and say that the disturbance, ui, has zero expectation and that the

xkis are exogenous relative to the regression equation (A-1) if

Definition (i): E(ui|x1i, x2i) = 0, i = 1, . . . , n.

Definition (ii): E(ui) = 0 and cov(ui, xki) = 0, i = 1, . . . , n; k = 1, 2.

Definition (iii): E(ui) = 0, i = 1, . . . , n, and u = (u1, u2, . . . , un)
′

are stochastically independent of X = (x11, x21, . . . , x1n, x2n).

Definition (iv): In f(yi, x1i, x2i) = fy(yi|x1i, x2i) g(x1i, x2i) [cf. (A-7)], the distri-

bution represented by the density function g(x1i, x2i) is determined outside the

model. In particular, the parameters (β0, β1, β2, σ
2), which describe fy(·), are

assumed not to be included among the parameters of g(·). Also: The varia-

tion of the parameters in g(·) does not impose any restriction on the possible

variation of (β0, β1, β2, σ
2) in fy(·).

These are four different, competing definitions. Definition (iv) is of a different

nature than Definitions (i)–(iii), while Definitions (i)–(iii) are relatively closely

related.

Definition (iii) is the most restrictive. If exogeneity according to definition (iii) is

satisfied, then exogeneity according to Definition (i) will also hold, because stochas-

tic independence between two variables implies that their conditional and marginal

distributions coincide Therefore E(ui|X) = 0 is a necessary (but not sufficient) con-

dition for both E(ui) = 0 and stochastic independence of ui and X . Hence (iii)

implies (i). Moreover, the conditions in Definition (i) are stronger than in Defini-

tion (ii). This follows from the theorem of double expectation, as can be seen as

follows: Assume that (i) is satisfied. It then follows, first, that

E(ui) = E[E(ui|x1i, x2i)] = E(0) = 0,

and second, that

cov(ui, xki) = E(uixki) = E[E(ui xki|x1i, x2i)] = E[xkiE(ui|x1i, x2i)] = 0.

Consequently Definition (i) implies that Definition (ii) also holds.
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Our conclusion therefore is

Definition (iii) =⇒ Definition (i) =⇒ Definition (ii).

In this course we will mostly stick to Definition (i) – also when considering more

complicated models (generalized regression models, systems of regression models,

simultaneous equation systems, etc.).

3. Remark on the concept of autonomy

Consider the decomposition (A-7). It shows that the form of f(yi, x1i, x2i) may

undergo changes either by changes in fy(yi|x1i, x2i) or by changes in g(x1i, x2i) (or

both). If a change in g(·) induces a change in f(·) while fy(·) is un-

changed, then we say that fy(·) is autonomous with respect to the

change in g(·). This term was used by some of the ‘founding fathers’ of Econo-

metrics (Frisch, Tinbergen, Koopmans, Haavelmo) ‘Structural invariance’ may be

a more modern term.

Example 1: Assume that (A-1)–(A-6) is an econometric model of the consumption function:

y = consumption, x1 = income, x2 = wealth. Then fy(yi|x1i, x2i) represents the conditional

distribution of consumption, given income and wealth, its expectation being the (expected) con-

sumption function, and g(x1i, x2i) represents the joint distribution of income and wealth. Then

the parameters of the consumption function may be invariant to changes in the distribution of

income and wealth, for instance induced by changes in the tax system. We then say that equation

(A-1) is autonomous to this change in the income-wealth distribution. Equation (A-1) may be

autonomous to some such changes, but not to others. (Could you find examples?)

Example 2: Assume that (A-1)–(A-6) is an econometric model of the log of a Cobb-Douglas

production function: y = log-output, x1 = log-labour input, x2 = log-capital input. Then

fy(yi|x1i, x2i) represents the conditional distribution of log-output, given log-labour and log-

capital input, its expectation being the (expected) production function, and g(x1i, x2i) represents

the joint distribution of the log-inputs. Then the parameters of the production may be, or may not

be, invariant to changes in the distribution, for instance induced by changes in output and input

prices, excise taxes etc. We then say that equation (A-1) is autonomous to, or not autonomous

to, this change in the log-input distribution. Equation (A-1) may be autonomous to some such

changes, but not to others. (Could you find examples?)

Further readings:

Greene: Econometric Analysis. B.8 and B.9.

Engle, Hendry & Richard: Exogeneity. Econometrica 51 (1983), 277–304.

Aldrich: Autonomy. Oxford Economic Papers, 41 (1989), 15–34.



Erik Biørn: Master course ECON 4160 5

ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note B:

SYSTEMS OF REGRESSION EQUATIONS

Erik Biørn
Department of Economics

Version of July 5, 2011

1. What is a system of regression equations?

A system of linear regression equations is a model with the following characteristics:

(i) The model has at least two (linear) equations.

(ii) Each equation has one and only one endogenous variable, which is the equa-

tion’s LHS (Left Hand Side) variable.

(iii) Each equation has one or more exogenous variables. They are the equation’s

RHS (Right Hand Side) variables. They may be specific for a single equation

or occur in several equations.

(iv) Each equation has a disturbance which is uncorrelated with all RHS variables

in all the equations.

(v) The disturbances of different equations may be correlated.

(vi) Restrictions on coefficients in different equations may be imposed.

2. Model with two regression equations

Consider the model

(B-1)
y1i = β1 x1i + u1i,

y2i = β2 x2i + u2i,
i = 1, . . . , n,

where u1i and u2i are disturbances, y1i and y2i are endogenous variables and x1i and

x2i are exogenous variables. We assume that the four latter variables are measured

from their means, so that we can specify the equations without intercepts. (Explain

why.) No restriction are imposed on the coefficients β1 and β2.

Considering the x’s as stochastic, we make the following assumptions:

E(uki|X) = 0,(B-2)

E(ukiurj|X) =

{
σkr for j = i,

0 for j 6= i,
k, r = 1, 2; i, j = 1, . . . , n,(B-3)

where X = (x11, . . . , x1n, x21, . . . , x2n). Here, (B-2) formally expresses that x1 and

x2, are exogeneous relatively to both regression equations. Using the rule of iterated

expectations, it follows that

E(uki) = 0,(B-4)

cov(uki, xrj) = 0,(B-5)

var(uki) = σkk,(B-6)

cov(uki, urj) =

{
σkr, j = i,

0, j 6= i.

k, r = 1, 2,

i, j = 1, . . . , n.
(B-7)
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Note that, by (B-7), we allow for the disturbances in the two equations in (B-1)

being correlated.

3. Compressing the two equations into one equation

We now perform the following trick: We combine the two equations in (B-1), each

with one RHS variable and n observations, into one equation with two RHS vari-

ables and 2n observations. Technically, we do this by defining three new variables,

yi∗, x
∗

1i and x∗

2i, and new disturbances u∗

i in the following way:

i y∗i x∗

1i x∗

2i u∗

i

1 y11 x11 0 u11

2 y12 x12 0 u12
...

...
...

...
...

n y1n x1n 0 u1n

n+ 1 y21 0 x21 u21

n+ 2 y22 0 x22 u22
...

...
...

...
...

2n y2n 0 x2n u2n

Then (B-1) can be written as

(B-8) y∗i = β1x
∗

1i + β2x
∗

2i + u∗

i , i = 1, . . . , 2n.

Defining the following vectors and matrices:

y =




y∗1
y∗2
...

y∗2n


 =




y11
...

y1n
y21
...

y2n




, u =




u∗

1

u∗

2
...

u∗

2n


 =




u11
...

u1n

u21
...

u2n




,

X =




x∗

11 x∗

21

x∗

12 x∗

22
...

...

x∗

1n x∗

2n

x∗

1,n+1 x∗

2,n+1

x∗

1,n+2 x∗

2,n+2
...

...

x∗

1,2n x∗

2,2n




=




x11 0

x12 0
...

...

x1n 0

0 x21

0 x22
...

...

0 x2n




, β =

[
β1

β2

]
,

of dimensions (2n × 1), (2n × 1), (2n × 2) and (2 × 1), respectively, (B-8) can be

written compactly as

(B-9) y = Xβ + u.
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4. The composite disturbance covariance matrix

Equation (B-8) looks like a generalized regression equation with two RHS variables,

based on 2n observations, with the following variance-covariance structure:

(B-10) E(u∗

i |X) = 0, i = 1, . . . , 2n,

(B-11) E(u∗

iu
∗

j |X) =





σ11 for i = j = 1, . . . , n,

σ22 for i = j = n+ 1, . . . , 2n,

σ12 for i = 1, . . . , n; j = i+ n and
i = n+ 1, . . . , 2n; j = i− n,

0 otherwise.

Here (B-11) expresses that we formally have (i) a particular kind of heteroskedas-

ticity, in that the variances can take two different values, and (ii) a particular kind

of autocorrelation in the composite disturbance vector, in that disturbances with

distance n observations are correlated.

We can write (B-2) and (B-3) in matrix notation as

(B-12) E(u|X) = 02m,

and

(B-13) E(uu′|X) = V ,

where

V =




σ11 0 · · · 0 σ12 0 · · · 0

0 σ11 · · · 0 0 σ12 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · σ11 0 0 · · · σ12

σ12 0 · · · 0 σ22 0 · · · 0

0 σ12 · · · 0 0 σ22 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · σ12 0 0 · · · σ22




=

[
σ11 In σ12 In

σ12 In σ22 In

]
.

It exemplifies a partitioned matrix, which is a matrix with a block structure.

5. Estimation of the composite equation by GLS

We apply GLS on (B-9), assuming that the σ’s are known. The normal equations

for the estimators, which we denote as β̃ = (β̃1, β̃2)
′, have, in matrix notation, the

form

(B-14) (X ′ V −1X)β̃ = X ′ V −1 y.



8 Six notes on Basic Econometric topics

We need an expression for the inverse of V and the matrix products in the normal

equations. It is not difficult to show that

V −1 = (σ11σ22 − σ2
12)

−1

[
σ22In −σ12In

−σ12In σ11In

]
,

which exists if σ11σ22 > σ2
12, i.e., if the disturbances in the two equations are not

perfectly correlated. One can verify this by showing that V V −1 = I2n. (If σ11σ22 =

σ2
12, then V is singular and GLS collapses.) Notice that V can be considered as

obtained from the (2× 2)-covariance matrix

Σ =

[
σ11 σ12

σ12 σ22

]

when each element is “inflated” by the identity matrix In. We may write this as

V = Σ⊗In, where ⊗ is an operator which performs such operations, often denoted

as Kronecker-products [see Greene: Appendix A.5.5]. Correspondingly, the inverse

V −1 has the (2× 2) covariance matrix

Σ−1 = (σ11σ22 − σ2
12)

−1

[
σ22 − σ12

− σ12 σ11

]

after having “inflated” each element by In; we have V
−1 = Σ−1⊗I−1

n = Σ−1⊗In.

Using the definitions of X and y and the expression for V −1, we find that the

normal equations for GLS, (B-14), can be expressed in terms of the variables in

the original regression equations, (x1i, x2i, y1i, y2i), as follows

(σ11σ22 − σ2
12)

−1

[
σ22

∑
x2
1i −σ12

∑
x1ix2i

−σ12

∑
x1ix2i σ11

∑
x2
2i

] [
β̃1

β̃2

]

= (σ11σ22 − σ2
12)

−1

[
σ22

∑
x1iy1i − σ12

∑
x1iy2i

−σ12

∑
x2iy1i + σ11

∑
x2iy2i

]
,

where
∑

denotes summation across i from 1 to n. Multiply on both sides of the

equality sign by (σ11σ22 − σ2
12) and divide by n. This gives

(B-15)
σ22m11β̃1 − σ12m12β̃2 = σ22my11 − σ12my21,

− σ12m12β̃1 + σ11m22β̃2 = −σ12my12 + σ11my22,

where (recall that the variables are measured from their means):

mkr = M [xk, xr] =
1
n

∑n

i=1 xkixri, mykr = M [yk, xr] =
1
n

∑n

i=1 ykixri.
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6. The GLS estimators

The solution to (B-16), giving the GLS estimators, exists if the determinant value

of (B-15), which is

σ11σ22m11m22 − σ2
12m

2
12,

is different from zero. Since m11m22 ≥ m2
12 always holds, σ11σ22 > σ2

12 (i.e., the

disturbances are not perfectly correlated) will be sufficient to ensure a positive

determinant value. The explicit expressions for the GLS estimators are

β̃1 =
(σ22my11−σ12my21)(σ11m22)+(−σ12my12+σ11my22)(σ12m12)

σ11σ22m11m22 − σ2
12m

2
12

,

β̃2=
(σ22my11−σ12my21)(σ12m12)+(−σ12my12+σ11my22)(σ22m11)

σ11σ22m11m22 − σ2
12m

2
12

.
(B-16)

In general, both estimators are functions of (i) all the three empirical second order

moments of the x’s, (ii) all the four empirical covariances between y’s and x’s and

(iii) alle the three theoretical second order moments of the two disturbances. In the

general case we are only able to perform the estimation if σ11, σ22 and σ12 (or at

least their ratios) are known.

In general, GLS applied on a generalized regression model, which the present

two-equation model rearranged into one equation is, is MVLUE. This optimality

therefore also carries over to our case, provided that the disturbance variances and

covariances are known.

7. Estimation of the σ’s and Feasible GLS

When the σ’s are unknown, we can proceed as follows:

1. Estimate the regression equations separately by OLS, giving

β̂1 =
my11

m11
=

M [y1, x1]

M [x1, x1]
, β̂2 =

my22

m22
=

M [y2, x2]

M [x2, x2]
.

The corresponding residuals are ûki = yki − β̂kxki, k = 1, 2. Use these in forming

the estimates

σ̂11 =
1
n

∑n

i=1 û
2
1i, σ̂22 =

1
n

∑n

i=1 û
2
2i, σ̂12 =

1
n

∑n

i=1 û1iû2i.

They are consistent because

plim(σ̂kr) = plim(M [ûk, ûr]) = plim(M [uk, ur]) = σkr.

Exercise: Show this, by exploiting the consistency of the OLS estimators in

stage 1.

2. Replace σ11, σ22 and σ12 i (B-16) by σ̂11, σ̂22 and σ̂12 and use the expressions ob-

tained as estimators of β1 and β2. This gives the FGLS (Feasible GLS) estimators.

They differ from GLS in finite samples, but the two sets of estimators converge

when n → ∞.
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8. Two special cases

In general, GLS applied on (B-8) will give a gain over OLS applied separately on

the two equations (B-1), in the form of lower variances of the estimators. We

know that GLS applied on a generalized regression model is MVLUE. In two cases,

however, GLS applied in this way will degenerate to simple application of OLS on

each of the two equations.

(i) Uncorrelated disturbances: Assume that σ12 = 0. Then (B-16) can be sim-

plified to

β̃1 =
my11

m11
=

M [y1, x1]

M [x1, x1]
=

∑
y1ix1i∑
x2
1i

,

β̃2 =
my22

m22
=

M [y2, x2]

M [x2, x2]
=

∑
y2ix2i∑
x2
2i

.

In this case, application of GLS on the composite equation degener-

ates to applying OLS on each of the original equations separately.

(ii) Identical regressors: Assume that x1i = x2i = xi for i = 1, . . . , n. Then we

have

m11 = m22 = m12 =
1
n

∑n

i=1 x
2
i = mxx = M [x, x],

where mxx = M [x, x] is defined by the fourth equality. We also have

my11 = my12 =
1
n

∑n

i=1 y1ixi = my1x = M [y1, x],

my21 = my22 =
1
n

∑n

i=1 y2ixi = my2x = M [y2, x].

Then (B-16) can be simplified to, provided that σ11σ22 > σ2
12,

β̃1 =
my1x

mxx

=
M [y1, x]

M [x, x]
=

∑
y1ixi∑
x2
i

,

β̃2 =
my2x

mxx

=
M [y2, x]

M [x, x]
=

∑
y2ixi∑
x2
i

.

Also in this case, application of GLS on the composite equation

degenerates to applying OLS on each of the original equations sep-

arately.
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ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note C:

ASYMPTOTIC CONCEPTS AND RESULTS. STOCHASTIC CONVERGENCE

Erik Biørn
Department of Economics

Version of July 5, 2011

There are several kinds of stochastic convergence that we are concerned with in

econometrics. Below we will present some of them.

1. Probability limit. Convergence in probability

Let θ̂(n) be a stochastic variable constructed from n observations.

If a θ exists such that

limn→∞ P (|θ̂(n) − θ| < δ) = 1 for all δ > 0

⇐⇒

limn→∞ P (|θ̂(n) − θ| > δ) = 0 for all δ > 0,

then θ̂(n) is said to have probability limit θ. An equivalent statement is that

θ̂(n) converges towards θ in probablity.

In compact notation this is written as

plim
n→∞

(θ̂(n)) = θ or θ̂(n)
p
→ θ.

using p as abbreviation for probability. Often, we write plimn→∞
simply as plim.

That θ̂(n) converges towards θ in probability means that the probability that θ̂(n)
deviates from θ by less than a small positive entity δ goes to one when the number

of observations goes to infinity. The probability mass (or the density function if it

exists) of θ̂(n) is gradually more strongly concentrated around the point θ as the

number of observations increases.

2. Consistency

Assume that θ̂(n) is a statistic (a known function of observable stochastic vari-

ables), based on n observations. Let us use it as an estimator for the parameter θ in

a probability distribution or in an econometric model. (For notational simplicity,

we use θ to symbolize both the parameter and its value.)

If θ̂(n) converges towards θ in probability when the number of observations

goes to infinity, i.e., if

plim
n→∞

(θ̂(n)) = θ,

then θ̂(n) is said to be a consistent estimator of θ, or briefly, to be consistent

for θ.
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We usually require of an estimator for a parameter that is consistent. This is often

regarded as a minimum requirement. If the estimator does not converge towards

the true value even in the most favourable data situation imaginable (i.e., with an

infinite sample size), then it is hardly useful.

3. Slutsky’s Theorem

Slutsky’s theorem is concerned with a very important and very useful property of

probability limits of functions of stochastic variables :

Assume that the probability limits of the stochastic variables λ̂1, . . . , λ̂K, based

on n observations, exist and are equal to λ1, . . . , λK, respectively. Let

g(λ̂1, . . . , λ̂K) be a function of these stochastic variables which is continuous

in the point g(λ1, . . . , λK). Then we have

plim
n→∞

g(λ̂1, . . . , λ̂K) = g[plim(λ̂1), . . . , plim(λ̂K)] = g(λ1, . . . , λK).

Briefly, we can “move the plim operator inside the function symbol”. The following

examples illustrate applications of Slutsky’s theorem for K = 2:

plim(λ̂1 + λ̂2) = plim(λ̂1) + plim(λ̂2),

plim(λ̂1λ̂2) = plim(λ̂1)plim(λ̂2),

plim

(
λ̂1

λ̂2

)
=

plim(λ̂1)

plim(λ̂2)
(plim(λ̂2) 6= 0),

plim[ln(λ̂1) + ln(λ̂2)] = ln[plim(λ̂1)] + ln[plim(λ̂2)].

4. Convergence in mean and asymptotic unbiasedness

Let θ̂(n) be a stochastic variable based on n observations. We use is as estimator

of the parameter θ

If

lim
n→∞

E(θ̂(n)) = θ

then θ̂(n) is said to converge towards θ in expectation, or we say that the

estimator is asymptotically unbiased for θ.

Consistency is conceptually different from asymptotic unbiasedness. First, it

may be cases in which an estimator is consistent even if its asymptotic expectation

does not exist. Second, an estimator may have an expectation which converges

towards the true parameter value, while the probability mass (or the density it is

exists) of the estimator will not be more and more concentrated around this value

as the sample size increases.
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5. Convergence in quadratic mean

Let θ̂(n) be a stochastic variable based on n observations.

If there exists a θ such that

lim
n→∞

E(θ̂(n)) = θ and lim
n→∞

E(θ̂(n) − θ)2 = 0,

then θ̂(n) is said to converge towards θ in quadratic mean.

In compact notation, this is written as

θ̂(n)
qm

→ θ,

where qm is an abbreviation of quadratic mean.

An example of an estimator which converges to the true parameter value in

quadratic mean is an unbiased or an asymptotically unbiased estimator whose

variance goes to zero when the number of observations goes to infinity.

Convergence in quadratic mean is a stronger claim than convergence in proba-

bility, formally

θ̂(n)
qm

→ θ =⇒ θ̂(n)
p

→ θ,

while the opposite does not necessarily hold. The proof of this is based on Cheby-

chev’s inequality, which in the present case says that, for any positive constant ǫ,

we have

P (|θ̂(n) − θ| > ǫ) ≤
E[(θ̂(n) − θ)2]

ǫ2
.

Thus there may exist consistent estimators which do not converge to the true

parameter value in quadratic mean. The variance of a consistent estimator does

not even need to exist. On the other hand, it is sufficient for an estimator being

consistent that it is unbiased and its variance goes to zero.

6. Convergence in distribution

Let zn be a stochastic variable based on n observations, with cumulative distribu-

tion function (CDF) Fn(zn), and let z be another stochastic variable with CDF

F (z).

If

lim
n→∞

|Fn(zn)− F (z)| = 0

in all points where F is continuous, then we say that zn converges towards z

in distribution. It is written

zn
d

→ z,

letting d be an abbreviation of distribution.
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It can be shown that convergence in distribution is a stronger claim than conver-

gence in probability, in the following sense:

zn
d

→ z =⇒ zn − z
p

→ 0.

See also Greene: Theorem D.17.

7. Convergence in moments

Convergence in moments refers to the very useful property of probability limits of

empirical moments of stochastic variables that they, under certain relatively wide

conditions, converge in probability towards the corresponding theoretical moments,

if the latter exist. Most frequently, this property is used for first-order moments

(means and expectations) and second-order moments (empirical and theoretical

variances and covariances). We can formulate this property as follows:

1. Assume that at x1, . . . , xn are stochastic variables with common expectation

µx and finite variance. Let x̄ = (1/n)
∑n

i=1 xi. Then

plim
n→∞

(x̄) = E(xi) = µ.

2. Assume that at x1, . . . , xn and y1, . . . , yn are stochastic variables with theoret-

ical covariance cov(xi, yi) = σxy. Let M [x, y] = (1/n)
∑n

i=1(xi − x̄)(yi− ȳ) be

their empirical covariance. Then the following holds under certain additional

conditions (inter alia, about the higher-order moments of the distribution:

plim
n→∞

(M [x, y]) = cov(xi, yi) = σxy.

If, in particular, yi = xi, a similar property holds for the variance.

An example of the result in 1 is that the mean of disturbances with a com-

mon expectation of zero and finite variances converges to zero in probability. An

example of application of the result in 2 is that the empirical covariance between

the disturbance and an exogenous variable in a regression equation has probabil-

ity limit zero. Another application is using empirical second-order moments as

consistent estimators of corresponding theoretical moments.

8. An example illustrating the distinction between asymptotic unbiased-

ness, convergence in quadratic mean, and consistency

In the previous sections, the following asymptotic properties of estimators of param-

eters in econometric models were defined: asymptotic unbiasedness, convergence

in quadratic mean, and consistency. I have experienced that students (and other

people as well) often have some difficulty in distinguishing intuitively between these

three concepts – and in keeping the distinction in their mind. This note provides

an example – admittedly particular – illustrating the distinction.
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8.1. The distribution of the estimator

Let θ̂n be an estimator of the parameter θ, based on n observations. Assume that it

has the following (particular) discrete distribution, characterized by the parameters

(θ, r, q):

(C-17)
θ̂n = θ with P (θ̂n = θ) = p = 1−n−r,

θ̂n = nq with P (θ̂n = nq) = 1−p = n−r,
0 < r < ∞; 0 < q < ∞.

Hence θ̂n takes the ‘true’ value with probability, p, which goes to one when the

number of observations goes to infinity. On the other hand, there is a small prob-

ability, 1−p (going to zero when the number of observations goes to infinity) that

the estimator takes a value which grows with the number of observations. It turns

out that the various asymptotic properties depend on the relative magnitude of r

and q, i.e., how fast the outlier in the distribution of the estimator, nq, goes to

infinity and how fast the probability of this outcome, n−r goes to zero.

8.2. Formal properties of the estimator

We find from (C-17) and the definition of an expectation and a variance that

E(θ̂n) = θ P (θ̂n = θ) + nq P (θ̂n = nq)(C-18)

= θ(1−n−r) + nqn−r = θ + (nq−θ)n−r,

E[(θ̂n−θ)2] = (θ−θ)2 P (θ̂n = θ) + (nq−θ)2 P (θ̂n = nq)(C-19)

= (θ−θ)2(1−n−r) + (nq−θ)2n−r = (nq−θ)2n−r,

V(θ̂n) = E[θ̂n−E(θ̂n)]
2 = E[(θ̂n−θ)2]− [E(θ̂n)−θ]2(C-20)

= (nq−θ)2n−r(1− n−r).

We also find

(C-21) lim
n→∞

P (|θ̂(n)−θ| < δ) = lim
n→∞

P (θ̂n = θ) = lim
n→∞

(1−n−r), ∀ δ > 0.

8.3. Implications of the properties

Equations (C-18)–(C-21) imply, respectively,

(C-22) lim
n→∞

E(θ̂n) =





= θ if 0 < q < r,
= θ+1 if 0 < q = r,
does not exist if 0 < r < q.

(C-23) lim
n→∞

E[(θ̂n − θ)2] =





= 0 if 0 < q < 1

2 r,
= 1 if 0 < q = 1

2 r,
does not exist if 0 < 1

2 r < q.

(C-24) lim
n→∞

V(θ̂n) =





= 0 if 0 < q < 1

2 r,
= 1 if 0 < q = 1

2 r,
does not exist if 0 < 1

2 r < q.
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(C-25) plim
n→∞

(θ̂n) = θ if r > 0, regardless of q

We see that

♣ An estimator may be asymptotically unbiased even if its asymp-

totic variance does not exist.

Example: q = 2, r = 3.

♣ An estimator may be consistent even if its asymptotic expecta-

tion and its asymptotic variance does not exist.

Example: q = 3, r = 2.

♣ An estimator may be consistent if its asymptotic expectation ex-

ists, even if its asymptotic variance does not exist.

Example: q = 2, r = 3.

♣ Leave for a moment the above example and try to recall, when

the number of observations grows towards infinity, the visual pic-

ture of the density function of a continuously distributed estimator

(it may for instance have a bell-shape) which is (a) asymptotically

unbiased, and (b) consistent.

8.4. Conclusion

(i) The estimator θ̂n is asymptotically unbiased for θ if q < r.

Example: q = 1, r = 2.

(ii) The estimator θ̂n converges to θ in quadratic mean if q < 1

2 r.

Example: q = 1, r = 3.

(iii) The estimator θ̂n has a variance which converges to zero if q < 1

2 r.

Example: q = 1, r = 3.

(iv) The estimator θ̂n is consistent for θ if r > 0.

Example: q = 1, 2, 3, . . . , r = 1.

Further readings:

W.H. Greene: Econometric Analysis. Appendix D.

B. McCabe and A. Tremayne: Elements of modern asymptotic theory with statistical

applications. Manchester University Press, 1993.
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ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note D:

CONCEPTS RELATED TO SIMULTANEOUS EQUATION SYSTEMS

Erik Biørn
Department of Economics

Version of July 5, 2011

In this lecture note some basic terms related to econometric simultaneous equation

systems are explained.

1. The structural form and related concepts

(i) A structural relationship or structural equation is a relationship

representing:

(a) economic agents’ or sectors’ behaviour,

(b) technological conditions,

(c) institutional conditions, or

(d) definitional equations or equilibrium equations.

Each structural equation represents a specific theory which is assumed to be valid

independently of the fact that it is an element in a simultaneous model together

with other structural equations.

Basic to postulating any structural equation is, in principle, an imagined experi-

ment, more or less precisely described by the underlying economic theory. Examples

are supply functions obtained from producer theory under price taking behaviour,

or demand functions obtained from consumer theory under price taking behaviour.

A structural equation has a certain degree of autonomy (independent existence,

or structural invariance), vis-à-vis changes in other structural equations. If a equa-

tion possesses a high degree of autonomy, this signifies that it represents a good

theory. Relationships in macro theory which have been argued to have a low (or not

particularly high) degree of autonomy against shocks in the rest of the economy are

the Keynesian investment function and Phillips curve relations. (Could you give

some reasons for this?) We can imagine changes occurring in the economic struc-

ture which ‘destroy’ one (or a few) relationship(s) without affecting the others. A

demand function may, for instance, be destroyed by sudden or gradual changes in

preferences or in demographic characteristics without changing the supply function.

A supply function may, for instance, be destroyed by sudden or gradual changes in

the production technology or in the supply side conditions without changing the

demand function. Etc.

(ii) By a structural coefficient we understand a coefficient occurring in a

structural equation. Examples are the price coefficients β1 and β2 in the market

models in Lecture note E, Section 1, below.

(iii) By a structural parameter we understand a structural coefficient or a

parameter describing the distribution of the disturbance of a structural equation.
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Examples are β1, β2, σ
2
u, and σ2

v in the market models in Lecture note E below.

(iv) By a structural model or a model’s structural form (abbrevi-

ated SF) we mean a set of structural equation, with as high degree of autonomy

as possible, put together into a determined system with specified endogenous and

exogenous variables. A structural model has the same number of equations as its

number of endogenous variables.

2. The reduced form and related concepts

(i) By a structural model’s reduced form (abbreviated RF) we understand

the set of equations which arise when we solve the model’s equations such that each

of its endogenous variables is expressed as a function of the model’s exogenous vari-

ables (if such variables occur in the model) and the disturbances.

(ii) Coefficient combinations occurring as intercepts or as coefficients of exoge-

nous variables in a model’s reduced form, are denoted as coefficients in the

reduced form, or simply, reduced-form-coefficients. They are impact

coefficients (impact multipliers). Confer shift analyses in simple market theory and

multipliers in (Keynesian) macro models. Examples of reduced-form-coefficients in

the market models in Lecture note E below are, in the case with no exogenous

variables:

µy =
β1α2 − β2α1

β1 − β2
and µp =

α2 − α1

β1 − β2
,

and, in the case with two exogenous variables: Π11,Π12,Π21.Π22

(iii) By a parameter in the reduced form, or simply a reduced-form-

parameter, we understand a reduced-form-coefficient or a parameter describing

the distribution of the disturbances in a model’s reduced form. Examples of reduced

forms (in cases without and with exogenous variables) for simple market models

are given in Lecture note E.

(iv) Each endogenous variable has one RF equation. The endogenous variable is

its LHS variable. All exogenous variables in the model occur as RHS variables in

the RF, in general.

(v) The RF disturbances are all linear combinations of the SF disturbances. The

coefficients in these linear combinations are functions of the coefficients of the en-

dogenous variables in the model’s SF.

(vi) The RF is, formally, a system of regression equations with the same set of

exogenous variables, viz. all the model’s exogenous variables.

(vii) The RF coefficients are non-linear functions of the SF coefficients; cf. (ii)

above.

(viii) The RF equations have lower degree of autonomy than the SF equations; cf.

(ii) above. They are confluent relationships, they “flow together”, because struc-

tural coefficients from several equations are ‘mixed up’ in the same RF equation.
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ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note E

IDENTIFICATION PROBLEMS 1: SIMPLE MARKET MODELS

Erik Biørn
Department of Economics

Version of July 5, 2011

1. A market model without exogenous variables

Let us consider the market for a single consumption commodity, and let yt denote

the market quantity traded and pt the market price. The market model has a

supply function (S) and a demand function (D) and is:

yt = α1 + β1pt + ut, (S)(E-1)

yt = α2 + β2pt + vt, (D)(E-2)

E(ut) = E(vt) = 0,(E-3)

var(ut) = σ2
u, var(vt) = σ2

v , cov(ut, vt) = σuv,(E-4)

cov(ut, us) = cov(vt, vs) = cov(ut, vs) = 0, s 6= t,(E-5)

t, s = 1, . . . , T.

The observations generated from it are T points scattered around the point of

intersection between the lines yt = α1 + β1pt and yt = α2 + β2pt. Some more

terminology related to simultaneous equation systems in econometrics is given in

lecture note D.

The essential question when deciding whether we have identification of the

model’s parameters (or some of them) and hence are able (in one way or another,

not discussed here) to estimate its parameters ‘in a proper way’, is: What do we

know, from (E-1)–(E-5), about the joint probability distribution of the two observed

endogenous variables yt and pt?. This is the fundamental question we seek to

answer to decide whether or not we have identification of the equations of this

stochastic market model. In order to answer it we first solve (E-1) and (E-2) with

respect to the endogenous variables, giving

yt =
β1α2 − β2α1

β1 − β2
+

β1vt − β2ut

β1 − β2
,(E-6)

pt =
α2 − α1

β1 − β2

+
vt − ut

β1 − β2

.(E-7)
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Utilizing (E-3)–(E-5), we obtain

E(yt) =
β1α2 − β2α1

β1 − β2
= µy,(E-8)

E(pt) =
α2 − α1

β1 − β2
= µp,(E-9)

var(yt) =
β2
1σ

2
v − 2β1β2σuv + β2

2σ
2
u

(β1 − β2)2
= σ2

y ,(E-10)

var(pt) =
σ2
v − 2σuv + σ2

u

(β1 − β2)2
= σ2

p,(E-11)

cov(yt, pt) =
β1σ

2
v − (β1 + β2)σuv + β2σ

2
u

(β1 − β2)2
= σyp,(E-12)

where µy, µp, σ
2
y , σ

2
p, σyp are defined by the last equalities of the five equations.

The simultaneous distribution of the endogenous variables (yt, pt) is described

by their first- and second-order moments, i.e., the expectations µy, µp, the variances

σ2
y , σ

2
p, and the covariance σyp. This is the distribution of our observed (endoge-

nous) variables.

Remark: Strictly speaking, we here make the additional assumption that we con-

fine attention to the first- and second-order moments of the distribution. We thus

disregard information we might obtain by considering also the higher-order mo-

ments of (yt, pt). However, if we in addition to (E-3)–(E-5) assume that the simul-

taneous distribution of (ut, vt) is binormal, so that also (yt, pt) become binormally

distributed (as two linear combinations of binormal variables are also binormal),

we are unable to obtain any additional information by utilizing the higher-order

moments. The reason is that the binormal distribution (and, more generally, the

multinormal distribution) is completely described by its first- and second-order

moments. On the binomal distribution, see Greene: Appendix B.9.

Hence, what we, under the most favourable circumstances we can imagine, are

able to ‘extract’ from our T observations (yt, pt), is to estimate this distribution,

i.e., to determine the five parameters

µy, µp, σ
2
y , σ

2
p, σyp.

We could, for instance, estimate these (theoretical) moments by the corresponding

empirical moments,

ȳ, p̄,M [y, y],M [p, p],M [y, p],

utilizing the convergence in moments property. This exemplifies the so-called

Method of Moments. If T → ∞, we are able to completely determine this dis-

tribution. This is the most favourable data situation we can imagine.

Now, the model (E-1)–(E-5) has seven unknown parameters,

α1, α2, β1, β2, σ
2
u, σ

2
v , σuv.
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The crucial question then becomes: Can we, from knowledge of µy, µp, σ
2
y , σ

2
p, σyp

deduce the values of these seven parameters, while utilizing (E-8)–(E-12)? The

answer is no in general; we have too few equations, only five. In the absence of

additional information, we have an identification problem: Neither the supply nor

the demand function is identifiable.

We next present three examples in which we possess such additional information

2. Three examples with identification from additional information

Example 1: Assume that there is no disturbance in the supply function: ut =

0 =⇒ σ2
u = σuv = 0. Then all observations will be different and will lie on the

supply function, provided that σ2
v > 0. Intuitively, we should then expect the

supply function to be identifiable. Algebra based on (E-8)–(E-12) will confirm

this. We find

(E-13) β1 =
σ2
y

σyp

=
σyp

σ2
p

,

(E-14) α1 = µy −
σ2
y

σyp

µp = µy −
σyp

σ2
p

µp.

The coefficient and the intercept of the supply function can be calculated when

knowing the joint distribution of market price and traded quantity. The demand

function is not identifiable. Note that in this case, there are two different ways of

calculating β1 and α1. Even if we now have five equations and five unknowns in

(E-8)–(E-12), we are unable to solve for β2 and α2. At the same time, there are

two ways of expressing α1 and β1.

A symmetric example, which you are invited to elaborate, is that in which the

demand function does not contain a disturbance.

Example 2: Assume next that our theory tells us that the supply is price inelastic,

i.e., β1 = 0, and that the two disturbances are uncorrelated, i.e., σuv = 0. It then

follows from (E-8)–(E-12) that

β2 =
σ2
y

σyp

,

σ2
u = σ2

y , σ2
v = σ2

p

(
σ2
y

σyp

)2

− σ2
y , α1 = µy, α2 = µy −

σ2
y

σyp

µp.

We are therefore able, when knowing the parameters of the distribution of (yt, pt),

to compute all the five remaining unknown parameters in the market model. The

additional information we have, is crucial.

Since the price coefficient of the demand function emerges as the ratio between

the variance of the quantity and the covariance between quantity and price, a useful

procedure seems to be to estimate β2 by

β̂2 =
M [y, y]

M [y, p]
.
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This corresponds to estimating 1/β2 by regressing the market price on the quan-

tity traded and afterwards invert the expression to estimate β2. Using Slutsky’s

Theorem in combination with convergence in moments, we can show that β̂2 is

consistent for β2.

A symmetric example, which you are invited to elaborate, is that in which the

demand side is price inelastic

Example 3: We now make the additional assumption that the country we are

considering is a small country and that the demand side is characterized by the

price being given in the world market regardless of the supply conditions in our

small country. We then omit (E-2) and replace (E-3)–(E-5) by

E(ut) = 0, var(ut) = σ2
u, cov(pt, ut) = 0,

using the last assumption to make precise our economic insight that pt is exoge-

nously determined in the world market. From (E-1) we then obtain

µy = α1 + β1 µp,

σ2
y = β2

1 σ
2
p + σ2

u,

σyp = β1 σ
2
p ,

giving

β1 =
σyp

σ2
p

, α1 = µy −
σyp

σ2
p

µp, σ2
u = σ2

y −

(
σyp

σ2
p

)2

σ2
p.

In this case, the supply function can be identified. We see, furthermore, that

the supply price coefficient emerges as the ratio between the covariance between

quantity and price and the variance of the price. In this situation, it then can be

convenient to estimate β1 by

β̂1 =
M [y, p]

M [p, p]
.

This corresponds to estimating the supply price coefficient by regressing the traded

quantity on the market price. Using Slutsky’s Theorem in combination with con-

vergence in moments, we can show that β̂1 is consistent for β1.

A symmetric example, which you are invited to elaborate, is that in which the

supply side is characterized by the small country property.

3. A market model with two exogenous variables

We now consider a more general market model, with the following structural form

(SF) equations:

yt = α1 + β1pt + γ11zt + ut, (S)(E-15)

yt = α2 + β2pt + γ22Rt + vt, (D)(E-16)

where (E-15) is the supply function (S) and (E-16) is the demand function (D)

(t = 1, . . . , T ), and where zt and Rt are exogenous variables. The observable



Erik Biørn: Master course ECON 4160 23

variables are (yt, pt, zt, Rt). We can think of (E-15) and (E-16) as having been

obtained by putting, according to our theory, γ12 = γ21 = 0 since Rt plays no role

for the supply and zt plays no role for the demand. Further, we assume, reflecting

our exogeneity assumptions that

E(ut|zt, Rt) = 0,(E-17)

E(vt|zt, Rt) = 0,(E-18)

var(ut|zt, Rt) = σ2
u,(E-19)

var(vt|zt, Rt) = σ2
v ,(E-20)

cov(ut, vt|zt, Rt) = σuv,(E-21)

cov(ut, us|zt, Rt, zs, Rs) = 0, s 6= t,(E-22)

cov(vt, vs|zt, Rt, zs, Rs) = 0, s 6= t,(E-23)

cov(ut, vs|zt, Rt, zs, Rs) = 0, s 6= t, t, s = 1, . . . , T.(E-24)

More generally (and often more conveniently) we could assume that (E-17)–(E-

24) hold conditionally on all z and R values in the data set, z = (z1, . . . , zT ) and

R = (R1, . . . , RT ).

Using the law of double expectations, we derive

E(ut) = E(vt) = 0,(E-25)

var(ut) = σ2
u, var(vt) = σ2

v , cov(ut, vt) = σuv,(E-26)

cov(ut, us) = cov(vt, vs) = cov(ut, vs) = 0, s 6= t,(E-27)

cov(zt, ut) = cov(zt, vt) = cov(Rt, ut) = cov(Rt, vt) = 0, t, s = 1, . . . , T.(E-28)

4. Elements of the econometric model description

The description of our structural model (E-15)–(E-24) contains:

(i) A determined system of structural equations with specification of

endogenous and exogenous variables, disturbances and unknown structural

coefficients,

(ii) Normalization restrictions, exemplified by one of the variables in each

equation, yt, having a known coefficient, set to unity. If no normalization had

been imposed, we could have “blown up” all of the equation’s coefficients by

a common unspecified factor and would have had no chance of identifying

any of its coefficients.

(iii) Exclusion restrictions, exemplified by Rt not occurring the supply func-

tion (γ12 = 0) and zt not occurring in the demand function (γ21 = 0).

(iv) A specification of the properties of the disturbance distribution.
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5. The structural model expressed in conditional expectations

From (E-15)–(E-18) we obtain

E(yt|zt, Rt) = α1 + β1E(pt|zt, Rt) + γ11zt, (T )(E-29)

E(yt|zt, Rt) = α2 + β2E(pt|zt, Rt) + γ22Rt, (E)(E-30)

The model’s reduced form (RF) is

yt =
β1α2 − β2α1

β1 − β2

−
β2γ11
β1 − β2

zt +
β1γ22
β1 − β2

Rt +
β1vt − β2ut

β1 − β2

,(E-31)

pt =
α2 − α1

β1 − β2
−

γ11
β1 − β2

zt +
γ22

β1 − β2
Rt +

vt − ut

β1 − β2
,(E-32)

or, in abbreviated notation,

yt = Π10 + Π11 zt + Π12Rt + ε1t,(E-33)

pt = Π20 + Π21 zt + Π22Rt + ε2t.(E-34)

Here we have

ε1t =
β1vt − β2ut

β1 − β2
,(E-35)

ε2t =
vt − ut

β1 − β2
(E-36)

and

Π10 =
β1α2 − β2α1

β1 − β2
, Π11 = −

β2γ11
β1 − β2

etc. It follows that

E(ε1t|zt, Rt) = 0,(E-37)

E(ε2t|zt, Rt) = 0,(E-38)

which implies that the RF disturbances are uncorrelated with the RHS variables

in the RF.

6. The reduced form and the distribution of the endogenous variables

conditional on the exogenous variables

Why is the model’s RF useful when examining whether or not each of the SF equa-

tions are identifiable. The answer is:

We can use the model’s RF to describe the probability distribution

of the model’s (observable) endogenous variables conditional on its

(observable) exogenous variables.
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From (E-33)–(E-38) we find

E(yt|zt, Rt) = Π10 + Π11 zt + Π12 Rt,(E-39)

E(pt|zt, Rt) = Π20 + Π21 zt + Π22 Rt,(E-40)

var(yt|zt, Rt) = var(ε1t|zt, Rt)(E-41)

=
β2
1σ

2
v − 2β1β2σuv + β2

2σ
2
u

(β1 − β2)2
= ω11,

var(pt|zt, Rt) = var(ε2t|zt, Rt)(E-42)

=
σ2
v − 2σuv + σ2

u

(β1 − β2)2
= ω22,

cov(yt, pt|zt, Rt) = cov(ε1t, ε2t|zt, Rt)(E-43)

=
β1σ

2
v − (β1 + β2)σuv + β2σ

2
u

(β1 − β2)2
= ω12,

cov(yt, ys|zt, Rt, zs, Rs) = cov(ε1t, ε1s|zt, Rt, zs, Rs) = 0, s 6= t,(E-44)

cov(pt, ps|zt, Rt, zs, Rs) = cov(ε2t, ε2s|zt, Rt, zs, Rs) = 0, s 6= t,(E-45)

cov(yt, ps|zt, Rt, zs, Rs) = cov(ε1t, ε2s|zt, Rt, zs, Rs) = 0, s 6= t,(E-46)

where ω11, ω22 and ω12 are defined by the last equalities in (E-41)–(E-43).

From our data (yt, pt, zt, Rt), t = 1, . . . , T,, we can, more or less precisely, de-

termine (estimate) the probability distribution of the model’s endogenous variables

(yt, pt) conditional on its exogenous variables (zt, Rt). This distribution is charac-

terized by the Πij ’s and the ωij ’s. We can determine this distribution perfectly if we

have an infinite sample. This is the most favourable data situation we can imagine.

The crucial question we must answer to decide whether we have

identification of (S) and (D) therefore reduces to the following:

Knowing the Π’s and the ω’s, are we able to determine the values

of the unknown α’s, β’s, γ’s and/or σ’s?.

In our example we have six structural coefficients

α1, α2, β1, β2, γ11, γ22,

and six reduced-form coefficients,

Π10,Π11,Π12,Π20,Π21,Π22.

Furthermore, we have three second-order moments of the SF disturbances

σ2
u, σ

2
v , σuv,

and the same number of second-order moments of the RF disturbances,

ω11, ω22, ω12.

Given the Π’s and the ω’s, we thus have nine unknown SF parameters. We also have

nine equations, namely those which emerge when utilizing the coefficient equalities

between (E-31)–(E-32) and (E-33)–(E-34), giving six equations, and (E-41)–(E-43),

giving three equations.

We can state the following:
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(i) If no restrictions are imposed on σ2
u, σ

2
v , σuv, the number of σ’s will be equal

to the number of ω’s.

(ii) Given β1 and β2, the relationships between the σ’s and the ω’s are linear.

Therefore:

(iii) All σ’s will certainly be identifiable if all β’s are identifiable.

(iv) We may, if we only are interested in the identifiability of the SF coeffi-

cients, i.e., the α’s, the β’s and the γ’s, disregard all equations in (E-39)–(E-

43) which contain the second-order moments, i.e., (E-41)–(E-43), and confine

attention to the equations derived from the first-order moments.

7. Further remarks on the identification of the supply function

Consider the model’s supply function. Inserting (E-39)–(E-40) into (E-29), we get

Π10 +Π11zt +Π12Rt = α1 + β1(Π20 +Π21zt +Π22Rt) + γ11zt.(E-47)

This shall hold as an identity in the exogenous variables. Recall that the exogenous

variables are determined outside the model, and hence there would have been a

violation of the model’s logic if (E-47) were to restrict their variation. For this

reason, there must be pair-wise equality between the coefficients of the LHS (Left

Hand Side) and the RHS (Right hand side) of (E-47). We therefore have:

Π10 = α1 + β1Π20,(E-48)

Π11 = β1Π21 + γ11,(E-49)

Π12 = β1Π22,(E-50)

corresponding to respectively, the intercept, zt, and Rt. If we know the six Π’s

we can then solve (E-48)–(E-50) and determine the SF coefficients in the supply

function as follows:

(E-51) β1 =
Π12

Π22
, γ11 = Π11 −

Π12

Π22
Π21, α1 = Π10 −

Π12

Π22
Π20.

Hence, all the coefficients of the supply function are identifiable.

8. A formal description of the identification problem in general

Our problem is, in general, of the following form:

(i) Let (q1t, . . . , qNt) be N observable endogenous variable and let (x1t, . . . , xKt)

be K observable exogenous variables.

(ii) Let furthermore (λ1, . . . , λQ) be the model’s Q unknown SF parameters. As-

sume, however, that the model, when regard is paid to all of its restrictions,

implies that (q1t, . . . , qNt) and (x1t, . . . , xKt) have a simultaneous distribu-

tion which could be fully described by the P + R parameters (θ1, . . . , θP )

and (τ1, . . . , τR). We assume that the density of this distribution exists and

denote it as ft(q1t, . . . , qNt, x1t, . . . , xKt; θ1, . . . , θP , τ1, . . . , τR).
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(iii) We assume that (θ1, . . . , θP ) and (τ1, . . . , τR) have no elements in common.

(iv) We assume that the joint density of all the exogenous and endogenous vari-

ables can be written as the product of a marginal density of the exogenous

variables and a conditional density of the endogenous variables on the exoge-

nous variables as follows:

ft(q1t, . . . , qNt, x1t, . . . , xKt; θ1, . . . , θP , τ1, . . . , τR)

= h(q1t, . . . , qNt|x1t, . . . , xKt; θ1, . . . , θP )φt(x1t, . . . , xKt; τ1, . . . , τR),

where h(·) is independent of t. Its form is fully specified when (θ1, . . . , θP )

is given. The density of the exogenous variables, φt(·), only depends on the

parameter vector (τ1, . . . , τR), but can change with t.

We now, have an economic theory, stated in our structural model, which implies

that the θ’s can be expressed by the λ’s as follows:

(E-52)

θ1 = g1(λ1, λ2, . . . , λQ),

θ2 = g2(λ1, λ2, . . . , λQ),
...

θP = gP (λ1, λ2, . . . , λQ),

where the functions g1(·), . . . , gP (·) are completely known from the theory. We

consequently can compute all θ’s when all λ’s are given. The fundamental question

is: Can we go the opposite way? Three answers to this question can be given:

(i) If the parameter λi can be computed from (E-52), λi is identifiable.

(ii) If λi cannot be computed in this way, it is non-identifiable.

(iii) If the parameters λ1, . . . , λQ are known and can be computed from (E-52)

when θ1, . . . , θP are known, all the model’s SF parameters are identifiable.

(iv) A necessary condition for all the model’s SF parameters being identifiable

is that P ≥ Q, i.e., that the number of equations in (E-52) is at least as large

as the number of unknowns.

So far we have considered the formalities of the general case. Let us concretize

by referring to the market model example in Sections 3–7.

We then in particular have N = 2, K = 2, P = Q = 9. Moreover,

(q1t, q2t, . . . , qNt) correspond to (yt, pt),

(x1t, x2t, . . . , xKt) correspond to (zt, Rt),

(θ1, θ2, . . . , θP ) correspond to (Π10,Π11,Π12,Π20,Π21,Π22, ω11, ω22, ω12),

(λ1, λ2, . . . , λQ) correspond to (α1, α2, β1, β2, γ11, γ22, σ
2
u, σ

2
v , σuv),

(τ1, τ2, . . . , τR) are unspecified and irrelevant.

The equation system (E-52) corresponds to the systems of coefficient restrictions

which follows by comparing (E-31)–(E-32) with (E-33)–(E-34) and from (E-41)–

(E-43), that is

Π10 =
β1α2 − β2α1

β1 − β2

, Π11 = −
β2γ11
β1 − β2

, ω11 =
β2
1σ

2
v − 2β1β2σuv + β2

2σ
2
u

(β1 − β2)2
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etc.

We now want to obtain a rather general criterion for examining the identification

status of an equation, without having to be involved in solving a system like (E-52)

each time.

9. The order condition for identification

Consider an equation in a simultaneous model and let:

K = No. of exogenous variables in the complete model.

N = No. of endogenous variables in the complete model.

K1 = No. of exogenous variables included in the actual equation.

N1 = No. of endogenous variables included in the actual equation.

K2 = No. of exogenous variables excluded from the actual equation.

N2 = No. of endogenous variables excluded from the actual equation.

We have

(E-53) K1 +K2 = K, N1 +N2 = N.

Let H denote the number of equations between the RF coefficients and the SF

coefficients in the actual equation, of the form (E-48)–(E-50). This number is one

more than the number of exogenous variables, as the intercept term also occupies

one equation, i.e.,

H = K + 1.

In the structural equation considered, we have

MN = N1 − 1

unknown coefficients of the included endogenous variables, as one coefficient must

be deducted because of the normalization restriction. In the structural equation

considered, we have

MK = K1 + 1

unknown coefficients belonging to the exogenous variables including the intercept

term.

The order condition for identification of the equation considered is the condition

that we have a sufficient number of equations between the coefficients. It can be

formulated as

(E-54) H ≥ MN +MK ⇐⇒ N1 +K1 ≤ K + 1.

Using (E-53), we find that the order condition is equivalent to the following condi-

tion, which is easier to remember:

(E-55) K2 +N2 ≥ N − 1,
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i.e., 



The total number of variables excluded from the equation

should be at least as large as

the number of equations in the model minus 1.





Note that:

1. The order condition is necessary for identification when no restric-

tions have been imposed on the SF disturbance variances and covariances.

There exists a corresponding rank condition (knowledge of this is not re-

quired in this course) which is both necessary and sufficient.

2. If at least one restriction has been imposed on these variances and

covariances, then the order and rank conditions are no longer necessary,

and the problem should be examined specifically. Simple examples of the

latter kind of examination are Examples 1–3 in Section 2.

10. Indirect Least Squares (ILS) estimation in exactly identified and

overidentified equations: Examples and exercises

Consider a simple model of a commodity market with SF (Structural Form) equa-

tions

yt = α1 + β1pt + γ11zt + u1t,(E-56)

yt = α2 + β2pt + γ22Rt + γ23qt + u2t,(E-57)

where (E-56) is the supply function and (E-57) is the demand function. The en-

dogenous variables are (yt, pt), the exogenous variable are (zt, Rt, qt). The SF dis-

turbances are (u1t, u2t). Its RF (Reduced Form) equations are

yt = Π10 +Π11zt +Π12Rt +Π13qt + ε1t,(E-58)

pt = Π20 +Π21zt +Π22Rt +Π23qt + ε2t,(E-59)

where

yt =
β1α2−β2α1

β1−β2
−

β2γ11
β1−β2

zt +
β1γ22
β1−β2

Rt +
β1γ23
β1−β2

qt +
β1u2t−β2u1t

β1−β2
,(E-60)

pt =
α2−α1

β1−β2

−
γ11

β1−β2

zt +
γ22

β1−β2

Rt +
γ23

β1−β2

qt +
u2t−u1t

β1−β2

.(E-61)

From (E-56)–(E-57) and (E-58)–(E-59), utilizing the zero conditional expectations

for the disturbances, we find

E(yt|zt, Rt, qt) = α1 + β1E(pt|zt, Rt, qt) + γ11zt,(E-62)

E(yt|zt, Rt, qt) = α2 + β2E(pt|zt, Rt, qt) + γ22Rt + γ23qt,(E-63)

E(yt|zt, Rt, qt) = Π10 +Π11 zt +Π12 Rt +Π13 qt,(E-64)

E(pt|zt, Rt, qt) = Π20 +Π21 zt +Π22Rt +Π23 qt.(E-65)
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Inserting (E-64)–(E-65) into (E-62) and into (E-63), we get, respectively

Π10 +Π11zt +Π12Rt +Π13qt(E-66)

= α1 + β1(Π20 +Π21zt +Π22Rt +Π23qt) + γ11zt,

Π10 +Π11zt +Π12Rt +Π13qt(E-67)

= α2 + β2(Π20 +Π21zt +Π22Rt +Π23qt) + γ22Rt + γ23qt.

These equations shall hold as identities in the exogenous variables.

Recall that the exogenous variables are determined outside the model, and hence

there would have been a violation of the logic of the structural model we have pos-

tulated if (E-66) and (E-67) had restricted their variation. For this reason, there

must be pair-wise equality between the coefficients of the LHS and the RHS of

(E-66) and those of (E-67).

We therefore have from equation (E-66) [We confine attention to this; equation

(E-67) can be treated similarly – you may do this as an exercise]

(E-68)

Π10 = α1 + β1Π20,

Π11 = β1Π21 + γ11,

Π12 = β1Π22,

Π13 = β1Π23,

corresponding to, respectively, the intercept, zt, Rt, and qt. This implies

(E-69)

β1 =
Π12

Π22
=

Π13

Π23
,

γ11 = Π11 −
Π12

Π22

Π21 = Π11 −
Π13

Π23

Π21,

α1 = Π10 −
Π12

Π22
Π20 = Π10 −

Π13

Π23
Π20.

Remark: Equations (E-68) and (E-69) can also be obtained by comparing (E-58)–

(E-59) with (E-60)–(E-61).

Exercise 1: Assume that we know that γ23 = 0. Then the supply function (E-

56) is EXACTLY IDENTIFIED. Why will this imply Π13 = Π23 = 0? An OLS

estimation of (E-58) and (E-59) has given [The example has been constructed!]

Π̂10 = 265, Π̂11 = 2.1, Π̂12 = 58.5,

Π̂20 = 5, Π̂21 = −0.3, Π̂22 = 4.5.

Interpret these estimates. Show, by using the relationships between the SF coef-

ficients (α1, α2, β1, β2, γ11, γ22) and the RF coefficients (Π10,Π11,Π12,Π20,Π21,Π22)

obtained from (E-68)–(E-69), and the corresponding equations relating to equation

(E-57), that the derived estimates of the SF coefficients in the supply function are

α̂1 = 200, β̂1 = 13, γ̂11 = 6,

α̂2 = 300, β̂2 = −7, γ̂22 = 90.
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Interpret these estimates. Are the estimators of the RF coefficients (i) unbiased,

(ii) consistent? Are the estimators of the SF coefficients(i) unbiased, (ii) consistent?

The estimation method just described exemplifies the Indirect Least Squares

(ILS) method.

ILS means: First estimate the RF coefficients by applying OLS on

each RF equation separately. Next derive estimators of the SF co-

efficients by exploiting the relationships between the the RF coef-

ficients and the the SF coefficients, as exemplified by (E-68)–(E-69).

Exercise 2: Assume that γ23 6= 0 and unknown. Then the supply function (E-56) is

OVERIDENTIFIED. Why will this imply Π13 6= 0,Π23 6= 0? An OLS estimation

of (E-58) and (E-59) has given [Again, the example has been constructed]

Π̂10 = 265, Π̂11 = 2.1, Π̂12 = 58.5, Π̂13 = 18,

Π̂20 = 5, Π̂21 = −0.3, Π̂22 = 4.5, Π̂23 = 2.

Interpret these estimates. Show, by using the relationships between the SF coeffi-

cients (α1, α2, β1, β2, γ11, γ22, γ23) and the RF coefficients (Π10,Π11,Π12,Π13,

Π20,Π21,Π22,Π23) obtained from (E-68)–(E-69) that we get two sets of ILS esti-

mates of the SF coefficients in (E-56), denoted as (a) and (b):

(a) α̂1 = 200, β̂1 = 13, γ̂11 = 6,

(b) α̃1 = 210, β̃1 = 9, γ̃11 = 4.8,

and, by a similar argument, one set of ILS estimates of the SF coefficients in (E-57):

(a∗) α̂2 = 300, β̂2 = −7, γ̂22 = 90, γ̂23 = 32.

Interpret these estimates.

Exercise 3:

[1] Explain why we get two sets of estimates of the coefficients in (E-56) in Exer-

cise 2, but only one set of estimates in Exercise 1.

[2] Explain why we get one set of estimates of the coefficients in (E-57) in both

Exercise 2 and Exercise 1.

[3] Are the estimators of the RF coefficients (i) unbiased, (ii) consistent? Are the

estimators of the SF coefficients (i) unbiased, (ii) consistent?

[4] How would (E-66)–(E-69) have been changed and how would the estimation of

(E-56) have proceeded if we had NOT known (from economic theory) that Rt and

qt were excluded from this equation?
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ECON4160 ECONOMETRICS – MODELLING AND SYSTEMS ESTIMATION

Lecture note F:

IDENTIFICATION PROBLEMS 2: MEASUREMENT ERROR MODELS

Erik Biørn
Department of Economics

Version of July 5, 2011

In reading the lecture note, you may take advantage in reading it in parallel with

Lecture note E, section 8.

1. Model with random measurement error in the exogenous variable

We specify the following deterministic relationship between the endogenous variable

Y ∗

i and the exogenous variable X∗

i :

(F-1) Y ∗

i = α + βX∗

i , i = 1, . . . , n,

where α and β are unknown coefficients. Neither Y ∗

i nor X∗

i is observable.

The observations are given by

Yi = Y ∗

i + ui,(F-2)
Xi = X∗

i + vi, i = 1, . . . , n.(F-3)

We denote ui as the measurement error in Yi and vi as the measurement error in Xi.

We further denote Y ∗

i and X∗

i as latent structural variables. A concrete interpreta-

tion may be: Yi, Y
∗

i , and ui are, respectively, observed, permanent (normal), and

transitory (irregular) consumption, and Xi, X
∗

i , and vi are, respectively, observed,

permanent (normal), and transitory (irregular) income (windfall gains). The basic

hypotheses then are that neither permanent, nor transitory consumption respond

to transitory income.

Eliminating Y ∗

i from (F-1) by using (F-2) we get

(F-4) Yi = α + βX∗

i + ui, i = 1, . . . , n.

We may interpret ui as also including a disturbance in (F-1).

We assume that

(F-5) E(ui|X
∗

i ) = E(vi|X
∗

i ) = 0, i = 1, . . . , n.

Regardless of which value X∗

i takes, the measurement error has zero expectation.

On average, we measure X correctly, regardless of how large the value we want to

measure is. It follows from (F-5) that

E(ui) = E(vi) = 0,(F-6)

cov(ui, X
∗

i ) = cov(vi, X
∗

i ) = 0, i = 1, . . . , n.(F-7)
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We further assume

var(ui) = σ2
u, cov(ui, uj) = 0, j 6= i,(F-8)

var(vi) = σ2
v , cov(vi, vj) = 0, j 6= i,(F-9)

cov(ui, vi) = 0, cov(ui, vj) = 0, j 6= i, i, j = 1, . . . , n.(F-10)

We eliminate Y ∗

i and X∗

i from (F-1) by using (F-2)–(F-3) and get

Yi − ui = α + β(Xi − vi),

i.e.,

(F-11) Yi = α + βXi + ui − βvi = α + βXi + wi, i = 1, . . . , n,

where

(F-12) wi = ui − βvi, i = 1, . . . , n.

Which are the properties of the composite error wi? Using (F-5)–(F-10), we

find

E(wi) = E(wi|X
∗

i ) = E(wi|Y
∗

i ) = 0,
var(wi) = E(w2

i ) = σ2
u + β2σ2

v ,
cov(wi, wj) = E(wiwj) = 0, j 6= i, i, j = 1, . . . , n,

i.e., wi has zero expectation, varies randomly in relation to X∗

i and Y ∗

i , and is

homoskedastic and non-autocorrelated. Further,

cov(wi, X
∗

i ) = E(wiX
∗

i ) = E[(ui − βvi)X
∗

i ] = 0,(F-13)
cov(wi, Y

∗

i ) = E(wiY
∗

i ) = E[(ui − βvi)Y
∗

i ] = 0.(F-14)

But, we have

cov(wi, Xi) = E(wiXi) = E[(ui − βvi)(X
∗

i + vi)] = −βσ2
v ,(F-15)

cov(wi, Yi) = E(wiYi) = E[(ui − βvi)(Y
∗

i + ui)] = σ2
u.(F-16)

Thus, the composite error in the equation between the observed variables, (F-11),

is correlated with both the LHS and the RHS variables: cov(wi, Yi) > 0, while

cov(wi, Xi) has a sign which is the opposite of the sign of β, provided that σ2
u > 0

and σ2
v > 0.

2. The probability distribution of the observable variables

Let us express the (theoretical) first- and second-order moments of Xi and Yi by

means of the model’s structural parameters and the parameters in the distribution

of the latent exogenous variable. From (F-1)–(F-3) and (F-6) we find

E(Xi) = E(X∗

i ),(F-17)
E(Yi) = E(Y ∗

i ) = α + βE(X∗

i ).(F-18)
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Further, (F-1)–(F-3) and (F-7)–(F-10) imply

var(Xi) = var(X∗

i + vi) = var(X∗

i ) + σ2
v ,(F-19)

var(Yi) = var(Y ∗

i + ui) = var(Y ∗

i ) + σ2
u = β2var(X∗

i ) + σ2
u,(F-20)

cov(Xi, Yi) = cov(Y ∗

i + ui, X
∗

i + vi)(F-21)

= cov(Y ∗

i , X
∗

i ) + cov(ui, vi) = βvar(X∗

i ) =
1

β
var(Y ∗

i ).

3. Identification

We first make the following assumption about the distribution of the model’s la-

tent, exogenous variable, X∗

i : The expectation and the variance is the same for all

observation units. Precisely,

E(X∗

i ) = µX∗,(F-22)
var(X∗

i ) = σ2
X∗

, i = 1, . . . , n.(F-23)

This is stronger type of assumptions than we normally use in regression models

and simultaneous equation systems, and they may not always be realistic. The

model obtained sometimes is referred to as a structural model, because we impose

a structure on the probability distribution of the exogenous variable.

It follows from (F-22)–(F-23) and (F-17)–(F-21) that the distribution of the

observable variables is described by

E(Xi) = µX∗
= µX ,(F-24)

E(Yi) = α + βµX∗
= µY , i = 1, . . . , n,(F-25)

where µX and µY are defined by the two last equalities, and

var(Xi) = σ2
X∗

+ σ2
v = σ2

X ,(F-26)
var(Yi) = β2σ2

X∗
+ σ2

u = σ2
Y ,(F-27)

cov(Xi, Yi) = βσ2
X∗

= σXY , i = 1, . . . , n,(F-28)

where σ2
X , σ

2
Y and σXY are defined by the three last equalities. The information

we, at most, can ‘extract’ from a set of observations (Yi, Xi), i = 1, . . . , n, is to

determine this distribution completely. Confining attention to the first-order and

second-order moments, this means that we, at most, can determine the following

five first- and second-order moments

µX , µY , σ2
X , σ2

Y , σXY .

They can, for instance, be estimated by (X̄, Ȳ ,M [X,X ],M [Y, Y ],M [X, Y ]), uti-

lizing convergence in moments. However, the model contains the following six

structural parameters:

α, β, µX∗
, σ2

u, σ2
v , σ2

X∗
.

They are connected with the five first- and second-order moments of the observable

variables via (F-24)–(F-28).
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It follows from (F-24) that µX∗
is always identifiable. Using (F-24) to eliminate

µX∗
, we get the following system with four equations:

(F-29)

µY = α + βµX ,
σ2
X = σ2

X∗
+ σ2

v ,
σ2
Y = β2σ2

X∗
+ σ2

u,
σXY = βσ2

X∗
.

It determines the possibilities for identification of the remaining five structural

parameters, α, β, σ2
X∗

, σ2
u and σ2

v . The mathematical interpretation of

the identification problem is that we only have four equations in

five unknowns, when considering µY , µX , σ
2
Y , σ

2
X and σ2

XY as known entities.

4. Identification under additional information. Five examples

In all the following examples, we impose one and only one additional restriction

and show that can then solve the identification problem.

Example 1: The intercept α is known. Then (F-29) gives

β =
µY − α

µX

,

σ2

X∗
= σXY

µX

µY − α
,

σ2

v = σ2

X − σXY

µX

µY − α
,

σ2

u = σ2

Y − σXY

µY − α

µX

.

If, in particular, α = 0, i.e., the structural equation goes through the origin, then

β =
µY

µX

,

etc. We have full identification.

Question 1: How would you estimate β consistently in the last case?

Example 2: The measurement error variance of X, σ2

v, is known. Then (F-29) gives

β =
σXY

σ2

X − σ2

v

,

α = µY −
σXY

σ2

X − σ2

v

µX ,

σ2

X∗
= σ2

X − σ2

v ,

σ2

u = σ2

Y −
σ2

XY

σ2

X − σ2

v

.

If, in particular, σ2

v = 0, i.e., Xi has no measurement error, then

β =
σXY

σ2

X

,

etc. We again have full identification.

Question 2: How would you estimate β consistently in the last case?

Example 3: The measurement error variance of Y , σ2

u, is known. Then (F-29) gives

β =
σ2

Y − σ2

u

σXY

,

α = µY −
σ2

Y − σ2

u

σXY

µX ,

σ2

X∗
=

σ2

XY

σ2

Y − σ2

u

,

σ2

v = σ2

X −
σ2

XY

σ2

Y − σ2

u

.
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If, in particular, σ2

u = 0, i.e., Yi has no measurement error (and the equation has no disturbance),

then

β =
σ2

Y

σXY

,

etc. We again have full identification.

Question 3: How would you estimate β consistently in the last case?

Example 4: The ratio between the measurement error variance and the variance

of the true X is known, and equal to c: σ2

v = c σ2

X∗
. This is equivalent to assuming that

the measurement error variance is c/(1 + c) times the variance of the observed X . From (F-29)

it follows that
β =

σXY

σ2

X

(1 + c),

α = µY −
σXY

σ2

X

(1 + c)µX ,

σ2

X∗
=

1

1 + c
σ2

X ,

σ2

v =
c

1 + c
σ2

X ,

σ2

u = σ2

Y −
σ2

XY

σ2

X

(1 + c).

We again have full identification.

Question 4: How would you estimate β consistently in this case if you knew a priori that c = 0.1?

Example 5: The ratio between the measurement error and the variance of the

true Y is known and equal to d: σ2

u = d β2σ2

X∗
. This is equivalent to assuming that the

measurement error variance is d/(1 + d) times the variance of the observed Y . From (F-29) it

now follows that
β =

σ2

Y

σXY

1

1 + d
,

α = µY −
σ2

Y

σXY

1

1 + d
µX ,

σ2

X∗
=

σ2

XY

σ2

Y

(1 + d),

σ2

v = σ2

X −
σ2

XY

σ2

Y

(1 + d),

σ2

u =
d

1 + d
σ2

Y .

We again have full identification.

Question 5: How would you estimate β consistently in this case if you knew a priori that

d = 0.2?

Important reminder: The order condition for identification developed in

Lecture note E, section 9, presumes that all (structural) variables are

observable. Therefore, it cannot be used in examining the identification

status of parameters in measurement error models!


