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A brief note on contraction mappings
The purpose of this topic is to give some principles for computer implementation. We are
only covering basic approaches, and no code nor pseudocode will be given.

Update October 28, 2011: More precise language, and some typos fixed. As this note was
used in ECON5300: students at that course need not take notice of any changes.

Learning outcomes: You should be able to understand the fixed point property, includ-
ing functions as fixed points of operators, and describe how to iterate a procedure to find an
unknown function with a fixed point property, assuming convergence. You should know
only basic issues concerning convergence (i.e. the role of discounting in Blackwell’s con-
dition, and some conditions which ensure that the convergence is monotoneous); nothing
concerning the efficiency in terms of convergence speed is covered in this note.

The idea of fixed point iteration – the one dimensional case

First, a definition: a fixed point x̃ for a function f is one for which f(x̃) = x̃.
Fixed point iteration is connected to difference equations in that the basic idea is to start at
some (suitable) point x0, and then define

xn+1 = f(xn).

If this iterative procedure converges to some limit L – i.e. limn xn = L – then also of course
limn xn+1 = L. Therefore L = f(L), so the limit is a fixed point. More:1

http://en.wikipedia.org/w/index.php?title=Fixed_point_iteration&oldid=
340133049. So if we wish to compute a certain x̃ within a certain error margin, then we
could try the following approach:

• Find a function f which has x̃ as a fixed point

• Iterate, i.e. apply f in succession

Of course, this «if» catch has to be sorted out. That could be done ad hoc – for example, run
the algorithm until either the accuracy is as desired, or until a certain test indicates it is time
to give up; or there are sometimes theorems granting that it will indeed converge (and to the
right value). See below.

A basic example: Newton’s method for finding zeroes

See http://en.wikipedia.org/w/index.php?title=Newton’s_method&oldid=344625996.
that the function we use to iterate, is not f , but the function g given in the above link, the
«Applications» section.

1you all know that Wikipedia articles are published and edited by anyone, without any scientific quality assur-
ance – but I am happy to use articles where I have checked the accuracy of the content. Note the perma-link,
ensuring that the article is precisely the one I have checked.)

http://en.wikipedia.org/w/index.php?title=Fixed_point_iteration&oldid=340133049
http://en.wikipedia.org/w/index.php?title=Fixed_point_iteration&oldid=340133049
http://en.wikipedia.org/w/index.php?title=Newton's_method&oldid=344625996


Convergence, and to the right value?

It suffices either that |f ′(x̃)| < 1 and that we start sufficiently close – or, assuming a fixed
point exists, that |f ′| < 1 everywhere. See FMEA (the Maths 3 textbook), last subsection of
chapter 11, and more practical conditions are given in the next section. For an illustration see
http://en.wikipedia.org/w/index.php?title=Logistic_map&oldid=342666210,
the animated cobweb diagram; observe how the fixed point loses stability when r exceeds 3,
where the derivative becomes < −1.

Beyond one dimension

If e.g. x is an n-dimensional vector, then f must also take n-dimensional values; f could for
example be multiplication by some n × n matrix. The conditions on |f ′| to ensure conver-
gence could be amended accordingly, see the contraction mappings subsection below.

However, if we are to solve e.g. the Bellman equation, we are not looking for some n-
dimensional x̃ – we are looking for a function v, preferably the value function. Then the
function to iterate must be some f(v), but (usually) not a pointwisely defined f(v(x)). We
want to iterate an operator, which we shall denote F to distinguish from a function f . An
operator2 is a «function of functions», a black box which takes a function as an input and
returns out something, in this case another function. An example is the differentiation oper-
ator F = d

dx ; it takes a function as input and returns the derivative (which is also a function;
furthermore, the derivative at a point x0 depends on more than the value at x0).

Iteration can be done in the same way: We start with an initial function v0 and define recur-
sively

vn+1 = F (vn).

A fixed point (yes, one still uses the term «point» although somewhat confusing) is similarly
defined as a function L for which L = F (L). For example, cex is a fixed point for the differ-
entiation operator d/dx, for any constant c.
So now we are looking for some F to use for iteration. The Bellman equation is of the form

v = F (v)

which gives a natural candidate.

Convergence and contraction mappings

As hinted on, we need an infinite-dimensional analogue to the |f ′| < 1 type criterion. The
following is a slightly stronger one, analogous to |f ′| < β < 1 (that is: «uniformly less than
1»). The essential part is not really the derivative, but the property that |f(x) − f(y)| <
β|x− y|. Here, the absolute value is the natural «distance measure» on the real line.

2the previous version was not very clear about the distinction between «operator» and «functional». An oper-
ator returns an element of a vector space – in this case a function – while a functional returns a number. For
example, the «black box» which takes a function and returns its derivative, is an operator, while the black
box which returns its slope at a given number, is a functional. The below procedure returns a given number
for each x, and running x through the grid, we get a (discretely defined) function.

http://en.wikipedia.org/w/index.php?title=Logistic_map&oldid=342666210


The more general «distance measure» concept is the one of a metric. A metric is a function
d(x, y) with the properties that d > 0 except d(x, x) = 0, that d(x, y) = d(y, x), and finally
the triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) (i.e., going by way of a third point is never
a short cut). There is some inconsistency in the literature whether on whether a metric can
attain the value +∞; for our purposes, we shall assume it is finite.

Now consider a more general space S, which in our case will be a set of functions. An
F : S 7→ S then takes as input a member of S and returns a member of S. If S has a metric d,
it may be applied both to two members w, v in S, and to F (w), F (v). A contraction mapping3

is one F for which there is a β < 1 such that the inequality

d(F (v), F (w)) < βd(v, w)

holds for all w, v in S. That is, F contracts the distance down by a factor of at most β < 1.
Now assume we start at v0 and define vn+1 = F (vn). We claim that vn converges to a fixed
point v for F provided that (I) F is a contraction mapping, and (II) the space S is «without
holes» – i.e. like the reals, in contrast to the rationals, where it is easy do «diverge by tending
to a hole in the space»4:

• Assume h > 0 and take n as given. Then successive applications of the triangle in-
equality yields

d(vn+h, vn) ≤ d(vn+1, vn) + d(vn+2, vn+1) + · · ·+ d(vn+h, vn+h−1) + d(vn+h−1, vn+h−2)

(h− 1 terms). Now each pair (vm+1, vm) equals (F (vm), F (vm−1)). Successive replace-
ments all the way down to vn yields

= d(vn+1, vn) + d(F (vn+1), (vn)) + · · ·
+ d(F h−2(vn+1), F

h−2(vn)) + d(F h−1(vn+1), F
h−1(vn))

where Fm just denotes F appliedm times. Using the contraction propertym times, we
then get

≤ d(vn+1, vn) + βd(vn+1, vn) + · · ·+ d(vn+1, vn) + βh−1d(vn+1, vn)

= d(vn+1, vn) · (1 + β + β2 + · · ·+ βh−1)

≤ d(vn+1, vn) ·
1

1− β
.

Apply now the contraction property n times, to get

≤ d(v1, v0) ·
βn

1− β
.

3a more precise name would be «β-contraction» to indicate that it does not only contract, but with a factor
uniformly less than 1. But then mathematicians usually use the term «k-contraction» (k being in some sense
a reserved word here), and I understand that your curriculum uses that letter for capital stock.

4More precisely, if you are curious:
http://en.wikipedia.org/w/index.php?title=Complete_metric_space&oldid=349745167

http://en.wikipedia.org/w/index.php?title=Complete_metric_space&oldid=349745167


• The d(v1, v0) is just a number, call it Q. So once at n, the entire rest of the sequence is
within distance βnQ/(1−β) (and in particular, once we have made one step, we know
that the sequence is bounded). So by moving one step forward, we are bounding
the sequence by intersections of successively shrinking balls («ball» = a set of points
within given distance), shrinking to radius 0. There will be one and only one limit
point, namely the intersection of all these balls.

Notice that the contraction property need not hold for any metric – it suffices to find one met-
ric such that the property holds. A particularly interesting case of metrics are those defined
in terms of a vector norm || · ||, so that d(w, v) = ||w−v||. Vectors may here be e.g. functions5;
examples of possible norms on functions are maxx |v(x)| (or, better, «sup»6), or

∫∞
−∞ |v(x)|dx

if v takes one-dimensional values. Indeed, existence and uniqueness results for differential
equations are proved this way, by finding a suitable norm. One is in some sense constructing
a solution.

Now, to the Bellman equation. This is a lucky case:

• If payoff is bounded and there is discounting, then this procedure works, with β
being the discount factor, when starting with a bounded function (e.g., v0 = 0)
(The «Blackwell condition».)

• Should boundedness fail, then practitioneers need not worry too much:
If boundedness fails, then there is a wide range of problems for which the procedure
converges monotonically to the value function if the value is finite, and diverges
monotonically to infinity when the value is infinite.

To sketch a proof of the contraction property, consider the iteration

vn+1 = sup
k∈K

E[u(k, x) + βvn(g(x, k))]

where x is the state, k is the control taking values in K, and g(x, k) is the (stochastic!) state
next period.

• The right-hand side is an F applied to vn, returning another function.

• Suppose that there exists an optimal control k for the RHS maximization. This will de-
pend on both vn and state x. Call it κvn(x) where the subscript denotes the dependence
of the function.

• Now to establish a contraction mapping property, consider two bounded functions w
and v. Each of these will be used as input on the right-hand side, and the correspond-
ing control will be κw resp. κv. Consider the difference

F (w)− F (v) = E[u(κw, x) + βw(g(x, κw))]− E[u(κv, x) + βv(g(x, κv))].

5Functions are in some sense no more than infinite-dimensional vectors; an n-vector (a1, . . . , an) returns a
value for each i = 1, . . . , n, and a function v(x) returns a value for each x in its domain. If the domain is
{1, . . . , n} they are precisely the same, except the notation with parentheses instead of subscripts.

6sup – short for «supremum» – means «the least upper-bound of». Example: the Gaussian cdf Φ ranges (0, 1)
but does not attain 1. It therefore does not have a max. But the sup is 1. Similarly, the min does not exist, but
the corresponding greatest upper-bound inf – «infimum» – is 0.



Since κv maximizes the last expectation, it becomes smaller if replaced by κw. With the
minus sign in front, we obtain

F (w)− F (v) ≤ E[u(κw, x)− u(κw, x) + βw(g(x, κw)− βv(g(x, κw))]
= βE[w(g(x, κw)− v(g(x, κw))].

Notice that in the last expression, the input argument of w and v are the same. There-
fore, the expectation is ≤ β supx |w − v| (the sup norm!).

• We therefore have F (w)− F (v) ≤ β supx |w − v|, all x. But if we just reverse rôles of w
and v, we obtain as well that F (v)− F (w) ≤ β supx |w − v|, all x. We therefore have

|F (w)− F (v)| ≤ β sup
x
|w − v|, all x

so that sup
x
|F (w)− F (v)| ≤ β sup

x
|w − v|

i.e. ||F (w)− F (v)|| ≤ β||w − v||

which is precisely the contraction property.

• This works if the iterates are all bounded functions (otherwise, |vn+1 − vn| might be
unbounded, the sup norm will yield infinity and all that we know is that we are «within
+∞ · βn/(1 − β) of the limit»). Now suppose you start with a bounded function. If
payoff u is bounded, then the next iterate will also be bounded, and the procedure
works.

It should be noted that there are very simple problems where the above fails to apply. Con-
sider for example the problem of saving vs. consumption, where the utility u from consump-
tion is not bounded from above. Start with a constant v0 (say 0); then in the first iteration, the
control will be to consume everything. The next iterate v1(x) will therefore equal u(x), and
if this is unbounded, we are already outside the result. That is not to say that the iteration
will not produce the solution, just that the proof does not work, but there are certainly cases
where the procedure cannot converge to a finite value function, because the value function
need not be finite (consider the case where the return on savings exceeds the discount rate).
But for a wide range of problems encountered in practice, the procedure will diverge to
infinity precisely when it should.


