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Comparing Solution Methods for Dynamic Equilibrium
Economies

1. Introduction

This paper addresses the following question: how different are the computational answers

provided by alternative solution methods for dynamic equilibrium economies?

It is well known that most dynamic equilibrium models do not have an analytic, closed-

form solution and that we need to use numerical methods to approximate their behavior.

There are a number of procedures to undertake this task (see Judd, 1998 and Marimón

and Scott, 1999 for a general exposition). However it is difficult to assess a priori how the

quantitative characteristics of the computed equilibrium paths change when we move from

one solution approach to another. Also the relative accuracies of the approximated equilibria

are not well understood.

The properties of a solution method are not only of theoretical interest but crucial to

assess how reliable the answers provided by quantitative exercises are. For example if we

state, as in the classical measurement by Kydland and Prescott (1982), that the productivity

shocks account for seventy percent of the fluctuations of the U.S. economy, we want to know

that this number is not a by-product of numerical error. Similarly if we use the equilibrium

model for estimation purposes we need an approximation that does not introduce bias in the

estimates but yet is quick enough to make the exercise feasible.

Over 15 years ago a group of researchers compared solution methods for the stochastic

growth model without leisure choice (see Taylor and Uhlig, 1990 and the companion papers).

Since then, a number of nonlinear solution methods — several versions of projection (Judd,

1992 and McGrattan, 1999) and asymptotic procedures (Judd and Guu, 1997) — have been

proposed as alternatives to more traditional (and relatively simpler) linear approaches and

to Value Function Iteration. However, little is known about the relative performance of the

new methods.1 This is unfortunate since these new methods, built on the long experience of

applied mathematics, promise superior performance. This paper tries to fill part of this gap

1For the stochastic growth model we are only aware of the comparison between Chebyshev Polynomials
and different versions of the dynamic programming algorithm and policy iteration undertaken by Santos
(1999) and Benítez-Silva et al. (2000). However those two paper (except one case in Santos, 1999) only deal
with the model with full depreciation and never with the other nonlinear methods.
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in the literature.

To do so, we use the canonical stochastic neoclassical growth model with leisure choice,

the workhorse of modern macroeconomics. We solve and simulate the model using two linear

approximations (based on the linearization of the model equilibrium conditions around the

deterministic steady state in levels and in logs) and five nonlinear approximations (Finite

Elements, Chebyshev Polynomials and three Perturbation Methods, 2nd order in levels, 2nd

order in logs and 5th order in levels). We also solve the model using Value Function Iter-

ation with a multigrid scheme. The results of the Value Function Iteration method are a

natural benchmark given our knowledge about the convergence and stability properties of

the procedure (see Santos and Vigo, 1998 and references therein).

We report results for a benchmark calibration of the model and for alternative calibrations

that change the variance of the productivity shock and the risk aversion. In that way we study

the performance of the methods both for a nearly linear case (the benchmark calibration)

and highly nonlinear cases (high variance/high risk aversion). In our simulations we keep a

fixed set of stochastic shocks common for all methods. That allows us to observe the dynamic

responses of the economy to the same driving process and how computed paths and their

moments differ for each approximation. We also assess the accuracy of the solution methods

by performing Euler Equation tests.

We document substantial differences in algorithmic complexity, time performance and

accuracy of the solution. Four main results deserve to be highlighted. First, Perturbation

Methods deliver an interesting compromise between accuracy, speed and programming bur-

den. For example, we show how a 5th order perturbation has an advantage in terms of

accuracy over all other solution methods for the benchmark calibration around the deter-

ministic steady state. However, perturbations suffer from the need of computing analytical

derivatives, a difficult task in low level but efficient languages such as C++ or Fortran 95.

Also, since their validity is local, they perform poorly away from the steady state and the

simulations display an annoying tendency to explode in the highly nonlinear case.

Second, since higher order perturbations display a much superior performance over linear

methods for a trivial marginal cost, we see a compelling reason to move most computations

currently undertaken with linear methods to at least a 2nd order perturbation approximation.

Third, even if the performance of linear methods is disappointing along a number of

dimensions, linearization in levels is preferred to log-linearization for both the benchmark

calibration and the highly nonlinear cases. This results is new and contradicts a common
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practice based on a misleading test model.

Fourth, the Finite Elements method performs very well for all parametrizations. It is

extremely stable and accurate over the range of the state space even for high values of the

risk aversion and the variance of the shock. This property is crucial in estimation procedures

where the accuracy is required to obtain unbiased estimates (see Fernández-Villaverde and

Rubio-Ramírez, 2003a). However it suffers from being probably the most complicated method

to implement in practice (although not the most intensive in computing time). Chebyshev

polynomials share all the good properties of the Finite Elements Method and are easier to

implement although they suffer from numerical instabilities.

Our results should serve as an encouragement of a wider use of Perturbation Methods, to

suggest the reliance on projection for problems that demand high accuracy and stability and

support the phasing out of pure linearizations.

The rest of the paper is organized as follows. Section 2 presents the canonical stochastic

neoclassical growth model. Section 3 describes the different solution methods used to ap-

proximate the policy functions of the model. Section 4 presents the benchmark calibration

and alternative robustness calibrations. Section 5 reports numerical results and section 6

concludes. A technical appendix provides further details about all the different methods.

2. The Stochastic Neoclassical Growth Model

As mentioned above we use the basic model in modern macroeconomics, the stochastic neo-

classical growth model with leisure as our test model for comparing different approximation

procedures. The popularity of the model and its applications (directly or with minor vari-

ants) to address a huge number of questions (see Cooley, 1995) makes it a natural laboratory

to explore different approximation methods. An alternative (which is actually a special case)

could have been the model with log utility function, no leisure choice and total depreciation,

a case where a simple closed form solution exists (see Sargent, 1987). However since it is

difficult to extrapolate the lessons from this particular example into statements for the more

general case, we prefer to pay the cost of not having an explicit analytic solution.2

Since the model is well known we only go through the minimum exposition required to fix

notation. There is a representative agent in the economy, whose preferences over stochastic

2Santos (2000) shows how changes in the curvature of the utility function influence the size of the Euler
equation errors.
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sequences of consumption and leisure are representable by the utility function

U = E0

∞X
t=1

βt−1

³
cθt (1− lt)1−θ

´1−τ
1− τ

(1)

where β ∈ (0, 1) is the discount factor, τ is the elasticity of intertemporal substitution, θ
controls labor supply and E0 is the conditional expectation operator.

There is one good in the economy, produced according to the aggregate production func-

tion yt = eztkαt l
1−α
t where kt is the aggregate capital stock, lt is aggregate labor and zt is a

stochastic process representing random technological progress. The technology follows the

process zt = ρzt−1+ ²t with |ρ| < 1 and ²t ∼ N (0,σ2). Capital evolves according to the law of
motion kt+1 = (1− δ)kt+ it and the economy must satisfy the resource constraint yt = ct+ it.

Since both welfare theorems hold in this economy, we can solve directly for the social

planner’s problem where we maximize the utility of the household subject to the production

function, the evolution of the stochastic process, the law of motion for capital, the resource

constraint and some initial conditions k0 and z0.

The solution to this problem is fully characterized by the equilibrium conditions:

³
cθt (1− lt)1−θ

´1−τ
ct

= βEt


³
cθt+1 (1− lt+1)1−θ

´1−τ
ct+1

¡
1 + αezt+1kα−1t+1 l

1−α
t+1 − δ

¢(2)
(1− θ)

³
cθt (1− lt)1−θ

´1−τ
1− lt = θ

³
cθt (1− lt)1−θ

´1−τ
ct

(1− α) eztkαt l
−α
t (3)

ct + kt+1 = eztkαt l
1−α
t + (1− δ) kt (4)

zt = ρzt−1 + εt (5)

and the boundary condition c(0, zt) = 0. The first equation is the standard Euler equation

that relates current and future marginal utilities from consumption, the second one is the

static first order condition between labor and consumption and the last two equations are

the resource constraint of the economy and the law of motion of technology.

Solving for the equilibrium of this economy amounts to finding three policy functions

for next period’s capital k (·, ·), labor l (·, ·) and consumption c (·, ·) that deliver the optimal
choice of the variables as functions of the two state variables, capital and the technology level.
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All the computational methods used below except for the value function iteration exploit

directly the equilibrium conditions. This characteristic makes the extension of the methods

to non-pareto optimal economies — where we need to solve directly for the market allocation

— straightforward. As a consequence we can export at least part of the intuition from the

computational results in the paper to a large class of economies.

3. Solution Methods

The system of equations listed above does not have a known analytical solution and we need

to use a numerical method to solve it.

The most direct approach is to attack the social planner’s problem directly using Value

Function Iteration. This procedure is safe and reliable and has useful convergence theorems

(Santos and Vigo, 1998). However it is extremely slow (see Rust, 1996 and 1997 for acceler-

ating algorithms) and suffers from a strong curse of the dimensionality. Also it is difficult to

use in non-pareto optimal economies (see Kydland, 1989).

Because of these problems, the development of new solution methods for dynamic equi-

librium models has been an important area of research in the last decades. These solution

methods can be linear or nonlinear. The first ones exploit the fact that many dynamic

equilibrium economies display behavior that is close to a linear law of motion.

The second group of methods correct the approximation for higher order terms. Two

popular alternatives among these nonlinear approaches are perturbation (Judd and Guu,

1997) and projection methods (Judd, 1992 and McGrattan, 1999). These approaches are

attractive because they are much faster than Value Function Iteration while sharing their

convergence properties. This point is not only of theoretical importance but of key practical

relevance. For instance in estimation problems, since an intermediate step in order to evaluate

the likelihood function of the economy is to solve for the policy functions, we want to use a

fast solution method since we may need to perform a huge number of these evaluations for

different parameter values. Convergence properties assure us that, up to some fixed accuracy

level, we are indeed getting the correct equilibrium path for economy.

In this paper we compare eight different methods. As our linear method, we use Un-

determined Coefficients to solve for the unknown coefficients of the policy functions using

linearized versions of the equilibrium equations of the model, both in levels and in logs.3

3Note that, subject to applicability, all different linear methods described in the literature -Linear
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For the nonlinear methods we compute a Finite Elements method, a spectral procedure with

Chebyshev Polynomials, three Perturbation Approaches (a 2nd order expansion in levels, a

5th order expansion in levels and a 2nd order expansion in logs) and Value Function Iteration.4

We now briefly describe each of these methods. The technical appendix provides many

more details about the procedures and the computational parameters choices.

3.1. Undetermined Coefficients in Levels

The basic idea of this approximation is to substitute the system of equilibrium conditions

with a linearized version of it. Solving a system of linear difference equations is a well under-

stood problem. A simple procedure is to guess a linear policy function with undetermined

coefficients, plug it in the linear system and solve the resulting quadratic system for the un-

known coefficients (see Uhlig, 1999 for details). Beyond simplicity and speed, the procedure

also allows us to derive some analytical results about the model (see Campbell, 1994).

If we linearize the set of equilibrium conditions presented above around the steady state

value x of the variables xt we get the linear system5:

θ (1− τ )− 1
c

(ct − c)− (1− τ ) (1− θ)

1− l (lt − l) = (6)

Et


θ(1−τ)−1

c
(ct+1 − c) +

³
β α(1−α)

l
y
k
− (1−τ)(1−θ)

1−l
´
(lt+1 − l)

+αβ y
k
zt+1 + β α(α−1)y

k2
(kt+1 − k)

 (7)

1

c
(ct − c) + 1

(1− l) (lt − l) = zt +
α

k
(kt − k)− α

l
(lt − l) (8)

(ct − c) + (kt+1 − k) = y
µ
zt +

α

k
(kt − k) + 1− α

l
(lt − l)

¶
+ (1− δ) (kt − k) (intralineal)

zt = ρzt−1 + εt (9)

Quadratic approximation (Kydland and Prescott, 1982), the Eigenvalue Decomposition (Blanchard and Kahn,
1980 and King, Plosser and Rebelo, 2002), Generalized Schur Decomposition (Klein, 2000 or the QZ decom-
position (Sims, 2002) among many others, should deliver the same results. The linear approximation of a
differentiable function is unique and invariant to differentiable parameters transformations. Our particular
choice of linear method is purely a matter of taste.

4We do not try to cover every single known method but rather to be selective and choose those methods
that we find more promising based either on experience or on intuition from numerical analysis. Below we
discuss how some apparently excluded methods are particular cases of some of our approaches.

5See the technical appendix for a discussion of alternatives points for the linearization.
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Simplification and some algebra deliver:

Abkt+1 +Bbkt + Cblt +Dzt = 0
Et
³
Gbkt+1 +Hbkt + Jblt+1 +Kblt + Lzt+1 +Mzt´ = 0

Etzt+1 = Nzt

where the coefficients A,B,C, ...,N are functions of the model parameters and bxt = xt − x.
Now we guess policy functions of the form bkt+1 = Pbkt+Qzt and blt = Rbkt+Szt, plug them

in the linear system and solve the resulting quadratic problem for the unknown coefficients

P , Q, R and S that imply a stable solution. Note that the procedure delivers a linear law

of motion for the choice variables that displays certainty equivalence (i.e. it does not depend

on σ). This point will be important when we discuss our results. The other variables in the

model are solved for using the linearized system and the computed policy functions.

3.2. Undetermined Coefficients in Logs

Since the exact solution of the stochastic neoclassical growth model in the case of log utility,

total depreciation and no leisure choice is loglinear, a large share of practitioners have fa-

vored the loglinearization of the equilibrium conditions of the model over linearization. Some

evidence in Christiano (1990) and Den Haan and Marcet (1994) suggest that this is the right

practice but the question is not completely settled. To cast light on this question and perform

a systematic comparison of both alternatives below, we repeat our undetermined coefficient

procedure in logs: we loglinearize the equilibrium conditions instead of linearizing them but

proceed otherwise as before.

In particular we take the equilibrium conditions of the model and we substitute each

variable xt by xebxt where x is the steady state and bxt = log xt
x
. Then we linearize with

respect to bxt around bxt = 0 (i.e. the steady state). After some algebra we get:
Abkt+1 +B bkt + Cblt +Dzt = 0

Et

³
Gbkt+1 +H bkt + Jblt+1 +Kblt + Lzt+1 +Mzt´ = 0

Etzt+1 = Nzt

where the coefficients A,B,C, ...,N are functions of the parameters of the model.
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We guess policy functions of the form bkt+1 = Pbkt +Qzt and blt = Rbkt + Szt, plug them in
the linear system and solve for the unknown coefficients.6

3.3. Finite Elements Method

The Finite Elements Method (Hughes, 2000 and McGrattan, 1999) is the most widely used

general-purpose technique for numerical analysis in engineering and applied mathematics.

Beyond being conceptually simple and intuitive, the Finite Elements Method features several

interesting properties. First, it provides us a lot of flexibility in the grid generation: we

can create very small elements (and consequently very accurate approximations of the policy

function) in the neighborhood of the mean of the stationary distribution of capital and larger

ones in the areas of the state space less travelled. Second, large numbers of elements can be

handled to exploit the sparsity of the problem. Third, the Finite Elements method is well

suited for implementation in parallel machines with the consequent scalability of the problem.

The Finite Elements Method searches for a policy function for labor supply of the form

lfe
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) where Ψij (k, z) is a set of basis functions and θ is a vector of

parameters to be determined. Note that given lfe
¡
k, z; θ

¢
, the static first order condition and

the resource constraint imply two policy function c(k, z; lfe
¡
k, z; θ

¢
) and k0

¡
k, z; lfe

¡
k, z; θ

¢¢
for consumption and next period capital. The essence of the Finite Elements method is to

chose basis functions that are zero for most of the state space except a small part of it, an

interval in which they take a very simple form, typically linear.7

First we partition the state space Ω in a number of nonintersecting rectangles [ki, ki+1]×
[zj, zj+1] where ki is the ith grid point for capital and zj is jth grid point for the technology

6Alternatively we could have taken the coefficients from the linearization in levels and transform them
using a nonlinear change of variables and the Chain Rule. The final results would be the same as the ones in
the paper. See Judd (2003) and Fernández-Villaverde and Rubio-Ramírez (2003b).

7We can have more elaborated basis functions as Chebyshev polynomials and solve the resulting Spectral-
Finite Elements problem. These type of schemes, known as the p-method are much less used than the so-called
h-method whereby the approximation error is reduced through successive mesh refinement.
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shock. As basis functions we set Ψij (k, z) = bΨi (k) eΨj (z) where

bΨi (k) =


k−ki

ki+1−ki if k ∈ [ki−1, ki]
ki+1−k
ki+1−ki if k ∈ [ki, ki+1]

0 elsewhere

eΨj (z) =


z−zj

zj+1−zj if z ∈ [zj−1, zj ]
zj+1−z
zj+1−zj if z ∈ [zj , zj+1]

0 elsewhere

Then we plug lfe
¡
k, z; θ

¢
and c(k, z; lfe

¡
k, z; θ

¢
) and k0

¡
k, z; lfe

¡
k, z; θ

¢¢
in the Euler

Equation to get a residual function R(kt, zt; θ).

A natural criterion for finding the θ unknowns is to minimize this residual function over

the state space given some weight function. To do sowe employ a Galerkin scheme where the

basis functions double as weights to get the nonlinear system of θ equationsZ
Ω

Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j (10)

on our θ unknowns. Solving this system delivers our desired policy function lfe
¡
k, z; θ

¢
from

which we can find all the other variables in the economy.8

3.4. Spectral Method (Chebyshev Polynomials)

Like Finite Elements, spectral methods (Judd, 1992) search for a policy function of the form

lsm
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) where Ψij (k, z) is a set of basis functions and θ is a vector of

parameters to be determined. The difference with respect to the previous approach is that

the basis functions are (almost surely) nonzero, i.e. we search for a global solution instead of

pasting together local solutions as we did before.

Spectral methods have two main advantages over the Finite Elements method. First, they

are generally much easier to implement. Second, since we can easily handle a large number of

basis functions the accuracy of the procedure is potentially very high. The main drawback of

8Note that policy function iteration (see for example Coleman, 1990) is just a particular case of the Finite
Elements when we pick a collocation scheme in the points of an exogenously given grid, linear basis functions
and an iterative scheme to solve for the unknown coefficients. Experience from numerical analysis suggests
that nonlinear solvers (as the simple Newton scheme that we used for our unknown coefficients) or multigrid
schemes outperform pure iterative algorithms (see Briggs, Henson, and McCormick, 2000). Also Galerkin
weigthings are superior to collocation for Finite Elements (Boyd, 2001).
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the procedure is that it approximates the true policy function globally. If the policy function

displays a rapidly changing local behavior the scheme may deliver a poor approximation.

A common choice for the basis functions is to set the tensor Ψij (k, z) = bΨi (k) eΨj (z)

where bΨi (·) and eΨj (·) are Chebyshev polynomials (see Boyd, 2001 and Fornberg, 1998 for
justifications of this choice of basis functions). These polynomials can be recursively defined

by T0 (x) = 1, T1 (x) = 1 and for general n, Tn+1 (x) = 2xTn (x)− Tn−1 (x).9
As in the previous case we use the two Euler Equations with the budget constraint substi-

tuted in to get a residual function R(kt, zt; θ). Instead of a Galerkin weighting, computational

experience (Fornberg, 1998) suggests that, for spectral methods, a collocation (also known as

pseudospectral) criterion delivers the best trade-off between accuracy and ability to handle

large number of basis functions. Collocation uses as weights the n × m dirac functions δj

with unit mass in n×m points (n from the roots of the last polynomial used in the capital

dimension and m from the points in Tauchen’s, 1986 approximation to the stochastic process

for technology). This scheme results in the nonlinear system of n×m equations

R(kij , zij; θ) = 0 for ∀ n×m collocation points (11)

in n×m unknowns. This system is easier to solve than (10) since we will have in general less

basis functions and we avoid the integral induced by the Galerkin weigthing.10

3.5. Perturbation

Perturbation methods (Judd and Guu, 1997) build a Taylor series expansion of the policy

functions of the economy around some point of the state space k0, z0 and a perturbation

parameter, in our case the standard deviation of the innovation to the productivity level σ.11

9The domain of the Chebyshev polynomials is [−1, 1]. Since our state space is different in general we use
a linear mapping from [a, b] into [−1, 1].
10Parametrized expectations (see Marcet and Lorenzoni, 1999 for a description) is a spectral method that

uses monomials (or exponents of) in the current states of the economy and montecarlo integration. Since
monomials are highly collinear and determinist integration schemes are preferred for low dimensional problems
over montecarlo approaches (Geweke, 1996), we stick with Chebyshev polynomials as our favorite spectral
approximation. See Christiano and Fisher (2000) for a thorough explanation.
11The choice of perturbation parameter is model-dependent. Either the standard deviation (for discrete

time models) or the variance (for continuous time models) are good candidates for stochastic equilibrium
economies.
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The policy function for consumption takes the form

cp(k, z, σ) =
X
i,j,m

aijm (k − k0)i (z − z0)j σm

and all the other policy function will have analogous forms.

The key idea of the perturbation methods is to play with the parameter σ to find a

case where the model can be solved analytically and to exploit implicit-function theorems

to pin down the unknown coefficients aijm in a recursive fashion.12 In particular we will set

aijm =
∂i+j+mcp(k,z,σ)

∂ki∂zj∂σm

¯̄̄
k,z,0

, i.e. equal to the derivative of the policy function evaluated at the

steady state value of the variables and σ = 0, a point (the deterministic case) in which we

can compute analytic expressions easily. Perturbations only deliver an asymptotically correct

expression around the deterministic steady state for the policy function but given the positive

experience of asymptotic approximations in other fields of applied mathematics, there is the

potential for good nonlocal behavior (see Bender and Orszag, 1999).

Our perturbation scheme works as follows. We take the model equilibrium conditions and

we substitute in the true (but unknown) policy functions c(k, z,σ), l(k, z, σ) and k0(k, z, σ).

Then we take successive derivatives with respect to the state variables and σ. Since the

equilibrium conditions must be equal to zero for any value of k, z and σ, the derivatives of

any order will also be equal to zero. Evaluating the derivatives at the steady state value of

the variables and σ = 0 delivers a system of equations on the unknown coefficients aijm.

Solution of the systems is simplified because of the recursive structure of the problem.

The constant term a000 must be equal to consumption in the deterministic steady state.

Therefore, to pin it down we compute the deterministic steady state of the model and let

a000 = c. Substituting this term (and other constant terms of the policy functions) in the

system of first derivatives of the equilibrium conditions generates a set of quadratic equations

in first order unknown coefficients. The solution to that system is the same that in our

undetermined coefficient approximation before. This is the reason why we can interpret

undetermined coefficients as a first order perturbation.

The next step is to take second order derivatives. In this system we substitute the known

coefficients from the previous two steps and we find a linear system on the second order

terms of the policy function. After solving for these terms we take the system of third

12In a complementary way we can also use σ to develop analytical asymptotic methods to characterize the
average behavior of the economy. See Williams (2002).
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order derivatives, substitute the known constant (linear and second order terms) and again

we get a linear system that we can easily solve. Iterating the procedure we could see that

all the coefficients aijm after the linear term are just the solution to linear systems. The

intuition of why only the system for the linear term is quadratic is simple: the stochastic

neoclassical growth model has two saddle paths and the quadratic system is just recording

that information. Once we have picked the right path all the other terms are just refinements

of the path including information on σ that does not appear in the linear approximation.

The burden of the method is taking all the required derivatives. Paper and pencil be-

come virtually infeasible after the second derivatives. Higher order numerical derivatives

accumulate enough errors to prevent their use. The best alternative is the use of symbolic

manipulation software such as Mathematica. However that means that we lose the speed of

low level languages as C++ or Fortran 95. In the absence of publicly available libraries for

analytic derivation in this languages, the required use of less powerful software limits the

applicability of perturbation.

When implementing the approximation we face two choices. First we need to decide

the order of the perturbation. We choose 2nd and 5th order perturbations. Second order

approximations have received attention because of the easiness of their computation (see

Schmitt-Grohé and Uribe, 2002 and Sims, 2000) and we find of interest to assess how much

gain is obtained by this simple correction of the linear policy functions. Then we pick a high

order approximation. After the fifth order the coefficients are nearly equal to the machine

zero (in a 32-bits architecture of the standards PCs) and further terms do not add much to the

behavior of the approximation. The second choice is whether to undertake our perturbation

in levels and logs. We performed both cases but because of space considerations we only

present results in levels except for the 2nd order approximation for the high variance/high

risk aversion case where we report results both in levels and in logs. The omitted results were

nearly indistinguishable from perturbations in levels since the additional quadratic term in

both expansions corrected for the differences in the linear term between levels and logs.

3.6. Value Function Iteration

Finally we solve the model using value function iteration. Since the dynamic algorithm is

well known we only present a sparse discussion.

We generate a grid for capital and we discretize the productivity level using the method

proposed by Tauchen (1986). We use a multigrid scheme where the last step has a uniform
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one million points grid, with 25000 points for capital and 40 for the productivity level. Then

for each point in the grid we iteratively compute the Bellman operator:

TV (k, z) = max
c>0,0<l<1,k0>0

³
cθ (1− l)1−θ

´1−τ
1− τ

+ βEV (k0, z0|z) (12)

c+ k0 = exp (z) kαl1−α + (1− δ) k (13)

z0 = ρz + ε (14)

We explore different interpolation schemes (linear, quadratic and Schumaker, 1993) for

values of the function outside the grid until convergence and report the ones with better

performance.

4. Calibration: Benchmarks Case and Robustness

To make our comparison results as useful as possible we pick a benchmark calibration and

we explore how those results change as we move to different “unrealistic” calibrations.

We select the benchmark calibration values for the stochastic neoclassical growth model as

follows. The discount factor β = 0.9896matches an annual interest rate of 4% (see McGrattan

and Prescott, 2000 for a justification of this number based on their measure of the return on

capital and on the risk-free rate of inflation-protected U.S. Treasury bonds). The risk aversion

τ = 2 is a common choice in the literature. θ = 0.357 matches the microeconomic evidence

of labor supply to 31% of available time in the deterministic steady state. We set α = 0.4 to

match labor share of national income (after the adjustments to National Income and Product

Accounts suggested by Cooley and Prescott, 1995). The depreciation rate δ = 0.0196 fixes

the investment/output ratio and ρ = 0.95 and σ = 0.007 match the stochastic properties of

the Solow residual of the U.S. economy. The chosen values are summarized in table 4.1.

Table 4.1: Calibrated Parameters

Parameter β τ θ α δ ρ σ

Value 0.9896 2.0 0.357 0.4 0.0196 0.95 0.007

To check robustness, we repeat our analysis for five other calibrations. As explained in

the introduction this analysis allows us to study the relative performance of the methods

both for a nearly linear case (the benchmark calibration) and for highly nonlinear cases (high

variance/high risk aversion). We increase the risk aversion to 10 and 50 and the standard
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deviation of the productivity shock to 0.035. Although below we concentrate on the results

for the benchmark and the extreme case, the intermediate cases are important to check that

our comparison across calibrations does not hide non-monotonicities. Table 4.2. summarizes

our different cases.

Table 4.2: Sensitivity Analysis

case σ = 0.007 σ = 0.035

τ = 2 Benchmark Intermediate Case 3

τ = 10 Intermediate Case 1 Intermediate Case 4

τ = 50 Intermediate Case 2 Extreme

Also we briefly discuss some results for the deterministic case σ = 0 since they well help

us understand some characteristics of the proposed methods.

5. Numerical Results

In this section we report results from our different methods and calibrations. We concentrate

on the benchmark and extreme calibrations, reporting the intermediate cases when they

clarify the argument.13 First we present and discuss the computed policy functions. Second

we show some simulations. Third we perform accuracy tests, the χ2 test proposed by Den

Haan and Marcet (1990), the Euler Error function proposed by Judd (1992) and Judd and

Guu (1997) and a weighting of the Euler Equation error using the simulated distributions.

Finally we discuss some details about implementation and computing time.

5.1. Policy Functions

One of the first outputs of the computation is the policy functions. We plot the decision rules

for labor supply when z = 0 over a capital interval centered around the deterministic steady

state level of capital for the benchmark calibration in Figure 5.1.1 and for investment in

Figure 5.1.2.14 Labor supply is very similar in all methods, especially in the neighborhood of

23.14, the deterministic steady state level of capital. Only far away from that neighborhood

we appreciate any relevant difference.15 A similar description applies to the policy rule for

13All additional results are available upon request.
14Similar figures could be plotted for other values of z. We omit them because of space considerations.
15We must be cautious mapping differences in choices into differences in utility (see Santos, 2000). The

Euler Error function below provides a better view of the welfare consequences of different approximations.
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investment except for the loglinear approximation where the rule is pushed away from the

other ones for low and high capital. The difference is big enough that even the monotonicity

of the policy function is lost. In this behavior rests already a hint of the problems with

loglinearization that we will discuss below.

Dramatic differences appear as we begin to increase risk aversion and the variance of the

shock. The biggest discrepancy are for the extreme calibration. The policy functions for this

case are presented in Figures 5.1.3 and 5.1.4. In these figures we change the interval reported

because, due to the risk aversion/high variance of the calibration, the equilibrium paths

will fluctuate around much higher levels of capital (between 30 and 45) when the solution

method accounts for that high variance (i.e. all except linearizations). Our new interval is

consequently more representative.

We highlight several results. First, the linear and loglinear policy functions deviate from

all the other ones: they imply much less labor (around 10%) and investment (up to 30%)

than the group of nonlinear methods. This difference in level is due to the lack of correction

for increased variance of the technology shock by these two approximations since they are

certainty-equivalent. This is proof of how linearization and certainty equivalence produce

biased results. Second just correcting for quadratic terms in the 2nd order perturbation allows

to get the right level of the policy functions. This is another key point in our argument in favor

of phasing out linearizations and substitute them by at least 2nd order perturbations. Third,

the policy function for labor and investment approximated by the 5th order perturbation

changes from concavity into convexity for values of capital bigger than 45. (contrary to the

theoretical results) This change of slope will cause problems below in our simulations.16

5.2. Simulations

Practitioners often rely in statistics from simulated paths of the economy. We computed 1000

simulations of 500 observations each for all different methods. To make comparisons mean-

ingful we keep the productivity shock constant across methods for each particular simulation.

We plot in Figures 5.2.1-5.2.4 the histograms for output, capital, labor and consumption

for the different methods for the benchmark calibration (where we have dropped the first

100 observations of each simulation as a burn-in period). As we could have suspected after

16One last result is that the policy functions have a positive slope. This is because households are so
risk-adverse that they want to work hard when capital is high to accumulate even more capital and insure
against future bad shocks. Numerically we found that the change in slope occurs for τ around 40.
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looking at the policy functions, the histograms suggest that the different methods deliver

basically the same behavior for the economy. That impression is reinforced by Figures 5.2.5

and 5.2.6 where we plot the paths of output and capital for one randomly chosen simulation.

All paths are roughly equal. This similarity of the simulation paths causes that the business

cycle statistics for the model under different solution methods (not reported here but available

upon request) to be nearly identical.

We repeat the same exercise for the extreme calibration in Figures 5.2.7-10. We see three

groups: first the two linear methods, second the perturbations and finally the three global

methods (value function, Finite Elements and Chebyshev). The last two groups have the

histograms shifted to the left: much more capital is accumulated and more labor supplied by

all the methods that allow for corrections by variance. For example the empirical distributions

of nonlinear methods accumulate a large percentage of their mass between 40 and 50 while

the linear methods rarely visit that region. Also, it is clear from the figures that even

different non-linear methods provide quite a diverse description of the behavior of economy.

In particular the three global methods are in a group among themselves (nearly on top of each

other) separated from perturbations that lack enough variance. Figures 5.2.11 and 5.2.12 plot

a simulation of the economy randomly chosen where the differences in output and capital are

easy to visualize.

Higher risk aversion/high variance also have an impact for business cycle statistics. For

example investment is three times more volatile in the linear simulation than with Finite

Elements despite the filtering of the data.

The simulations show an important drawback of using perturbations to characterize equi-

librium economies. For example in 39 simulations out of the 1000 (not shown on the his-

tograms) 5th order perturbation generated a capital that exploded. The reason for that

abnormal behavior is the change in the slope of the policy functions reported above. When

the economy begins to travel that part of the policy functions the simulation falls in an un-

stable path and the results need to be disregarded. This instability property is an important

problem of perturbations that may limit its use.17

17We also had problems in the high risk aversion/high variance with 1 2nd order perturbations, 1 log 2nd

order perturbations and 65 linearizations in levels (those last ones because capital goes below zero). In the
benchmark calibration we did not have any problems.
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5.3. A χ2 Accuracy Test

From our previous discussion it is clear that the consequences for simulated equilibrium paths

of using different methods are important. A crucial step in our comparison is then the analysis

of accuracy of the computed approximations to figure it out which one we should prefer.

We begin that investigation implementing the χ2−test proposed by Den Haan and Marcet
(1990). The authors noted that if the equilibrium of the economy is characterized by a system

of equations f (yt) = Et (φ (yt+1, yt+2, ..)) where the vector yt contains all the n variables that

describe the economy at time t, f : <n → <m and φ : <n × <∞ → <m are known functions
and Et (·) represent the conditional expectation operator, then

Et (ut+1 ⊗ h (xt)) = 0 (15)

for any vector xt measurable with respect to t with ut+1 = φ (yt+1, yt+2, ..) − f (yt) and
h : <k → <q being an arbitrary function.
Given one of our simulated series of length T from the method i in previous section,

{yit}Tt=1, we can find
©
uit+1, x

i
t

ªT
t=1

and compute the sample analog of (15):

BiT =
1

T

TX
t=1

uit+1 ⊗ h
¡
xit
¢

(16)

Clearly (16) would converge to zero as T increases almost surely if the solution method

were exact. However, given the fact that we only have numerical methods to solve the

problem, this may not be the case in general. However the statistic T (BiT )
0
(AiT )

−1
BiT where

AiT is a consistent estimate of the matrix
P∞

t=−∞Et
£
(ut+1 ⊗ h (xt)) (ut+1 ⊗ h (xt))0

¤
given

solution method i, converges in distribution to a χ2 with qm degrees of freedom under the

null that (15) holds. Values of the test above the critical value can be interpreted as evidence

against the accuracy of the solution.

Since any solution method is an approximation, as T grows we will eventually always

reject the null. To control for this problem, we can repeat the test for many simulations and

report the percentage of statistics in the upper and lower critical 5% of the distribution. If

the solution provides a good approximation, both percentages should be close to 5%.

We report results for the benchmark calibration in Table 5.3.1 and plot the Empirical CDF
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in Figure 5.3.1.18 All the methods perform similarly and reasonably close to the nominal

coverages,with a small bias towards the right of the distribution. Also, and contrary to

some previous findings for simpler models (as reported by Den Haan and Marcet, 1994 and

Christiano, 1990) it is not clear that we should prefer loglinearization to linearization.

Table 5.3.1: χ2 Accuracy Test, τ = 2/σ = 0.007

Less than 5% More than 95%

Linear 3.10 5.40

Log-Linear 3.90 6.40

Finite Elements 3.00 5.30

Chebyshev 3.00 5.40

Perturbation 2 3.00 5.30

Perturbation 5 3.00 5.40

Value Function 2.80 5.70

We present the results for the extreme case in table 5.3.2 and Figure 5.3.2.19 Now the

performance of the linear methods deteriorates enormously, with quite unacceptable coverages

(although again linearization in levels is no worse than loglinearization). On the other hand

nonlinear methods deliver quite a good performance, with very reasonable coverages on the

upper tail (except 2nd order perturbations). The lower tail behavior is poor for all methods.

Table 5.3.2: χ2 Accuracy Test, τ = 50/σ = 0.035

Less than 5% More than 95%

Linear 0.43 23.42

Log-Linear 0.40 28.10

Finite Elements 1.10 5.70

Chebyshev 1.00 5.20

Perturbation 2 0.90 12.71

Perturbation 2-Log 0.80 22.22

Perturbation 5 1.56 4.79

Value Function 0.80 4.50

18We use a constant, kt, kt−1, kt−2 and zt as our instruments, 3 lags and a Newey-West Estimator of the
matrix of variances-covariances (Newey and West, 1987).
19The problematic simulations as described above are not included in these computations.
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5.4. Non Local Accuracy test

The previous test is a simple procedure to evaluate the accuracy of the solution procedure.

That approach may suffer, however, from three problems. First, since all methods are just

approximations the test will display poor power. Second orthogonal residuals can be compat-

ible with large deviations from the optimal policy. Third, by its design the model will spend

most of the time in those regions where the density of the stationary distribution is higher.

Often it is important to assess the accuracy of a model far away from the steady state as in

estimation procedures where we want to explore the global shape of the likelihood function.

Judd (1992) proposes to determine the quality of the solution method defining normalized

Euler Equation Errors. First note that in our model the intertemporal condition

u0c (c (kt , zt) , l (kt , zt)) = βEt {u0c (c (k (kt , zt) , zt+1) , l (k (kt , zt) , zt+1))R (kt , zt , zt+1)}
(17)

where R (kt , zt, zt+1) =
¡
1 + αezt+1k (kt , zt)

α−1 l (k (kt , zt) , zt+1)
1−α − δ

¢
is the gross return

rate of capital, should hold exactly for given kt and zt.

Since the solution methods used are only approximations, (17) will not hold exactly when

evaluated using the computed decision rules. Instead, for solution method i with associated

policy rules ci (· , ·) , li (· , ·) and ki (· , ·) and the implied gross return of capital Ri (kt , zt, zt+1),
we can define the Euler Equation error function EEi (· , ·) as:

EEi (kt , zt) ≡ 1−

Ã
βEt{u0c(ci(ki(kt ,zt) ,zt+1),li(ki(kt ,zt) ,zt+1))Ri(kt ,zt,zt+1)}

θ(1−li(ki(kt ,zt) ,zt+1))(1−θ)(1−τ)

! 1
θ(1−τ)−1

ci (kt , zt)
(18)

This function determines the (unit free) error in the Euler Equation as a fraction of the

consumption given the current states kt and zt and solution method i. Judd and Guu (1997)

interpret this error as the relative optimization error incurred by the use of the approximated

policy rule. For instance if EEi (kt , zt) = 0.01, then the agent is making a $1.00 mistake for

each $100 spent. In comparison, EEi (kt , zt) = 1e−8 implies that the agent is making a 1

cent mistake for each million of dollars spent.

The Euler Equation error is also important because we know that under certain conditions,

the approximation error of the policy function is of the same order of magnitude as the size of

the Euler equation residual and correspondingly the change in welfare is of the square order

of the Euler equation residual (Santos, 2000).
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Figures 5.4.1-5.4.10 present the Euler Equation Error functions for our benchmark calibra-

tion. Figure 5.4.1 shows the results for the linear approximation to the equilibrium conditions

for capital between 70% and 130% of the deterministic steady state level (23.14) and for a

range of technology shocks from -0.065 to 0.065 (with zero being the level of technology in

the deterministic case).20 We plot the absolute errors in base 10 logarithms to ease interpre-

tation. A value of -3 means $1 mistake for each $1000, a value of -4 a $1 mistake for each

$10000 and so on. As intuition would suggest the error is much lower around the central

regions, closer to the point around which we make our linear expansion. The quality of the

approximation deteriorates as we move away from the central regions and quickly reaches -3.

Figure 5.4.2 follows the same convention and plots the errors of the loglinear approximation.

We can see a pattern with two narrow valleys of high accuracy surrendered by regions with

worse errors. The origin of these valleys will be explained below. As in the case of the χ2-test,

from the comparison of figures 5.4.1 and 5.4.2 it is not obvious that we should prefer loglinear

approximations to straight linearizations.

The next two figures display the results for Finite Elements (figure 5.4.3) and Chebyshev

polynomials (figure 5.4.4). Finite Elements delivers a very robust performance along the state

space, specially for technology shocks between -0.02 and 0.02 (our mesh is finer in this region)

where the errors fluctuate around -7 (with some much better points around the nodes of the

elements). Only for large shocks (where our mesh is coarser) the performance of finite elements

deteriorates. Chebyshev polynomials emerge from figure 5.4.4 as a very competitive solution

method: the error is consistently below -8. Given the much lower computational burden of

Chebyshev polynomials versus Finite Elements, the result is encouraging for spectral methods.

Figures 5.4.5 and 5.4.6 present the Euler Error functions for the 2nd and 5th order pertur-

bations. Figure 5.4.5 proves how we can strongly improve the accuracy of the solution over

a linear approximation paying only a trivial additional cost that delivers a result nearly as

good as Finite Elements. Correcting for variance and quadratic terms reduces Euler errors

by an order of magnitude over the results from linear methods. The 5th order approximation

performance is superb. Over the whole range, its error is less than -7 and in the central

regions up to —8.

Finally Figure 5.4.7 graphs the Euler Errors for the Value Function iteration that fluctuate

around -5 with the ups and downs induced by the grid and the expected uniform performance

over the state space.

200.065 corresponds to roughly 99.5th percentile of the normal distribution given our parameterization.
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To get a better view of the relative performance of each approximation and since plotting

all the error functions in a same plot is cumbersome, Figure 5.4.8 displays a transversal cut of

the errors when the technology is equal to zero. Here we can see many of the same results we

just discussed. The loglinear approximation is worse than the linearization except at the two

valleys. Finite Elements and Chebyshev polynomials perform much better than the linear

methods (three orders of magnitude even at the steady state) and perturbations’ accuracy is

impressive. Other transversal cuts at different technology levels reveal similar patterns.

To explore further the origin of the errors we plot in figure 5.4.9 the level of the euler

errors at z = 0. With this graph we can explain the two valleys of the loglinearization: at the

deterministic steady state level of capital loglinearization induces a negative bias in the euler

equation while the errors tend to grow quickly away from it. The two valleys are just the

two neighborhoods where the parabola crosses the zero. The parabola of the linearization is

always positive (something by itself neutral) but much flatter. Our reading of these shapes is

that linearization may be better than loglinearization after all. Figure 5.4.10 plots the same

figure eliminating the two linear approximations to zoom the behavior of the error of all the

other methods, that are of a much smaller magnitude.

We can combine the information from the simulations and from the Euler Errors in-

tegrating the (absolute) Euler errors using the computed distribution. This exercise is a

generalization of the Den Haan-Marcet test where instead of using the conditional expec-

tation operator we estimate an unconditional expectation using the population distribution.

This integral is a welfare measure of the loss induced by the use of the approximating method

over the exact solution.

Table 5.4.1: Integral of the Euler Errors (x10−4)

Linear 0.2291

Log-Linear 0.6306

Finite Elements 0.0537

Chebyshev 0.0369

Perturbation 2 0.0481

Perturbation 5 0.0369

Value Function 0.0224

Results are presented in Table 5.4.1.21 Our interpretation of the numbers reinforces our

21We use the distribution from Value Function Iteration. Since the distributions are nearly identical for all
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belief that linearization in levels must be preferred over loglinearization for the benchmark

calibration of the stochastic neoclassical growth model with leisure and that the performance

of perturbation methods is excellent.

Another view of the same information is provided by Figure 5.4.11 where we plot a

nonparametric estimate of the marginal distribution of capital around z = 0 and the Euler

Errors around z = 0. This figure allow us to get a feeling of where the stationary distribution

is spending time and how big are the Euler errors there.

The problems of linearization are not as much due to the presence of uncertainty but

to the curvature of the exact policy functions and second that the loglinear approximation

is clearly inferior to a linearization in levels. Even with no uncertainty the Euler Errors

of the linear methods (not reported here) are very poor in comparison with the nonlinear

procedures.

Figures 5.4.12-5.4.20 display results for the extreme calibration τ = 50 and σ = 0.035

(again we have changed the capital interval to make it representative). Figure 5.4.12 shows

the huge errors of the linear approximation, of order -3 in the relevant parts of the state space.

Figure 5.4.13 plots even worse error for the log-linear approximation, of around -2. Figure

5.4.14 shows how Finite Elements still displays a robust and stable behavior over the state

space. This result is not a big surprise since the global character of the method allows it to

pick the strong nonlinearities induced by high risk aversion and high variance. Chebyshev’s

performance is also very good and delivers similar accuracies. The perturbations of order 2

and 5 keep their ground and perform relatively well for a while but then, around 40 strongly

deteriorate. Value Function Iteration gets a relatively uniform -5. We plot a transversal cut

in Figure 5.4.20. This graph summarizes much of the discussion above including the fact that

the errors of the perturbations (especially of second order) are not completely competitive

against projection methods.

This intuition is reinforced by Table 5.4.2 with the integral of the Euler Errors computed

as in the benchmark calibration. From the table we can see two clear winner (Finite Elements

and Chebyshev) and a clear loser (log-linear) with the other results somehow in the middle.

The poor performance of the 5th order approximation is due to the very quick deterioration

of the approximation outside the range of capital between 20 and 45. It is interesting to note

methods, the table is also nearly the same if we use any other distributions. The only caveat is that using
that distribution slightly favors the integral from Value Function Iterations.
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that the 2nd order perturbation in logs does better than in levels.22

Table 5.4.2: Integral of the Euler Errors (x10−4)

Linear 7.12

Log-Linear 24.37

Finite Elements 0.34

Chebyshev 0.22

Perturbation 2 7.76

Perturbation 5 8.91

Perturbation 2 (log) 6.47

Value Function 0.32

-

We finish remarking that the results the four intermediate parametrizations, not included

here, did not uncover any non-monoticity of the Euler Errors as they moved in the directions

expected when we changed the parameters.

5.5. Implementation and Computing Time

We conclude this section by briefly discussing implementation and computing time. Tra-

ditionally (for example Taylor and Uhlig (1990)) computational papers have concentrated

in the discussion of the running times of the approximation. Being an important variable,

sometimes it is of minor relevance in comparison with the implementation time of an algo-

rithm (i.e. the programming and debugging time). A method that may run in a fraction

of a second in a regular PC but requires thousands a line of code may be less interesting

than a method that takes a minute but only has a few dozens of lines of code unless we

need to repeat the computation once and again (as in an estimation problem). Of course

implementing time is a much more subjective measure than running time but we feel that

some comments about it are important. In particular we use lines of code as a proxy for the

implementation complexity.23

22We again use the stationary distribution of capital from Value Function Iteration. The results with any
other two global nonlinear method are nearly the same (see again figure 5.2.8 where the three distribution
are on top of each other).
23Being the same programmers across all different methods somehow controls for the fixed effects of stylistic

idiosyncrasies. We must repeat however that comparison of lines is only an imperfect measure of complexity
and that some correction is required for the relative verbosities of Matlab, Mathematica and Fortran 95.
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The Undetermined Coefficients method (both in level and in logs), computed in Matlab

6.5, takes only a fraction of a second in a 1.7 Mhz Xeon PC running Windows XP (the ref-

erence computer for all times below), and it is very simple to implement (the code for both

methods takes less than 140 lines of code with generous comments). Similar in complexity is

the code for the perturbations, only around 64 lines of code in Mathematica 4.1 (code that

can also compute linearization as a special case) although Mathematica is much less verbose

than Matlab. The code runs in between 2 and 10 seconds depending on the order of the

expansion. This observation is the basis of our comment the marginal cost of perturbations

over linearizations is close to zero. The Finite Elements method is perhaps the most compli-

cated method to implement: our code in Fortran 95 has above 2000 lines and requires some

ingenuity. Running time is moderate, around 20 minutes. Chebyshev polynomials are an

intermediate case. The code is much shorter, around 750 lines of Fortran 95. Computation

time varies between 20 seconds and 3 minutes but the solution of the system of equations

requires some effort searching for an appropriate initial guess which is included in the com-

putation time. Finally, Value Function Iteration code is around 600 lines of Fortran 95 but

it takes between 20 and 250 hours to run.

6. Conclusions

In this paper we have compared a set of different solution methods for dynamic equilibrium

economies. We have found that perturbation methods are an attractive compromise between

accuracy, speed and programming burden but they suffer from the need of computing ana-

lytical derivatives and from some instabilities problems for highly nonlinear problems. In any

case they must clearly be preferred to linear methods as the simple, default procedure for

computing dynamic equilibrium economies. In the case that a linear method is required (for

instance if we want to apply the Kalman filter for estimation purposes), the paper suggest

that is better to linearize in levels than in logs. The Finite Elements method is a robust, solid

method that conserves its accuracy over a long range of the state space even for high values

of the risk aversion and the variance of the shock and that is perfectly suited for paralleliza-

tion and estimation purposes (see also Fernández-Villaverde and Rubio, 2002). However it is

costly to implement and moderately intensive in running time. We also found that Cheby-

shev Polynomials share most of the good properties of Finite Elements and it maybe easier

to implement.
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We finish by pointing out to several lines of future research. First the accuracy of 2nd order

approximations indicates that powerful additional analytical results regarding the stochastic

growth model can be obtained extending Campbell’s (1994) exercise to the quadratic terms

of the policy function. Similarly the results in Williams (2002) suggest that further work

integrating perturbation method with small noise asymptotics are promising. Finally we

are exploring in a companion paper (Fernández-Villaverde and Rubio-Ramírez, 2003c) the

application of newer nonlinear methods as the Adaptive Finite Element method (Verfürth,

1996), the Weighted extended B-splines Finite Element approach (Höllig, 2003) and Element-

Free Galerkin Methods (Belytschko et al., 1996) that improve on the basic Finite Elements

approach exploiting local information and error estimator values for the elements.
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7. Technical Appendix

In this technical appendix we offer some additional details on the implementation of our
approximations.

7.1. Undetermined Coefficients in Levels

First we find the deterministic steady state of the model: k = Ψ
Ω+ϕΨ

, l = ϕk, c = Ωk

and y = kαl1−α where ϕ =
³
1
α

³
1
β
− 1 + δ

´´ 1
1−α
, Ω = ϕ

1
α − δ and Ψ = θ

1−θ (1− α)ϕ−α.
If we linearize the set of equilibrium conditions around those variables values we get:

θ (1− τ )− 1
c

(ct − c)− (1− τ ) (1− θ)

1− l (lt − l) =

Et

(
θ(1−τ)−1

c
(ct+1 − c) +

³
β α(1−α)

l
kα−1l1−α − (1−τ)(1−θ)

1−l
´
(lt+1 − l)+

αβkα−1l1−αzt+1 + β α(α−1)
k
kα−1l1−α (kt+1 − k)

)
1

c
(ct − c) + 1

(1− l) (lt − l) = zt +
α

k
(kt − k)− α

l
(lt − l)

(ct − c) + (kt+1 − k) = kαl1−α
µ
zt +

α

k
(kt − k) + 1− α

l
(lt − l)

¶
+ (1− δ) (kt − k)

zt = ρzt−1 + εt

or

α1 (ct − c) + α2 (lt − l) = Et {α1 (ct+1 − c) + α3 (lt+1 − l) + α4zt+1 + α5 (kt+1 − k)}
(ct − c) = czt + α

k
c (kt − k) + α6 (lt − l)

(ct − c) + (kt+1 − k) = yzt + yα
k
(kt − k) + α7 (lt − l) + (1− δ) (kt − k)

zt = ρzt−1 + εt

where

α1 =
θ(1−τ)−1

c
α2 = − (1−τ)(1−θ)

1−l
α3 = β α(1−α)

l
kα−1l1−α − (1−τ)(1−θ)

1−l α4 = αβkα−1l1−α

α5 = β α(α−1)
k
kα−1l1−α α6 = −

³
α
l
+ 1

(1−l)
´
c

α7 = y
1−α
l

y = kαl1−α

We group terms to eliminate one of the equations of the system and obtain the system:

Abkt+1 +Bbkt + Cblt +Dzt = 0
Et
³
Gbkt+1 +Hbkt + Jblt+1 +Kblt + Lzt+1 +Mzt´ = 0

Etzt+1 = Nzt
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where A = 1, B = α
k
c− y α

k
− (1− δ), C = α6 − α7, D = c− y, G = α1

α
k
c+ α5, H = −α1αk c,

J = α1α6 + α3, K = − (α1α6 + α2), L = (α1c+ α4), M = −α1c, N = ρ and bxt = xt − x.
Now we can guess policy functions of the form bkt+1 = Pbkt+Qzt and blt = Rbkt+ Szt, plug

them in and get:

A
³
Pbkt +Qzt´+Bbkt + C ³Rbkt + Szt´+Dzt = 0

G
³
Pbkt +Qzt´+Hbkt + J ³R³Pbkt +Qzt´+ SNzt´+K ³Rbkt + Szt´+ (LN +M) zt = 0
Since these equations need to hold for any value bkt or ztwe need to equate each coefficient

to zero, on bkt:
AP +B + CR = 0 (19)

GP +H + JRP +KR = 0 (20)

and on zt:

AQ+ CS +D = 0 (21)

(G+ JR)Q+ JSN +KS + LN +M = 0 (22)

To solve these system of four equations on four unknowns, we solve for R on (19):

R = − 1
C
(AP +B) = − 1

C
AP − 1

C
B

and plug in (20) and grouping terms:

P 2 +

µ
B

A
+
K

J
− GC
JA

¶
P +

KB −HC
JA

= 0

a quadratic equation with solutions:

P = −1
2

−µB
A
+
K

J
− GC
JA

¶
±
sµ

B

A
+
K

J
− GC
JA

¶2
− 4

µ
KB −HC

JA

¶
one associated with the stable saddle path and another with the unstable.
If we pick the stable root and find R = − 1

C
(AP +B) we reduce (21) and (22) to a system

of two linear equations on two unknowns with solution:

Q =
−D (JN +K) + CLN + CM
AJN +AK − CG− CJR

S =
−ALN − AM +DG+DJR

AJN +AK − CG− CJR
completing the solution of the model.
A modification of the procedure would expand the model around some other point to
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correct for the difference between the mean of the variables in the stochastic steady state and
the deterministic steady state values. A simple algorithm would compute an approximation
around the deterministic steady state, simulate the model, find the mean of the variables
in the simulation, expand around that mean and iterate until convergence (see Collard and
Juillard (2001)). This bias correction procedure is however intensive in time and prone to
problems induced by the fact that the linear policy is independent of the variance of the
driving stochastic process for the economy no matter where the linearization is performed.
For example in our simulations the mean of the simulated capital series was not always higher
than the deterministic steady state level of capital and consequently the bias correction
procedure might not have any chance of success. Also it is not obvious that the leading
term of an asymptotically valid approximation should be taken around that mean point of
the stationary distribution of the state variable. As we argued in the main text a simple
correction for the first few next terms of the asymptotic expansion performs extremely well
for a trivial marginal cost and is to be preferred to bias correction.

7.2. Undetermined Coefficients in Logs

First we substitute each variable xt by xebxt where x is the steady state and bxt = log xtx in the
model equilibrium equations. After some simplificationµ¡

cebct¢θ ³1− leblt´1−θ¶1−τ
cebct =

βEt

µ¡
cebct+1¢θ ³1− leblt+1´1−θ¶1−τ

cebct+1
µ
1 + αezt+1

³
ke
bkt+1´α−1 ³leblt+1´1−α − δ

¶
cebct

1− leblt =
θ

1− θ
(1− α) ezt

³
ke
bkt´α ³leblt´−α

cebct + kebkt+1 = ezt ³kebkt´α ³leblt´1−α + (1− δ) ke
bkt

zt = ρzt−1 + εt

Loglinearing the conditions delivers:

(θ (1− τ)− 1)bct − (1− τ ) (1− θ)
l

1− l
blt =

Et

(
(θ (1− τ)− 1)bct+1 − (1− τ ) (1− θ) l

1−l
blt+1+

αβkα−1l1−α
³
zt+1 + (α− 1)bkt+1 + (1− α)blt+1´

)

bct + l

1− l
blt = zt + αbkt − αblt

cbct + kbkt+1 = kαl1−α ³zt + αbkt + (1− α)blt´+ (1− δ) kbkt
zt = ρzt−1 + εt
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or:

Et

³
α1dct+1 − α2dlt+1 + α3zt+1 − α4dkt+1 + α4dlt+1 − α1bct + α2blt´ = 0

bct + α5blt − zt − αbkt = 0
cbct + kdkt+1 − yzt − αybkt − y (1− α) blt − (1− δ) kbkt = 0

zt = ρzt−1 + εt

where

α1 = (θ (1− τ)− 1) α2 = (1− τ) (1− θ) l
1−l α3 = αβkα−1l1−α

α4 = α3 (1− α) α5 =
¡

l
1−l + α

¢
y = kαl1−α

After some algebra the system is reduced to:

Abkt+1 +Bbkt + Cblt +Dzt = 0
Et

³
Gbkt+1 +Hbkt + Jblt+1 +Kblt + Lzt+1 +Mzt´ = 0

Etzt+1 = Nzt

where A = k, B = α (c− y) − (1− δ) k, C = y (α− 1) − α5c, D = c − y, G = (α1α− α4),
H = −α1α, J = α4 − α1α5 − α2, K = α2 + α1α5, L = α3 + α1, M = −α1 and N = ρ.
Since the resulting system is equivalent to the previous one in the linearization case, we

proceed analogously to solve for the four unknown coefficients.

7.3. Finite Elements Method

The first step in the Finite Elements method is to note that we can rewrite the Euler equation
for consumption as

Uc(kt, zt) =
β√
2πσ

Z ∞

−∞

£
Uc(kt+1, zt+1)(1 + αezt+1kα−1t+1 l(kt+1, zt+1)

1−α − δ)
¤
exp(−²

2
t+1

2σ2
)d²t+1

(23)
where Uc(t) = Uc(kt, zt), kt+1 = ezt+1kαt l

1−α
t + (1− δ)kt − c(kt, zt) and zt+1 = ρzt + ²t+1.

The problem is to find two policy functions c(k, z) : R+ × [0,∞] → R+ and l(k, z) :
R+× [0,∞]→ [0, 1] that satisfy the model equilibrium conditions. Since the static first order
condition gives a relation between the two policy functions, we only need to solve for one of
them. For the rest of the exposition we will assume that we actually solve for l(k, z) and then
we find c (l(k, z)).
First we bound the domain of the state variables to partition it in nonintersecting elements.

To bound the productivity level of the economy define λt = tanh(zt). Since λt ∈ [−1, 1] we
can write the stochastic process as λt = tanh(ρ tanh

−1(zt−1) +
√
2σvt) where vt = ²t√

2σ
. Now,
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since exp(tanh−1(zt−1)) =
√
1+λt+1√
1−λt+1

= bλt+1, we rewrite (23) as
Uc(t) =

β√
π

Z 1

−1

h
Uc(kt+1, zt+1)

³
1 + αbλt+1kα−1t+1 l(kt+1, zt+1)

1−α + δ
´i
exp(−v2t+1)dvt+1 (24)

where kt+1 = bλt+1kαt l (kt, zt)1−α + (1 − δ)kt − c (l(kt, zt)) and zt+1 = tanh(ρ tanh−1(zt) +√
2σvt+1). For convenience we use the same notation for l (·) in both (23) and (24) although

they are not the same function since their domain is different. To bound the capital we fix
an ex-ante upper bound k, picked sufficiently high that it will only bind with an extremely
low probability.
Then define Ω =

£
0, k
¤ × [−1, 1] as the domain of lfe(k, z; θ) and divide Ω into nonover-

lapping rectangles [ki, ki+1]× [zj , zj+1], where ki is the ith grid point for capital and zj is jth
grid point for the technology shock. Clearly Ω = ∪i,j [ki, ki+1] × [zj , zj+1]. These elements
may be of unequal size. In our computations we have small elements in the areas of Ω where
the economy will spend most of the time while just a few, big size elements will cover wide
areas of the state space infrequently visited.24

Next we set lfe
¡
k, z; θ

¢
=
P

i,j θijΨij (k, z) =
P

i,j θij
bΨi (k) eΨj (z) where

bΨi (k) =


k−ki

ki+1−ki if k ∈ [ki−1, ki]
ki+1−k
ki+1−ki if k ∈ [ki, ki+1]

0 elsewhere

eΨj (z) =


z−zj

zj+1−zj if z ∈ [zj−1, zj]
zj+1−z
zj+1−zj if z ∈ [zj , zj+1]

0 elsewhere

First, note that Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj]∪ [ki, ki+1]× [zj, zj+1] ∀i, j, i.e.
the function is 0 everywhere except inside two elements. Second lfe(ki, zj ; θ) = θij ∀i, j, i.e.
the values of θ specify the values of cfe at the corners of each subinterval [ki, ki+1]× [zj , zj+1].
Let us define Uc(kt+1, zt+1)fe be the marginal utility of consumption evaluated at the

finite element approximation values of consumption and leisure. In this case, from the Euler
equation we have a residual equation:

R(kt, zt; θ) =
β√
π

Z 1

−1

·
Uc(kt+1, zt+1)fe
Uc(kt+1, zt+1)fe

³
1 + αbλt+1kα−1t+1 l

1−α
fe − δ

´¸
exp(−v2t+1)dvt+1 − 1 (25)

A Galerkin scheme implies that we weight the residual function by the basis functions and
solve the system of θ equationsZ

[0,k]×[−1,1]
Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j (26)

on the θ unknowns.
Since Ψij (k, z) = 0 if (k, z) /∈ [ki−1, ki]× [zj−1, zj]∪ [ki, ki+1]× [zj , zj+1] ∀i, j we can rewrite

26 as Z
[ki−1,ki]×[zj−1,zj ]∪[ki,ki+1]×[zj ,zj+1]

Ψi,j (k, z)R(k, z; θ)dzdk = 0 ∀i, j (27)

24There is a whole area of research concentrated on the optimal generation of an element grid. See Thomson,
Warsi and Mastin (1985).
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Finally, in order to solve the system we use Gauss-Hermite for the integral in the residual
equation and Gauss-Legendre for the integrals in (27) (Press et al., 1992).
We use 71 unequal elements in the capital dimension and 31 on the λ axis. To solve the

associated system of 2201 nonlinear equations we use a Quasi-Newton algorithm.

7.4. Spectral Methods

We approximate the decision rules for labor as lt =
Pn

i=1 θiψi (kt, zt) where {ψi (k, z)}ni=1 are
basis functions and θ = [{θi}ni=1] unknown coefficients and use that policy function to solve
for consumption using the static first order condition.
We pick Chebyshev Polynomials as our basis functions and build a residual function

R (k, z, θ) using the Euler equation and the static first order condition. Then we choose θ
setting a weighted average of the residual function over all possible levels of the state variables
equal to zero: Z

[kmin,kmax]

Z
[zmin,zmax]

φi (k, z)R (k, z, θ) = 0 for i = 1, ..., n (28)

where {φi (k, z)}ni=1 are some weight functions.
We use a collocation method that sets φi (k, z) = δ (k − kj , z − zv) where δ (.) is the dirac

delta function, j = 1, ..., n1, v = 1, ..., n2 and n = n1 × n2. The points {kj}n1j=1 and {zv}n2v=1
are called the collocation points. The roots of the nth1 order Chebyshev polynomial25 as
the collocation points for capital. This choice is called orthogonal collocation since the basis
functions constitute an orthogonal set. These points are attractive because by the Chebyshev
Interpolation Theorem if an approximating function is exact at the roots of the nth1 order
Chebyshev polynomial then as n1 → ∞ the approximation error becomes arbitrarily small.
For the technology shock we use Tauchen (1986)’s finite approximation to an AR(1) process
and obtain n2 points. We also use the transition probabilities implied by this approximation
to compute the relevant integrals.
Then we have a system of n equations R (ki, zi, θ) = 0 in n unknowns θ that we solve

using a Quasi-Newton method. Since we had problems to get the system to converge we
use an iteration based on the increment of the number of basis functions and a nonlinear
transform of the objective function (see Judd (1992)). First we solve a system with only
three collocation points for capital (and n2 points for the technology shock), then we use that
solution as a guess for a system with one more collocation point for capital (with the new
coefficients being guessed equal to zero), get a new solution and continue in the procedure
until we use up to 11 polynomials in the capital dimension and 9 in the productivity axis.

7.5. Perturbation Methods

Beyond the description in the main text we only need to add that we compute the derivatives
of the equilibrium conditions of the model using Mathematica 4.1, that we feed the deter-
ministic steady state computed above and that we use the NSolve function to simultaneously

25The roots are given by xj = cos
n
π[2(n−j+1)−1]

2n

o
, j = 1, .., n.
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find for both the coefficients associated with capital and the productivity shock in each order
of the perturbation.

7.6. Value Function Iteration

To solve the Bellman operator defined in the main body of the paper we define a grid Gk ≡
{k1, k2, . . . , kM} on k and use the Tauchen’s (1986) method to discretize the stochastic process
z with Gz ≡ {z1, z2, . . . , zN} and ΠN being the resulting transition matrix with generic
element πrN
The algorithm to compute the Value function for a given grid is given by:

I. Set n = 0 and V0 (k, z) =
(cθ(1−l)1−θ)1−τ

1−τ .

II. Set i = 1.

a. Set j = 1 and r = 1.

b. For ki and zj use the static first order condition to set c = (1− α) exp (zj) k
α
i l
−α (1− l)

and rewrite the resource constraint equation as

(1− α) exp (zj) k
α
i l
−α (1− l) + k0 = exp (zj) kαi l1−α + (1− δ) ki (29)

1. Set s = r and U si,j = −Inf .
2. Use Newton method to find ls that solves

(1− α) exp (zj) k
α
i l
−α (1− l) + ks = exp (zj) kαi l1−α + (1− δ) ki

3. Compute

Usi,j =

³
((1− α) exp (zj) k

α
i l
−α
s (1− ls))θ (1− ls)1−θ

´1−τ
1− τ

+ β
NX
r=1

πrNVn (ks, zr)

4. If Us−1i,j ≤ U si,j, then sÃ s+ 1 and go to ii.
5. Define

U (k; ki, zj) =

³
((1− α) exp (zj) k

α
i l
−α (1− l))θ (1− l)1−θ

´1−τ
1− τ

+β
NX
r=1

πrN
bVn (k, zr)

for k ∈ [ks−2, ks], where l solves

(1− α) exp (zj) k
α
i l
−α (1− l) + k = exp (zj) kαi l1−α + (1− δ) ki

and bVn (k, zr) is computed using Lagrangian interpolation.
6. Calculate argmaxU (k; ki, zj).
7. Set r such that k∗i,j ∈ [ks, ks+1] and Vn+1 (ki, zj) = TVn (ki, zj) = U

¡
k∗i,j ; ki, zj

¢
.
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c. If j < N , then j Ã j + 1 and go to b.

III. If i < N , iÃ i+ 1 and go to a.

IV. If supi,j |Vn+1 (ki, zj)− Vn (ki, zj)| /Vn (ki, zj) ≥ 1.0e−8, then nÃ n+ 1 and go to II.26

To accelerate convergence we use a multigrid scheme (see Chow and Tsitsiklis (1991) and
Rüde (1993)). That scheme begins computing the value function in a small grid, refines the
grid with more points (with linear interpolation to fill the unknown values) and recomputes
the value function. Iterating with this procedure we move from an initial small grid (8000
points) into a final one with one million points.
We interpolate using linear, quadratic and Schumaker (1983) schemes. Results were very

similar with all three methods. Our intuition is that the final grid was so fine that how
interpolation was done did not really matter. If anything Schumaker performed slightly
worse than linear because the need to find the numerical derivative of the value function
overtook the advantage of additional curvature. Consequently the results in the paper are
those with linear interpolation.

26We also monitored convergence in the policy function that was much quicker.
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