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ECON5160: The exam solved

Problem 1

a) The transition matrix for Yn will have I2 in the upper–left corner. Hence both 1 and 2
will be absorbing states for Y , and so Y cannot have a limiting distribution. Therefore,
neither can X.

b) (i) By communication and nonzeroness of V, states x > k + 2 are transient. S is
symmetric, hence doubly stochastic, and so

π = (

k components︷ ︸︸ ︷
1

k
, . . . ,

1

k
, 0, 0, . . . ).

(ii) Here W is symmetric too. The first k components must be equal, and the last
two must be equal: π = (a/k, ..., a/k, b/2, b/2), so that a + b = 1. Hence, for all
a ∈ [0, 1],

π = (

k components︷ ︸︸ ︷
a

k
, . . . ,

a

k
,
1− a

2
,
1− a

2
, )

will be a stationary distribution.
(Note: The problem set might have been a bit unclear as to whether there could
be more than one.)

(iii) By non-uniqueness, case (ii) cannot be limiting. Case (i) need not be limiting
(example: S = J) but can be (example: S =

[
.5 .5
.5 .5

]
).

c) (i) States 1 and 2 do not communicate with states > 2, so then Xν < 2 and no
transition. β(1) = β(2) = δ(1) = δ(2) = 0.
States 3, . . . , k + 2 communicate with each other, but not with other states. The
long-run time average is uniform over these states, so the only zero intensities
here, are δ(3) = β(k + 2) = 0.
States r > k + 2 are transient, so β(r) = 0. We will have δ(r) = 0 if and only if
V = 0, since then we are absorbed in class {1, 2}.

(ii) The long-run time average of the class {3, . . . , k + 2} is uniform over k elements,
and for the minimal and maximal elements, k−1 of these are larger (resp. smaller).
So Pr[Xν > 3|X(0) = 3] = (k−1)/k = Pr[Xν < k+2|X(0) = k+2]. The common
value is then β(3) = δ(k + 2) = λ · (1− 1/k).
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Problem 2

a) The probability uk starting from k satisfies uk = puk+1+(1−p)uk−1 and with u0 = 0, the
solutions are (1−p

p
)k and 1. The former solves the problem whenever < 1, i.e. p < 1/2.

(Note: This is the «gambler’s ruin» problem in TK ch. III p. 142 ff. The limit transition
is treated lightly in the course and is not expected – indeed, a reference to TK ch. III
formula (5.14) p. 144, which states the result, may be expected.)
For the expectation, we have E[τ ] = E[T1] = 1 + pE[T2] + (1− p) · 0 = 1 + 2pE[τ ] whose
only solutions are E[τ ] = (1− 2p)−1 and E[τ ] = ∞, the former being the solution if and
only if positive, i.e. p < 1/2.

b) We have E[W (t)] = λIt−λCt = (λI−λC)t, and by independence of I and C, var W (t) =
var I(t) + var C(t) = (λI + λC)t. As for the distribution, we have

∞∑
c=0

Pr[I = w + c]Pr[C = c] =
∞∑

c=max{0,−w}

(λIt)
w+ce−λI t

(w + c)!

(λCt)ce−λCt

c!

=
∞∑

c=max{0,−w}

λw+c
I λc

C

c!(w + c)!
tw+2ce−(λI+λC)t.

c) By the Markov property, E[Vw] = wE[V1]. The wealth at the nth jump time is dis-
tributed as 1−Xn in part a), with p = λC/(λI + λC) being the probability for decrease
in X, and we are searching n to be the first jump for which Xn = 0 – i.e. τ in part a).
Now

V1 = (number of jumps) × (mean time between jumps)

and by independence between those two factors,

E[V1] = (1− 2p)−1 · 1

λI + λC

(with p as above)

=
1

(1− 2
λC+λI

)(λI + λC)

=
1

λI − λC

d) Y (t) = W (t) − (λI − λC)t is a martingale, and the optional sampling theorem gives
0 = E[Y (V1)] = W (V1)−(λI−λC)E[V1] if E[V1] < ∞, in which case E[V1] = (λI−λC)−1.

Note: The above solution has – on a few occations – a slight unrigorousness which should
be accepted from the students too. E.g. in a), we can infer from E[τ ] = 2pE[τ ] that
E[τ ] = (1 − 2p)−1 if E[τ ] ∈ (0,∞), but we have not really made any argument that
E[τ ] < ∞ if (1− 2p)−1 ∈ (0,∞).
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Problem 3

a) (i) AXf(x) = −k
2
xf ′(x) + 1

2
(σ(k))2xf ′′(x).

(ii) dY (t) = AXf(X(t)) dt + « dB-term», so we solve AXf(x) = 0, i.e. k
(σ(k))2

=

f ′′(x)/f ′(x), with solution C1 exp( k
(σ(k))2

x) + C2.
Integrability of Y (t) = C1 exp( k

(σ(k))2
X(t)) + C2: with k < 0, |Y | ≤ C1 + C2, since

X ≥ 0.

b) (i) The HJB equation is

−δv(x) + sup
k
{−k

2
xv′(x) +

1

2
(σ(k))2xv′′(x) + x

√
k}

(Note: both «v» and «V » – corresponding to sufficiency and necessity, respectively
– should be accepted.)

(ii) (Using necessity with v = V :) The left hand side is concave in k, with stationary
point when V ′(x) = k−1/2, so that the optimal k∗ = max{k0, (V

′)−2} – which
means

k∗ =

{
(V ′(x))−2 for k0 = 0

max{3, (V ′(x))−2} for k0 = 3

c) (i) Testing v(x) = γx, we get 0 = −δγx+supk{−k
2
xγ+x

√
k} with k∗ = max{k0, γ

−2}.
Inserting, and canceling x, yields 0 = −δγ − γ

2
max{k0, γ

−2} +
√

max{k0, γ−2}}.
The right hand side is continuous in γ, and γ → 0+ yields ∞ while γ →∞ yields√

k0 −∞. The intermediate value theorem grants a zero for some γ > 0.
(ii) This is sufficient to solve (C), and (C) has only one solution.

Problem 4

We shift the probabilities by considering the process dY (t) = Y (t)(r dt +
√

2r dB(t)) –
solved by Y (t) = xe

√
2r ·B(t) – instead, and take expectation. Then discount by e−rT :

a) E[1Y (T )>x] = Pr[e
√

2r ·B(T ) > 1] = Pr[B(T ) > 0] = 1
2
, so the price is 1

2
e−rT .

b) E[1maxt∈[0,T ] Y (t)>M ] = Pr[maxt∈[0,T ] B(t) > 1√
2r

ln M
x

] = 2Pr[B(T ) > 1√
2r

ln M
x

] by the
reflection principle, so that the price is 2e−rT (1− Φ( 1√

2rT
ln M

x
)).

Problem 5

a) The F distribution has density f(x) = C x−1+n/2

(m+nx)(m+n)/2 . The limit in interest is lim F (x)
x−α =

lim f(x)
αx−α−1 . In order to have

(
x2α+n/(m + nx)m+n

)1/2 converge to something positive,
put 2α = m and obtain lim(m

x
+ n)(m+n)/2 ∈ (0,∞). So the limiting distribution is

Fréchet(m/2), i.e. GEV with ξ = 2/m.
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b) (Note: This result is given in handouts, so a reference to Embrechts et al. p. 165
(more precisely Theorem 3.4.13 (d)) will be sufficient, as long as one has identified the
parameters appropriately. The following is a deduction which closely follows the proof
in Embrechts et al. p. 166 (also handed out):)

Pr[M ≤ m] = e−λ

∞∑
n=0

λn

n!
(FY (m))n = e−λ

∞∑
n=0

(λFY (m))n

n!

= e−λ+λFY (m) = e−λ(1+cm)−d

so that for a > 0,

ln Pr[aM + b ≤ x] = −λ(1 + c
x− b

a
)−d

= −(1 +
1

d

x + λ−d · a/c− a/c− b

a/cd
)−d

So ξ = 1/d, a = cd (> 0) and b = (λ−d − 1)d will do the job.

c) (i) aM + b is distributed GEV(1/d) with d > 0, and therefore by Embrechts et al.
Theorem 3.4.13 (b) p. 165 (handed out), we have R1 < ∞ if and only if d > 1,
and R2 < ∞ if d > 2. R3 < ∞ always.

(ii) Since EM = ∞ for these parameters, the reinsurer will – no matter what premium,
i.e. no matter what r3 – lose in the long run. However, with r3 large enough,
the accumulated surplus before bankruptcy will with high probability be large.
Shareholders can therefore want to do this business and extract dividends which
by limited liability will not be reclaimed later.

(Not attached in public version: scan from Embrechts et al.)
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