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Preface

The 7th International Conference “Curves and Surfaces” was held June 24-30,
2010, at the Palais de Papes in Avignon, France. The conference was part of
an ongoing joint French—Norwegian conference series on curves and surfaces. In
France previous meetings were held in Chamonix in 1990, 1993, 1996, in Saint-
Malo in 1999, 2002, and in Avignon in 2010. The last meeting in Norway was
held in Tgnsberg in 2008, and the proceedings have appeared as Volume 5862
of the Lecture Notes in Computer Science, published in 2009 by Springer.

The 2010 edition of Curves and Surfaces was attended by 261 participants
from 35 different countries. The program included nine invited one-hour survey
talks, eight minisymposia comprising 39 talks, 114 contributed talks, and two
poster sessions with a total of 30 posters.

The conference was supported financially by Arts et Métiers Paris-Tech, the
Center of Mathematics for Applications (CMA) at the University of Oslo, the
Centre National de la Recherche Scientifique (CNRS), the Institut National
de Recherche en Informatique et en Automatique (INRIA), the Université de
Grenoble, and the Mairie d’Avigon.

We would particularly like to thank our irreplaceable webmaster Eric Nyiri
for his work in supporting the Organizing Committee as well as the participants.
His permanent good humor made these interactions easy and agreeable.

Our thanks are also due to our masterful TEX expert Yvon Lafranche who,
as with all the earlier editions of our conference, has done a marvellous job of
preparing the programme and the abstract booklet.

Would it have been possible even to imagine the conference without the
skilful presence of Chantal Lyche? Her impressive performance at the head of
the reception desk of the Palais des Papes was one of the key factors contributing
to the smooth functioning of this event.

We are also indebted to all the others who helped with the conference, and
in particular to Olivier Gibaru and Paul Sablonniére. A special mention goes
to Michel Volle who, assisted by the University of Avignon, managed to solve
certain delicate logistic issues.

Thanks are also due to all of the invited speakers and to all of the minisym-
posium organizers whose contributions were critical to making this conference
a success. We would also like to thank all other presenters and participants.
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Finally, we would like to express our gratitude to all of the reviewers who helped
select articles for the present volume.

June 2010 Jean-Daniel Boissant
Patrick Chenin

Albert Cohen
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Tom Lyche

Marie-Laurence Mazure

Larry Schumaker



Table of Contents

Exact Medial Axis Computation for Triangulated Solids with Respect

to Piecewise Linear Metrics .. ...... ... i 1
Oswin Aichholzer, Wolfgang Aigner, Franz Aurenhammer, and
Bert Jittler

Exact Medial Axis Computation for Circular Arc Boundaries . ......... 28
Oswin Aichholzer, Wolfgang Aigner, Thomas Hackl, and
Nicola Wolpert

Complex Bézier Curves and the Geometry of Polynomials ............. 43
Rachid Ait-Haddou and Taishin Nomura

The Shape of Conchoids to Plane Algebraic Curves................... 66
Juan Gerardo Alcdzar

Estimation of Integral Properties of a Planar Closed Curve Based on a
Quadratic Spline Quasi-Interpolant............. ... ... ... ... ...... 80
C. Allouch, P. Sablonniére, and D. Sbibih

Design of Multiresolution Operators Using Statistical Learning Tools:
Application to Compression of Signals . ............ ... ... ... ...... 94
Francesc Arandiga, Albert Cohen, and Dionisio F. Ydnez

Weighted-Power, Nonlinear Subdivision Schemes .................... 109
Francesc Arandiga, Rosa Donat, and Maria Santdgueda

Tracking Level Set Representation Driven by a Stochastic Dynamics.... 130
Christophe Avenel, Etienne Mémin, and Patrick Pérez

G? Hermite Interpolation with Curves Represented by Multi-valued
Trigonometric Support Functions ........... .. ... .. .. ... .. .... 142
Bohumir Bastl, Miroslav Ldvicka, and Zbynék Sir

Approximating Algebraic Space Curves by Circular Arcs.............. 157
Szilvia Béla and Bert Jittler

Generating Series for Drawing the Output of Dynamical Systems ... ... 178
Farida Benmakrouha, Christiane Hespel, and Edouard Monnier

Practical Mixed-Integer Optimization for Geometry Processing ........ 193
David Bommes, Henrik Zimmer, and Leif Kobbelt

Non-degenerate Developable Triangular Bézier Patches ............... 207
Alicia Canton and Leonardo Ferndndez-Jambrina



VIII Table of Contents

Stable Splitting of Bivariate Splines Spaces by Bernstein-Bézier
Methods .. ..o
Oleg Davydov and Abid Saeed

Mesh Segmentation and Model Extraction ..........................
Julie Digne, Jean-Michel Morel, Charyar Mehdi-Souzani, and
Claire Lartigue

Design of C? Spatial Pythagorean-Hodograph Quintic Spline Curves by
Control Polygons . ... ...
Rida T. Farouki, Carla Manni, Francesca Pelosi, and
Maria Lucia Sampoli

Shape Curvatures of Planar Rational Spirals ........................
Georgi H. Georgiev

Volumetric Geometry Reconstruction of Turbine Blades for Aircraft
Engines . .. ..o
David Groffmann and Bert Juttler

Globally Convergent Adaptive Normal Multi-scale Transforms .........
Stanislav Harizanov

Helmholtz-Hodge Decomposition on [0, 1]¢ by Divergence-Free and
Curl-Free Wavelets . ... ... i
Souleymane Kadri Harouna and Valérie Perrier

Finite Element Analysis with B-Splines: Weighted and Isogeometric
Methods .. ..o
Klaus Héllig, Jorg Horner, and Azxel Hoffacker

V/3-Based 1-Form Subdivision ............... ...,
Jinghao Huang and Peter Schréoder

Curvature of Approximating Curve Subdivision Schemes ..............
Kestutis Karciauskas and Jorg Peters

Fitting a Surface to One of Its Sectional Planar Curves Using Adaptive
Trees in Spaces of CUIVES .. ..o v e
Yannick L. Kergosien

Verified Spatial Subdivision of Implicit Objects Using Implicit Linear
Interval Estimations........ ... . .
Stefan Kiel

Image Separation Using Wavelets and Shearlets......................
Gitta Kutyniok and Wang-Q Lim

On a Special Class of Polynomial Surfaces with Pythagorean Normal
Vector Fields . .. ..o e
Miroslav Ldvicka and Jan Vrsek



Table of Contents

Convergence Rate of the Causal Jacobi Derivative Estimator ..........
Da-yan Liu, Olivier Gibaru, and Wilfrid Perruquetti

Continuous Deformations by Isometry Preserving Shape Integration . . ..
Janick Martinez Esturo, Christian Rossl, and Holger Theisel

On a (W)ENO-Type Multiscale Representation Based on Quincunx
Refinement: Application to Image Compression ......................
Basarab Matei, Sylvain Meignen, and Anastasia Zakharova

OpenFlipper: An Open Source Geometry Processing and Rendering
Framework ... ... e

Jan Mobius and Leif Kobbelt

Parameterization of Contractible Domains Using Sequences of
Harmonic Maps. . ... oo i e
Thien Nguyen and Bert Jiittler

Nonlinear L;C! Interpolation: Application to Images .................
E. Nyiri, O. Gibaru, and Ph. Auquiert

Normal Multi-scale Transforms for Surfaces .........................
Peter Oswald

Generalized Dupin Cyclides with Rational Lines of Curvature .........
Martin Peternell

Spline Volume Fairing . ....... ... .
Kjell Fredrik Pettersen and Vibeke Skytt

Neuroelectric Current Localization from Combined EEG/MEG Data . ..
Francesca Pitolli

Bootstrap-Based Normal Reconstruction . ...........................
Ahmad Ramli and Ioannis Ivrissimtzis

Couple Points — A Local Approach to Global Surface Analysis .........
Christian Réssl and Holger Theisel

Chordal Cubic Spline Quasi Interpolation ...........................
P. Sablonniére, D. Sbibih, and M. Tahrichi

Multiple Subdivision Schemes ........... ... .. it
Tomas Sauer

On a Linear Programming Approach to the Discrete Willmore
Boundary Value Problem and Generalizations .......................
Thomas Schoenemann, Simon Masnou, and Daniel Cremers

IX

445

456

473

488

501

515

927

943

953

562



X Table of Contents

Interpolation Function of Generalized ¢-Bernstein-Type Basis
Polynomials and Applications .............. ... i, 647
Yilmaz Simsek

Differential Behaviour of Iteratively Generated Curves ................ 663
Dmitry Sokolov, Christian Gentil, and Hicham Bensoudane

Algebraic Curves of Low Convolution Degree ........................ 681
Jan Vrsek and Miroslav Ldvicka

A Logistic Model for the Degradation of Triangle Mesh Normals .. ... .. 697
Ying Yang and loannis Ivrissimitzis

On Single Image Scale-Up Using Sparse-Representations .............. 711
Roman Zeyde, Michael Elad, and Matan Protter

Periodic T-Splines and Tubular Surface Fitting ...................... 731
Jianmin Zheng and Yimin Wang

Author Index . . ... . 747



Exact Medial Axis Computation for
Triangulated Solids with Respect to
Piecewise Linear Metrics

Oswin Aichholzer!, Wolfgang Aigner!, Franz Aurenhammer?, and Bert Jiittler?

! Institute for Software Technology, Graz University of Technology, Austria
2 Institute for Theoretical Computer Science, Graz University of Technology, Austria
3 Institute of Applied Geometry, Johannes Kepler University Linz, Austria

Abstract. We propose a novel approach for the medial axis approxima-
tion of triangulated solids by using a polyhedral unit ball B instead of
the standard Euclidean unit ball. By this means we compute the exact
medial axis MA(£2) of a triangulated solid {2 with respect to a piecewise
linear (quasi-) metric dg. The obtained representation of 2 by the me-
dial axis transform MAT({2) allows for a convenient computation of the
trimmed offset of {2 with respect to dg. All calculations are performed
within the field of rational numbers, resulting in a robust and efficient
implementation of our approach. Adapting the properties of B provides
an easy way to control the level of details captured by the medial axis,
making use of the implicit pruning at flat boundary features.

Keywords: medial axis, piecewise linear metric, mesh boundary,
trimmed offset.

1 Introduction

The medial axis is a skeleton-like structure, capturing the features of a shape in
a lower-dimensional configuration. It has originally been introduced by Blum [7]
for matters of shape representation, and has proved to be useful for various appli-
cations such as shape recognition, robot motion, finite element mesh generation
[17], and offset computation. The computation of the exact medial axis — or of
an approximation thereof — is a popular task in computational geometry and ge-
ometric computing. The huge variety of publications addressing different bound-
ary representations [I3JI4J20], pruning techniques [922] and applications [812]
is remarkable. See also [5] for a state of the art survey in this area. In the case
of polyhedral objects, there exist numerical tracing techniques [24] (which have
recently been extended to objects with curved boundaries [23]) and methods
based on spatial decompositions [L6/21].

For boundaries represented by dense point sets, it is a common approach
to derive a medial axis approximation by isolating a subset of its Voronoi di-
agram [I4]. The algorithm relies on heavy pruning and has (depending on the
denseness of the point set) problems with capturing sharp features. Another ap-
proximating structure, that also allows to deal with non-exact boundaries, is the

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 127 2012.
© Springer-Verlag Berlin Heidelberg 2012



2 O. Aichholzer et al.

scale axis [22], based on a ball-representation of the shape. Pruning is achieved
by careful scaling of the balls, which, on the downside, can lead to the introduc-
tion of topologically incorrect fragments. Both of these methods work in 2D and
3D, but they do not constitute an exact representation of a shape. They are thus
suited for shape recognition and comparison but not for offset computation.

Exact medial axis computation relies on an exact boundary representation,
and is well examined for piecewise smooth boundaries in 2-space. For straight-
line polygons Lee [20] introduced an intuitive O(nlogn) algorithm, which was
later improved to an optimal (yet unimplemented) linear-time algorithm [IT].
For circular arc boundaries a full implementation of a randomized algorithm
(with expected O(nlogn) computing time) is provided in [2]. To the contrary, it
has turned out that in the three dimensional space the exact medial axis compu-
tation, even for shapes with piecewise linear boundaries, is a rather challenging
problem. Here difficulties arise from the combinatorial complexity of the medial
axis, as well as the high algebraic degree of its components. Especially the lat-
ter leads, due to the necessity of an algebraic kernel, to computing time and
representation issues. So far, the only work in this context that provides a full
implementation and some computing times is by Culver et al. [13], introducing
complex algebraic algorithms to deal with the above-mentioned problems.

In this work we provide an approach that computes the exact medial axis of
a triangulated solid (i.e., a solid object whose boundary surface is a triangular
mesh) with respect to a piecewise linear quasi-metric dg [26] induced by a convex
polyhedral unit ball B (see also Minkowski functionals [I9]). While the use of
more general convex distance functions for bisector and Voronoi computation
is no novelty [TO/Ig], these generalized distances, however, have not been used
for medial axis computations so far. This is quite surprising, considering that
for given rational data (rational coordinates of mesh and unit ball vertices)
the resulting linearity of the structure allows all computations to be performed
within the field of rational numbers. We took advantage of this, providing a
robust and stable implementation of the algorithm.

The quasi-metric dp induces a piecewise linear medial axis transform MAT((2),
which describes the shape (2 fully and exactly, see Fig.[Ial for an example. In or-
der to deal with the structural complexity of the medial axis in 3D, we introduce
planar contact arrangements, one for each possible contact between the compo-
nents of the unit ball B and the boundary, respectively (see Sections Bl and M]).
After computing these arrangements, we are able to calculate the components
of the medial axis with respect to the quasi-metric dg. In this way we reduce
the problem of medial axis construction in 3D to a number of two dimensional
problems.

The use of polyhedral unit balls permits interesting operations such as im-
plicit pruning, resulting in pseudo-seams which will be introduced in Section 2l
This allows us to influence the structure and complexity of the medial axis by
varying combinatorial and geometrical properties of the unit ball. Furthermore,
we will show that our representation via MAT({2) is very convenient to com-
pute trimmed offsets with respect to dg, see Fig. 1D (see Section B2l for details).
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(a) Medial axis (b) Trimmed offset

Fig. 1. Piecewise linear medial axis approximation and trimmed offset for a dragon
mesh with 12,000 faces, using a quasi-metric defined by a tetrahedral unit ball

In Section [6] we will describe the close relation between the medial axes MA({2)
induced by Euclidean and polyhedral unit balls. This also identifies MA({2) with
respect to a piecewise linear metric dp as an approximation of the Euclidean me-

dial axis, where the quality of the approximation depends on the chosen unit
ball B.

2 Preliminaries

Throughout this paper we consider an open set 2 in R? (d = 2,3) with a
piecewise linear boundary 9f2. We moreover assume that the boundary is tri-
angulated and consists of edges, vertices, and triangular facets (the latter ones
only for d = 3). We shall refer to (2 as a triangulated solid.

2.1 Unit Balls and Metrics

Let B be a bounded, open and convex set in R? which contains the origin o. In
particular, we are interested in two cases.

(E) B may be the usual Euclidean unit ball, B = {x : ||z|| <1} C R%.
(L) B may be the interior of a convex polyhedron, i.e., the boundary 9B is piece-
wise linear. Similar to 92 we assume that 0B is given by a triangulation.

In the second case (L) we shall assume that no edge or facet of 9B is parallel
to any edge or facet of 0f2, i.e., we assume that (2 is in general position with
respect to B. Later we will specify additional conditions that we assume to be
satisfied.

By these assumptions it is guaranteed that a component of 9B and a compo-
nent of 92 intersect in at most one point. To achieve this, a slight perturbation of
the boundary of B and/or {2 — e.g. by application of the Simulation-of-Simplicity
(SOS) technique [I5] — can be applied. Clearly, by restricting the perturbation
to the vertices of B we can even keep the original domain unchanged. However,
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even if perturbations are applied to the vertices of a triangulated solid, the re-
sulting changes in the medial axis are not dramatic, provided that convex edges
are not made reflex or vice versa.

For any points x and y, let r be the ray from x through y and B* the body B
translated by oz. There exists a unique intersection point v of 9B* and 7. The

distance function i |
y—z
da(o.y) = 0
lo—z|
defines a quasi-metric [20], meaning that dp is positive definite and fulfills the
triangle inequality, but is not necessarily symmetric. The given convex body B
is the unit ball with respect to the quasi-metric.
If B is centrally symmetric with respect to the origin o, then dp is a metric.
In particular, the first choice of B as the Euclidean unit ball gives the usual
Euclidean metric.

2.2 Maximal and Almost Maximal Balls

In the remainder of this paper we will use the symbols B’, B” etc. to represent
convex polyhedra which are obtained from B by applying restricted Euclidean
similarity transformations consisting of a scaling combined with a translation,
but no rotation. Clearly, these convex sets are balls with respect to the quasi-
metric defined by B, since they consist of all points whose distance dp from the
translated origin does not exceed the scaling factor.

Definition 1. A ball B’ is said to be a mazimal ball associated with the trian-
gulated solid (2 if

1. it is contained in 2, B’ C (2, and if
2. any other ball B” satisfying B’ C B” is not contained in {2, i.e., B” ¢ 2.

Moreover, the ball B’ is called an almost mazimal ball associated with (2, if it is
contained in {2 and the boundary OB’ shares at least two points with 9f2.

In the Euclidean case (E), the two notions are equivalent. In the case (L) of a
piecewise linear metric, however, there may exist almost maximal balls which
are not maximal.

2.3 Types of Contact

In this section we consider exclusively the case (L) of a piecewise linear metric.

If we consider a two-dimensional domain (2 in the plane, the following types
of contact between 92 and the boundaries OB’ of almost maximal balls are
possible:

1. A vertex of 942 is in contact with an edge of 9B’, and
2. an edge or vertex of 942 is in contact with a vertex of 0B’.
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braﬁching

/¥ pseudo
branching

(a) Jump edge (b) Pseudo branching

Fig. 2. (a) 2D example of a jump edge with center of scaling p. (b) A triangular unit
ball induces a pseudo-branching in the medial axis of a square domain.

We will exclude the case where an almost maximal ball possesses two contacts of
the first type that are realized at only one edge of 9B’, by requiring that no edge
of OB is parallel to any line connecting any two vertices of 9f2. (It suffices to
assume that this condition is satisfied by all pairs of non-convex vertices of 912.)
This is subsumed by the fact that we assume B and §2 to be in general position.
We shall see later that almost maximal balls of this type would correspond to
two-dimensional components of the medial axis.

Consider an almost maximal ball B’ that possesses exactly two contacts which
are of the first type and realized in the interior of two neighboring edges of 0B’,
and let p be the common vertex of the neighboring edges. In this case, any
uniform scaling with a factor f sufficiently close to 1 and center p transforms
B’ into another almost maximal ball which is either a subset (if f < 1) or a
super-set (if f > 1) of B’, see Fig. 2al

The same phenomenon occurs if an almost maximal ball B’ possesses contacts
of the first and the second type, and the contact vertex of 9B’ is a segment end
point of the contact edge of OB’.

In the three-dimensional case, the following types of contact between 0f2 and
the boundaries B’ of almost maximal balls are possible:

1. A vertex of {2 is in contact with a facet of 0B/,
2. a vertex or an edge of 9f2 is in contact with an edge of dB’, and
3. a vertex, an edge or a facet of 92 is in contact with a vertex of 9B’.

Again we exclude the case of almost maximal balls with two contacts of the first
type which are realized in the interior of only one facet of dB’, and the case of
almost maximal balls with two contacts of the second type at two coplanar edges
of 92 which are realized in the interior of only one edge of OB’, by assuming
that {2 and B are in general position.
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Similar to the discussion in the planar situation one may observe that an al-
most maximal ball B’ with only two contacts that are realized at two neighboring
entities (i.e., facets, edges, or vertices) of 9B’ is not maximal, since it is possible
to apply a uniform scaling with a center that is located in the intersection of the
two contact entities.

2.4 Medial Axis

We define the medial axis MA((2) as the union of the centers of all almost max-
imal balls associated with (2. The medial azis transform MAT({2) additionally
contains the information about the scaling of the almost maximal balls which
are centered at the points of MA(£2).

The medial axis of a planar shape {2 consists of bisector curves (edges) and
trisector points (branching points). In the general (non-degenerate) case, three
edges meet at a branching point.

Consider the case (L) of a piecewise linear metric. Here, some of the bisectors
correspond to nested families of almost maximal balls, which share the same
contacts of type 1 on the boundary. These bisectors will be called jump edges,
since the maximal inscribed balls jump between the two extreme positions, see
Fig.[2al If we did not consider jump edges, using only truly maximal balls for the
definition, the medial axis of a connected planar domain {2 would possibly consist
of several disconnect components. Moreover, if we relaxed the assumption of the
general position by allowing almost maximal balls with two contacts of type 1 in
the interior of only one edge of B’, these balls would produce two-dimensional
components of the medial axis.

The medial axis of a three-dimensional domain {2 consists of bisector surfaces
(sheets), trisector curves (seams) and junctions. In the generic case — meaning
that there do not exist maximal balls with more than four contacts on the
boundary of {2 — three sheets meet at a seam, and four seams meet at a junction
point [13]. For the case (L), similar to the case of jump edges for planar domains,
some of the sheets correspond to partially nested families of almost maximal
balls. We will refer to them as jump sheets. Once again, these jump sheets — and
consequently the consideration of almost maximal balls — are needed in order
to guarantee that the medial axis of connected domains is again connected. By
relaxing the assumption of general position one would obtain three-dimensional
components of the medial axis, which do not occur in the Euclidean case and
thus are clearly not desirable.

Proposition 1. The medial azis in the case (L) is a piecewise linear structure.

Proof. The bisectors of linear structures with respect to a piecewise linear metric
or quasi-metric are again linear structures. The medial axis of a triangulated
solid with respect to such a metric is composed of these bisectors and their
intersections, which are also linear. a

Another new phenomenon that occurs when using a piecewise linear metric (L)
instead of the Euclidean one (E) is the implicit pruning of convex features (edges
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or vertices) of the boundary, which are flat with respect to the unit ball, in the
sense that a vertex of the unit ball fits into the wedge defined by the feature.
Such features lead to the appearance of special branching points (see Fig. 2h)
or seams, which we will call pseudo-branchings and -seams, respectively. The
almost maximal Dballs centered there share only two points with the boundary
of 2. In the planar case, one of these contacts has to be of type vertex-vertex.
In the 3D case, one of these contacts is of the type edge-vertex or vertex-edge.
We will come back to this issue in the next section.

3 Contacts and Contact Arrangements

In the next three sections we consider solely the case of piecewise linear metric
(L) in three-dimensional space. All arguments are easily adaptable to the planar
case.

3.1 Contacts

Recall that a ball B’ is a scaled and translated copy of the polyhedral unit ball
B. We shall denote the vertices, edges and facets of 9B, dB’, and {2 uniformly
as components of these boundaries.

For any boundary component x of B, we denote with 2’ its image under the
restricted similarity transformation (translation and scaling) that maps B to
B’. Moreover, for each boundary component z of B we choose an arbitrary
but fixed representative vertex v = v(x), which is one of the three vertices of a
triangle, one of the two end points of an edge, or the vertex itself in the case of
a vertex.

Since we assumed that B and (2 are in general position, every boundary
component (vertex, edge or facet) of an almost maximal ball shares at most one
point with a component of 02.

Definition 2. Consider an almost maximal ball B’ and assume that the com-
ponent y of 92 has a common point with the component x’ of B’. We say that
the pair (z,y) is a contact.

The regular combinations of boundary components — which determine the struc-
ture of the medial axis — are vertex-facet contacts, edge-edge contacts and facet-
vertex contacts. Even for objects and unit balls in general position, vertex-edge,
edge-vertex and vertex-vertex contacts do occur, but they can be regarded as
being singular. They define pseudo-structures of the medial axis, but do not
induce any sheets or seams.

An almost maximal ball with two contacts is centered on a sheet of the medial
axis, a ball with three contacts on a seam (cf. Fig. Bl). An almost maximal ball
centered on a pseudo-seam is also defined by three contacts, where two of these
contacts are adjacent, meaning that the ball components, as well as the mesh
components, are incident, respectively. As a consequence, the almost maximal
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Fig. 3. The center o’ of an almost max- Fig.4. The contact C1 = (v, f1) is ad-

imal ball B’ lies on a seam of the axis. jacent to C2 = (v, f2). Consequently, the
The point v’ is its projection on the con- three contacts define a pseudo-seam con-
tact plane of Cs. taining o’.

ball’s contact that is induced by these two adjacent contacts is, dependent on
their types, of type vertex-edge or edge-vertex (see Fig. Hl for an illustration).

For every possible contact (x,y) the component y € 92 and the transformed
ball component ' € B’ span a plane, which will be called the contact plane
associated with the contact.

3.2 Projections

An almost maximal ball B’ possesses at least two contacts. Let v(x) be the
representative vertex of the ball part « of one contact (z,y) among them. We
call v/, i.e., the equivalent of v on the translated and scaled copy B’ of the unit
ball B, the projection of the center o' into the contact plane of (x,y).

Definition 3. Given a contact (x,y), let B'(x,y) be the set of all almost maxi-
mal balls which realize this contact (x,y). The set of all projections of the balls
in B'(z,y) into the contact plane describes a polygonal region on the contact
plane of (z,y). We will call D(x,y) the contact domain of (z,y).

A contact domain is the union of projections of medial axis components on the
contact plane. As these components are piecewise linear, so are the projections
on the plane and their union. Therefore a contact domain is a polygonal region.

Roughly speaking, the contact domain D(x, y) describes the trace of the repre-
sentative vertex v for all almost maximal balls B’ which share the contact (z,y).
For a vertex-facet contact (z,y), the contact domain is contained in the mesh
facet y, and there is only one contact with this facet. For the other non-singular
types of contacts, the domain is contained in a plane containing the boundary
component, and there may be several contacts sharing a boundary component.
A more detailed discussion will be given in [3]. The singular contacts (vertex-
vertex, edge-vertex, and vertex-edge contacts) do not define a two-dimensional
domain.
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3.3 Contact Arrangements

A seam of the medial consists of the center points o' of almost maximal balls
B’ that possess the same three contacts. For each of these three contacts (z,y),
the projections of the centers o' into the contact plane define a line segment
on the contact plane, see Fig. Bl This line segment is contained in the contact
domain D(z,y). In a similar way we obtain line segments that are projections
of pseudo-seams.

The projections of all seams and pseudo-seams that share a given contact
(z,y) form an arrangement of line segments, which we will call the contact ar-
rangement, in the contact domain D(z, y).

Every edge of the contact arrangement represents a seam or a pseudo-seam.
The junction points of the medial axis correspond to the vertices of the contact
arrangement.

Remark 1. The medial axis may possess jump sheets, which correspond to par-
tially nested families of almost maximal balls. While general sheets of the medial
axis correspond to two-dimensional parts of the contact arrangements, the jump
sheets may be represented by one-dimensional components (i.e., edges) as well,
by choosing the representative vertex in a suitable way. Therefore, we need to
treat jump sheets in a special way. This will be described in more detail in [3].

4 Computing the Contact Arrangements

As an almost maximal ball is implicitly defined by its contacts, the medial axis
is fully represented by the contact arrangements. In order to analyze the me-
dial axis, we compute the contact arrangements for all possible contacts (z,y).
Consequently, we reduce the problem of medial axis computation to a finite
number of two-dimensional problems in the respective contact planes, which can
moreover be addressed in parallel, since they are mutually independent.

4.1 Outline of the Algorithm

For each contact (z,y) and its contact plane P, we perform the following algo-
rithm, which is summarized visually in Fig. Bl

1. Create a stack of subdomains lying in P, and initialize it with the entire
contact domain.

2. If the stack is empty, then continue with step [, otherwise take a subdomain
from the stack.

3. Check if there exists a seam or pseudo-seam which defines a projection line
segment in P that hits the subdomain. If such a projection line is found,
then split the subdomain along the line spanned by the segment into new
subdomains and add them to the stack. Continue with the previous step.

4. Remove all line segments in the arrangement that do not represent projec-
tions of seams or pseudo-seams.
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JAVAY:¥

) Contact domain  (b) Projection line (¢) Clean subdo- (d) Arrangement
mains

Fig. 5. Computation of a contact arrangement in a contact plane P

4.2 Constructing Almost Maximal Balls

Once again, let v = v(x) be the representative vertex of the contact (z,y). The
most frequent (and also most expensive) operation of the algorithm is to compute
an almost maximal ball B’ for a point p on the contact domain, such that v" and
p coincide. In particular, it is crucial to identify the remaining contacts of such
an almost maximal ball. If there is only one additional contact, then p lies on a
face of the contact arrangement, otherwise, it belongs to an edge.

An almost maximal ball is found by iterative shrinking, where p is the center
of scaling. We start with a ball satisfying p = v’ which is sufficiently large
to intersect the boundary mesh (see Fig. [Ga). With help of an AABB (Axis
Aligned Bounding Box) tree [4], the intersections between components of the
ball boundary and the mesh are efficiently detected. The component of the mesh
closest to p determines the shrinking factor. This is done iteratively until the
shrunk ball and the mesh are intersection-free (see Fig.[6D]). The last component
of the mesh which is used to define the shrinking induces the second contact of
the almost maximal ball. As all the above computations are done within the set
of rational numbers, the resulting almost maximal ball and its center point are
exact.

4.3 Finding Projection Lines

A projection line in the contact domain — which may be determined by a seam
or a pseudo-seam — always corresponds to a change of the second contact of
the associated almost maximal balls. Thus, the projection lines subdivide the
contact domain into subdomains whose points define almost maximal balls with
the same second contact.

Consider two points p and ¢ on a contact domain. If the two associated almost
maximal balls have different second contacts then we know that there exists
a projection line crossing pg. On the other hand, if the balls share the same
opposite contact, then this does not imply that there is no such crossing line,
since the faces of the contact arrangement are not necessarily convex.
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p
(a) Ball before shrinking (b) almost maximal ball at p

Fig. 6. Iterative computation of an almost maximal ball with a given projection p in
a given contact plane (z,y). The second contact is C*.

If the associated second contacts C, and C, of p and ¢ are different we need to
find a point on the segment pg which lies on a projection line. Roughly speaking,
this is achieved by constructing a ball based on pg and confined by the contact
planes of C, and C,. If this ball turns out to be a valid almost maximal ball of 2
with three contacts, then its center lies on a seam or pseudo-seam and induces
a projection line. Otherwise the interval between ¢ and p is split and the search
for two opposite contacts that define a projection line is continued iteratively
by binary search. In non-singular configurations, this process is guaranteed to
terminate.

On the other hand, in order to verify that no projection line crosses the
edge pg, where p and ¢ have the same second contact, the family of almost
maximal balls along pg (which spans a convex polyhedron) has to be contained
in {2, see again [3] for more details. If the line segment pg is not crossed by
any projection line, then we call this segment clean. The final subdomains of
the contact arrangement are characterized by the fact that they are bounded by
clean segments.

4.4 Summary

For any given point on the contact domain we can construct the associated
almost maximal ball. For two points on the domain we can decide if there exists a
projection line that crosses the connecting segment of the points, and eventually
find such a line. This is all we need to build the contact arrangement.

We start with the complete contact domain, and iterate over its boundary
segments (Fig.[Bal). If one of the segments induces a projection line, we split the
domain at this line into two new subdomains and continue recursively (e.g., the
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edge e induces projection line [ in Fig.[Eh)). If all boundary edges of a subdomain
are clean, then the subdomain is clean and all points contained in it are associated
with almost maximal balls having the same opposite contact, and thus lie on the
same sheet of the axis (Fig. Bd). When all subdomains are clean we remove all
artifact edges between neighboring subdomains describing the same sheet (two
faces with opposite contact C; are merged in Fig. [Bdl). This finally gives us the
contact arrangement.

Remark 2. As said in Remark[I], a jump sheet may, depending on the represen-
tative vertex, correspond to a one-dimensional projection on a contact plane.
Such a special jump projection edge is detected by an algorithm similar to the
one for seams and pseudo-seams, which is, however, a bit more involved. For the
computation of the contact arrangement such an edge is handled like any other
projection line. For other representative vertices the jump sheet corresponds to a
two-dimensional component (i.e., face) of the arrangement. In this case no jump
projection edge occurs. For more details in this context see [3].

5 Assembling the Medial Axis and Offset Computation

Once we have computed all contact arrangements, the medial axis can be as-
sembled by a simple algorithm. Based on this result we address the problem of
trimmed offset computation. Finally we report experimental results that indi-
cate the relation between the complexity of the input data (number of facets on
012 and JB), the computing times and the size of the generated output.

5.1 Assembling the Medial Axis from Its Projections

When all contact arrangements are computed, the assembling of the axis can be
performed by a simple computation. Any sheet of the axis is associated with two
faces of two different contact arrangements, a seam with three edges of three
arrangements. A pseudo-seam is induced by one arrangement edge, and two
segments on the domain boundaries of two neighbored contacts. A jump sheet
is associated with a jump projection edge or a face of a contact arrangement,
depending on the representative vertex chosen for this contact. Every vertex of
the arrangement is associated with an almost maximal ball B’, and the center
points o’ span the medial axis.

The resulting medial axis is a non-manifold connected piecewise linear mesh.
Connectivity can in general be derived from the contact arrangements. This
means that two axis components are incident if their projections are incident
in a contact arrangement. The radial edge structure introduced in [25] is one of
several data structures that recommends itself for storing such a non-manifold
mesh.

As a first example we consider a slightly perturbed octahedron {2 and compute
its medial axis with respect to several polyhedral unit balls B, where the number
of facets increases from 4 to 128. The results are shown in Fig. [1
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B with 4 facets B with 20 facets B with 128 facets

contact arrangements

medial axes

Fig. 7. Contact arrangements (top row) and medial axes (bottom row) of a slightly
perturbed octahedron with respect to polyhedral unit balls with 4, 20 and 128 facets
(from left to right). Dashed lines are projections of pseudo-seams.

Since {2 is convex in this example, all contact domains are contained in
the facets of {2 and only vertex-face contacts need to be considered. Conse-
quently, the projections and contact arrangements can be visualized directly on
012 (shown in the first row). The medial axis of the octahedron {2 with respect to
the Euclidean unit ball consists of three squares which intersect each other along
their diagonals. The medial axis with respect to a sparse polyhedral unit ball (a
tetrahedron) is quite different (bottom left), since some of the vertices of the ball
fit into the edge and vertex wedges of of the domain. When using a a polyhedral
unit ball with a larger number of facets (bottom center and right), however, the
structure of the computed medial axis is quite similar to the Euclidean case.

As a second example, we consider the “tower” object. Fig. Rlshows the object,
the contact arrangements (projections) and the medial axis with respect to a
piecewise linear quasi-metric generated by a tetrahedron. The mesh consists of
80 triangular facets and the resulting medial axis counts 269 sheets. As the object
is non-convex, not all projections are realized directly on its boundary.
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(a) Tower mesh (b) Projections (c) Medial axis

Fig. 8. Tower mesh, projections, and medial axis. The grey lines in (b) are the projec-
tions of pseudo-seams.

5.2 Offset Computation

The medial axis is a useful tool for trimmed offset computation. While this is
well-established in the two-dimensional case [1I8], the structure has not yet been
used much in 3-space for this purpose [6].

The medial axis representation which is generated by our algorithm is directly
useful for offset computation with respect to a linear (quasi-)metric. Each sheet S
of the medial axis is associated with two contacts C; and Co. An almost maximal
ball B’ with center point o’ on S and scaling factor s’ has a unique point of
contact p; on C; for i € {1,2}. Let p be the offset size. Then the offset operation
with p applied to B’ gives us a new point p! for each of the two contacts. This
new point p? lies on the line defined by p; and o’. The position of p? with respect
to the sheet S determines whether or not it has to be trimmed:

— If & > p then p? lies between p; and o’. Therefore p? is a valid point of the
offset surfaces.

— If s < p then o lies between p; and pf. Therefore p? has to be trimmed.

— If s’ = p then p§ = p§ = o’ and the point lies on the axis sheet where the
trimmed and valid part of the offset surfaces are joined.

The axis sheets as well as the assigned faces of the contact arrangements are
polyhedral regions. A triangulation on the sheet induces a triangulation on the
faces, leaving us with a configuration as visualized in Fig. @ where the three
almost maximal balls at the corner points are known. Depending on the offset
size p, certain parts of the triangles that lie on planes parallel to the contact
planes define the valid offset surface. Note that a part derived from an edge-
edge or facet-vertex contact resides on a plane which is partially defined by
features of the unit ball.

We define the trimmed offset in 3D analogously to the planar one in [I].
It should be noted that the obtained offset is induced by the distance function
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Fig. 9. The triangle Apra of an axis sheet induces two triangles A; and Ay on two
different contact arrangements. The offset surface generated from each of these tri-
angles is split into a valid (v(A)) and a trimmed (¢(A)) part, which intersect in the
corresponding axis sheet.

d_p, where —B is the image of B under reflection at the origin o. Clearly, the
two distance functions dg and d_p are identical for centrally symmetric unit
balls B.

We performed the trimmed offset computation for the Armadillo mesh. A
typical result is shown in Fig.

5.3 Computing Time and Size of the Medial Axis

The time needed for the computation of the contact arrangements depends on
various criteria. The quality of the boundary mesh influences the computing
time gain provided by the AABB-tree structure. A rather complex and strongly
branched shape has more reflex features and thus more edge-edge and facet-
vertex contacts. On the other hand the nesting complexity of the single contact
arrangements is in average higher for less ramified shapes, which also increases
the computing time.

At this stage we cannot present any theoretical results. In order to obtain
empirical data, we used several instances of the Armadillo mesh (see Fig. [0),
and tested it against various polyhedral unit balls (see Fig.[ITl). The computation
times are reported in Fig. They, as well as the ones provided in Table [ for
several instances of the “Venus”-shape, compare favorably with the ones reported
in [I3], which is the only implementation we are aware of that constructs the
exact medial axis with respect to a specific metric. There, the computation of
the medial axis for the “Venus”-shape with 250 faces is performed in 5.6 hours,
with computing times growing considerably with respect to the number of faces.
As can be seen in Table [Il we compute the exact medial axis with respect to
the quasi-metric induced by a tetrahedral B for an instance with 267 faces (see
Figure[T4) in less than 5 minutes. Also, the computation times for the Armadillo
and the Venus example grow only slightly super-linearly with respect to the



16 O. Aichholzer et al.

(a) Armadillo mesh with 3,124 facets (b) Mesh detail

(c) Offset for tetrahedral B (d) Offset detail

Fig.10. A version of the Armadillo mesh with 3124 facets and its trimmed offset for
dp with respect to a tetrahedral unit ball B

number of facets of the mesh, and even sub-linearly with respect to the number
of facets in the unit ball.

Finally we analyze the relation between the size (i.e., the number of planar
sheets) of the computed medial axis and the number of facets on the boundaries
of 012 and of OB, see Fig. I3, again for the Armadillo example. The size of the
medial axis grows linearly with the size of 92, but only very slowly (much less
than linear) with the size of 9B. This will be analyzed in more detail in the
future.



Exact Medial Axis Computation for Triangulated Solids 17

(a) B with 4 facets (b) Medial axis detail

(c) B with 128 faces (d) Medial axis detail

Fig. 11. The medial axis of the armadillo mesh from Fig. [[0lfor two different unit balls
B

6 Convergence

The quasi-metric defined by a convex polyhedron B can be seen as an approx-
imation of the Euclidean metric. Indeed, if the unit ball B converges to the
Euclidean unit ball, then the quasi-metric defined by it converges to the Eu-
clidean metric. The convergence of the unit balls can be described with the help
of the Hausdorff distance. Recall that the Hausdorff distance of two sets X and
Y is defined as

HD(X,Y) = max(sup inf ||z — y||, sup inf ||z — . 2
(X,Y) (xegyeyll vl yegmeXH yll) (2)
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# faces 4 8 20 128
96 0.03 0.05 0.15 1.28

194 0.05 0.12 0.34 2.63
390 0.10 0.24 0.66 5.05
780 0.21 0.51 1.43 10.13
1562 0.43 0.95 244 19.17
3124 0.85 1.74 4.67 34.24
6250 1.66 3.34 8.40 58.09
12500 3.37 6.23 15.39 101.12
25000 7.3212.39 28.13 170.69
50000 18.28 27.46 57.38 -
100000 52.30 66.80 124.09 -

Fig.12. Left: Computation times (in
hours) for several polyhedral unit balls
(shown in the different columns; the first
row specifies the number of faces) and vari-
ous instances of the Armadillo mesh (shown
in the rows) on a single CPU with 2.5 GHz.
Right: Results plotted on a log-log scale.

# faces 4 8 20 128
96 315 325 375 542

194 661 714 819 1097
390 1410 1437 1709 2315
780 2879 3154 3661 4945
1562 6106 6689 7316 10091
3124 12514 13365 15043 20655
6250 24764 26519 29841 39906
12500 48592 52655 58055 78155
25000 94715 101733 111355 148967

Fig.13. Number of sheets of the medial
axis for several polyhedral unit balls (shown
in the different columns; the first row spec-
ifies the number of faces) and various in-
stances of the Armadillo mesh (shown in
the rows). Right: Results plotted on a log-
log scale.
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Table 1. Computation times in seconds for different combinatorial sizes of B (rows)
and different instances (columns) of the Venus model shown in Figure [I4]

# faces 4 8 20 128
115 115.54 270.44 834.66 4645.03
267 284.04 594.75 1846.20 11770.50
575 525.19 1117.43 3011.68 21619.20

1396 1209.51 2120.49 6005.36 37837.30

In this section we consider simultaneously two metrics and the associated medial
axes. On the one hand, we have the piecewise linear (quasi-) metric dp defined
by the convex polyhedron B and the medial axis MA g(£2) of the given domain
2 with respect to it. On the other hand, we have the usual Euclidean metric
and the standard medial axis, which we will now denote with MA(£2).

6.1 Planar Domains

For planar domains 2 C R?, the following result establishes a close connection
between the two skeletal structures MA g (£2) and MA({2):

Theorem 1. Consider a planar domain 2 C R? with piecewise linear boundary
012. If the convex polygon B that serves as the unit ball of the (quasi-) metric dg
converges to the Euclidean unit circle, then the Hausdorff distance between the
medial ares MAp(2) and MA(£2) with respect to the piecewise linear (quasi-)
metric and the Euclidean metric, respectively, tends to zero.

Thus, the convergence of the unit ball implies the convergence of the medial axis.
Before proving this result we present the following result, which is visualized in
Fig.

Lemma 1. Fach point ¢ of the medial axis MAg(£2) of the planar domain {2
sees any two of its associated closest points on the boundary under a certain angle
o/ (). For polygonal unit balls B that are sufficiently close to the Euclidean unit
circle, there exists a lower bound ¢’ of this angle, which is independent of B.
Each point ¢ of the medial axis MA(£2) sees any two of its associated closest
points on the boundary under a certain angle a(c). There exists a lower bound
o of this angle.

Proof. First we observe that none of the almost maximal polyhedral balls B’ has a
contact with the boundary of {2 in a convex vertex, provided that B is sufficiently
close to the Euclidean unit circle. Similarly, none of the maximal Euclidean balls
touches the boundary of {2 in a convex vertex. Consequently, each almost maximal
polyhedral ball B’ and each maximal Euclidean ball has contact
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(a) Mesh (b) Medial axis (c¢) Trimmed offset

Fig. 14. (a) A mesh instance of the Venus model with 267 faces. (b) The medial axes
induced by a unit ball B with 4 faces. (¢) The resulting trimmed offset.

— with two edges of 92 (both contacts are of type 1),

— with an edge and with a reflex (non-convex) vertex of 92 (the contacts are
of type 1 and type 2), or

— with two reflex vertices of 92 (both contacts are of type 2).

Some balls may have more than two contacts, but we need to consider only two
of them.

In the latter two cases, we consider the minimum distance d between any
two reflex vertices and between any reflex vertex and any edge not starting
or ending at this vertex. For all points ¢ corresponding to these two types of
contact, the angle «(c) satisfies a(c) > 2arcsin(d/D), where D is the diameter
of {2 (which is also an upper bound on the diameter of the maximal Euclidean
circles). Consequently, if B is sufficiently close to the Euclidean unit circle, the
angle o/(c') satisfies o/ (¢’) > arcsin(d/D).

In the first case, the two contacts are realized at two non-parallel edges of
0{2. Let [ be the smallest angle between any two non-parallel edges of Jf2. Here
we consider all pairs of edges, not just the adjacent ones. For all points ¢ corre-
sponding to this type of contact, the angle a(c) satisfies a(c) > . Consequently,
if B is sufficiently close to the Euclidean unit circle, the angle o/(c¢’) satisfies
o (d) > B)2. O

Now we are ready to prove the convergence result.

Proof (Theorem[l). First we consider a point ¢’ € MA g(£2) and prove that there
exists a point ¢ € MA(£2) such that ||’ — ¢|| < e(B), where e(B) tends to zero
as B converges to the Euclidean unit ball.
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Fig.15. Each center of a maximal (or almost maximal ) ball sees any two of its
associated boundary points under a certain angle. For piecewise linear boundaries,
which are in general position with respect to the unit ball, this angle has a lower
bound.

(a) ¢ on MAB(02) (b) ¢ on MA(£2)

Fig. 16. The almost maximal polyhedral ball with center ¢’ (left) and the construction
of the associated maximal Euclidean ball (dashed) with center ¢ (right)

For a given ¢ € MAg(£2) we consider the associated almost maximal ball B’,
along with its inscribed circle and circumscribed circle. The almost maximal ball
B’ touches the boundary in at least two points b’,b” € 912, see Fig. [[6al

Consider the largest inscribed Euclidean ball with center ¢’. It touches the
boundary 02 at a point b, which is generally different from both &' and b”.
The boundary of this Euclidean ball lies between the inscribed circle and the
circumscribed circle. The center ¢’ sees b and one of the other two points — say
b’ — under an angle o > “‘;,.

We consider the maximal inscribed Fuclidean ball which is obtained by apply-
ing uniform scaling with center b and scaling factor 1+ 9§ to the ball with center
d, see Fig. This scaling maps the center ¢’ into a new center ¢ satisfying
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(a) b, p and ¥’ (b) The bound dg

Fig. 17. The construction of an upper bound on the scaling factor 1 4 §

le =l = dlic" —bll < 6D 3)

where D is the diameter of the domain {2. We find an upper bound on § by
considering the intersection p of the line segment from b to b’ with the Euclidean
circle with center ¢’. The uniform scaling moves this point towards b, but not
beyond &', hence

lp =0’

cf. Fig. [Zal This upper bound on § remains valid if the following operations
are applied: First, we apply a uniform scaling with center ¢’ and a scaling factor
< 1 which moves b and p to the inscribed circle. Second, we shift b to the
circumscribed circle along the line bb’. Third, the enclosed angle Zbc’d is reduced
to “‘;,, see Fig.

Let &g be the upper bound on ¢ obtained after these operations, i.e., from the
configuration in Fig. We can bound the distance ||c— /|| by (B) = do(B)D.
Finally, if the polyhedral ball B converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks. Consequently, we
obtain dg(B) — 0 and hence e(B) — 0.

In the second part of the proof we consider a point ¢ € MA({2) and prove that
there exists a point ¢’ € MAp({2) such that ||’ —¢|| < &'(B), where again £'(B)
tends to zero as B converges to the Euclidean unit ball. This can be proved by
swapping the roles of circles and polyhedral balls with respect to the Euclidean
and the piecewise linear metric, as follows.

For a given ¢ € MA(S2) we consider the associated maximal Euclidean ball,
along with its inscribed piecewise linear circle and circumscribed piecewise linear
circle. This situation is visualized in Fig.[I8al The inscribed and circumscribed
piecewise linear circles are shown as dashed polygons.

d <
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(b) ¢ on MAg(£2)

Fig. 18. The maximal Euclidean ball with center ¢ (left) and the construction of the
associated almost maximal polyhedral ball (dashed) with center ¢’ (right)

The inscribed piecewise linear circle possesses an inscribed Euclidean circle,
and the circumscribed piecewise linear circle possesses a circumscribed Euclidean
circle. We will now refer to these two Euclidean circles as the inscribed circle
and the circumscribed circle, respectively.

The maximal Euclidean ball with center ¢ touches the boundary in at least
two points b, 0" € 912, see Fig. [[8al Consider the largest inscribed piecewise
linear ball with the same center c. It touches the boundary 92 at a point b,
which is generally different from both b’ and b”. The boundary of this Euclidean
ball lies between the inscribed circle and the circumscribed circle. The center ¢
sees b and one of the other two points — say b’ — under an angle o > 3.

Similar to the first part of the proof we consider the almost maximal inscribed
piecewise linear ball which is obtained by applying uniform scaling with center
b and scaling factor 1+ ¢’ to the piecewise linear ball with center c, see Fig.
This scaling maps the center ¢ into a new center ¢’ satisfying

le =l = d"lle —b]| < 6'D. ()

As in the first part of the proof we are now able to construct an upper bound 4,
on ¢'. If the polyhedral ball B converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks, which again implies
0y(B) — 0, and hence ¢'(B) — 0.

Finally, by combining the results of both parts we see that the Hausdorff
distance of MA(£2) and MA 5 (£2) tends to zero as B converges to the Euclidean
unit ball. ([l

Let h denote the Hausdorff distance between B and the Euclidean ball. The
upper bounds &y and §j) can be bounded by Ch, where the constant C' depends
on the angles ¢ and ¢’. Consequently, the Hausdorfl distance of MA({2) and
MAg(£2) is bounded by CDh. The constant C, however, is rather large for
small values of ¢ and .
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6.2 Towards a Convergence Proof for the 3D Case

In order to extend this approach to the spatial case, it is first necessary to analyze
the possibility of generalizing Lemma [Il Unfortunately, for triangulated solids in
3D, it turns out that no such lower bound the angles o and o’ exists in general.

If the piecewise linear ball is sufficiently close to the Euclidean one, then it
suffices again to consider only piecewise linear balls that do not fit into any of
the convex edges of the domain. Each almost maximal piecewise linear ball and
each maximal Euclidean ball of {2 has contact

— with two facets of 0f2, or
— with two entities of 92, where at least one of them is a reflex edge or a
non-convex vertex.

In the first case, a lower bound on the angles ¢ and ¢’ can be derived as in the
planar case. In the second case, this is possible only if the two contact entities
do not possess any common points.

More precisely, if the two entities which are present in the second case are
two reflex edges with a common vertex, or a reflex edge and a facet possessing
a common vertex, then the technique used for proving the result in the planar
case can no longer be applied, since it requires a lower bound on the distance
between the two entities. Thus, a more sophisticated approach is required in
order to generalize the convergence result to the 3D case.

We expect that the following approach allows to extend Theorem[lto triangu-
lated solids in space. First, we consider only the subset of the medial axes which
are generated by almost maximal balls and by maximal Euclidean balls where
the angle introduced in Lemma [I] exceeds a certain threshold ¢*. We denote
these subsets by MA%(£2) and MA™(£2), respectively.

Next we consider a sequence (B, )p=1,2,.. of unit balls with the property that
the ratio between the radii of the circumscribed and the inscribed ball has the
upper bound 1 + 1/n3. For each of these balls we use the associated threshold
¢ = 1/n to define the subsets MAL(£2) and MA*(£2). Thus, after an appro-
priately scaling of B,,, the Hausdorff distance between the piecewise linear unit
ball and the unit ball tends to zero as 1/n?, while the lower bound on the angle
tends to zero as 1/n.

Using the same techniques as in the proof of Theorem[I], we can conclude that
the one-sided Hausdorff distances between MA%;(£2) and MA(£2) and between
MA*(£2) and MAg(£2) converge to zero as n — oo. Simultaneously, the lower
bound ¢% on the angle ¢ used for defining MA%(£2) and MA*(£2) tends to zero.

Finally, it should be possible to prove that the Hausdorff distances between
MA*(£2) and MA(£2), and between MAL(£2) and MAp(£2) converge to zero as
well. The desired convergence result can then be obtained by combining these
observations. The details of this proof cannot be described satisfactorily in the
frame of this paper and will be reported elsewhere.
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7 Concluding Remarks

We have presented an algorithm which computes a piecewise linear medial axis
representation MA(f2) of a triangulated polyhedron {2 with respect to a piece-
wise linear quasi-metric dg. The representation allows convenient trimmed offset
computation, and all computations can be performed within the field of rational
numbers. We would like to point out that the shape is not required to be simply
connected, as the axis-representing contact arrangements are computed indepen-
dently. This makes the algorithm easily accessible for parallel implementation.
The algorithm shows convincing computational complexity and is suitable for
larger meshes.

The complexity of the polyhedral unit ball can be chosen depending on the re-
spective application. This is also one of the interesting issues for future research
in this area. Given a mesh, what does a (preferably combinatorially small) poly-
hedral unit ball have to look like to reduce the occurrence of pseudo-seams? With
a decreasing number of pseudo-seams, a combinatorial structure close to the Eu-
clidean medial axis is to be expected. On the other hand the implicit pruning
induced by the piecewise linear metric might be a welcome feature. This leads
to the question how to locate points on the unit sphere, such that the vertices
of the resulting convex polyhedral ball enter as many flat convex features of a
mesh as possible.

Modifications of the unit ball B do affect the geometric as well as the com-
binatorial appearance of MA(f2). Another interesting task is to identify and
isolate the combinatorially stable — and thus essential — parts of the medial axis
by comparing the representations for different quasi-metrics dp resulting from
several different polyhedral unit balls B.
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Abstract. We propose a method to compute the algebraically correct
medial axis for simply connected planar domains which are given by
boundary representations composed of rational circular arcs. The algo-
rithmic approach is based on the Divide-&-Conquer paradigm, as used
in [2]. However, we show how to avoid inaccuracies in the medial axis
computations arising from a non-algebraic biarc construction of the
boundary. To this end we introduce the Exact Circular Arc Boundary
representation (ECAB), which allows algebraically exact calculation of
bisector curves. Fractions of these bisector curves are then used to con-
struct the exact medial axis. We finally show that all necessary compu-
tations can be performed over the field of rational numbers with a small
number of adjoint square-roots.

Keywords: medial axis, circular boundary, exact computation.

1 Introduction

The medial azris is an important concept for shape description introduced by
Blum [4]. We call a domain S in the plane a simple shape, if it is bounded by
a non-selfintersecting closed curve 0S. The medial axis of S is composed of the
union of all center points of mazimal disks inscribed in S. If S is simple then its
axis has a tree-like structure. The following two definitions stem from [4]:

Definition 1. Given a shape S, a disk D C S is called mazximal, if there does
not exist a disk D' C S, D' # D, which contains D. We denote the set of all
maximal disks with MAT(S) (medial azis transform of S).

Definition 2. Given a shape S, its medial axis MA(S) is defined as the union
of all centers of maximal disks in S':

MA(S) :=={cp | D € MAT(S), and cp is the center of D} .

The medial axis construction for shapes with simple boundary representations
as straight lines or circular arcs is a field that has been tackled with various
techniques. The Divide-&-Conquer approach used in [2] is a simple method for

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 28-42] 2012.
© Springer-Verlag Berlin Heidelberg 2012
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efficient axis computation, however, with some minor drawbacks. The biarc con-
struction as described in [2] provides theoretical smoothness, that is however
not representable by usual float or rational number types. Furtheron, degener-
ate branching points of the medial axis cannot be detected exactly. In particu-
lar, the correct representation of the medial axis curve is a challenging task if
the boundary input data does not comply with certain (numerical or algebraic)
quality criteria as being rational representable or providing algebraically smooth
joints between arcs.

An important part of most medial axis algorithms is the bisector computation.
This problem has been approached for various types of rational curves, but
mostly relying on machine arithmetic as in [1117].

Our goal is to compute the algebraically correct medial axis. Thus, we have
to cope with exact bisector computation of (arc-supporting) circles. For this
purpose we require all arcs on the boundary, that are involved in the bisector
computation, to be rational. Arcs which do not directly contribute to the medial
axis, but describe a local curvature maximum and thus merely a leaf-point of
the axis, are allowed to be rational square-root expressions (rasgez).

Integers are rasqex. If x and y are rasqex, so are z+y, t—y, z-y, ¢/y and /.
Rasqex have exact comparison operators =, <, and >, realized in LEDA [6/14]
or the Core library [I3I16]. Actually, these two packages are able to represent
arbitrary k-th root numbers, what is more than we need. For our purposes the
FieldWithSqrt concept as provided by the CGAL library [1] is sufficient.

Several details of our algorithm, e.g. bisectors and tritangent circles, are sim-
ilar to those needed for the construction of an Apollonius diagram, as examined
extensively in the work of Emiris and Karavelas [§]. They show that the opera-
tions allowed in the rasqex number type are sufficient to compute all predicates.
Similar efforts have been made for ellipses and even more general smooth con-
vex sites [910]. Beside the similarities there are serveral additional aspects we
have to take into account for our approach. First, the medial axis construction
needs parts from the underlying bisectors different from the ones needed for the
Apollonius diagram. Second, while in [§] an incremental approach is pursued, we
intend to show that all steps of our Divide-&-Conquer algorithm can be accom-
plished with rasqex numbers as well, a fact that is not obvious. Furthermore, as
opposed to the Apollonius diagram, we do not deal with single sites and com-
plete circles, but one closed curve composed of circular arcs representing a planar
shape. In this context we consider boundaries that are at least C'*-smooth to de-
fine an Ezact Circular Arc Boundary or ECAB. (The extension to non-smooth
boundaries only requires an extension of the cases that may occur for bisector
computation.) See Section [ for detailed definitions.

Given an ECAB, the divide-part of the algorithm presented in [2] is applied
(overview in Section [B]) with some minor modification of the construction of the
dividing disks (Section M), as they are crucial for the final reassembling of the
medial axis. The main bisector calculus takes place when arriving at the base
cases which terminate the decomposition process. Pairs of (rational) arcs are
adequately chosen, and the bisectors of their supporting circles are computed.
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It is shown in Section [ that the bisectors are algebraic curves of degree 4 over
the rational numbers Q, which can be expressed as the product of two quadratic
polynomials (conics) over a simple extension field of Q. The center points of the
arcs stemming from the dividing disks (called artificial arcs) lie on the bisectors,
and are used to isolate those parts of the conic curves which contribute to the
partial medial axes of specific base cases. Details about these base cases are
discussed in Section [G] representing the conquer-part of the algorithm.

2 Exact Circular Arc Boundary

We define a circular boundary representation which fits our needs for an exact
bisector and medial axis construction. This requires some definitions, starting
with rational circles. Let Q denote the set of rational numbers.

Definition 3. For a circle C' with center c the following definitions are equiva-
lent:

C is a rational circle <= c € Q* and Ju e C:uec Q? (1)
— Ju,v,w e Q*:u,v,weC . (2)

Note that the squared radius of a rational circle is rational. It is also well-
known that on a rational circle C' points with rational coordinates are lying
dense (see [15]). This means that near an arbitrary point p on C and for any
€ > 0 one can find a rational point in an e-environment around p, that lies on
C. We say that an arc is rational, if its supporting circle and its two endpoints
are rational. By extending to rasqex numbers, we can now define rasgex circles
as a superset of rational circles.

Definition 4. For a circle C' with center ¢ and squared radius v the following
definitions are equivalent:

C is a rasqex circle <= ¢ and r are rasqex .

An arc is rasqer, if its supporting circle and its two endpoints are rasqex. A
rational circle is always a rasqex one, but not vice versa. For our C'-boundary
representation we want to rely on rational circles as much as possible, but to build
a C'-smooth boundary consisting exclusively of rational arcs means a severe
restriction. We therefore soften our demands by allowing rasqex arcs whenever
they are not directly contributing to bisector calculation. This is true for arcs
which describe a local curvature mazimum, as such a maximum always defines a
leaf-point of the medial axis which just represents the endpoint of a medial axis
curve. This means such an arc does not contribute to any bisector computation
later on (Section ), only its center point is eventually required for point location
(Section [B)). According boundary construction rules are given in Section [7

Definition 5. Consider a C'-circular arc boundary representation. An arc that
constitutes a local curvature mazimum, and thus a leaf point of the medial axis,
has to be at least rasqex. If all other arcs are rational, then we call this structure
an Ezact Circular Arc Boundary (ECAB).
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Note that the restriction to C! is not a necessary one. For general circular arc
boundaries however we have to deal with more base cases and with bisector con-
struction between points and circles. This does not pose any problems concerning
computation, but is left aside for reasons of lucidity.

3 The Divide-and-Conquer Algorithm

We are interested in computing the medial axis for a given ECAB boundary.
As our approach is closely related to the work introduced in [2] we first give an
overview here. The algorithm is based on the Divide-&-Conquer paradigm. The
dividing step consists of finding a random disk D € MAT(S) (called dividing
disk) and decomposing S, with the help of D, into sub-shapes. The latter is
done by splitting the boundary, adding artificial arcs that originate from D, and
rearranging the original arcs. After this has been applied recursively, down to
predefined base cases, the merge step is a simple concatenation of the partial
axes at the center points of the dividing disks, as they are guaranteed to lie on
the original medial axis. For a list of base cases that may occur for C'-smooth
boundaries, see Figure Bl We leave the basic algorithmic approach almost un-
changed. But with the help of the properties of the ECAB structure (as opposed
to numerical biarc constructions), and by modifying a few specific steps, a math-
ematically correct representation of the medial axis is made possible:

— The construction of a dividing disk has to be done with care, to take advan-
tage of the properties of rational arcs. The centers of the dividing disks play
a more important role, as they are required to lie exactly on the bisector
curves for segment confinement. This is discussed in Section @l

— The bisector computation is now done in an algebraic way, avoiding any nu-
merical errors. The whole computation can be done over the field of rational
numbers with only a few adjoint square-roots, as shown in Section Bl

— The handling of the base cases is more sophisticated, however the alge-
braic approach allows us to detect degenerate constellations more easily
(Section [@).

4 Constructing Dividing Disks

Dividing disks, being maximal disks as defined in Section[Il are required for the
recursive decomposition of a shape S. A general maximal disk has two contact
points on 35, which lie on two different arcs when dealing with an ECAB.

As in [2] we start by choosing a random arc p on the boundary. The only
limitation is that p must not define a local curvature maximum, meaning it does
not induce a leaf-point of the medial axis. The ECAB structure then tells us that
p is rational and thus we can choose a rational point ¢, as close to an arbitrary
point on p as we see fit. See [0 for a detailed algorithm and implementation on
how to choose such a point. For every arc ¢ # p of 0.5 we construct the disk that
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Fig. 1. Construction of a disk that is tangent to two arcs

touches p at ¢, and is tangent to ¢ (see Figure[d]). First we construct the line [
passing through the center ¢, of the supporting circle of p and ¢,,. The center cp
of the maximal disk we are looking for has to be on [. As can be decided by the
signs of curvature of p and g, one of the two points on [ being at distance ,/r,
(radius of the supporting circle of g) from ¢, is denoted with ¢;. This point ¢
forms, together with c¢p and ¢4, an isosceles triangle. The bisector I’ between ¢,
and c’q also contains c¢p, which means that c¢p is the intersection point of [ and
. From all ¢ # p only one induces a disk (the smallest one) that lies completely
inside S. This is the sought-after dividing disk D. The use of the ECAB structure
guarantees certain algebraic properties of D. As the point ¢, as well as t, are
rational, also the line [ is rational. The value ,/ry is not rational in general, as
a consequence so isn’t c;. However, ¢ € Q(\/rq)Q. Therefore also the point of
intersection between [ and I’, being the center of D, is in this extension field.
Values in Q(,/ry) can be represented exactly by the rasqex numbers, which makes
later point location on the bisector curves convenient (see Sections and [6]).

Furthermore, we note that the (rasqex) artificial arcs, stemming from the
(rasqex) boundary circle of a dividing disks, always describe a local curvature
maximum when used to extend the partial shapes. This is coherent with the
definition of the ECAB-structure in Section [2

5 Bisector Computation and Point Location

5.1 Bisector Computation

We next show how to compute the bisector between two rational arcs. Let C),
and C; be the supporting circles of the two arcs with centers ¢, and ¢, and
squared radii r, and 74, respectively:

Cplz,y) = (z — (Cp)z)2 +(y — (Cp)y)z —Tp
Colz,y) = (z — (Cq)z)2 +(y — (Cq)y)2 —Tq -

2
As before, we assume ¢, ¢, € Q% and r,, 74 € Q.
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Definition 6. The bisector curve between the two circles C, and C, consists of
all points (x,y) in the plane for which

H(x,y) — ¢l i\/7'p| = ||(m,y) — ¢4l i\/7‘q|-

Roughly speaking, this bisector curve consists of all center points of circles, which
share exactly one point (of tangency) with C), and Cy respectively.

Theorem 1. The bisector curve of the two circles Cp and Cy factors into two
curves Bi(x,y) =0 and Ba(z,y) =0 with

Bi(z,y) = (di +d3 —r*)* —ddidi € Q(y/rprq)le,y] 3)
Bs(x,y) = (di +d3 — 7)* — 4did; € Q(/rpry)[z,y), (4)

with dy = di(z,y) = [(2,y) —cp|, d2 := da(z,y) == [(z,y) —cql, 7 1= \/1p—/Tq
and 7 := /1y + \/Tq-

Proof. For the bisector-curve there are two cases:

di+rp=da+rq Vdi— Jrp=ds— /1q
V d1—|—\/rp:—d2—|—\/rq\/d1—\/rp:—dg—\/rq

— dl—dgz—’r\/dl—dgz’r‘ |2
Case 1 V di+do=—-rVd+do=r
<:>d%+d%77“2 = 2didy V d%+d%*7“2 = —2dyds |2

> (d? +d3 —r?)? = 4d3d3
This is exactly the equation for B;(x,y) = 0. Similar for Ba(x,y) = 0:

d1—|—\/rp:—dg—\/rq\/dl—\/rp:—dg—k\/rq
Vodi+ frp=do — \frg Vdi— 1 =d2+ /1y

> (d? +d3 —7%)? = 4d3d3

Case 2

Since df,d3 € Q[z,y], P = (\/rp + /rq)? = 1p + 2/rprq + 14 € Q(/rpry),
and 7?2 = (/rp — \frq)® = 1rp — 2/rprq + 14 € Q(/rpry), it follows that
Bl(xay)732(xay) € Q(\/rprq)[x7y]. a
From now on B; and By denote the curves described by Bj(z,y) = 0 and
By (z,y) = 0 respectively.

Theorem 2. By and Bs in Theorem[dl are conics, i.e., planar curves of degree
two.

Proof. We will prove that B; and By are conics when the centers of the circles
Cp and Cy lie on the z-axis and symmetrically on both sides of the y-axis:

Cp(z,y) == (z+ d)2 +y? - rp,  Cylz,y) = (x — d)2 +y? - Tq -
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This is no restriction because every pair of circles with d being half the distance
between their two center points can be moved to this position by rotation and
translation. By and By are then subject to the same transformation which does
not change their degrees.

For C, and Cj in this special position, we have

di =di(z,y) = | @y~ * = |(@y) - (=d0) | = (z+d)*+y°
dy = dj(z,y) = | (@y) —cg |? = | (@) = (d0) P = (z—d)*+y*.
This yields for the two cases
(d? +d3 —r%)? = 4d3d3
2
Case 1 = (2 +d®+y? - ’"2 12 = (z+d)?+9y>)((x —d)? +y?)
=0 = 422d® — 2%r? — d?r? — 2% + ’:
This is the quadratic equation for Bj.
(d? +d3 —7%)? = 4d3d3
Case 2 "
0 = 422d® — 2272 — %7 — %72 + "
This is the quadratic equation for Bs. a

Altogether this means that the bisector of the two circles €}, and Cj in our
original coordinate system factors into two conics over the field Q,, = Q(y/7,7¢),
which is in rasqex.

Corollary 1. Fach of By and Bs is either a hyperbola or an ellipse or a pair
of identical lines.

Proof. Looking further at the equations for By and By in the special case where
the center-points lie on the z-axis we first observe that B; and By are the two
conics described by

Bi(z,y) = bz?® — ay® — ab, Bsy(z,y) = ba? — ay® — ab

with ( )2 ) )
W= re)” 2 o T
a= 4 = 4 b=d*°—a=d 4
and ( )2 ) )
~ \/TP+\/T’I T 7 2 ~ 2 T
— frng b:df :df .
“ 4 4 “ 4

First consider By. If r, = r, we have a = 0, b = d? and Bi(z,y) = d*z? consists
of two identical lines along the y-axis. If r, # 74 it is true that a > 0 and

2
b>0 < d2>r4 & 4d% > (frp — ) & 2d > |\ Jrp — Jrgl -

That means,
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— if 2d > |/rp — /1q|, then b > 0 and B is an hyperbola,

— if 2d = |\/rp—\/rql, then b = 0 and B (z,y) = —ay?® consists of two identical
lines along the z-axis,

— if 2d < [\/rp — \/rql, then b < 0 and B is an ellipse.

For By we always have a > 0 and

b>0 < d2>il S 4d? > (rp +re)? & 2d > Jrp+ /1y -

— The two circles C, and Cy; do not intersect iff 2d > VTp /g In this case
b>0and By is a hyperbola.

— Cp and C; touch tangentially iff 2d = |/rp, + /ry. Then Ba(z,y) = —ay?
consists of two identical lines along the z-axis.

— Cp and Cy intersect iff 2d < |/rp + /ry. In this case b < 0 and By is an
ellipse. a

5.2 Medial Axis Representation and Point Location

In order to compute and represent the medial axis of the exact circular arc
boundary we must be able to analyze a bisector-conic over the extension field
@pqg- This means that in a so called one-curve analysis we will divide a bisector-
conic B, described by B(x,y) € Q(/rprq)[z,y] = Qpglz,y], into z-monotone
arcs. This is not difficult and works analogously to the one-curve analysis of a
conic over Q described in [3]. The bisector-conic B is split at its z-extreme points,
that are points where B(z, y) and the partial derivative B(xz,y), = 63(,()2’3/) vanish
simultaneously. If the bisector-conic consists of a pair of identical lines, we make
the defining polynomial square-free. Now every resulting xz-monotone arc can
be represented by a tuple ([le, ri], nr), where le and ri are the a-coordinates of
the left and right endpoint, respectively. Since le and ri are roots of quadratic
polynomials over Qpq[x], they can be represented by rasqex numbers. The branch
number nr is either 0 or 1 and indicates which of the two xz-monotone arcs of
the curve above the z-interval [le, ri] is meant.
As described in Section[4], one major step is point-location. For a given point
u = (ug,uy), the coordinates of which are rasqex, we have to determine the
z-monotone arc of By or By it lies on. First of all we check whether u lies on B;
or Bs by testing
Bi(ug,uy) =0 or Ba(ug,uy)=0. (5)

Since all the numbers in Bi(ugz,uy) and Ba(ug,u,) are rasqex numbers, the
exact test for zero can be realized by using the equality operator of the rasqex
numbers. Let us assume that p lies on B;. Next we use the <-operator of the
rasqex numbers to determine the two z-monotone arcs of By for which

le <wugy <7i. (6)
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The last step is to determine whether w lies on the upper or lower branch,
i.e., algebraically whether wu, is the greater or smaller root of the polynomial
Bi(uz,y). Since Bi(u,,y) is a quadratic polynomial the coefficients of which are
rasqex, its two roots r; and ro can be computed symbolically by introducing a
new square-root. Now we have to check whether

Uuy—r1=0 or wu,—re=0. (7)

Again this can be done by using rasqex numbers. Notice that in cases where
locally around u neither the second bisector-conic nor the second arc pass by
and all z-extreme points are far away, the three steps for point-location can be
sped up by using isolating intervals for u, and u, and evaluating the expressions
in (@), @ and (@) with interval arithmetic, if desired.

5.3 Confining the Partial Axis

In our construction, the medial axis is computed as the union of bisector-conic
segments. Each conic segment is limited by center points of artificial arcs. Con-
sider the case where the bisector of two rational arcs on the circles C, and C,
contribute to the medial axis, see for example Figure[3 case (b). The coordinates
of the limiting center points of the artificial arcs are rasqex. With the algorithm
described above the center points can be located on z-monotone arcs of the
bisector-conic. If the bisector-conic is a line or hyperbola, the two center-points
uniquely define the part of the medial axis we are interested in, possibly as a
concatenation of z-monotone arcs. If the underlying bisector-conic is an ellipse,
we have two possibilities for the partial axis. In this case we choose an additional
rational point on one rational arc, say on C,. With the algorithm from Section []
we construct a third point on the bisector-conic. For the partial axis we choose
the part of the bisector-curve between the two center points which contains this
new point.

5.4 Center Points of Tritangent Circles

The center points of (at least) tritangent circles, being the branching points of
the medial axis, are another kind of points which are needed for the confinement
of the axis. We will show that the coordinates of such points are rasqex too,
if the three defining circles are rational. A bisector curve between two rational
circles is an algebraic curve of degree 4, and the branching point is one of the
intersection points where all three bisectors between three circles meet.

There exist two different possibilities how a point on a bisector-curve may
describe tangency at its footpoint on a defining circle.

Definition 7. Consider a bisector-curve B and one of its two defining circles C.
For a point t € B let ty be its unequivocal footpoint on C and I'c the open region
bounded by C. Then we define the function p(t,C) on B as follows:

0 if ttuNIc=0
1 otherwise.

QD(LC) = {
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Fig. 2. Two tritangent circles resulting from one line of similitude of the Gergonne
construction. ((P(Ul, Cp), (IO(U17 CQ), (IO(U17 Cg)) = (@(uQ, CP)7 (‘D(’LLQ, CQ)7 (‘D(’LLQ, CQ)) =
(1,0,0).

Roughly speaking ¢(t, C) is 0 if the circle with center ¢ and radius ¢ ¢, is “outer”-
tangent to C, and 1 otherwise (see also Figure [2)). As proved in Section [ every
bisector B consists of two conic curves, B; and By. By construction, the points
of these two conics have certain properties concerning (., .) which we investigate
next.

Lemma 1. Consider the bisector B consisting of the two bisector-conics By and
By and its two defining circles C, and Cy, then

VieBr ¢ ((t,Cy)elt, Cy)) € {(0,0), (1,1)} (8)
Vte By : (QD(t7 Cp)a QD(t7 Cq)) € {(Oa 1)7 (1a O)} : (9)

Proof. As derived in the proof of Theorem [Il for every point ¢ on By it holds
that

|t_cp|+\/7“p:|t_cq|+\/7“q\/|t_cp|_\/rp:|t_cq|_\/rq
Vot —cp| +frp ==t —cq| + /1 V|t —cp| = /1p = —|t —cq| — /Tq -
This leads to
P(t,Cp) =1Ap(t,Cq) =1V p(t,Cp) =0t Cy) =
Vop(t,Cp) = 1At Cq) =1V p(t,Cp) =1A@(t,Cq) =1
For every point x on By it is
It — + V= [t —cql = VTq V |t —cp| — VTp = —t — ¢l +\/Tq
\ |t70p|+\/7"p:|t*0q|*\/7"q\/|t*0p|*\/7"p:|tfcq|+\/7"q-
This leads to
undefined V ¢(t,Cp) = 0/1 A p(t,Cy) =1/0
\ ‘P(tan):1A‘P(tva):Ov@(tan)ZO/\‘P(tva)zl . O
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We are interested in the situation where three rational circles C), C; and Cj
are given. They define three bisectors: B' between C, and Cy, B" between C,
and C, and B” between Cp and Cs. A branching point u, being the center of a
tritangent circle, lies on all three bisectors and so ¢(u,.) is well defined for all
three circles. Let

@(u) = (‘P(uvcp)7‘P(uch)790(uvcs)) : (10)

Observation 1. Depending on which bisector-conics intersect in a branching
point u, we distinguish between four different sets of contact tuples. For all other
possible combinations of three bisector-conics a common intersection point is
impossible.

we B, NB,NB, = &)e{0,0,0),(1,1,1)} (11)
we B, NBy,NB, = &u)e{(0,0,1),(1,1,0)} (12)
weB,NB, NB, = &)e{(1,0,0),(0,1,1)} (13)
weBy,NBy,NB, = &) e{(1,0,1),(0,1,0)} (14)

For example, considering case (), if u € B; N B] N B}, then due to Lemma Il
it holds that

(o(u, Cp), (u, Cy)) € {(0,0), (1, 1)}
A ((P(ua CQ)7 (P(U, CS)) € { Oa 0)7 (1’ 1)}
A (p(u, Cp)7 o(u,Cs)) € {(07 0)7 (1, 1)}

—~

This is only true if o(u, Cp) = p(u, Cq) = p(u,Cs) =0 or p(u, Cp) = p(u,Cy) =
©(u, Cs) = 1. The other cases work analogously.

The construction of all possible circles that are tangent to three given circles
is a much discussed topic, with various possible ways of solution (see e.g. [12]).
It is folklore that there exist at most 8 different tritangent circles in this case.
The Gergonne construction, named after french mathematician Joseph Diaz Ger-
gonne, is based on inverse geometry and uses so called lines of similitude. For
three circles in general position, there exist 4 lines of similitude. Each line in-
duces at most 2 tritangent circles, which can both together be assigned to one
specific case (Il to (I4) from Observation [Il Note however, that e.g. for case
([I3) there may be two solutions of the form (1,0,0) and none for (0,1,1) (see
Figure [ for an example).

This means that constellations of three bisector-conics as shown in Obser-
vation [Il have at most two common intersection points. The z-coordinates of
the intersection points of two of the three conics are roots of a degree four
polynomial P; (which can be derived by a resultant computation). For another
pair of conics we obtain another polynomial P,. We now isolate the common
a-components by computing the greatest common divisor P’ = ged(Py, Ps). As
at most two common solutions may exist, P’ is a quadratic polynomial. Its roots
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can be represented exactly by rasqex numbers[] The same way the possibly two
y-coordinates can be computed. This shows that the coordinates of the center
points of tritangent circles can be represented as rasqex numbers and we get
2 -2 = 4 candidates for them.

Fig. 3. The four combinatorial different base cases that may occur for the ECAB
structure, as described in Section

6

Partial Axis Construction

In general, four combinatorially different base cases with < 3 original arcs may
stem from the iterative dividing process (Figure B]). The medial axes of these
base cases are then represented directly by portions of algebraically simple circle
bisectors. After the mathematical elaboration in Section [f] we now have a closer
look at the combinatorial composition of the axes.

(a)

The medial axis of base case (a) in Figure B] consists of parts of the two
bisectors between one of the two arcs incident to p; and the opposite arc.
As we have a smooth transition at the rational point p;, the two resulting
bisector segments have a tangent point at the joint point j;, which has rasqex
coordinates. Together with the (rasqex) center points of the artificial arcs,
41 is used to confine the required parts of the conic bisectors as described in

Section 5.3

The axis is the segment of the two original arcs’ bisector, which is confined
by the two center points of the artificial arcs, see Section (.3l

The base case of this form represents the generic case for branching points of
the medial axis. Its axis is composed of bisector parts from all pair constel-
lations of original arcs. Let C),, Cy and Cy be the three circles the original
arcs lie on. For isolation of these segments, in addition to the three artificial
center points, the intersection point js has to be identified. How to compute

! In the special case where P; and P> have more than two common roots due to
covertical intersection points, we shear the coordinate system, compute the center
points of the tritangent circles in the sheared system and transform the result back
to the original coordinate system.
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the potential coordinates of such a point, which are also rasqex, is shown
in Section 5.4l Finally we choose the correct intersection point among the
computed ones by computing additional points on the bisector curves and
following them starting at the center point of an artificial arc.

(d) Bisector construction is done as in case (b). However, unlike in case (b), one
of the two confining points is not an artificial center point, but a center point
of an original arc which represents a leaf point of the medial axis structure.

An arbitrary variation of the case depicted in Figure dlmay arise as a degenerate
exception, which is an occurrence of an axis branching, where more than three
bisectors meet in one point. For our dividing process this means that we arrive
at a shape, whose boundary is an alternating sequence of artificial and original
arcs. Here no generic dividing disk exists that would lead to combinatorially
smaller partial shapes.

Granted algebraic correctness, as is the case in our setting, such degenerate
cases can be detected easily: whenever an alternating arc sequence is recognized
we compute the bisectors of all pairs of arcs which are only separated by one
artificial arc. If all these bisectors intersect in one single point then a degen-
erate case has occured. Computation is based on the principle introduced in
Section [.4] meaning that again rasqex numbers are sufficient for exact calcu-
lation. This guarantees a correct indication of such a case which then can be
handled accordingly. This elegant and intuitive handling of degnerate cases is
one of the main improvements over the numerical afflicted approach in [2].

For the axis construction the bisector curves between original arcs that are
neighbored via a single artificial arc are of interest. They all intersect in one
common point which is, together with the center points of the artificial arcs,
required for the segment confinement.

7 ECAB Construction

Our approach works on shapes S whose boundary 95 is an ECAB. Thus in this
final chapter we present a simple construction to obtain such a shape. In this
construction only one single arc cannot be chosen rational but has to be rasqex.
In accordance to the defintion of ECAB we shift this rasqex arc to a region
where the curvature has a local maximum and therefore the medial axis has a
leaf-point.

1. We start by choosing two rational points which represent the center of a
circle and one endpoint of an arc on it (co and pg in Figure Bl). This circle is
rational with respect to our definition in Section [2

2. On the (rational) line through ¢y and py we choose another rational point
c1, being the center of the next circle.

3. As ¢; and pg are rational, we can choose the next rational point p; in any
e-neighborhood around an arbitrary point on the circle with center ¢; and
radius |1 — po|-
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Fig. 4. Degenerate case example Fig. 5. Boundary construction which sat-
isfies ECAB properties

4. We repeat the last two steps until we arrive at the closing circle which has
to represent a local curvature maximum of the boundary.

5. It is in general not possible to find a rational closing circle. But following the
construction of a maximal disk as described in Section ] we obtain a rasqex
arc with the supporting circle centered at ¢’ and with radius ||¢’ — p/|.

Note: If the closing arc resulting from this ECAB construction, which is generally
not rational, is treated like an artificial arc, then it can be handled without any
further modification as part of the base cases depicted in Figure

8 Conclusion

We showed that, given a boundary essentially composed of rational arcs (ECAB),
the Divide-&-Conquer approach for medial axis construction from [2] can be
adapted for algebraically exact calculation. Furthermore, encouraged by [§], we
were able to show that the rasqex number type is sufficient for all arising com-
putations. Intermediate steps and procedures are discussed in detail, and a con-
struction guide for a simple ECAB is provided. What is missing so far is an
analysis of the degrees of the geometric predicates involved in our computation.
This is left as a topic for future research.

An extension to circular boundaries with non-differentiable arc joints only
causes an increase of base and bisector cases (see also [2]). The same applies for
straight line segments, which also introduce parabolic curves to the axis. Exact
computation for boundary representations with curves of algebraically higher
degree may be a topic for future work, although the bisector complexity grows
considerably in this context.

We would like to point out again, that the self-contained representation by
rasqex numbers is a beneficial one. Correctness of the result and exactness during



42

O. Aichholzer et al.

computation (allowing e.g. the efficient detection and handling of degenerate
cases) are achieved by applying only moderate changes to the original (floating
point) algorithm. We think that with the exact computability of the medial axis
the algorithm recommends itself for implementation in geometric libraries as

CGAL [1].
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Abstract. In this paper, we study the shape of the control polygon of a
complex Bézier curve over a complex interval. We show that the location
of the complex roots of the polynomial dictates geometrical constraints
on the shape of the control polygon. Along the work, new proofs and
generalizations of the Walsh coincidence Theorem and the Grace The-
orem are given. Applications of the geometry of the control polygon of
complex polynomials to Bernstein type inequalities are discussed.

Keywords: Complex Bézier curves, complex de Casteljau algorithm,
polar derivative, Grace Theorem, Walsh coincidence Theorem, Bernstein
type inequalities.

1 Introduction

Parametric Bézier curves are widely used in Computer Aided Geometric Design
due mainly to the practical ramifications of two fundamental properties. The
first property relies on the existence of the notion of a control polygon, in which
the shape of the parametric curve can be readily guessed or controlled. The
second property appears in the so-called de Casteljau algorithm; a subdivision
scheme for efficient polynomial evaluation and fast curve design [6]. To define
the control polygon of a parametric Bézier curve, two polynomials with real co-
efficients P and @ are given, and upon taking the coefficients p; (resp. ¢;) of the
polynomial P (resp. Q) with respect to the Bernstein basis over a real interval,
we form the planar control polygon with vertices the points (p;, g;). In this work,
we propose to study the notion of complex Bézier curves and associated control
polygons [2]. In this setting, we start with a polynomial P with complex coef-
ficients. Representing the complex polynomial P in the Bernstein basis over a
complex interval [a, b], we obtain complex coefficients p; and therefore, a planar
control polygon with vertices the points (Re(p;), Im(p;)). We generalize the de
Casteljau algorithm for the evaluation of the polynomial at any complex argu-
ment and show that the location of the complex roots, or the critical points, of
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the polynomial P dictates geometrical constraints on the shape of the control
polygon. To illustrate what is meant by geometrical constraints, we can cite the
following fact, proven in Section 4 : If a polynomial P of exact degree n has all its
critical points on a circle C, then the control polygon of the polynomial P over
any diameter of the circle C' is a staircase polygon (Figure 1) with possibly some
coincident control points. Some applications of the geometry of the control poly-
gon to Bernstein type inequalities will be discussed. The paper is organized as
follows : In the first section, we introduce the notion of complex Bézier curve and
generalize the de Casteljau algorithm using the notion of polar form of a polyno-
mial. For later use, we will also introduce the de Boor-Fix bracket on the linear
space of polynomials. In Section 2, we introduce the notion of polar derivative.
We give a new expression of the polar derivative that will enable us to give sim-
ple proofs and new generalizations to the well-known Laguerre Theorem, Grace
Theorem and Walsh coincidence Theorem. The material of this section, did not
stem only from our desire for a self-contained account of this work or from our
need of new generalizations and simple proofs of the mentioned theorems, but
it also stems from our dissatisfaction of some of the practices in the litterature
in dealing with Laguerre Theorem, even in the classical book of Marden [I1].
More precisely, the degree of a polynomial is explicit in the definition of the
polar derivative and Laguerre Theorem is not always correct if we consider the
polynomial under investigation as having degree higher than its exact degree.
Therefore, naively, iterating Laguerre Theorem by successive use of the polar
derivative is not correct in general, unless we check at each step the exact degree
of the polynomial and apply the polar derivative accordingly. Our strategy to
resolve this issue is to prove that Laguerre Theorem is true independently of the
considered degree of the polynomial only if the chosen circular region contains
the point at infinity. Using the inherent pseudo-symmetry of the de Boor-Fix
bracket, we will be able to always choose circular regions that contain the point
at infinity. This strategy allows for a clear proof and generalization of Grace
Theorem and Walsh coincidence Theorem. In section 3, we study the geometry
of the control polygon of a complex polynomial, when the roots of the polyno-
mial lie in a circle, or in a disk or outside of a disk. In the last section, we apply
the preceding informations on the geometry of the control polygon in deriving
Bernstein, Turan and Erdos-Lax inequalities. The idea of using the polar form
to derive these inequalities was already in the classical work of de Bruijn [5], in
which there was not explicit terminology for the blossom. Our contribution in
this section is merely to give elegant geometrical interpretations to these proofs
and to stress the importance of studying the geometry of the control polygon
of complex polynomials. The general connection between the geometry of the
control polygon and Bernstein type inequalities can be understood as follows :
Every condition on the control polygon is translated to a condition on the po-
lar form, thereby leading to a Bernstein type inequality. Although we studied
such connection in only three cases, namely a polynomial with roots in a cir-
cle, or inside a disk or outside a disk, we can ask similar questions about the
shape of the control polygon for polynomials with roots in a half-plane, univalent
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Fig. 1. For a polynomial with all critical points in a circle C, the control polygon over
a diameter [a,b] of the circle has a staircase shape. In the figure, p; are the control
points of the polynomial, z; its roots and w; its critical points.

polynomials in a disk, reciprocal polynomials,... Each of this learned properties
on the control polygon will be associated to a Bernstein type inequality. Due to
space limitation, we were not able to touch upon these questions and it will be
the theme of a subsequent effort on the subject.

2 Complex Bézier Curves and Blossom

2.1 Complex Bézier Curves and Complex de Casteljau Algorithm

Within this work, we will always refer to polynomials of degree at most n as
polynomials of degree n. We will often stress the exact degree of the polynomial
when it is needed.

Let P be a complex polynomial of degree n, then for any complex interval
[a,b],(a # D), we can express the polynomial P in the Bernstein basis over the
interval [a, b] as

P(:) = 3o piB (), )

where the Bernstein polynomials B}*, ¢ = 0, ...,n are given by

b—2\"""/z—a\" n!
B =" n — X
1@ =0 (ba) (ba) ’ ¢ il(n —1i)!

Under the identification of a complex number z = x + iy with the planar point
z = (z,y), we obtain from (1), a polygon (pg, p1, ..., pn) called the control polygon
associated with the polynomial P over the interval [a, b]. A fundamental concept



46 R. Ait-Haddou and T. Nomura

for the rest of this work, in dealing with the control polygon of Bézier curves, is
the notion of polar form (or blossom) [I3] associated with the polynomial P.

Definition 1. Let P be a polynomial of degree n. There exists a unique multi-
affine, symmetric function in n variables fp: C* — C such that for each z in
C we have fp(z,z,....,2) = P(z). The function fp is called the polar form or
the blossom associated with the polynomial P.

The control polygon (qo,q1,...,qn) of a polynomial P over any interval [c,d],
(¢ # d) can be computed using the polar form fp of the polynomial P as follows:

g = fp(c™ 3 ath, i=01,... n, (2)

in which the notation z*} indicates that the complex number z has to be re-
peated k times.

To generalize the de Casteljau algorithm to complex polynomials, it is conve-
nient to introduce the notion of shape parameter of a triangle as in [10].

Definition 2. Let T = (a, b, ¢) be an oriented triangle in the complex plane. We
define the shape At of the triangle as

a—>b
a—c

Ap =

It is straightforward to show that two oriented triangles 77 and T5 have the same
shape if and only if they are similar. Using this notion of shape, we can show
the following

Lemma 1. Let P be a polynomial of degree to n, let fp be its polar form and

U1, U2, - - ., Up—1 be complex numbers. Then for any complex numbers z1, z2, and
z3, the two oriented triangles Ty = (fp(u1, uz2, ..., Un—1,21), fP(u1,u2, ... , Unp_1,
z2), fp(ui,ua,...,un—1,23)) and Ty = (21, 22, 23) are similar.

Proof. The shape of the triangle T3 is

A o fp(ul, U2y ...y Unp—1, Zl) — fp(ul, U2y ..., Unp—1, Z2)
T — .
fp(ul, U2y ooy Un—1, Zl) - fp(ul, U2y ooy Up—1, 23)

(3)
By the multi-affinity of the polar form, we have

1
fP(Ula .- -,Unfl,Zl) - fP(Ula .- -,Unfl,Zz) = n(Z1 - Z2)fP’(U17 cee 7un71)7

where P’ is the derivative of the polynomial P. Inserting the last equation into
(3) leads to Ap, = (21 — 22)/(21 — 23), which is the shape of the triangle T5. O

The multi-affinity of the blossom reveals that by an appropriate iterative use
of Lemma 1, over a control polygon of a polynomial over a complex interval,
we can evaluate the value of the polynomial at complex arguments - as well as
the value of its polar form over arbitrary poles - in a similar fashion as in the
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case of parametric Bézier curves. Namely, a complex de Casteljau algorithm in
which instead of using the multi-affinity over a line, we use the triangle similarity
over the complex plane. The idea of the complex de Casteljau algorithm is easily
illustrated using two simple examples. In the first example, we compute the value
of the polynomial at a complex argument, while in the second example, we use
the complex de Casteljau algorithm for computing the value of the blossom of
the polynomial over certain complex poles.

fP(_ly_lyé\/g) fp(].,l)%\/g)

g o s
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Fig. 2. The generalized de Casteljau algorithm for the evaluation of a complex poly-
nomial at a complex argument. Refer to Example 1 for a detailed explanation of the
Figure.

Example 1. Consider the cubic polynomial P(z) = 2% + 3iz? + 62 + 5 and con-
sider the control polygon P of the polynomial P over the interval [—1, 1]. From
the polar form, we can calculate the control polygon of the polynomial P as
(po, p1,p2,03) = (=24 3,4 — 0,6 — 4,12 + 3i) (Figure 2). In order, for example,
to calculate the value P(v/3i) we proceed as follows : Since the oriented triangle
(—1,1,4/3i) is equilateral, the point fp(—1,—1,+/3i) is such that the oriented
triangle (po, p1, fp(—1, —1,v/37)) is also equilateral. The same argument can be
applied to the points fp(—1,1,v/3i), fp(1,1,+/3i). This is the level one complex
de Casteljau algorithm. To proceed, we calculate the point fp(—l,\/3i,\/3i)
as the point such that the oriented triangle (fp(—1,—1,v/3i), fp(—1,1,/3i),
fp(—1,/3 i,/3i)) is equilateral, and so on until we reach the last level of the
complex de Casteljau algorithm where we calculate fp(v/3i, v/3i,v/3i) = P(v/3i).
(See Figure 2).
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Example 2. Consider the same cubic polynomial P(z) = 23 + 3i22 4+ 62 + 5 in
which we would like to compute the polar form fp(1/2,u1,us), where uy and us
are, for example, points in the complex plane such that the triangle (—1,uq,1)
is isosceles with apex angle at u; equal to 7/2, and the triangle (—1,us,1) is
also isosceles with an apex angle of 7/4 at us. To proceed, we first insert the
pole 1/2 into the blossom of the polynomial P using only the multi-affinity of
the blossom. This is the first level de Casteljau algorithm that would give us
the points ¢1 = fp(—1,-1,1/2), g2 = fp(—1,1,1/2) and ¢3 = fp(1,1,1/2). To
insert the pole u; into the polar form, we proceed by drawing on each edge of
the polygon (¢1, g2, g3) isosceles triangles with apex angle 7/2. This second level
de Castejau algorithm gives us an edge [fp(—1,1/2,u1), fp(1,1/2,u;)]. Drawing
an isosceles triangle based on this edge with an apex angle equal to w/4 leads to
the desired polar value fp(1/2,u1,uz).

We can represent the complex de Casteljau algorithm using the familiar trian-
gular array (Figure 3), in which every triangle inside the triangular polar values
represent the similarity constraint within the construction.

plal?h) felalr=2 8y ——ee (a, 6711} —— fp (™)
\\7 ya \v \& / ______ \&/
fp a{“ 1} 5, Uq —fp G(n’ 2} b ’ul)—fp a{rz—i?} 5{2} 1,{1 _____ fP(b{n_l}sul)
\4_’5/ \ﬁ j/ \\\é/
A
felal™ 2wy, w) = fo(al™ = by, 1) —mmmmm Fp (602 g, )
i
\ // \\\ ! F % /
. \ t 7 A
r’ E L
]
Lo
o=ty
Uy
ui;’“‘?s U

Fig. 3. The generalized de Casteljau algorithm for the computation of the polar form at
complex polar values. The triangle inside each two given polar values and the computed
one reflect the similarity constraint that has to be respected in inserting the polar value.
For example, the value fp(a!™ "' u1) is computed from the given polar values fp(at™?)
and fp(a{"71}b) as the point such that the triangle (in the figure) inside these three
values is similar to the oriented triangle (f»(a'™), fp(a"1,b), fp(a"™ u1)). Refer
to Example 2 for an illustration.
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2.2 de Boor-Fix Bracket and Blossom

In the linear space P,, of polynomials of degree n, we define the de Boor-Fix
bracket operator [,], as follows : Given two polynomials P, @ of degree n,
[P, Q] is given by

n

R o N Gt O (n—k)
[P,Qln =) o L (2)Q (2),

k=0

where RU) stand for the j-th derivative of a polynomial R.

The de Boor-Fix operator [, ], is bilinear and independent of z. Moreover, it
is symmetric if n is an even integer and skew-symmetric if n is an odd integer.
There is an ultimate relationship between the de Boor-Fix operator and the polar
form, and it can be stated as follows [7] : For any complex numbers w1, ug, ..., ty
and any polynomial P of degree n, we have

[P, (ur — 2)(ug — 2) .. (U, — 2)]n = fp(ur,uz, ..., un),

where fp is the polar form of the polynomial P. If the polynomials P and @
have exact degree n, with respective roots z1, 22, ..., 2, and u1, U2, ..., Uy, we have

(~1)" Q™ (2)

n!

[P, Q). = fp(ur,ug, ..., up). (4)

However, if the polynomial @ has an exact degree m < n, we have

(=1)™m!
n!

[P,Ql, = QU ()P, Qlm. (5)

Note that if we write the polynomials P and @ explicitly as
n n
P(z) = Z Crapz*, Qz) = Z CFby2",
k=0 k=0

then we have "

[P,Qln = (=1)" *Charbn_s.

k=0
The last equation leads to the familiar definition of apolar polynomials

Definition 3. Two polynomials P and Q of degree n are said to be apolar if,
and only if

[PvQ]n =0.

3 Polar Derivative of a Polynomial

Let P be a complex polynomial of degree n and ¢ be a complex number. The
polynomial
PQ{(Z) = fP(CaZaZa"'vz)
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is called the polar derivative of the polynomial P with respect to the pole (. It
can be expressed explicitly as

€—2)
Pl(z) = P(z) + N P'(2).
In the following, we will give a different and convenient expression of the polar
derivative that enables us to study the location of its zeros in the complex plane.

We consider the following two linear operators in the C-space of polynomials
d: Py — Pno1 and ¢y : Pn — Pp defined by

d(P(2)) = P'(2) and Yen(P(2)) = (2 = Q)" P(C+ i C)~ (6)
Introducing the map
(2= {(z)=C+1/(2=0), (7)
we have (o ((z) = z for all z # ¢, from which we deduce
Yen 0P = la, (8)

where I; is the identity on P,,. By direct inspection, we can show the following
proposition relating the polar derivative of a polynomial P with respect to a
pole ¢ and the two operators d and ¢, [1].

Proposition 1. For every polynomial P of degree n and for any complexr num-
ber ¢, we have

Y1 0 dothen(P) =nPL (9)

Before studying the location of the zeros of the polar derivative, we introduce
the familiar notion of circular regions. A circular region of the complex plane is
defined as the image of either the closed or the open unit disk under a nonsingular

Moébius map «y of the form
az+b

P)/(Z) - CZ+d’

where a, b, c and d are complex numbers such that ad — bc # 0. Mobius maps are
1 — 1 mapping of the extended plane into itself with the property of mapping
every circle onto either a circle or a line, and every line onto either a circle
or a line. Therefore, a circular region is one of the following : an open disk,
a closed disk, an open half plane, a closed half plane including co, the open
exterior of a circle including oo or a closed exterior of a circle including co. We
will always refer to the circular regions that include oo, as simply, the circular
regions containing the point at infinity.

Now, consider a polynomial P of exact degree n with all its roots z;, i =
1,...,n, in a circular region C and let { be a complex number outside of C.
The map é in equation (7) sends the complex point ¢ to co, thus it maps the
circular region C' to a circular region f (C) not containing the point at infinity.
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Thereby, £(C) is necessarily convex. Therefore, the roots ¢(z;) of the polynomial
Ye.n(P) of equation (6) belong to (C). By Gauss-Lucas Theorem, the roots of
the polynomial d o 9)¢ »,(P) also belong to ¢ (C). Applying again the involutive
transformation é to the roots of the polynomial dot ,,(P) according to equation
(9), we conclude that the roots of the polar derivative P} belong to the circular
region C. Summarizing,

Theorem 1. (Laguerre Theorem). If all the zeros of a polynomial P of exact
degree n lie in a circular region C and if ( is a complex number outside of C,
then the zeros of the polynomial Pg’ belong to the circular region C.

Laguerre Theorem is wrong if we do not assume that the polynomial P is of
exact degree n. For example, consider the polynomial P(z) = 2% + 1 viewed as
a polynomial of degree n > 2. The polar derivative of the polynomial P with
respect to a pole € is given by nP:(z) = (n — 2)2% + 26z + n. The roots i and
—1i of the polynomial P belong to the circular region C given as the closed unit
disk. However, for the pole ( = \/ n(n — 2) lying outside the circular region C,
the polar derivative has a root —(/(n — 2) of multiplicity 2, which for n > 2 lies
outside the circular region. To understand what fails in the proof of Laguerre
Theorem in such a case, we could first give the following informal explanation:
The polynomial P above, when considered as a polynomial of degree n > 2, can
be viewed as a polynomial with two roots in the circular region C and n — 2
roots at co. Therefore, not all the roots of the polynomial P lie in the circular
region C' as the point co does not belong to the closed unit disk. However, to
understand what exactly fails within the proof, we proceed as follows : When a
polynomial P of exact degree s and roots z1, 23, ..., 25 in a circular region C is
viewed as a polynomial of degree n, we rewrite the transformation ¢ ., (P) as

Ven(P() = (= 0=z =0 PCH+ L ).

In this case, the polynomial ¢ ,(P) has as roots the complex numbers ¢(z;)
and ¢ as a root of multiplicity (n — s). If ¢ does not belong to the circular
region ¢ (C), we cannot use the essence of Gauss-Lucas Theorem. However, if we
assume that the circular region C' contains the point at infinity, and the pole
¢ does not belong to C, then ¢ belongs to the circular region CA(C), otherwise,
by applying again the transformation é to both é (C) and ¢, we arrive at the
contradiction that there is a separating line between the circular region C' and
the point at infinity. In this case, Laguerre Theorem remains true independently
of the viewed degree of the polynomial. Therefore, we have

Proposition 2. If all the zeros of a polynomial P of degree n lie in a circular
region C' that contains the point at infinity and if ¢ is a complexr number outside
of C, then the zeros of the polynomial Pé belong to the circular region C.

Let P be a polynomial of degree n. As we have already seen, the polar deriva-
tive Pél of the polynomial P viewed as a polynomial of degree n can be writ-

ten as fp((l,z{”_l}). If we consider the polar derivative of the polynomial
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Q = P, viewed as a polynomial of degree n — 1, with respect to a pole (2,
then we have Q¢ (2) = fp(C1, (2, 2{7=2}) Therefore, for any complex numbers
(1,Ca, .., Cs, (s < m), the polynomial fp(C1,Ca, ..., Cs, 2177%1) is the successive po-
lar derivative of the polynomial P with respect to the poles (i, (2, ...,(s and in
which at each iterative step, we view the obtained polynomial as a unit degree
less than the degree of the polynomial obtained in the preceding iterative step.
It is very important to respect this rule on the degree at each iterative step
when performing the polar derivative, even if at a certain step the degree of the
polynomial is strictly less than expected, as the following example shows :

Example 3. Consider the polynomial P(z) = 2% — 322+ 62+ 1. The polar deriva-
tive of the polynomial P with respect to the pole { = 1is P{(z) = 2z + 3,
which is of exact degree less than the expected number 2. In order to express
the polynomial fp(1,14,2) as successive polar derivative, we should consider the
polynomial P| as a polynomial of degree 2 and proceed with its polar derivative
with respect to the pole i. Otherwise, if we consider the polynomial P| as a
polynomial of degree 1 and proceed with the polar derivative, we would not find
the right answer, namely fp(1,1, z).

As proposition 2 is independent of the exact degree of the considered polynomial,
we have

Theorem 2. Let P be a polynomial of degree n whose roots lie in a circular
region C' that contains the point at infinity. Let (1,(s, ..., Ck, k < n be k complex
numbers outside of C. Then, if the polynomial Q(z) = fp(C1,Ca, ..., Cpy 21774
is not constant, all its roots lie in the circular region C.

This Theorem leads us to the well-known Grace Theorem [12]

Theorem 3. (Grace Theorem). If P and Q are two apolar polynomials of
exact degree n and if one of them has all its roots in a circular region C, then
the other will have at least one zero in C.

Proof. Let z1, zo, ..., z, be the roots of the polynomial P and w1, us, ..., u, the
roots of the polynomial @ . From the hypothesis of apolarity, and by (4), we
have fp(ui,ug,...,un) = 0 and fg(z1,22,...,2n) = 0. Let us assume that the
roots of the polynomial @ are inside a circular region C, while the roots of the
polynomial P are outside the circular region C', which is also a circular region
which we denote by D. As the two regions C' and D are complementary, one of
them will contain the point at infinity. Without loss of generality, we can assume
that it is the region D that contains the point at infinity and that u; # u; for
i # j. By Theorem 2, the polynomial fp(u1,ua, ..cyUim1, Uity .., Un, 2), if NOL
constant, has a root in the circular region D, but by hypothesis it has also a
root in the region C', namely wu;. Therefore, by the multi-affinity of the blossom,
we have fp(u1,ug, ..oy Uim1, Uit1, ..y Un,2) = 0, for ¢ = 1,...,n. In the special
case in which the polynomial fp(u1,ua,...,;u;i—1,Uit1, ..., Un, 2) is constant, then
the constant has to be zero as we have fp(ui,ug,...,u,) = 0. Therefore, in
both cases, we have fp(u1, g, ..oy Uim1, Uit1, ..., Un, 2) = 0. That shows, again by
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the multi-affinity of the blossom, that the polynomial P = 0, which leads to
a contradiction. Therefore, one of the roots of the polynomial P belong to the
circular region C. O

Grace’s Theorem leads to the following celebrated Walsh coincidence Theorem
1.

Theorem 4. (Walsh coincidence Theorem). Let f be a symmetric multi-
affine function of n complex variables and total degree equal ton . Let uy,us, ...,

Uy be n complex numbers which lie in a circular region C. Then, there exists a
¢ in C such that

f(u17u27"'aun):f(C7Ca"'a<)'

Proof. Let P be the polynomial defined by P(z) = f(z, z, ..., 2). Then the poly-
nomial P is of exact degree n and f = fp its blossom. Consider the polynomial
of exact degree n defined by Q(z) = P(z) — fp(u1,us, ..., u,). From the hypoth-
esis on the complex numbers u;, we have fo(u1,us,...,un) = 0. Therefore, by
Grace Theorem, the polynomial @) has a root in the circular region C. (]

Consider, now, a polynomial P of exact degree n and roots z;,i = 1,...,n and
consider another polynomial @ of exact degree m < n such that [P, Q], = 0. In
this case, we have fg(z1, 22, ..., zn) = 0 where fg is the blossom of @ viewed as
a polynomial of degree n. Therefore, from (5), we have fo(wi,ws,...,wmy) =0
where w1, ..., wy, are the roots of the polynomial P("~")_ Consequently, by Grace
Theorem, any circular region that contains the roots of the (n — m)-derivative
of the polynomial P contains a root of the polynomial ). Therefore, we get the
following generalization of Grace and Walsh Theorems.

Theorem 5. Let P be a polynomial of exact degree n and Q a polynomial of
exact degree m < m. If the two polynomials P and Q are apolar, then any circular
region containing the roots of P"~™) contains at least one root of Q.

Equivalently, we can formulate this corollary in term of the blossom as

Corollary 1. Let f be a symmetric multi-affine function of n complex variables
and total degree m < n. Let ui,us,...,u, be n complex numbers which lie in a
circular region C. Then, there exists a ¢ in a circular region containing the roots
of P""=™) where P is the polynomial P(z) = [[;_,(z — u;) such that

f(u17u27"'aun):f(C7Ca"'a<)'

The last corollary essentially expresses the fact that the control polygon of the
degree elevation has the potential of giving more refined informations on the
location of the roots of the polynomial. This is consistent with the fact that the
control polygon of degree elevation reveals more information on the shape of the
curve and even converges to the curve with successive degree elevation.

Note that if in Theorem 5, the roots of the polynomial P are in a disk or a
half plane (closed or open), then the roots of the successive derivatives are also
located in the same region. Therefore, Theorem 5, constitutes a generalization
of the following results of Aziz [4] and Jain [9].
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Corollary 2. Let P be a polynomial of exact degree n and QQ a degree m < n
polynomial such that P and Q are apolar. If the roots of P are in a disk D (resp.
a half plane H), then at least one of the roots of the polynomial @ lies in the
disk D (resp. the half plane H ).

Equivalently, we can formulate this corollary in term of the blossom as

Corollary 3. Let f be a symmetric multi-affine function of n complex variables
and total degree m < n. Let uy,us, ..., u, be n complexr numbers which lie in a
disk D (resp. a half plane H ). Then there exists a ¢ in D (resp. H) such that

f(ul,uQ,...,un) = f(C,C,,C)

4 Geometry of the Control Polygon

In this section, we study the shape of the control polygon of a complex polyno-
mial when the relative location of the roots of the polynomial with respect to a
disk is given.

4.1 Polynomial with Roots on a Circle

Proposition 3. Let P be a polynomial of exact degree n whose roots lie in a
circle C and let ( be a complex number that lies in the circle C. Then all the
roots of the polar derivative P/ lie in the circle C, unless P(z) = Az — ()" and
in which case we have Pé =0.

Proof. The proof follows the same lines as in our proof of Laguerre Theorem,
in which this time we use Rolle Theorem instead of Gauss-Lucas Theorem. Let
21, 22, .-+, 2n, be the roots of the polynomial P which are assumed to lie in a circle
C and let ¢ be a complex number in C. Let us assume that s (0 < s < n)
roots z1, 29, ..., 25 of the polynomial P coincide with the pole (. In this case, the
polynomial 9 ,(P) is of exact degree n — s, where ¢, is defined in (6). As
the map ¢ of (7) sends the point ¢ to infinity, the points gt(zz),z =s+1,..,n
belong to a line L. Therefore, the roots of the polynomial ¢ ,,(P) belong to L,
thereby by Rolle Theorem, the roots of the polynomial d o 9¢ ,(P) also belong
to L. By applying again the transformation CA with respect to (9), we arrive at
the statement that the polar derivative Pé has n—s—1 roots on the circle C and
s — 1 roots that coincide with the pole (. Therefore, all the roots of the polar
derivative Pé lie in the circle C. The only case we did not yet deal with is the
one in which s = n, i.e.; all the roots of the polynomial P coincide with the pole
(. In this case, we have P(z) = A(z — ()" and then P; =0. O

Consider now a polynomial P of exact degree n whose roots z;,i = 1,...,n lie in
a circle C, we further assume that the polynomial P is not of the form P(z) =
Az—p)™. Let (1 be a complex number in the circle C. From the last Proposition,
the polynomial fp((1, 2, 2, ..., z) is a polynomial of degree n — 1 with all its roots
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in the circle C. To be able to iterate the statement of Proposition 3, we have to
show that the polynomial fp((1, 2, 2, ..., 2) is of exact degree n — 1. Writing the
polynomial P in the monomial basis as P(2) = a,2" + an,—12"" + ... + ap and
computing the higher term of the polar derivative, we find fp((1,2,2,...,2) =
(anC1 + (an,l/n))z”*1 + .... Therefore, the polynomial P, is of degree strictly
less than n — 1 if and only if the pole (; satisfy the equation (1 = (3 z;)/n. As
the roots z; belong to the circle C, its centroid lie strictly inside the circle unless
all the roots coincide and in which case we have P(z) = A(z — (1)™. Therefore,
we have shown that the polynomial fp((i,2,2,...,2) is of exact degree n — 1.
Iterating then the process of taking successive polar derivatives and applying
Proposition 3, we find that for any complex numbers (1, (s, ..., {; in the circle C,
the polynomial fp((1,...,Ck, 2, ...z) has all its roots in the circle C. In particular,
consider two complex numbers a,b such that the segment [a,b] is a diameter
of the circle C, then for any i = 1,...,n, the degree 1 polynomial Q;(z) =
fp(a™ % b1 2) has its unique root in the circle C, for every i = 1,...,n — 1, i.e;
there exist p; in the circle C such that fp(a™ % b'~1, p;) = 0. Since the oriented
triangle (fp(a™ % b7 a), fp(a™ 4 b1 b), fp(a™ 4 b7 p;)) is similar to the
oriented triangle (a, b, p;), we deduce that the control polygon of the polynomial
P over the interval [a, b] satisfy < p;,p;y1 >=0 for i =0, ...,n — 1.(the notation
< 21,29 > is referred here to the scalar product of the complex numbers z; and
z9 l.e., Re(z172)). Consider now the case in which the polynomial P is of the
form P(z) = A(z — p)™, where p lies in the circle C' and let [a, b] be a diameter
of the circle C. If p is different from a and b, then the preceding arguments
are still valid and the control polygon (pg, p1, ..., D) of the polynomial P satisfy
< pi,pi+1 >=0for i =0,...,n — 1. In the case the complex number p coincide
with a (resp. b) then the control polygon (po,p1,...,Pn) is (0,0,...,0, A(b — p)™)
(resp. (A(a — p)™,0,0,...,0)) and therefore, in all cases we have < p;, pi11 >=0
for i =1,...,n — 1. Therefore

Theorem 6. If all the zeros of a polynomial P of exact degree n lie in a circle
C, then its control polygon (po,p1,...,pn) over a diameter [a,b] of the circle C
satifies < pi,pi+1 >=0 fori=0,...,n—1 i.e.; for everyi =0,...,n—1 the circle
of diameter [p;, piy+1] passes through the origin (Figure 4).

In Figure 4, we have shown an example of the control polygon of a polynomial
with all its roots in a circle C' over a diameter of the circle. We can notice the
existence of two orthogonal lines L1 and Lo that intersect at the origin and in
which the location of the control points of the polynomial alternates between
the two lines Ly and Ls. In the case all the control points are non-zeros, such a
property can be deduced directly from Theorem 6. However, in the case where
some control points are zero, the existence of the two orthogonal lines is not
obvious.

In the following, we will show that the condition of Theorem 6 imposes the ex-
istence of such two orthogonal lines or in other words, we will show that we also
have det(p;, piy2) = 0 fori = 1,...n—2. To do so, we first notice that for a polyno-
mial with exact degree n with all its roots in a circle, a sequence of control points,
over a diameter of the circle, of the form (po,p1,-.., Pk, 0,0, ..., 0, Dkts, .., Pr) in
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Z4

1 P2

Fig. 4. For a polynomial with all it roots in a circle C, there exist two orthogonal lines
Ly and L; intersecting at the origin, such that the control points, over a diameter [a, b]
of the circle, alternate between the two lines. In the figure, p; are the control points of
the polynomial, O the origin and z; the roots of the polynomial.

which the number of zero control points between pj and pgys is strictly bigger
than 1 (s > 2) and px # 0 and pgys # 0 is forbiden. Indeed, if such a sequence
exists, then the polynomial Q(z) = fp(atr—(k+)+1} ple+1} As=2}) = . How-
ever, from the proof of Theorem 6, such a polynomial has exact degree s —2 > 0
unless P(z) = Mz — a)™ (resp. A(z — b)) and in which case the control point
pr = 0 (resp. pr+s = 0), contradicting our initial assumption. Therefore, the
only non obvious case to consider is a sequence of control points of the form
(P0s P15 -5 Pky 0, Pt 2, -y Pn), Where py # 0 and pyi2 # 0. To such a sequence,
we associate the polynomial Q(z) = fp(al®*=2} b{¥} 2 2). The polynomial Q
has all its roots in the circle C' and has (pg,0, pr+2) as a control polygon over
the interval [a,d]. Let ¢ be the point in the circle C' such that the diameter [a,b]
is orthogonal to the segment [(a + b)/2,c] i.e., ¢ = (a +ib)/(1 + 7). The polar
derivative @/, of the polynomial @ with respect to the pole ¢ has its only root
in the circle C. The control points of @/, over the interval [a,b] are given by
qo = pr/(1+1) and q1 = ipr+2/(1 +14). Therefore, we have < qo, ¢1 >= 0, which
can be rewritten as < pg,ipgr2 >= —det(pk,pr+1) = 0. Therefore, we have
proven

Corollary 4. If all the zeros of a polynomial P of exact degree n lie in a circle
C, then its control polygon (po,p1,...,pn) over a diameter [a,b] of the circle C
satifies < pi,pit1 >=0 fori=0,...,n—1 and det(p;, pi+2) =0 fori =10,...,n—2
i.e.; there exist two orthogonal lines L1 and Lo that intersect at the origin and
in which the location of the control points p; alternates between the two lines.

From now on, a control polygon that satisfy the geometrical conditions of the
last corollary will be called an orthogonal control polygon.
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Remark 1. Consider a polynomial P with real coefficients and of exact degree
n. Let us assume that all the roots of the polynomial P lie in the unit circle. Let
(po, p1, .-, Pn) be the control polygon of P over the interval [—1, 1]. In this case,
all the control points are reals. Moreover, the control points should alternate
between two orthogonal lines. The only possible scenario for this to happen is
that the odd or the even control points of the polynomial are all equal to zero.

In the following, we show that if the control polygon of a polynomial P is or-
thogonal over a diameter [a,b] of a circle C, then the control polygon of P over
a different diameter remains orthogonal, independently of the condition on the
roots of the polynomial. In some sense, it shows that it is redundant to always
stress that the orthogonality is true for any diameter of the circle, if it is true
for a single diameter. For such purpose, we need the following lemma.

In the following, we show that if the control polygon of a polynomial P is
orthogonal over a diameter [a,b] of a circle C, then the control polygon of P
over a different diameter remains orthogonal, independently of the condition on
the roots of the polynomial. In some sense, it shows that it is redundant to
always stress that the orthogonality is true for any diameter of the circle, if it is
true for a single diameter. For such purpose, we need the following lemma.

Lemma 2. Let P be a polynomial of exact degree n > 3 such that its control
polygon (po, 1, ..., Pn) over a diameter [a,b] of a circle C is orthogonal. Let ¢ be
a complex number in C, then the polynomial Pé has the property that its control
polygon (qo, q1, ..., gn—1) over [a,b] is orthogonal.

Proof. Let (po, ..., pn) be the control polygon of the polynomial P over [a, b] and
(90,91, -+, @n—1) be the control polygon of P/ over the same interval. We have

b-¢  (-a
Zﬁb—apZer—ale'

Using the fact that < p;, p;+1 >= 0, we have

1 2
< Qi Qit1 >= b ”2 ( < (b=Qpi, (€ —a)pir2 > +|pir1]|" < —a,b—C > )
—a
Since [a, b] is a diameter of the circle C' and ¢ lies in C', we have < {—a,b—( >= 0.
Moreover, using the fact that there exist real numbers \; such that p;12 = A;p;,
leads to < ¢i,qi+1 >= 0, for i = 0,...,n — 2. Similar computations show that
det(qi, giv2) = 0. U

Corollary 5. Let P be a polynomial of exact degree m such that its control
polygon (po, p1,-..,Pn) over a diameter [a,b] of a circle C is orthogonal. Then,
the control polygon (qo,q1,...,qn) of the polynomial P over a different diameter
[c,d] is also orthogonal.

Proof. Let us assume that the degree of the polynomial P is greater than 3. Let
[c,d] be a diameter of the circle C' and (qo, q1, ..., ¢n) be the control polygon of
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WG

Fig.5. For a polynomial with all its roots inside a disk with boundary the circle C,
and a control polygon over a diameter [a, b] of the circle, the disk of diameter any two
consecutive control points contains the origin. In the figure, p; are the control points
of the polynomial, O the origin and z; the roots of the polynomial.

the polynomial P over the diameter [c,d]. Using iteratively Lemma 2, with the
hypothesis that the control polygon (pg,p1, ..., pn) of the polynomial P over the
interval [a,b] is orthogonal, we know that for any 0 < j < n — 2, the control
polygon of the polynomial Q;(z) = fp(ctn=2=3} ali} » 2) over the interval [a, b]
is orthogonal. The control polygon of the polynomial @; over the interval [a, b]
is given by ro = fp(c{"=273} dUt 4 a), ry = fp(ctn=277} dli} a,b) and ry =
fp(ctn=2=3} qli} b b). Therefore, we have

(b—a)?qj =ro(b—c)* +2ri(c—a)(b—c) +ra(c —a)?,

(b—a)?qjs1 = ro(b—c)(b—d)+r1((c—a)(b—d)+(d—a)(b—c))+ra(c—a)(d—a),

and
(b—a)®qjra = ro(b —d)* +2r1(d — a)(b— d) + ro(d — a)?.

Straightforward computations then show that < ¢;,¢;4+1 >= 0 and det(g;, ¢j+2)
= 0 (It may be helpful, and without loss of generality, to assume that C' is the
unit circle and take a = €?,b = —e,c = €% and d = —¢'® in carrying the
computations). The case of degree 1 polynomials is obvious, while for degree
2 polynomials, we can use direclty the last equations to describe the control
polygon of the quadratic polynomial over the interval [c, d]. ([l

If we apply Theorem 6, to the derivative of the polynomial P, we get an inter-
esting geometrical property of the control polygon of polynomials with critical
points in a circle, namely
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Proposition 4. If a polynomial P of exact degree n has all its critical points
in a circle C, then the control polygon (po,p1,...,Pn) of the polynomial P over
a diameter [a,b] of the circle C satisfies < piy1 — PiyDiv2 — Pit1 >= 0, for
i=0,...,n— 2. i.e.; the control polygon has a staircase shape (Figure 1).

4.2 Polynomial with Roots Inside a Disk

Consider a polynomial P of exact degree n with all its roots inside a closed disk
D and let (7 be a complex number in the circle 9D. Then, similar arguments that
was used in Laguerre Theorem proof, show that the polynomial fp((1, 2, 2, ..., 2)
is a polynomial of degree n — 1 with all its roots inside the disk D. (Note that we
can also invoke Hurwitz Theorem on the continuity of the roots with respect to
the coefficients of the polynomial. As the roots are inside the disk, no root can
escape to infinity during the continuity process). Moreover, similar arguments
as in the proof of Theorem 6, shows that the polynomial fp((,2,2,...,2) is of
exact degree n — 1, unless the polynomial P is of the form A(z — (7)™. Excluding
this particular case, allows us to iterate this process for any complex numbers
(1, (o, .., C in the circle 9D, i.e.; the polynomial fp((i,...,Ck, 2, ...2) has all its
roots in the disk D. In particular, consider two complex numbers a, b such that
the segment [a,b] is a diameter of the circle D, then the degree 1 polynomial
Qi(z) = fp(a™ %b*"1, 2) has it unique root in the disk D, i.e; there exists
¢ in the disk D such that fp(a™ % b"~1,¢) = 0. Since the oriented triangle
(fp(a™ % b1 a), fp(a™ % 671 b), fp(a™ % b7, ()) is similar to the oriented
triangle (a, b, (), we have < p;, p;+1 >< 0. The case in which the polynomial P
is of the form A(z — p)™ has been already treated in the last section, and in all
cases we have the following

Theorem 7. If all the zeros of a polynomial P of exact degree n lie inside a
disk D, then its control polygon (po,p1, ..., pn) over a diameter [a,b] of the circle
0D satifies < pi,pir1 ><0 fori=0,....n—1 i.e; for everyi=0,....,n—1 the
disk of diameter [p;, pi+1] contains the origin (Figure 5).

Remark 2. Unlike the orthogonality condition on the control polygon of poly-
nomials with roots in a circle, the geometrical condition on the control polygon
for polynomials with all roots inside the disk depends on the interval in which
the control polygon is taken. A simple illustration of this point would be the
quadratic polynomial P(z) = z? — 2iz. Its control polygon over the interval
[-1,1] is (po, p1,p2) = (1 + 2i,—1,1 — 2i) and satisfies < p;, pi+1 ><0,i =0, 1.
However, its control polygon (qo, q1,¢2) = (=3, 1,1) over the interval [—i,i] does
not satisfy the condition < q1,q2 ><0

If we apply Theorem 7 to the derivative of the polynomial P, we get the follow-
ing interesting geometrical property of the control polygon of polynomials with
critical points inside a disk, namely
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Fig. 6. For a polynomial with all its critical points inside a disk with boundary the
circle C, and a control polygon over a diameter [a,b] of the circle, the non-oriented
apex angle 0; of the triangle (p;—1,ps, pi+1) at the vertex p; is less or equal to 7/2. In
the figure, p; are the control points of the polynomial, w; its critical points.

Proposition 5. If a polynomial P of exact degree n has all its critical points
inside a disk D, then the control polygon (po,pi, ..., pn) of the polynomial P over
a diameter [a,b] of the circle D satisfies < piy1 — PiyPit2 — piv1 >< 0, for
i=0,...,m — 2. i.e.; the non-oriented angle of the triangle (p;, pit+1,Pi+2) at the
vertex piy1 is smaller than w/2 (Figure 6).

4.3 Polynomial with Roots Outside a Disk

Consider a polynomial P with all its roots outside a disk D. As the roots of
P belong to a circular region that contains the point at infinity, the issue of
the exact degree of the polynomial does not manifest itself. Therefore, using the
same proof as in Laguerre Theorem, complemented with a similar treatement
on the control polygon as in the last section leads to

Theorem 8. If all the zeros of a polynomial P of degree n lie outside a disk
D, then the control polygon (po,p1, ..., Pn) over a diameter [a,b] of the circle 0D
satifies < pi,piv1 >>0 fori=0,...n—1 i.e.; for everyi=0,...,n—1 the disk
of diameter [p;, pit+1] does not contain the origin (Figure 7).

Again, applying this result to the derivative of the polynomial P leads to

Proposition 6. If a polynomial P of degree n has all its critical points outside
a disk D, then the control polygon (po,pi,...,pn) of the polynomial P over a
diameter [a,b] of the circle 0D salisfies < pit1 — pi,Pive — Pig1 >=> 0, for
i=0,...,n— 2. i.e.; the non-oriented angle of the triangle (p;, pi+1,Pi+2) at the
vertex p;y1 is larger than w/2 (Figure 8).
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Fig. 7. For a polynomial with all its roots outside a disk with boundary the circle C,
and a control polygon over a diameter [a, b] of the circle, the disk of diameter any two
consecutive control points does not contain the origin. In the figure, p; are the control
points of the polynomial, O the origin and z; the roots of the polynomial.

5 Bernstein-Type Inequalities

In this section, we will show some applications of the shape of the control polygon
of a polynomial to Bernstein type inequalities.
For a complex polynomial P, and for a region D in the complex plan, we
denote
IPllp = maz.cp|P(2)].

Theorem 9. (Bernstein Inequality ). Let P be a complex polynomial of degree
n and D a disk of radius R. Then

n
1”llp < pIIPlIp-

Proof. Let fp be the polar form of the polynomial P viewed as a polynomial of
degree n. By Corollary 3, we have | fp(u1, ua, ..., un)| < ||P||p for all uy, ug, .., un
in the disk D, otherwise, we will have a complex number ¢ in the disk D such
that | fp(u1,ug, ..., un)| = |P()| > ||P]|p- In particular, for any complex number
a in D, we have |fp(a,a,..,a)] <||P||p and |fp(a,a,..a,2¢—a)| <||P(2)||p; ¢
being the center of the disk D ([a,2c — a] is a diameter of the disk D). Therefore

|fP(aaaa~~aa) - fp(a7a,..a,207a)| S 2||P||D

By the multi-affinity of the polar form, the last equation can be rewritten as
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Fig. 8. For a polynomial with all its critical points outside a disk with boundary the
circle C, and a control polygon over a diameter [a,b] of the circle, the non-oriented
apex angle 0; of the triangle (p;—1, ps, pi+1) at the vertex p; is greater or equal to 7/2.
In the figure, p; are the control points of the polynomial, w; its critical points.

n n
P’ < Pl|lp = P||p.
Pal< " IPll = BlIPl

As the last inequality is true for any a in 0D, the maximum principle leads to a
proof of the Bernstein inequality. O

Theorem 10. (Turan Inequality). Let P be a complex polynomial of exact
degree n, with all its roots in a disk D of radius R. Then

n
1Pllp = L IIPllp. (10)

Proof. Let fp be the polar form of the polynomial P. Let a be an arbitrary
complex number in 0D. Since all the roots of the polynomial P are inside the disk
D, by Theorem 7, the disk of diameter the first two control points fp(a,a,...,a)
and fp(a,a,...,a,2c— a) of the polynomial over the diameter [a,2c — a] contains
the origin (Figure 9). Therefore,

|fP(a7aa [x) a)| < |fP(aa Ay ..ey (l) - fP(a, Ay .y @, 2C — a)|
Using the multi-affinity of the polar form, the last equation can be rewritten as
2|a — | 2R
fr(a, ol < AP @) < 1P b,

As a is arbitrary in 0D, the maximum principle leads to Turan inequality. [



Complex Bézier Curves and the Geometry of Polynomials 63

Fig. 9. A geometric illustration of the proof of Turan Inequality. Refer to the proof for
an explanation.

Theorem 11. (Lax-Erdos Inequality). Let P be a complex polynomial of
degree n, with no roots in a disk D of radius R. Then

1P'llp <, IIP (11)

P =gt

Proof. Let fp be the polar form of the polynomial P and let a be an arbitrary
complex number in dD. Since all the roots of the polynomial P are outside the
disk D, then, by Theorem 8, the disk H with boundary C; of diameter the two
first control points fp(a,a,...,a) and fp(a,a,...,a,2¢c — a) does not contain the
origin (Figure 10). Therefore,

|(fe(a,a,...,a) + fr(a,a,...,a,2c—a))/2| > |(fr(a,a,...,a) — fr(a,a,...,a,2c —a))/2|.

Using the multi-affinity of the polar form, the last equation can be rewritten as

a—C
foaa a0 = NP @),

Consider the point A in the circle C; defined as the farthest intersection of
the line [0, fp(a, a,...,a,c)] and the circle 9H. The point A can be expressed as
A= fp(a,a,...,a,d) with § in the circle C' (Figure 10). We have

a—c,
o a,0,0) = |frlaa, ]+ * P @),

Therefore,

2|

a—c 2R, _,
1Pllo = lfp(a.a, .a.0)] = 2~ P @) = 2P,
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Fig.10. A geometric illustration of the proof of Lax-Erdos Inequality. Refer to the
proof for an explanation.

Again, as a is arbitrary in 0D, the maximum principle leads to the proof of the
Erdos-Lax inequality. O

6 Conclusions

In this work, we initiated the study of the geometry of the control polygon of a
complex Bézier curve. We showed that the location of the roots or the critical
points of the polynomial dictates geometrical constraints on the shape of the
control polygon. Some applications to Bernstein type inequalities were given.
Although we have studied the geometry of the control polygon for three special
cases, namely, when the roots of the polynomial are in a circle, or belong to a
disk or lie outside a disk, similar questions can be answered for other geomet-
rical configuration of the roots of the polynomial or implicit conditions on the
polynomial. Such conditions could be for example, what is the geometry of the
control polygon when the polynomial has all its roots in a half-plane, or when
the polynomial is univalent in a disk and so on. The most important fact is
that every information on the geometry of the control polygon has an associated
Bernstein type inequality and even an integral Bernstein type inequality. Due to
space limitation, such a program has not been carried in this paper and it will
be the theme of our forthcoming effort on the subject. We believe that studying
the geometry of the control polygon of a complex Bézier curve will shed more
light into different aspects of the geometry of polynomials, such as complex Rolle
Theorem, root location algorithms and extremal problems.
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COE project. Osaka University, Japan.
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Abstract. The classical conchoid construction, well-known in Mathe-
matics since its introduction more than 2200 years ago, has been
recently revisited in the context of algebraic curves. Partially, the moti-
vation for this has been the analogy, up to a certain extent, between the
conchoid and a well-known transformation in CAGD, namely the offset
transformation. In this paper, we contribute to this study by addressing
properties on the shape of conchoids to plane algebraic curves. For this
purpose we introduce the notions of exterior and interior conchoids, and
we compare the shapes of these objects with that of the original curve.

1 Introduction

Given a curve C, a fixed point F' (the focus), and a distance d, the conchoid of C
is the curve obtained from C by applying the following geometric transformation:
for each point P € C, (i) trace the line connecting F, P; (ii) mark on this line the
points P;, P, lying at a distance d of P. Classical examples of this construction
are the Conchoid of Nicomedes, where C is a line, and Pascal’s Conchoids, where
C is a circle. Recently, this construction has been revisited in several papers.
More precisely, algebraic properties of conchoids of algebraic curves have been
considered in [I1], rationality questions have been discussed in [12], and algebraic
properties of a more general class of transformations generalizing the conchoid
construction have been addressed in [1].

The purpose of this paper is to contribute to the study of conchoids of plane
algebraic curves by addressing topological questions. For this purpose, one takes
advantage of the analogy between the conchoid construction considered here, and
a well-known transformation arising in the context of Computer Aided Geometric
Design, namely the offset transformation (see [TJ9/10] for further reading on
offsets and their properties). One may notice this analogy if one examines the
equations of both transformations in vector form:
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(here, r stands for the position vector of each point in the original curve, N is
the normal vector, and 7., r, stand for the corresponding points in the conchoid
and the offset, respectively) Questions on the offset shape have been addressed
in [2345I78]. In these papers, one considers the offset to be the union of two
subsets, called the exterior and the interior offsets, respectively, and applies dif-
ferent techniques to predict the topological behavior of the offset just from the
original curve (i.e. without making use of the offset equation). In our case, we
proceed in an analogous way. First, we define the exterior and interior conchoids;
then we use the notion of local shape (introduced in [2I3l5] to study local prop-
erties of the offset, and used also in [4] to address global aspects of the offset
shape) in order to study some local phenomena, and finally we address global
properties. In this sense, we provide necessary and/or sufficient conditions for
the exterior and/or the interior conchoids, or even the whole conchoid in certain
cases, to be homeomorphic to the original curve.

The structure of this paper is the following. Preliminary questions (a brief
review of the notion of local shape, and general results on the exterior and the
interior conchoids) are provided in Section[2l Some local aspects on the conchoid
shape are addressed in Section Bl Global questions are considered in Section Hl
Finally, conclusions and comments on further work are presented in Section

2 Preliminaries

2.1 Local Shape

Let C be an algebraic curve, and let P = (g, y9) be a real non-isolated point of
C. Then P is the center of at least one real place (see [13] for more information
on places) of the curve, i.e. a local parametrization P(h) = (x(h),y(h)) of C
around P where x(h), y(h) are real analytic functions, and x(0) = x¢, y(0) = yo.
Denoting by I C R the interval where z(h), y(h) (that will be referred to as the
coordinates of the place) are convergent, the set of real points of C described by
P(h) for h € I is called a real branch of C. Now in [3], places are used to formally
describe the shape of a real branch by means of the notion of local shape. For
the convenience of our readers, we briefly recall this notion here.

Given a real place P(h) centered at P € C, a P(h)-standard system is a
perpendicular system of coordinates where the origin is P, and where the z-axis
is parallel to the tangent to P(h) at its center. In such a system, P(h) can be
written (see [3]) in its so-called standard form, as

P(h) = (WP, Byh? +7eh" + ),

where p,q¢ € N, and 1 < p < g; the pair (p, q) is called the signature of the place
(in fact, in [3] the place P(h) is written as P(h) = (aph?, Bgh? + vh" + -+ ),
but we can get rid of «, by considering a simple change of parameter). Then
P(h) can exhibit four different “shapes”, shown in Figure 1, denoted as: local
shape (I), or a thorn; (II), or an elbow; (I1I), or a beak; (IV), or a flex. Notice
that since there are algorithms for computing places starting from the implicit
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equation of a curve and a point in it (see [I3]), we can compute the local shape
of a particular place by determining p, ¢ and then checking whether p, ¢ are even
or odd, respectively.

p even p odd
(I) thorn (IT) elbow
q
even \/
(III) beak (IV) flex

Fig. 1. Local Shapes

We will say that p is the order of P(h), i.e. the least power of h arising in the
components x(h),y(h) of P(h). Also, we will say that a place is regular if p = 1;
otherwise we will say that it is singular. Notice that a regular point of C is always
the center of a regular place. Singularities of C correspond to points which are
either the center of several different places, or of just one, singular, place. In tthe
first case we say that the curve has a self-intersection at the point: non-ordinary,
if some places share a same tangent, ordinary if all the tangents are distinct.
Finally, we will say that a place P(h) is cuspidal if p is even (in which case P(h)
is either a thorn, or a beak; notice that in this case the center of the place is a
(cusp-like) singularity of C.

2.2 Exterior and Interior Conchoids

The conchoid to a curve C (the base curve) from focus F' and distance d, is usually
defined as the geometrical locus of all the points @ of the form

FP

Q=P+d- 7
|FP|

with P € C. We will refer to the geometric construction that lies behind this
definition as the original conchoid construction. A more algebraic definition of
conchoid is given in [I1I] for the case when C is an algebraic curve: in that
situation, the conchoid of C from focus F = (a,as) € C? and distance d € C,
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represented as €4 p(C), is defined as the Zariski closure of the points (i.e. the
smallest algebraic curve containing the points) computed by applying the original
conchoid construction to C\Cp, where

Co={P eC/|FP| =0}

With this definition, the implicit equation of €4 #(C) can be computed by means
of elimination methods like the Grébner basis, or resultants, see [I11]. However,
as it also happens in the case of offsets, this equation tends to be bigger than
that of the base curve. Hence, it is preferable to determine the properties of the
conchoid, without manipulating or even computing its equation.

In the rest of the paper we will use the above notion for €4 #(C). Furthermore,
we will assume that F' and d are fixed, and hence we will represent the conchoid
as €(C), without explicitly spelling the focus or the distance. We will also assume
that the curve C we work with is a real curve; in fact, we will be interested in
analyzing the real part of €(C). Finally, we will also assume that d € R, d > 0,
that F € R? and in fact, without loss of generality, that F' = (0,0).

Now let us introduce two mappings: for o € {—1,+1} let

C\Co 24 €(C)

€ Yy
z,y) — (X,Y) =v¢s4a(z,y) = |+ do ,y+do
(2,9) — (X.Y) = tala.y) ( S ! WW)

We will write ¥41 4 = ¥+q and ¥_1 4 = ¥_q, respectively. Notice that since we
are assuming that F = (0,0), then \/xQ + 12 represents the distance between
the focus and any point of C\Cp. Then, 914,19 _q are defined for all the real
points of C, except for F' in the case when F' € C. These mappings allow us to
introduce the following definition, that will be essential for our purposes.

Definition 1. The Exterior Conchoid of C, €..+(C) (resp. the Interior Conchoid
of C, €;nt(C)) is the set consisting of all the points Q@ € €(C) of the form Q =
Yya(P) (resp. Q@ = p_q(P)) for some point P € C.

According to the definition of conchoid given in [II], €(C) is €;,:(C) U €yt (C)
together with the points added when taking the Zariski closure of this last set,
which, by the Closure Theorem (Theorem 3 in [6], see p. 125), consists just
of finitely many points. The geometric construction lying behind the above
definition is illustrated in Figure 2. Here, we have denoted Prq = %1q4(P),
P_g = _4(P). At the left of Figure 2, we have the case when the distance
dis(P, F') between the focus F' and the point P is greater than d; at the right,
we have the case when dis(P, F) < d.

In Figure 3 we can see €.;+(C) and €;,,;(C) for two algebraic curves, namely
the cardioid (left) and the epitrochoid (right). In both cases, €..+(C) is plotted
in thick solid line, and €;,+(C) in thick dotted line. We will follow the same
criterion (i.e. solid line for €., (C), dotted line for €;,(C)) in all the pictures of
the paper. In the case of the cardioid, we have fixed F' = (0. — 7.5), and d = 4.7;
for the epitrochoid, F' = (0,1.6) and d = 0.3.
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Fig. 2. Constructions for €eq¢(C) and €;n¢(C)s

Fig. 3. Exterior and Interior Conchoids of the Cardioid (left) and the Epitrochoid
(right)

Although C, €(C), etc. are in principle objects of C?, we will be interested in
studying their real parts. For this purpose, we need to recall some more results
of [TI]. In that paper it is proven that €(C) has at most two components, and
that whenever C is not a circle of center F' and radius d, these components have
dimension 1 (i.e. they do not degenerate into 0-dimensional subsets). Also in [11]
a component M of €(C) is said to be special if the points of M are generated
by more than one point of the original curve. It is also shown that given C there
are only finitely many distances such that €(C) has some special component. So,
in the sequel we will also assume that C is different from a line, and that €(C)
has no degenerated or special components. Under this last assumption one may
see that there are just finitely real many points of €(C) which are generated,
via ¥ _g4, %44, by complex points of C. So, one can prove the following theorem,
which makes clear the relationship between the real parts of the objects of our
interest. Here F denotes the set of real points generated in €(C) by F; so, F = ()
when F ¢ C.
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Theorem 1. If €(C) has no special component, then the points of €(C) NR? are
generated by the points of CNR2. Furthermore, discarding isolated singularities,

C(C)NR?* = F = (€ine(C) NR?) U (€t (C) NR?) .
The above theorem provides the following corollary.

Corollary 1. The only points of €(C) N R? which are not of the form ¥, q4(P)
or Y_q(P) for some real point P € C, are the points generated by the focus, in
the case when it is on C.

For simplicity, in the sequel whenever we write C, €(C), we will mean the real
parts of these objects, discarding isolated singularities. Furthemore, whenever
we write €;,4(C), €ert(C), we will mean the topological closures (in the usual
topology of R?) of the real parts of these objects, discarding isolated singularities.
The reason for taking the closures is to include the points of F and therefore to
avoid cumbersome statements.

3 Local Analysis around the Focus

In order to see how the conchoid construction affects the shape of C (which is
basically the purpose of next section), one has to separately study the cases
when F' ¢ C and F € C. In this last case, it is necessary to know the effect of
Y4d,¥—q on the vicinity of F'. This can be done by making use of the notion of
local shape, recalled in Subsection 211 So, assume that F' € C, and let P(h) be
a real place centered at F', given in standard form. Since we are assuming that
F = (0,0), we have that P(h) = (hP, B4h9 + ---). So, by applying ¥44,9_q to
P(h) and making computations with power series (as in [3]), we can determine
the conchoid places that P(h) generates. First, we get that:

1 1 B3 oo
Ve +yn)z ke <1 =y +>

Substituting the above expression into ¥1q4(P(h)) and ¥_g(P(h)) we find the
P

step function , . Then we get two real places of ¢(C), that we denote as P, 4(h)

I
and P_g4(h), that can be written (in a compact form) as

d 2
Pra(h) = <id+ B TR g BT £ o ) (1)

hP
Because of the behavior of when h — 0, the equalities

AP
Pra(h) = Y1a(P(h)), P-a(h) = p—a(P(h))
hold if and only if p is even, i.e. iff P(h) is cuspidal. Otherwise we still get two
places, but none of them is fully contained either in €.;¢(C) or in €;,;(C); in

fact, in this case 14(P(h)) and Y_g(P(h)) “jump” from €ep(C) to €;pne(C) or
conversely, as the focus is crossed. We summarize this in the following result.
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Theorem 2. Assume that F € C, and let P(h) be a real place of C centered at
P. Also, let P+q(h) denote the places generated by P(h) in €(C). Then Piq(h)
(resp. P—a(h)) is fully contained in Copt(C) (resp. €int(C)) if and only if P(h)
s cuspidal.

The situation in Theorem [2 is illustrated in Figure 4. Here we can see the con-
choid of a circle (i.e. a Pascal’s Snail) computed in the case when F' is a point
on the circle, and the distance d is bigger than the radius. The place P(h) gives
rise to two conchoid places, but none of them lies completely either in €;,;(C)
(in dots) or €.,+(C) (in thick solid line). In fact, each of these places lie half in
€int(C), and the other half in €.+ (C).

Fig. 4. Places generated by a circle place centered at the focus

On the other hand, from the expression (1) we can see that F generates the
points (d,0) and (—d, 0), expressed in a P(h)-standard system (in fact these are
the centers of the places P1q4(h)). Thus if F' is the center of several places of
C which do not share a same tangent, we have different standard systems for
different tangents, and hence F' generates different points for different tangent
directions. Otherwise if F' is the center of several places of C sharing a same
tangent (in which case F' is a non-ordinary self-intersection of C), then only two
points in €(C) are generated. In this situation, by Theorem 2] F gives rise to one
self-intersection of €.,;(C) and another self-intersection of €;,+(C), both with the
same multiplicity than F', iff all these places are cuspidal. We summarize these
reasonings in the following result.

Theorem 3. Let F' € C be a self-intersection of C with multiplicity m (i.e. with
m real branches of C intersecting there). Then the following statements are true:

(i) F is never invariant under the conchoid transformation.

(ii) F generates a self-intersection of €ept(C) and a self-intersection of €;pnt(C)
both with multiplicity m, if and only if all the real places of C centered at F
are cuspidal, and share the same tangent.
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Remark 1. When F € C and is the center of one real cuspidal place P(h), the
functions 14,944 introduced in Subsection 2, that are defined over C — {F'},
can be extended to functions ¢_g, Y44, well-defined and continuous over C. In-
deed, in order to do this it suffices to define ¢, 4(F) (resp. 1h_4(F)) as the center
of the place Piq4(h) (resp. P_q(h)). This is also true when F' € C is the center
of several cuspidal places of C sharing a same tangent line.

4 Global Questions

In this section we consider global aspects on the topology of conchoids. Basically,
the problem that we address is to find conditions so that the topology of C is
kept invariant when computing €..+(C) or €;,+(C). This idea is made precise in
the following definition.

Definition 2. We say that €.4(C) (resp. €int(C) or €(C)) has a good global
behavior, if it is homeomorphic to C (i.e. if their topologies coincide).

The functions 44,9 _4 can be used for studying this. Indeed, whenever ¥4
(resp. ¥_4) is a homeomorphism (i.e. continuous and with continuous inverse),
or can be extended to a homeomorphism, of C onto €z (C) (resp. €t (C)), we can
ensure that €., (C) (resp. €;ne(C)) has a good global behavior. Thus, our strategy
will be: (i) address conditions for ¥4 (resp. ¥)_4) to be a homeomorphism; (ii)
study the cases when these conditions are also necessary.

We start studying when ¢4, 9 _q4 are invertible. This is done in the following
lemma, which can be proven by making elementary computations with ¢4, ¥_4.
The reader may also intuitively check the statement in the lemma by inspecting
Figure 2 in Subsection 2.2

Lemma 1. Let Q € €(C), Q # F. Then the following statements are true:

(i) IfQ 6 Cert(C) and there exists P € C such that Q = P4, then 1#;;(@) =

a(Q)-
(i) IfQ 6 Cmt( ) and there exists P € C such that QQ = P_q, then

o [ ralQ) i dis(ibaa(Q, F) > d
9oa(@) =P = {zfd(@) if dis(- (O, F) < d

From the expressions of ;4 and ¥ _4 (see Subsection [Z2]) one may see that they
are continuous at any point different from F'. In order to ensure that they are
homeomorphisms we have to check the continuity of their inverses as well. Since
from the above lemma these inverses involve also 944 and ¥ _4, it is important
to know whether F' belongs to €(C), or not. For this purpose, we consider the
following result.

Lemma 2. The focus F never belongs to €...+(C). Moreover, it belongs to €+ (C)
if and only if there exists P € C such that dis(P, F) = d.
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Proof. From the original conchoid construction it holds that if P € C, P # F,
generates P’ € €.,(C), then dis(P’, F) > dis(P, F), and therefore P’ # F
furthermore, if F' € C, from the statement (ii) in Theorem Bl we deduce that it
does not generate F', either. Hence, we conclude that F' ¢ €.;+(C). On the other
hand, if there exists some non-isolated real point P € C such that dis(P, F') = d,
then ¢_4(P) = F and therefore F' € €;,,;(C). Conversely, let F' € €;,,,(C). Since
F is not invariant when computing the conchoid, from Corollary [l there exists
P € C such that ¢_4(P) = F, and therefore dis(P, F') = d.

Now let us provide conditions for 9,4 to be a homeomorphism. This is done in
the following proposition.

Proposition 1. Assume that one of the following conditions happen: (1) F ¢ C;
(2) F € C and is the center of just one real, cuspidal, place of C; (3) F € C is the
center of several cuspidal places all of them sharing a same tangent. Then, either
W14 18 @ homeomorphism over C, or it can be extended to a homeomorphism over

C.

Proof. Whenever F ¢ C, 144 is continuous over C. Furthermore, if F' € C is the
center of just one cuspidal real place, or the center of several cuspidal places
sharing a same tangent, then from Remark [l one may see that ¢4 can be
extended to a continuous function over C. On the other hand, since by Lemma [T]
it holds that 1/14__; = 1_q4, and by Lemma [2 we have that F' ¢ €.,.(C), then 1/14__;
is always continuous over €., (C).

We are going to prove that the conditions in Proposition[d] are also necessary for
the topologies of C and €.,+(C) to coincide. For this purpose, first we need the
following lemma. This result states that €..+(C) has no other self-intersections
apart from those corresponding to the self-intersections of C.

Lemma 3. Fvery self-intersection of C, different from the focus, gives rise to a
self-intersection of €t (C). Conversely, every self-intersection of €e.t(C) comes
from a self-intersection of C.

Proof. The implication (=) follows from the conchoid construction. So, let us
see («<). For this purpose, by Lemma [ it holds that z/;;cll = 9_4. Now, given
Q € €.;4(C), by Lemma [ it follows that @ # F, and therefore 1#;;(@) is well
defined. Finally, by the conchoid construction if @ is a self-intersection, then
1/115(@) € C is also a self-intersection of C. Hence, the statement holds.

Then we are finally ready for the following theorem on the good global behavior
of Q:ezt (C)

Theorem 4. €.,.(C) has a good global behavior if and only if one of the follow-
ing situations happen: (1) F ¢ C; (2) F € C and is the center of just one real,
cuspidal, place of C; (8) F € C is the center of several cuspidal places all of them
sharing a same tangent.
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Proof. The statement (<) is Proposition [Il So, we just have to prove (=).
Indeed, if €.;+(C) is homeomorphic to C then either F' ¢ C (and (1) happens), or
F € C. Let us see that in this last case either (2) or (3) must occur. Assume first
that F is the center of just one real place P(h), and let Q(h) be the place of €(C)
generated by P(h); also, let ) be the center of Q(h). Since @ is generated by F,
and F' is not a self-intersection, then by Lemma [J] Q is not a self-intersection,
either. Now if P(h) is not cuspidal, then by Theorem [ just half of Q(h) is
contained in €.;+(C). Furthermore, since @ is not a self-intersection of €..+(C)
we get that €.,:(C) has a branch at @ which is not continued. But then it
cannot be homeomorphic to C (which is the real zero-set of an algebraic curve,
discarding isolated singularities). Hence, (2) happens. Finally, assume that F' is
the center of several real places. If these places are not cuspidal, and sharing a
same tangent, then by Theorem [B] we cannot have a self-intersection of €..+(C)
with the same multiplicity as F' (in C). Hence, if (3) does not occur, then €., (C)
cannot be homeomorphic to C. So, (3) must happen.

Now let us consider €;,,;(C). For this purpose, as in the above case we start giving
conditions for ©¥_4 to be homeomorphism. In this sense, the following lemma,
that can be easily proven, is needed.

Lemma 4. The following statements are true:

(i) Every self-intersection of C, different from the focus, gives rise to a self-
intersection of €int(C).

(ii) Conversely, if Q is a self-intersection of €;+(C), then one of the following
statements hold: (a) Q is generated by a self-intersection of C; (b) @ is
the focus; moreover, this happens iff there exist at least two different points
P, P’ € C such that dis(P,F) = dis(P,F') = d; (¢) Q is generated by two
different points P, P' € C, placed at different sides of the focus (i.e. FP -
FP’ <0), such that dis(P,Q) = dis(P’,Q) and dis(P, P') = 2d.

We refer to the points fulfilling the condition (c) in the statement (ii) of the above
lemma, as special self-intersections. This kind of self-intersections is illustrated
in Figure 5.

.
-
____________
.................

Fig. 5. Self-intersection of the Interior Conchoid

Special self-intersections are important because if @) is such a point, then in
a vicinity of ), the mapping 1/1:; is not continuous: indeed, from Lemma [I] in
that case z/;:}l is a piecewise function and the point where the expression of 1/1:5
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changes (in fact, in a non-continuous way) is (. Furthermore, we will speak
about additional self-intersections to mean self-intersections of €;,+(C) which
are not generated by self-intersections of the base curve. Now we also need the
following result, that has to do with the behavior of 1/1:; around the focus in
one particular case.

Lemma 5. If there is just one non-isolated point P € C fulfilling that dis(P, F) =
d (in which case the line connecting P, F' is normal to C at P), then 1/):(11 Cint(C)
s continuous in the vicinity of the focus.

Proof. Since P is not isolated then it is the center of a real place P(h) of C.
Since dis(P, F') = d > 0 then P # F, and therefore ¢»_4(P(h)) = Q(h) is a place
contained in €;,,;(C), centered at F. Furthermore, by Lemma [2] then P is the
only point of C transforming onto the focus. Thus, there exists a neighborhood
E C R? of P such that ¢;,,(C)NE = Q(h). Since ¢~ }(Q(h)) = P(h), we deduce
that 1/1:61l|¢m(c))mE is continuous.

Hence, we can provide conditions for ¢_4 to be a homeomorphism. This is done
in the following proposition.

Proposition 2. Assume that there are no additional self-intersections. Assume
also that one of the following conditions happen: (1) F ¢ C; (2) F € C and
is the center of just one real, cuspidal, place of C; (3) F € C is the center of
several cuspidal places all of them sharing a same tangent. Then, either ¥_g is
a homeomorphism over C, or it can be extended to a homeomorphism over C.

Proof. If (1) holds, then t_,4 is continuous. Furthermore, since by hypothesis
there are no additional self-intersections, then either F' ¢ €;,,;(C), or F' € €;,,:(C)
but it is the center of just one real place. In the first case ¢:Ull is continuous around
the focus; the same happens in the second case, because of Lemma Bl Since by
hypothesis there are no special self-intersections, then 1/1:5 is continuous over
Cint(C), and therefore ©_4 is a homeomorphism. (2) can be proven in a similar
way, taking also into account Theorem 2l (3) can also be proven similarly, taking
also into account Theorem [3]

Now let us prove that the conditions in Proposition[Z are also necessary, in some
cases, for €;,:(C) to have a good global behavior. First, we have the following
result on €, (C), for the case when F' ¢ C.

Theorem 5. Assume that F ¢ C. Then, €;,+(C) has a good global behavior if
and only no additional self-intersections occur.

Proof. (<) follows from Proposition[2l (=) can be proven as in Theorem [

In the case when F' € C, but F is not a self-intersection of C, the following
theorem, that can be proven as Theorem [ holds.

Theorem 6. Let F' € C, and assume that F is the center of just one real place
P(h) of C. Then, €t (C) has a good global behavior if and only if P(h) is cuspidal,
and no additional self-intersections occur.
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Finally, in the case when F' € C is a self-intersection of C it is not true in general
that the conditions in Proposition [2 are necessary. So, we have the following
result.

Theorem 7. Assume that F € C, and it is a self-intersection of C. Then, the
following statements are true.

(i) If €t(C) has a good global behavior, then every place of C centered at F
must be cuspidal.

(ii) If F is the center of several cuspidal places of C, all of them sharing a same
tangent, and no additional self-intersections occur, then €;,+(C) has a good
global behavior.

Proof. The statement (i) follows from Theorem Bl The statement (ii) is Propo-
sition

Let us see that the converse statements of Theorem [7] do not hold. Indeed,
in Figure 6, right, one may see the picture of the algebraic curve defined by
f(z,y) = 16y — 423 + 2*)(162% — 4y3 + y*) = 0, together with its interior
conchoid, for F = (0,0) and d = 3. Notice that the origin is the center of
two cuspidal places, but however €;,,+(C) and C are not homeomorphic; so, the
converse of the statement (i) of the theorem does not hold. Furthermore, also in
Figure 6, at the left, we have plotted the curve together with its interior conchoid,
for F' = (0,0) and d = 4. In this case, both objects are homeomorphic. However,
the places of f(x,y) centered at the origin do not share a same tangent, and
therefore the converse of the statement (ii) of Theorem [ does not hold. What
is happening here is that although the self-intersection of the base curve at the
focus is “lost” when computing the interior conchoid, another self-intersection,
in fact an additional self-intersection, is gained; so, in the end the topology is
kept invariant.

Fig. 6. Counterexamples to the converse statements of Theorem [7]

We end this section by analyzing the special case when C is a closed curve
homeomorphic to a circle, and the focus is a point of C. If F' is the center of a
cuspidal place, then the analysis follows from the above results. So, in the sequel
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we address the case when F' is the center of a non-cuspidal place of C. In that
situation, neither €..+(C) nor €;,:(C) have a good global behavior. However, as it
happens in the case of Figure 4, €(C) can have a good global behavior. We begin
with the following lemma, concerning the intersections between the exterior and
the interior conchoid.

Lemma 6. Let P,P' € C, P # F, P’ # F. Then P, P’ generate a common
point of €ezt(C) and €, (C) if and only if P, P, F are aligned, dis(P, P") = 2d
and F does not lie in between P, P’ (i.e. FP-FP’ > 0).

Moreover we also need the following result.

Lemma 7. Let C be a closed curve homeomorphic to a circle and let F' € C
be the center of just one real, non-cuspidal, place. Then, €(C) is a closed and
connected curve.

Proof. Since C is homeomorphic to a circle and F' € C, then C—{F'} is connected.
Thus, since 944 is continuous over C — {F'}, we have that ¢44(C — {F}) is also
a connected set. In fact, since F' is the center of just one real, non-cuspidal,
place P(h), by Theorem Bl it gives rise to two different points, A, B, which are
joined by the closure 114(C — {F}). Similarly, ¢_4(C — {F}) is a connected
set, and ©¥_4(C — {F'}) also connects A, B. Finally, since A, B both belong to
Y4q(C —A{F}) and ¢_q(C — {F}), and €(C) is the union of these two curves, we
deduce that €(C) is a closed curve. Moreover, it is connected because it is the
union of two connected subsets with a common point (in fact, with two points
in common, A and B)

So, we finally deduce the following theorem, which follows from Lemma [0 and
Lemma [7]

Theorem 8. Assume that C is a closed curve, homeomorphic to a circle, and
such that F € C is the center of just one real place P(h) with signature (p,q),
where p is odd. Then, €(C) has a good global behavior if and only if the following
two conditions hold: (1) €egt(C) and €;ne(C) do not have common points; (2)
Cint(C) has no additional self-intersections.

Proof. Since C has no self-intersections, then (1) and (2) are necessary conditions.
So, let us see that they are also sufficient. By Lemma [ we have that €(C) is
closed and connected. Furthermore, since (1) and (2) hold then it has no self-
intersections, and thus we conclude that it is homeomorphic to a circle.

5 Conclusions and Further Work

We have presented results that allow to predict, under certain hypotheses, some
features of the topology of €(C) from the topology of C. In the case when F' ¢ C,
the study is relatively easy. However, when F' € C the problem is more difficult,
and requires to address the local behavior of the conchoid transformation around
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F'. This can be done by means of the notion of “local shape”, already used in the
offset case. Using this tool, we provide necessary and sufficient conditions for a
good global behavior of: (i) €..+(C); (il) €;nt(C), in certain cases; (iii) €(C), when
C is homeomorphic to a circle and F' € C. We also provide sufficient conditions
for €;,:(C) to have a good global behavior under more general hypotheses. The
natural continuation of this paper is the study of conchoids of algebraic surfaces;
however, in order to do that the necessary algebraic background on such surfaces
has still to be developed.
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Abstract. In this paper, we present a method based on a quadratic
spline quasi-interpolant for the estimation of integral properties of a
planar closed curve. The latter include the length, area, center of gravity
and moment of inertia of the given curve. Then, we analyze the error
estimates on the approximations of these properties and we validate the
theoretical results by numerical examples.

Keywords: Length, Area, Center of gravity, Spline quasi interpolant.

1 Introduction

Computing the arc length of a parametric curve has been well studied in the
literature and has been treated in various ways. For example, in [7], the authors
use numerical quadrature for estimating the length of the curve and in [6], a cubic
spline interpolation based on the chord length parameterization. The method
introduced in [7] is also used in [9] for estimating the area of a parametric
surface. Let

o:tel0,1] — R?

o(t) = (f(t),9(t))

be a parametric closed curve, by which we mean a continuously differentiable
function such that o’(¢) # 0 for all ¢ € [0, 1]. Denote by |.| denote the Euclidian
norm in R2. Then the length of o (see [8]) is

(o) = / o/ (1)t = / V2 4+ g (02, (1)

and its area is given by the formula
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In this paper, we obtain approximations of L£(o) and A(c) by replacing each
component of ¢ by a quadratic spline quasi-interpolant and we compute the
exact length and area of the spline approximant. We do the same for the center
of gravity G = (2*,y*) of o which has the coordinates

* L 1 1 0—/ . 1 1 0_,
T* = c(a)/o f@)]o’(t)|dt, y* = c(a)/o g(t)|o’ (t)|dt (3)

and the moments of inertia with respect to an axis passing through G defined by

A«wﬁ:A|dwfgmamwt (4)

We show that the orders of these approximations are that of the quadrature
formula based on the used spline quasi-interpolant.

The paper has been arranged in the following way. In Section 2 we give
the definition and the main properties of the used quadratic spline quasi-
interpolant. In Section[3] we give details on the computation of the approximate
length and center of gravity. We also study the error of the approximation. The
approximations of the moment of inertia and the area are discussed in Sections @l
and [Bl Numerical validation is given in Section [6l

2 Periodic Quadratic Spline Quasi-Interpolant

Let X, = {[zs,zi+1], 0 < i < n} be the uniform partition of the interval [0, 1]
with meshlength A = vlﬁ whenever necessary this partition will be extended
periodically to R. For j = 1,2,...,n+ 2, let B; = B(. — j) be the classical
C!'-quadratic B-spline of support [z;_3,;]. The family {B;, j = 1,2,...,n+2}
is a basis of the space So(I, &,,) of C! quadratic splines defined in I endowed
with the partition &,,. The C! periodic quadratic spline quasi interpolant (abbr.
QI) used here is the spline operator given for any f in C[0, 1] by

n+2

Quf =Y ui(f)B;, (5)
j=1
where
i (f) = é(_fj—Q +10f;—1—f;), for1<j<mn+2,

with f; = f(t;) and t; = (i — 3) h, i=—-1,...,n+2.

Theorem 1. For all periodic function f € C3[0,1] we have (see [11])

1 3—k
170 - 0uf @l <0 (1) ISP k=012 @)
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where Cy, is a constant independent of n. Moreover, for f € C[0,1] we have the
following superconvergent result

f(xi)an(xi)—O<1>4, i=0,...,n. (7)

Now, by integrating the quadratic QI Q,,, we obtain the midpoint rule M, (f) =
fol Q. f(x)dx = TIL >o% . fi- By using the symmetry of B-splines and the
evaluation points ¢;, one can prove the following result.

Theorem 2. For a periodic function f of class C* and a smooth weight function
w we have (see [9])

5w = [ 100~ @i < s (1)’ ®

where Cy > 0 is a constant independent of n.

In the interval [z;—1,2;,¢ = 1,...n, by using the change of variable
x=(1—w)zi—1 +uzx;, the QI Q, becomes a quadratic polynomial in the
variable u € [0, 1] and it can be written as follows

Onf =a;Bo+b;B1+ a;+1Bo, 9)

where {B, = (i)(l —u)27"u", v =0,1,2} is the Bernstein basis of the space II5
of polynomials of degree 2 and

1 1
= 16 (=fic1 +9fi +9fix1 — fixe), bi= g (=fic1 +10f; — fit1).-

The representation (@) is used in the rest of the paper.

a;

3 Length and Center of Gravity

Throughout this paper we denote fon = Ouf, Gn = Qung and o,(t) =
(fa(t),gn(t)). For i = 1,...,n, let fulm,_, 2,1 = pi and Gnlie,_, 2,] = ¢- From
@), the quadratic polynomials p; and ¢; can be written in the forms

pi = a;Bo + biB1 + aiv1B2, ¢ = aiBo + BiB1 + a1 Bs.
We propose to approximate £(o) by
1 I
Llow) = [ I ode= [ /T2 + gy 02
0 0

and the center of gravity G = (z*,y*) by G,, = (2}, y;) where

.1 - o .1 1 .
T, = E(an)/o Fa@®oL@)|dt, i = E(an)/o Gn(t)|oh, ()| dt.

In the next subsection, we give some details on the computation of the
approximations of £(oy,) and G,.



83

Estimation of Integral Properties of a Planar Curve Based on a Spline QI
3.1 Approximations of L(o) and G
Let
mi(u) = coi + 2¢1 0+ CQ’iU27 i=1,...,n,
where ) )
Coi =7 +7i _
c1i = 4(vi = 8:)* + (3 — 0:)°]
2 = Yi(0i — i) + 7 (6 — Vi)
and
Vi =bi —ai, 0; =ai41 —b;
¥i = Bi — iy 0i = i1 — P
We have the following result.
Theorem 3. The approximate length and center of gravity are given by
n
L(on) =hY_ Jo
i=1
n
x, = hz [aiJo,i + 2(bi — ai)T1,i + (@ig1 — 2b; + a;)Ta,i]
i=1
Yn = hz [iJo,i +2(8;i — o) T, + (qipr — 265 + ) il -
i=1
where
c? 1, . .
Joﬂ‘ = %, (tl — to) + 2(smh(2t1) — smh(2t0))
Jii = ¢ [cosh(t1)® — h(t)?’]—bj'
1,0 = 3a2 COS 1 COS 0 a 0,i
1, . . 2b b2
Jo,i = 83 |:4(slnh(4t1) — sinh(4tg)) — (t1 — to)} -, Ji — o2 Jo,i-
and
) 2. b b
a= \/6271‘, b= €1 , C=Co4— 1¢ s Sinh(to) = sinh(tl) = @t .
V€2, V€2, c

Proof. From (8), we obtain
Lo =3 [ i+ gz
i=1 Y Ti-1

=03 [ Vo + aituan
i=1
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and

z, =h L(o,) ;/ pi(u \/pZ 2 + ¢} (u)?du,
Yp = hﬁ(in) ;/O qi(U)\/pg(u)Q + ¢ (u)?du.

Thus, we have to compute the following integrals

/pl \/pZ u)?du and /Oql \/pz u)?du

which is equivalent to evaluate integrals of type

1 1 !
To.i :/ Vmi(uw)du, T ::/ uy/mi(u)du,  Jo; 1:/ u?y/mi(u)du
0 0 0

where

2 2
€1,
mi(u) —COz+2cle+CZzu —<\/62m+\/21> +<Co,i—cl’>-

2,

For the sake of notational simplicity, the index ¢ in ¢4, £ = 0,1,2 is dropped.
It is easy to show that ¢? — 0002 < 0, (m;(u) does not vanish), then by denoting

a:=./cz, b:= \/02 =y — \/C , we can write m;(u) as

<au+b>2
1+
c

mi(u) = (au + b)? 4 * = 2

Setting ¢(u) := 14 (““F?)2, we obtain

c/o1 Vow)du, Jii:= c/o1 ur/d(u)du, Jo; = c/ol u?\/d(u)du.

Taking the change of variable

1
sinh(t) = auc—&— b where u = a(csinh(t) -b), du= Z cosh(t)dt,

we define the new bounds ¢y and t; by

b b
sinh(tg) := , sinh(ty) := @t .
c

Then, we get tg = ( \/1 > , =In (‘”b + \/1 a“tb) >

and cosh(tg) = /1 +b2/c2, cosh(t;) = \/1—|—(a—|—b)2/02.
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The integrals become

02 t1 62 t1
Joi = /1 + sinh(£)2 cosh(t)dt = / cosh(t)*dt
to

;
a Jy, a

? [n c? 1
= / (14 cosh(2t))dt = {(tl —to) + _ (sinh(2t1) — sinh(2¢p))
2a Jy, a 2
02 t1 C3 t1 b
Ji= / (csinh(t) — b) cosh(t)th =, / cosh(t)2 sinh(t)dt — ~ Jo.i
= Jto a= Ji, a
3 3 3 b
= 342 [COSh(tl) — cosh(to) } - ajo,i
2 t1
Joi = o / (csinh(t) — b)? cosh(t)?dt
to

R A ) ) 2b b?
= 3 /to sinh(t)? cosh(t)*dt — " Ji — aQJo,i

4k 2b b
_ ¢ / (cosh(4t) — 1)dt — u Ji,i — a2 Jo,i

)
t

o

2b b2
= 43 { (sinh(4t1) — sinh(4tp)) — (t1 — to)} . Ji— 2 Jo,i-

Hence, we obtain

/Olpi(u)\/ﬂi(u)d = /\/Wz )du + 2(b i/u\/ﬂ—z

+ (air1 — 2b; + ai)/ u?y/mi(uw)du
0
=a;Joi+2(b; —a;)J1,i + (aix1 — 2b; + a;) T2

and similarly

/Olqi(u)\/m(u /\/m Ydu +2(6; — a; / un/mi ()

+ (g1 — 26 + ai)/ uz\/m(u)du
0
=0;Jo,i +2(8 — i) T + (g1 — 20 + ) T4,

which completes the proof.

3.2 Convergence Orders

Theorem 4. For o € C*[0,1], we have

IL(0) — L(on)| = ORY), as h—0 (10)
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and
IG— G| =0O("), as h—0 (11)

where G — G| = /(g — 23)? + (v — v3)? and h = |
Proof. Let e(t) = o(t) — 0, (t). From (@) we have

lell = %), |’ = O(h?), as h—0. (12)
Let us use the identity

—2e’. 0’ +¢€.€

ol —|o'| =
S AR

and the fact that |o’| and |o7,| are bounded away from zero for small enough h,
by the bound on ¢’ in ([IZ), we so obtain

1
E(Un)*ﬁ(a):/o [lon ()] — |o’ (¢ / o t|+| , )ldt+(9(h4).

But since e(0) = e(1) = O(h*), an integration by parts implies

B 1 e'(t).o'(t) B le d o' (t) 4
L ol o=, @W<wmﬂ+wm0“+0“>

Since |o’(t)],|a” (t)|, |oL,(t)] and |o)/(t)| are bounded as h — 0, so too is

515 (I%(t)gllf )IU’(t)I)

and the estimate ([I{) follows from the bound in (). Now we write

e U)/f Vo' (£)]dt — /f Yo (8)]dt
( ﬁ(lg ) ()| dt (13)

(A |—nmwmmm0.
From (I0), we have

(E(la) - c(flfn)>/ f@®)lo’ (t)]dt

—( f >/f )lo (D]t = O(h). (14)
1

r / 3 / _ 1 1 O_/_O_/ 7 0_/
cony | Gl =Rl = [ (1 =1+ 7 = Flet)

On the other hand
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we proceeded as for (I0) to show that

/f (Io'(1)] - |0 (1)]) = O(hY). (15)

Moreover, using () we have

1
/O (f(t) = fa®)lon, ()t = E(f, |07, (1)]) = O(hY). (16)

Now combining the estimates ([3)-(I8), we deduce that |z* — z| = O(h?).
Similarly, we prove that |y* — y| = O(h*), and the estimate (] follows.

4 Moment of Inertia

4.1 Approximate Moment of Inertia

By using the same notations as before, we have the following result.

Theorem 5. Let N
ai = a; — Ty, by = bi —yy,
a; = o —y,, Bi =B — .

The approximate moment of inertia is given by

4
M) =0 deTri,

i=1 k=0
where
S h 2 3
. 3b 3b b
T3, = = /to sinh (¢)® cosh (¢)dt — “ J2,i — o2 Jii — o Jo.is

s o 4 9 4b 6b° 4p3 bt
Jui = ab /tO sinh (¢)" cosh ()" dt — a J3,i — 2 Jo.i — o Jii — o Jo.is

and {dy, 0 < k <4} are the canonical basis coefficients of the polynomial
Ei(u) = (@ (1 —u)? +2bu(l —u) + a1 u?)? 4 (@ (1 —u)? +28u(l —u) + @ u?)?.

Proof. Since
M) = [ Jou(t) — Gal? 1o, (1)
- /01[(fn(t) )+ (3ult) — u7) W’ H2dt
—hZ/ (pi(w) — )% + (qs( 2] V()
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then, we have to compute the integrals
1
/ [(pi(w) = 23)* + (ai(w) — y3)*] Vmi(w)du, i=1,...,n. (17)
0

The expression between brackets can be written

Ei(u) := (a;(1—u)?* +2b;u(1 —u) +a;41u?)? + (@ (1 —u)? +26u(1 —u) + a1 u?)?

(18)
or simply
Ei(u) = do + dyu + dou® + dsu® + dyu.
Thus, the integrals given by (') become
4 1
> AT, with  Ji 2:/ uP /i (u)du.
k=0 0
Hence, we have to compute the new integrals
1 . 02 ty
T35 = / ub /i (u)du = A / (esinh (t) — b)? cosh (¢)*dt
0 a to
1 2 t1 9
TJui = /0 ut/mi(u)du = o5 /t (esinh (t) — b)* cosh (¢)“dt.
0
By using the expression of the integrals Ji s, k =0, 1,2, we get
5 t1 4 t1
3b
T30t = 24 / sinh (t)® cosh (t)dt — aZ / sinh (£)? cosh (t)2dt
to to
3523 t1 b3e2 t1
4C / sinh (t) cosh (t)°dt — Z / cosh (t)%dt
a to a to
05 b . 3 2 3b 3b2 bd
= /to sinh (¢)” cosh (t)“dt — a J2,i — 2 Jii— o8 Jo,i
and similarly
o 4b 3b 3b2 b
Jai= / sinh (t)" cosh (¢)*dt — (Jsz +  Jait o, Tt 3\70,1‘)
a® Jy, a a a a
652 2b b2 463 b bt
+ <j2,i + T+ 230,1) - 4 (Jl,i + Jo,i) + o
a a a a a a
C6 t . 4 2 4b 6b2 4b3 b4
= a5 /to Sll’lh (t) COSh (t) dt — a j3,i — a2 \72,i — aS jlvi — a4 j07i.

Now, by linearizing
1
sinh (£)® cosh (t)* = 16 (sinh (5t) — 2sinh (¢) — sinh (3t))

1 (2 — cosh (2t) — 2 cosh (4t) + cosh (6t))

inh (t)* cosh (t)* =
sinh (¢)” cosh () 39
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we deduce that

h : 1 1 1
/to sinh (£)° cosh (¢)dt = [80 cosh (5t) — 8 cosh (t) — 48 cosh (3t)}
t1

_ [; cosh (£)° — ; cosh (t)ﬂ

to

t1

h 1 1 1 1
/ sinh ()" cosh (t)%dt = Lﬁt ~ 64 sinh (2t) — 64 sinh (4t) + 199 sinh (6t)}

to to

1 . 17 5 1 A7
= h h - h h
[16t + sinh (t) cosh (¢) (16 oy €O )"+ g €0 (t) ﬂ

to

which completes the computation of J3; and Ju ;.

4.2 Convergence Order
Theorem 6. For o € C*[0,1], we have

IM(o) — M(0,)| = O(h*), as h— 0. (19)
Proof. Writing

M(0) ~ M(0n) = / o () — G210’ ()]t / 0 (1) — Ga 2o (6t
1
- / o () — GP(1o" (8)] — |, (1))t

/ ol (¢ G~ lou(t) — Gul?) dt
=C,+D,

and
nf/ VO — Fo 2y —a™)(f 4 Fa— 2" — )

(G=n+yn—y)Ng+3gn—y" —y,)ldt.

Since |z* — x| = O(h4) and |y* — y| = O(h*), we deduce from (§) that D,, =
O(h*). We proceeded as for ([I0) to show that C, = O(h*), then the result
follows.

5 Area

5.1 Approximate Area

Theorem 7. The approrimate area is given by
h n
A(O’n) = 6 Z[Z(aiﬁi — biai) + (aiaH_l — ai+1ai) =+ 2(biai+1 — G,i+1ﬂi)].

i=1
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Proof. We approximate A(c) by

e AU AR ACTATIS

Thus, we have to compute the integrals

1/t .
2/ (pi(w)qi(u) — pi(u)qi(u))du, i=1,...,n
0
with B
p; = 2[vi(1 —w) + 0u], ¢ =2[%(1 —u)+ du
and

vi =bi —a;, 6; = aiy1 —b;
Vi = Bi — oy, 6; = a1 — Bi.

Then, we obtain

;(piqé —pigi) = (a;(1 — w)® + 2bju(l — u) + aip1u®) (3 (1 — u) + Su)
— (3i(1 = u) + du) (i (1 — ) + 2B;u(1 — u) + i1 u”)
= (a;i% — a;v:)(1 — u)3 + (a;6; + 209 — s — 204173 u(l — u)2
+ (2b;6; + i1 — 26i0; — aip17)u* (1 — u) + (ai416; — @ip16;)u®
= (@B — bioi)(1 — u)® + (ai(B; + aig1) — (b + aig1)og)u(l — u)?
+ (@i (ai + b)) = (@ + Bi)aip)u*(1 = u) + (bicvir1 — @i Bi)u’

and consequently

1 [t 1
9 / (pig; — Piq;) = 12 (3aifs — 3bicvi + a; B + ajcip1 — bioy — aiy100)
0

1
+ _(aicip1 +biaip1 — aig10 — aip1 B + 3biai1 — 3ai415)

12
1
= 6(2(%@' —bia;) + (@1 — aip10q) + 2(biaiy1 — aip15i)),
which completes the proof. ([

5.2 Convergence Order

Theorem 8. For o € C*[0,1], we have
|A(0) — A(o,)| = O(h*), as h— 0. (20)
Proof. Writing

f9' = 19— Fndn + fodn =g —3) +G.(f = fu) = /(g = Gn) — Gu(f' = f})
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and using the fact that f(0) = Q,,f(0) and f(1) = Q, f(1), then an integration
by parts gives
1 ) 1 ) . 1
|t =go==[ re-g) aa [ aii-r=- [ ai-n.

Hence
Ao) — Afon) = —2 / g —gn) —2 / GL(f — ) = —28(g. 1) — 26(f.¢)

and consequently (20) follows from (&]). O

6 Numerical Results

We consider the following closed curves:
(Raphal Laporte heart [8]): o1 (s) = (sin® (s), cos (s) — cos? (s)).
(Cassini oval [1])): o2(s) = R(s)(cos (s),bsin (s)), where

R(s) = \/cos (2s) + \/a — sin?(2s).

(Amoeba [3]): o3(s) = R(s)(cos (s),sin (s)), where R(s) = e°* () cos?(2s) +
e () sin? (2s).

0.5 . Heart_———. 2

a R ) _— Cassinioval__ __ ~JAmoab ‘\‘.
0 V \| 05 / TR \\ 1.5 : ,/?/ |

s / \ 1 \ S \

\ / f \ A P
-15 \a -0.5 \\w P i Y / -1 \\jl
-2 | : : -15
-1 0 1 -1 0 1 -2 0 2

Fig. 1. Several closed curves

In Tables 1-5 for different values of n we give the approximation errors
obtained by the estimation of integral properties of the curves o;, i = 1,2, 3 using
the QI Q,,. We give also the numerical convergence orders of the approximations.
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Table 1. Arc length approximation with a = g and b=1

n —£L(o1) = L(o1,n)— —L(02) = L(o2,n)— —L(o3) = L(ozn)—
8 1.17(-00) - 5.57(-01) - 4.32(-00) -
16 1.33(-01) 3.13 7.85(-02) 2.83 1.30(-00) 1.73
32 9.60(-03) 3.79 6.24(-03) 3.65 1.40(-01) 3.22
64 6.14(-04) 3.97 4.16(-04) 3.90 9.80(-03) 3.84
128 3.82(-05) 4.01 2.64(-05) 3.98 6.27(-04) 3.97
256 2.35(-06) 4.02 1.66(-06) 3.99 3.97(-05) 3.98
512 1.45(-07) 4.02 1.04(-08) 4.00 2.50(-06) 3.99
Table 2. Approximation of the center of gravity
n |G —=Gnley) 19 = Gnley) 19 =Gnlos)
8 271(-02) - 0. - 489(-02) -
16 2.13(-03) 3.67 0. - 7.93(-04) 5.95
32 1.72(-04) 3.63 0. - 1.52(-03) 0.94
64 1.19(-05) 385 0. - 1.44(-04) 3.40
128 7.79(-07) 3.93 0. - 1.02(-05) 3.83
256 5.04(-08) 3.95 0. - 6.35(-07) 4.00
512 3.27(-09) 3.95 0. - 3.90(-08) 4.03
Table 3. Approximation of the center of gravity
n |9 =Gl
7 1.24(-02) -
15 3.27(-04) 4.76
31 4.91(-07) 8.96
63 3.69(-12) 16.25
127 3.24(-16) 12.86
Table 4. Approximation of the moment of inertia
n —M(o1) = M(o1,n)— —M(o2) = M(o2,n)— —L(03) = M(o3,n)—
8 1.52(-00) - 1.79(-00) - 14.19(-00) -
16 1.72(-01) 3.14 2.51(-01) 2.84 4.58(-00) 1.63
32 1.23(-02) 3.80 1.87(-02) 3.75 5.07(-01) 3.17
64 7.88(-04) 3.97 1.21(-03) 3.94 3.61(-02) 3.81
128 4.91(-05) 4.01 7.66(-05) 3.99 2.33(-03) 3.96
256 3.04(-06) 4.02 4.80(-06) 4.00 1.47(-04) 3.99
512 1.87(-07) 4.02 3.00(-07) 4.00 9.20(-06) 3.99

Remark 1. It can be seen from the above tables, that the orders of convergence
agree with the theoretical results. However we see that we obtain an exactness
for the curve oo for even wvalues of n. This result can be proved by using the
symmetry of the curve and the periodicity of the QI
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Table 5. Area approximation with a = 3 and b =1

n —A(o1) — A(or,n)— —A(o2) — A(o2,n)— —A(o3) — A(o3,n)—

8 3.21(-02) - 3.70(-01) - 8.04(-01) -
16 2.12(—03) 3.92 4.88(—02) 2.92 4.98(—01) 0.69
32 1.34(-04) 3.98 3.81(-03) 3.68 5.72(-02) 3.12
64 8.43(—06) 4.00 2.52(-04) 3.92 4.11(-03) 3.80
128 5.27(—07) 4.00 1.59(—05) 3.98 2.66(—04) 3.95
256 3.30(-08) 4.00 1.00(-06) 4.00 1.67(-05) 3.99
512 2.06(-09) 4.00 6.26(-08) 4.00 1.05(-06) 4.00
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Abstract. Using multiresolution based on Harten’s framework [J. Appl.
Numer. Math., 12 (1993), pp. 1563-192.] we introduce an alternative to
construct a prediction operator using Learning statistical theory. This
integrates two ideas: generalized wavelets and learning methods, and
opens several possibilities in the compressed signal context. We obtain
theoretical results which prove that this type of schemes (LMR schemes)
are equal to or better than the classical schemes. Finally, we compare
traditional methods with the algorithm that we present in this paper.

Keywords: Learning-based multiresolution, Multiscale decomposition,
Signal processing.

1 Introduction and Review

Multiscale representations of signals and images into wavelet bases have been
successfully used in applications such as compression and denoising. In these
applications, one essentially takes advantage of the sparsity of the representation
of the image (see, e.g., [6J9/T0]).

Harten [I5] integrates ideas from three different fields such as theory of
wavelets, numerical solution of partial differential equations (PDEs), and sub-
division schemes. The aim of this paper is to incorporate the Learning theory
(see, e.g., [IO/IT]) into the general framework for multiresolution of data and to
use these results to data compression.

Based on multigrid methods (which typically use discretization by point-
value and reconstruction by interpolation), Harten developed the idea that if we
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consider a sequence of grids with corresponding discretization {Dy} and recon-
struction {Ry}, then the most natural way to go from the kth grid to the coarser
(k — 1)th grid is by the operator D,’:_l = Di_1Ry and similarly to use the op-
erator PF_| = DypRy_1 to go from (k — 1)th grid to the finer kth grid.

Then we consider the notion of nested discretization in a more abstract set-
ting and observe that the operators D],fl and P,’j_l can serve, respectively, as
decimation and prediction in a pyramid scheme of the type that is used in signal
processing. Using ideas from the theory of wavelet, we remove the redundancy
that is typical of frames achieved by the use of pyramid schemes and we obtain
a multiresolution representation. Furthermore, Harten used knowledge from the
theory of wavelets to relate the discrete multiresolution representation to a mul-
tiresolution basis in the space of functions F (see, e.g., [8/7)16]). He shows that
the construction of wavelets (see, e.g., [8]) can be formulated in terms of dis-
cretization and reconstruction (corresponding to a nested dyadic sequence of
uniform grids). For this, the operator reconstruction may or may not be a linear
operator. This is Harten’s main contribution.

At this point we observe ([4J1415]) that data compression based on multires-
olution (as in Harten’s) uses the fact that one discrete space V¥ is divided in
two spaces VF~1 and Wk1 ie.,

Vk _ Vk—l o Wk—l

where V=1 = DZﬁl(V’“) and W*~! represents non redundant information
present in V* and not predictable from V*~! by the prediction operator P,’j_l,
ie., W=t = VF Pk (Vk=1). So, if the prediction operator is a “good approx-
imation” the details are close to zero and the data can be compressed better.
Therefore, Harten (see, e.g., [I4[15]), and Arandiga and Donat [4] emphasize
the importance to construct a good reconstruction operator. They formulate the
problem as a typical problem in approximation theory:

Find a “good approximation” to V* from V*71.

However, we observe that we know the space V¥, that is we have all the informa-
tion of the next step. Why don’t we use this information to obtain a prediction
operator? So, we can formulate the problem as a typical problem in Learning
theory (see, e.g., [I0I7]):

Knowing V¥~! and V*, find a “good approximation” to V* from V*~1.

This work is organized as follows: In §2 we review the Multiresolution “a la
Harten”, then we introduce Learning-based multiresolution based on the mini-
mization of a functional (see [2/I8]). We develop this technique in the theoretical
sense in §3, in particular in discretization for point-value context and explain the
Learning process in MR context with an extensive example. We review LMR
methods using the minimization of /? norm. Finally we do some numerical ex-
periments comparing with classical linear methods and obtaining relevant results
in §4.
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2 Learning-Based Multiresolution in Harten’s Framework

2.1 Generalized Wavelets. Brief Review

In Harten’s framework there are two principal operators: the discretization oper-
ator, Dy, that assigns to any function f a sequence of real numbers f¥; and the
reconstruction operator, Ry, that for any sequence of real numbers f* obtains a
function Ry, f¥. We find in the literature some references about the design of Dy,
(see e.g. [BITTITAUTH]) but the main issue in Harten’s MR literature is to obtain a
good reconstruction operator using linear and nonlinear interpolation techniques
(see e.g. [AT3]).

Combining these operators we obtain two other operators: The decimation
operator D,]z*l = Di_1Ry is alinear operator that yields the discrete information
contents of the signal at the resolution k£ — 1 from the discrete information
at level k (an increasing k implies more resolution). The prediction operator,
P,’j_l = DyRi—1, yields an approximation to the discrete information contents
at the kth level from the discrete information contents at level k£ — 1. Thus,

A A N A L
where {V*} is a sequence of finite spaces. We define the prediction error as
ef = fF=Pra

The operators D’,z_l and 77,1571 can be used to construct a multiresolution pyra-

mid. If f* is the input, then one stage of decomposition results in the decimated

signal f¥~! and the prediction error e¥. Because e* is at the same sample rate as

I, (f*1, ) redundantly represents f*. This single decomposition stage is iter-

ated on the decimated signal for a multiresolution representation (f° e, ..., el).
If the operators D],fl and Py_, satisfy the consistence property, i.e.,

D Py = Iy, (1)

then, it is possible to design a non-redundant multiresolution decomposition.
Let Gy be a detail encoder such that d* = Gre” is at half the sample rate of
eF, and let G, be the corresponding decoder such that GrGre* = e*. Then
(f*=1 d*) is a non-redundant representation of f*. This single stage is iterated
on the decimated signal for a multiresolution representation (f°,d?, ..., d").

A multiresolution scheme within Harten’s framework is characterized by six
operators: The fundamental discretization Dy and reconstruction Ry, the deci-
mation operator D,]:_l, the prediction operator 73,’;71, and the detail operators
G and Gj. The main classical problem in the MR schemes is to design a good
prediction operator that we will obtain using statistical Learning techniques.

2.2 Learning-Based Multiresolution (LMR)

In multiresolution analysis, we predict the results of the kth scale from the (k —
1)th scale without using the information of the k level. In order to compress the
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data, it is important that the components forming d* are zero (or close to zero).
We reformulate the problem as a typical Learning problem: Knowing Dj,_; f and
Dy f, with f € F, find an approximation to Dy f from Dy_1 f. The underlying
idea is very easy; in the classical multiresolution the discrete data f* contains the
same information than f*~! and d*, which represent non-redundant information
present in f¥ and non-predictable from f*~! by the prediction operator P,’j_l.
In order to construct this operator we do not use the information of f*. We need
details to be zero (or close to zero); for this we use f* to obtain our prediction
operator 77,1571 and we transfer part of the information contained in d* to P,ffl.
This allows us to obtain smaller details d* using this prediction operator. In this
case we have f¥ = {fk=1 d* Pk | }. In this section we explain the Learning-
based multiresolution problem following Arandiga et al. [2]. The aim is to learn
to predict, i.e., to adapt our operator to the data in each problem.
In a Learning problem there are two principal components:

1. Some input vectors & € R™.
In Learning-based MR our random vectors are the data in the (k — 1)th
scale, fF=1 = Dllj_l(fk) € VF=1, These vectors are our input vectors.

2. A supervisor (S) returns an output value y to every input vector Z.
In Learning-based MR our output value is each value in the kth scale,
i.e., each value of f¥ € V¥,

The problem in LMR is the following: from the given class of continuous lin-
ear operators (K, || - ||) find the one which best approximates the supervisor’s
response.

In Learning-based MR our prediction operator Pf_; is the minimum of
the empirical risk functional, i.e., our general problem can be described as the
minimization of the functional:

Pioi = argmin  L(f*,G(f*™), (2)
Gek,|IGll<M
where M is a fixed parameter, (K, ||-]|) is the class of continuous linear operators

and L(y,G(Z)) =|| y — G(Z) || is the loss-function.

3 Learning-Based Multiresolution Schemes for
Point-Value Discretization

In this section we specify how to construct a prediction operator in the LMR
context ([2]). For this, we solve the learning problem which can be divided in
four parts:

i. First, we need the data. For this, in the MR context, we have to specify the
discretization operator.
ii. We have chosen the class of the continuous linear operators (K, || - ||) to
minimize the risk operator.
iii. Then, we have to choose the loss-function for the risk functional. Depending
on this function we can obtain different prediction operators, §3.31
iv. Finally, we have to solve the problem of risk minimization.
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3.1 Learning-Based Multiresolution Schemes for Point-Value
Discretization on [0, 1]

In order to understand which is the Learning process in the Multiresolution
scheme, we explain the multiresolution schemes for point-value (PV). This is a
classical context employed in several examples (see, e.g., [4I15]).

Let us consider F = B|0, 1], the space of bounded functions on the closed unit
interval, and let X% a uniform partition of [0, 1].

- {xL}z 0’ x(% =0, sz =ihy, hp= 1/JL7 Jr = 2LJ07 (3)

Where Jo is some integer. We define the lower resolution grids X* = {xk}l Loy
k=L-—1,...,0, by the dyadic coarsening

el =gk =0, Ty = T2 (4)

and we define f* = D, f by

= Oxf)i=fah), 7 ={f}o ()
From x¥~! = 2§, the decimation can be defined as:
FE = O Y= faiy =0, T (6)

In Learning problem we also consider the next level f¥ and use this information
to obtain the prediction operator. The input vector is the stencil

s pk—1\ _ ( pk— k—1y _. Fk—
SN = (5 ) = fi

and for each stencil f#-! we have an output value in the k-level fJ_,. With the

0,78
rk—1 ¢k )Z:

inputs and outputs we assemble a training set of observations (f; 5, f5i_1),

7’,...,ka1 — 8.

We take the class of operators K, = {ga : R® > R:  ¢,(Z) =< Z,a >:a €
R"} C I1}(R) with n =7 + s + 1, where < -,- > is the scalar product. It is easy
to prove that if a € R™ then ||gq|| = [|a||. We fix a constant M and we select
the loss function Qe = |y — g4(Z)|P with 1 < p < co. Then we formulate the
problem as follows:

7= argmin ZQ@ (f3i-1,9a(FFr2) Z|f21 L= ga(fir )P ()

9a €L n,||galISM

or if p = oo, i _
7= argmin  max|fy ; — ga(fi, )] (8)
9o €0, |gal|SM v

Then we define the prediction operator as

{ (Pllj—lfk_l)% = fikil7~ (9)
(PE_ ¥ D2 = 7(FF70).
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And finally the error is defined as

_ Fh—
df = egi—l = kai—l - (Pllcc—lfk Yai1 = kai—l —7( z'r“sl)

3.2 LMR Methods versus Linear Piecewise Interpolation Methods

We review the classical interpolation methods in the MR context. By the con-
sistence property (I) and by the definition of the discretization operator (@) a
reconstruction procedure is given by any operator Ry such that DRy f* = f*,
ie. (RefF)(fF) = fF = f(z%). Thus, (Rif*)(x) have to be a bounded function
that interpolates the set {fF %]io at the nodes {z¥ %]io~

Using piecewise centered polynomial interpolation we obtain that if

S™S(abhy = (a7t xf;sl)

is the stencil of points used with s = r — 1 (centered) then

(PE o Dai =Y B + 50 (10)
=1
where the coefficients (; are
r=1=p =1,
r=2=p0= 5, =-%,
r=3= 01 = 53,02 = — o5, 03 = g5
In all the cases
(PE o f* Dai = 70 (11)

If we use interpolation techniques (PV) the filters are always the same and they
are independent of the data that we have. On the other hand, with the LMR
methods we adapt the filters to the data. In order to appreciate these differences
we introduce the next example.

Example. Let the function
f(x) = (x +1/4)?sin(407(z + 1/2)).

We discretize it in Ji = 32 values in the interval [0,1] with the operator Dj
defined in (Bl). We show these data in Table[2l We choose a centered stencil with
s =1 and r = 2, so the class of functions will be 4. Therefore, for each input
vector of the level kK — 1 we have an output value of the level k (Table [I]).

Remark 1. In the boundary we use piecewise cubic interpolation not centered
for both methods: PV and LMR.
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Table 1. Training set of observations: Input vectors and output values for the Learning
process

Node Input Vector Output value
i r2 f5ia
2 (0,0.0977,0,—0.1914) —0.0836
3 (0.0977,0,—0.1914, 0) 0.1167
4 (0,—0.1914,0,0.3164) 0.1554
5 (—0.1914, 0,0.3164, 0) —0.1996
6 (0,0.3164, 0, —0.4727) —0.2493
7 (0.3164, 0, —0.4727, 0) 0.3045
8 (0,—-0.4727,0,0.6602) 0.3653
9 (—0.4727,0,0.6602, 0) —0.4316
10 (0,0.6602, 0, —0.8789) —0.5034
11 (0.6602, 0, —0.8789, 0) 0.5807
12 (0,—0.8789,0,1.1289) 0.6636
13 (—0.8789,0,1.1289, 0) —0.7520
14 (0,1.1289, 0, —1.4102) —0.8459
15 (1.1289, 0, —1.4102, 0) 0.9453

We choose as loss function Qyz, i.e. we pose the typical least squares problem.
Finally we take the bound for the norm of the prediction operator M =
Therefore, a = (0.2021, —0.5556, —0.5087, 0.1552) 7, where

k—1 k—1y[2
E (a a a a
aeJR4|| H2<1 | foi1 — 1f ) !+ ay + sfi taafi)l

We define the LMR prediction operator for this example as:

(P f" D2 = 71,
(PE_ 1 f5 )21 = 0.2021 £ — 0.5556 £ — 0.5087 fF ' + 0.1552 55"
(12)
In the compress context when we use the LMR method we have to store the
details and also the filters values. We will denote by FN (filters number) the
number of the filters values to store. In this case FN= 4.

Now, from f*~1 (second column of the Table ) we try to predict f* (sec-
ond column of the Table [2)) using the polynomial interpolator ((I0) with r = 2
and () obtaining the sixth column of the Table [ and using the LMR pre-
diction operator (I2)) obtaining the third column. We observe that the details
obtained with the LMR method are much smaller that those obtained with the
PV method.

In the next section we explain the choice of the loss-function and with this we
develop some theoretical properties.
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Table 2. Point-value reconstruction using the LMR4 and the cubic linear interpolation
(PV4) methods. There are some important differences in the error vector. The LMR
method adapts the prediction operator to the output values.

LMR4 PV,
fk flcfl ’P)]i,lfk71 ek: dk: P}’j,lfk71 ek dk
0 0 0 0 0 0
—0.0559 0.0181 —0.0740 —0.0740 0.0181 —0.0740 —0.0740
0.0977 0.0977 0.0977 0 0.0977 0
—0.0836 —0.0840 0.0004 0.0004 0.0669 —0.1504 —0.1504
0 0 0 0 0 0
0.1167 0.1171 —0.0004 —0.0004 —0.1138 0.2305 0.2305
—0.1914 —0.1914 —0.1914 0 —0.1914 0
0.1554 0.1555 —0.0001 —0.0001 —0.1274 0.2828 0.2828
0 0 —0.0000 0 0 0
—0.1996 —0.1997 0.0001 0.0001 0.1899 —0.3895 —0.3895
0.3164 0.3164 0.3164 0 0.3164 0
—0.2493 —0.2492 —0.0001 —0.0001 0.2075 —0.4568 —0.4568
0 0 0 0 0 0
0.3045 0.3044 0.0001 0.0001 —0.2856 0.5902 0.5902
—0.4727 —0.4727 —0.4727 0 —0.4727 0
0.3653 0.3651 0.0002 0.0002 —0.3071 0.6724 0.6724
0 0 —0.0000 0 —0.0000 0
—0.4316 —0.4314 —0.0002 —0.0002 0.4009 —0.8325 —0.8325
0.6602 0.6602 0.6602 0 0.6602 0
—0.5034 —0.5032 —0.0002 —0.0002 0.4263 —0.9297 —0.9297
0 0 0.0000 0 0 0
0.5807 0.5806 0.0002 0.0002 —0.5356 1.1164 1.1164
—0.8789 —0.8789 —0.8789 0 —0.8789 0
0.6636 0.6636 0.0000 0.0000 —0.5649 1.2285 1.2285
0 0 0 0 0 0
—0.7520 —0.7519 —0.0000 —0.0000 0.6899 —1.4419 —1.4419
1.1289 1.1289 1.1289 0 1.1289 0
—0.8459 —0.8461 0.0002 0.0002 0.7231 —1.5690 —1.5690
0 0 0 0 0 0
0.9453 0.9456 —0.0002 —0.0002 —0.8638 1.8091 1.8091
—1.4102 —1.4102 —1.4102 0 —1.4102 0
1.0503 —0.1587 1.2090 1.2090 —0.1587 1.2090 1.2090
0 0 0 0 0 0

3.3 The Loss-Function in LMR Schemes

The choice of the loss function is very important for the LMR scheme. We
can choose several possible functions because we work with the set of linear
operators. The typical choice is the ¢P- norm, i.e., Qp (Y, 9a(Z)) = |y — ga(Z)[P
with 1 < p < 00; so, our problem is:

T(‘i‘) = argmin ZQ@T’ f27,71,ga(f2'rs)) = argmin Z'f?zf - a(fz’rs)|p

€K [lgall <M €K [lgall <M
(13)

where K, = {ga : R" = R:  g4(%) = 37, a2 : a; € R, 1 < j < n} with
n=r+ s+ 1. Then:

_ . k Fh—1 =  |p . k_ k-1
— Sk < SIP= m ~Fk 14
“ aeR”,IIﬁISM , Faia s @> | &GR’L,HIEﬂEM 17 s allp, (14)

where fF = (FF fE ..., f"}kfl)T and Fff;l is a matrix with the i-row equal to

rk—1
1,1,8 "
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If p = oo then the problem (I4) is:

b= i A i ko< flas |, (15
aemfﬁﬁ\gM”f alloo aeR,}ﬂﬂg‘SMmiaXIfzzfl s> [, (15)

that is the classical Chebyshev problem.

When p = 2 is the typical least squares problem. We can reformulate the
(P problem as a second-order cone programs (SOCP) (see, e. g., [8]) and if the
dimensions of the system are not very large we can solve it using the cvx package
designed by Grant et al. [T2/13]. In this work we will only use p = 1,2, cc.

3.4 Some Properties of LMR Context

In this section we study some properties of LMR. For this, we present two im-
portant definitions.

Definition 1. Let the set of polynomials of degree less than or equal to r

p €[ (R) = {g]ga(z Zazx a; €R, Vi}.

Then the order of the prediction operator is r + 1 if

Pi—1(Dr-1p) = Dip, (16)

, the prediction operator is exact for polynomials of degree less than or equal
tor.

Theorem 1. The order of the prediction operator P,’j_l obtained by LMR
schemes with the class of functions IC,, and the loss function Qu, 1 < p < 400
andn < M 1is at least n + 1.

Proof. We are going to obtain a solution for the problems (I4]) and (&) that
belongs to IC,, and it is of order n + 1. Therefore, let the set of points

k— k-1
8" (x; 1) ={z,, z-l—s }a

and {Ly,(z)}m=—r,... s is the Lagrange interpolation polynomials of grid points
S™#(x¥~1). Then, we define

R
M= Y gt )

m=-—r

Thus
Tia(z fFY =g @) wepf el 1<i<g

and we define the prediction operator as:

(Pe o f* N = Teoa (2 571,
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a straightforward algebraic manipulation shows that

(Pr_ 1[5 1)e = fik_17

_ 17
(P ¥ Daims = 2e -, Lin(=1/2) fi- ("
This prediction operator is of order n + 1, with n = r + s + 1. Then let
E = (L*T(il/Q)v ey LS(*l/Q)%
for some polynomial p of degree n we have that
phi i — <pitb>|=0, V1<i<Jiy,Vk (18)

and as |L,,(—1/2)] < 1, ¥m = —r,...,s then |||, < n with p = 1,..., 0.
Therefore, b is a solution of the problems (I4]) and (I3]). O

Definition 2 (Stability of the multiresolution). The decomposition algo-
rithm is stable with respect to the norm || - || if 3 C such that ¥ k, ¥ f*
(flo,dt, ... d*) and f* — (f70,d', ..., d"), then

If7o = FPol < ClIff = f¥)
ld™ —d™|| < Ol ff — f*], Y1<m<k

The reconstruction algorithm is stable with respect to the norm || - || if 3 C' such
that V' k > Jo, ¥ (f0,dY, ... d*) w— fE (f70,dY, ... d*F) — fE:

1% = fHI] < Csup(|[f471 = f571), 1dh = d¥]). (19)

The question of stability is, of course, crucial when one intends to use the MR
transform in a signal compression context. Indeed, the difference between the
initial signal and the reconstructed signal after compression is controlled by
stability constants.

Theorem 2. The reconstruction algorithm with a bounded linear prediction op-
erator is stable.

Proof. First, we have that

17 = FHIL = PE ™ = PR 5 s — 1) < ([P = 75+l — ).

(20)
as the prediction operator is bounded, we have a constant M > 0 such that
||Pf_,|| < M. Therefore,

15 = 51 < (M + Dy sup(|| £571 = F271), (|5 = d¥|)). O (21)
Corollary 1. The reconstruction algorithm with the prediction operator P,’j_l

obtai