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Preface

The 7th International Conference “Curves and Surfaces” was held June 24–30,
2010, at the Palais de Papes in Avignon, France. The conference was part of
an ongoing joint French–Norwegian conference series on curves and surfaces. In
France previous meetings were held in Chamonix in 1990, 1993, 1996, in Saint-
Malo in 1999, 2002, and in Avignon in 2010. The last meeting in Norway was
held in Tønsberg in 2008, and the proceedings have appeared as Volume 5862
of the Lecture Notes in Computer Science, published in 2009 by Springer.

The 2010 edition of Curves and Surfaces was attended by 261 participants
from 35 different countries. The program included nine invited one-hour survey
talks, eight minisymposia comprising 39 talks, 114 contributed talks, and two
poster sessions with a total of 30 posters.

The conference was supported financially by Arts et Métiers Paris-Tech, the
Center of Mathematics for Applications (CMA) at the University of Oslo, the
Centre National de la Recherche Scientifique (CNRS), the Institut National
de Recherche en Informatique et en Automatique (INRIA), the Université de
Grenoble, and the Mairie d’Avigon.

We would particularly like to thank our irreplaceable webmaster Eric Nyiri
for his work in supporting the Organizing Committee as well as the participants.
His permanent good humor made these interactions easy and agreeable.

Our thanks are also due to our masterful TEX expert Yvon Lafranche who,
as with all the earlier editions of our conference, has done a marvellous job of
preparing the programme and the abstract booklet.

Would it have been possible even to imagine the conference without the
skilful presence of Chantal Lyche? Her impressive performance at the head of
the reception desk of the Palais des Papes was one of the key factors contributing
to the smooth functioning of this event.

We are also indebted to all the others who helped with the conference, and
in particular to Olivier Gibaru and Paul Sablonnière. A special mention goes
to Michel Volle who, assisted by the University of Avignon, managed to solve
certain delicate logistic issues.

Thanks are also due to all of the invited speakers and to all of the minisym-
posium organizers whose contributions were critical to making this conference
a success. We would also like to thank all other presenters and participants.
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Finally, we would like to express our gratitude to all of the reviewers who helped
select articles for the present volume.

June 2010 Jean-Daniel Boissant
Patrick Chenin
Albert Cohen

Christian Gout
Tom Lyche

Marie-Laurence Mazure
Larry Schumaker
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Exact Medial Axis Computation for

Triangulated Solids with Respect to
Piecewise Linear Metrics

Oswin Aichholzer1, Wolfgang Aigner1, Franz Aurenhammer2, and Bert Jüttler3

1 Institute for Software Technology, Graz University of Technology, Austria
2 Institute for Theoretical Computer Science, Graz University of Technology, Austria

3 Institute of Applied Geometry, Johannes Kepler University Linz, Austria

Abstract. We propose a novel approach for the medial axis approxima-
tion of triangulated solids by using a polyhedral unit ball B instead of
the standard Euclidean unit ball. By this means we compute the exact
medial axis MA(Ω) of a triangulated solid Ω with respect to a piecewise
linear (quasi-) metric dB. The obtained representation of Ω by the me-
dial axis transform MAT(Ω) allows for a convenient computation of the
trimmed offset of Ω with respect to dB. All calculations are performed
within the field of rational numbers, resulting in a robust and efficient
implementation of our approach. Adapting the properties of B provides
an easy way to control the level of details captured by the medial axis,
making use of the implicit pruning at flat boundary features.

Keywords: medial axis, piecewise linear metric, mesh boundary,
trimmed offset.

1 Introduction

The medial axis is a skeleton-like structure, capturing the features of a shape in
a lower-dimensional configuration. It has originally been introduced by Blum [7]
for matters of shape representation, and has proved to be useful for various appli-
cations such as shape recognition, robot motion, finite element mesh generation
[17], and offset computation. The computation of the exact medial axis – or of
an approximation thereof – is a popular task in computational geometry and ge-
ometric computing. The huge variety of publications addressing different bound-
ary representations [13,14,20], pruning techniques [9,22] and applications [8,12]
is remarkable. See also [5] for a state of the art survey in this area. In the case
of polyhedral objects, there exist numerical tracing techniques [24] (which have
recently been extended to objects with curved boundaries [23]) and methods
based on spatial decompositions [16,21].

For boundaries represented by dense point sets, it is a common approach
to derive a medial axis approximation by isolating a subset of its Voronoi di-
agram [14]. The algorithm relies on heavy pruning and has (depending on the
denseness of the point set) problems with capturing sharp features. Another ap-
proximating structure, that also allows to deal with non-exact boundaries, is the

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 1–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 O. Aichholzer et al.

scale axis [22], based on a ball-representation of the shape. Pruning is achieved
by careful scaling of the balls, which, on the downside, can lead to the introduc-
tion of topologically incorrect fragments. Both of these methods work in 2D and
3D, but they do not constitute an exact representation of a shape. They are thus
suited for shape recognition and comparison but not for offset computation.

Exact medial axis computation relies on an exact boundary representation,
and is well examined for piecewise smooth boundaries in 2-space. For straight-
line polygons Lee [20] introduced an intuitive O(n log n) algorithm, which was
later improved to an optimal (yet unimplemented) linear-time algorithm [11].
For circular arc boundaries a full implementation of a randomized algorithm
(with expected O(n log n) computing time) is provided in [2]. To the contrary, it
has turned out that in the three dimensional space the exact medial axis compu-
tation, even for shapes with piecewise linear boundaries, is a rather challenging
problem. Here difficulties arise from the combinatorial complexity of the medial
axis, as well as the high algebraic degree of its components. Especially the lat-
ter leads, due to the necessity of an algebraic kernel, to computing time and
representation issues. So far, the only work in this context that provides a full
implementation and some computing times is by Culver et al. [13], introducing
complex algebraic algorithms to deal with the above-mentioned problems.

In this work we provide an approach that computes the exact medial axis of
a triangulated solid (i.e., a solid object whose boundary surface is a triangular
mesh) with respect to a piecewise linear quasi-metric dB [26] induced by a convex
polyhedral unit ball B (see also Minkowski functionals [19]). While the use of
more general convex distance functions for bisector and Voronoi computation
is no novelty [10,18], these generalized distances, however, have not been used
for medial axis computations so far. This is quite surprising, considering that
for given rational data (rational coordinates of mesh and unit ball vertices)
the resulting linearity of the structure allows all computations to be performed
within the field of rational numbers. We took advantage of this, providing a
robust and stable implementation of the algorithm.

The quasi-metric dB induces a piecewise linear medial axis transform MAT(Ω),
which describes the shape Ω fully and exactly, see Fig. 1a for an example. In or-
der to deal with the structural complexity of the medial axis in 3D, we introduce
planar contact arrangements, one for each possible contact between the compo-
nents of the unit ball B and the boundary, respectively (see Sections 3 and 4).
After computing these arrangements, we are able to calculate the components
of the medial axis with respect to the quasi-metric dB. In this way we reduce
the problem of medial axis construction in 3D to a number of two dimensional
problems.

The use of polyhedral unit balls permits interesting operations such as im-
plicit pruning, resulting in pseudo-seams which will be introduced in Section 2.
This allows us to influence the structure and complexity of the medial axis by
varying combinatorial and geometrical properties of the unit ball. Furthermore,
we will show that our representation via MAT(Ω) is very convenient to com-
pute trimmed offsets with respect to dB, see Fig. 1b (see Section 5.2 for details).
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(a) Medial axis (b) Trimmed offset

Fig. 1. Piecewise linear medial axis approximation and trimmed offset for a dragon
mesh with 12, 000 faces, using a quasi-metric defined by a tetrahedral unit ball

In Section 6 we will describe the close relation between the medial axes MA(Ω)
induced by Euclidean and polyhedral unit balls. This also identifies MA(Ω) with
respect to a piecewise linear metric dB as an approximation of the Euclidean me-
dial axis, where the quality of the approximation depends on the chosen unit
ball B.

2 Preliminaries

Throughout this paper we consider an open set Ω in Rd (d = 2, 3) with a
piecewise linear boundary ∂Ω. We moreover assume that the boundary is tri-
angulated and consists of edges, vertices, and triangular facets (the latter ones
only for d = 3). We shall refer to Ω as a triangulated solid.

2.1 Unit Balls and Metrics

Let B be a bounded, open and convex set in Rd which contains the origin o. In
particular, we are interested in two cases.

(E) B may be the usual Euclidean unit ball, B = {x : ||x|| < 1} ⊂ Rd.
(L) B may be the interior of a convex polyhedron, i.e., the boundary ∂B is piece-

wise linear. Similar to ∂Ω we assume that ∂B is given by a triangulation.

In the second case (L) we shall assume that no edge or facet of ∂B is parallel
to any edge or facet of ∂Ω, i.e., we assume that Ω is in general position with
respect to B. Later we will specify additional conditions that we assume to be
satisfied.

By these assumptions it is guaranteed that a component of ∂B and a compo-
nent of ∂Ω intersect in at most one point. To achieve this, a slight perturbation of
the boundary of B and/or Ω – e.g. by application of the Simulation-of-Simplicity
(SOS) technique [15] – can be applied. Clearly, by restricting the perturbation
to the vertices of B we can even keep the original domain unchanged. However,
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even if perturbations are applied to the vertices of a triangulated solid, the re-
sulting changes in the medial axis are not dramatic, provided that convex edges
are not made reflex or vice versa.

For any points x and y, let r be the ray from x through y and B∗ the body B
translated by −→ox. There exists a unique intersection point v of ∂B∗ and r. The
distance function

dB(x, y) :=
‖y − x‖
‖v − x‖ (1)

defines a quasi-metric [26], meaning that dB is positive definite and fulfills the
triangle inequality, but is not necessarily symmetric. The given convex body B
is the unit ball with respect to the quasi-metric.

If B is centrally symmetric with respect to the origin o, then dB is a metric.
In particular, the first choice of B as the Euclidean unit ball gives the usual
Euclidean metric.

2.2 Maximal and Almost Maximal Balls

In the remainder of this paper we will use the symbols B′, B′′ etc. to represent
convex polyhedra which are obtained from B by applying restricted Euclidean
similarity transformations consisting of a scaling combined with a translation,
but no rotation. Clearly, these convex sets are balls with respect to the quasi-
metric defined by B, since they consist of all points whose distance dB from the
translated origin does not exceed the scaling factor.

Definition 1. A ball B′ is said to be a maximal ball associated with the trian-
gulated solid Ω if

1. it is contained in Ω, B′ ⊆ Ω, and if
2. any other ball B′′ satisfying B′ ⊂ B′′ is not contained in Ω, i.e., B′′ �⊂ Ω.

Moreover, the ball B′ is called an almost maximal ball associated with Ω, if it is
contained in Ω and the boundary ∂B′ shares at least two points with ∂Ω.

In the Euclidean case (E), the two notions are equivalent. In the case (L) of a
piecewise linear metric, however, there may exist almost maximal balls which
are not maximal.

2.3 Types of Contact

In this section we consider exclusively the case (L) of a piecewise linear metric.
If we consider a two-dimensional domain Ω in the plane, the following types

of contact between ∂Ω and the boundaries ∂B′ of almost maximal balls are
possible:

1. A vertex of ∂Ω is in contact with an edge of ∂B′, and
2. an edge or vertex of ∂Ω is in contact with a vertex of ∂B′.
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p

jump
edge

(a) Jump edge

pseudo

branching

branching

(b) Pseudo branching

Fig. 2. (a) 2D example of a jump edge with center of scaling p. (b) A triangular unit
ball induces a pseudo-branching in the medial axis of a square domain.

We will exclude the case where an almost maximal ball possesses two contacts of
the first type that are realized at only one edge of ∂B′, by requiring that no edge
of ∂B is parallel to any line connecting any two vertices of ∂Ω. (It suffices to
assume that this condition is satisfied by all pairs of non-convex vertices of ∂Ω.)
This is subsumed by the fact that we assume B and Ω to be in general position.
We shall see later that almost maximal balls of this type would correspond to
two-dimensional components of the medial axis.

Consider an almost maximal ball B′ that possesses exactly two contacts which
are of the first type and realized in the interior of two neighboring edges of ∂B′,
and let p be the common vertex of the neighboring edges. In this case, any
uniform scaling with a factor f sufficiently close to 1 and center p transforms
B′ into another almost maximal ball which is either a subset (if f < 1) or a
super-set (if f > 1) of B′, see Fig. 2a.

The same phenomenon occurs if an almost maximal ball B′ possesses contacts
of the first and the second type, and the contact vertex of ∂B′ is a segment end
point of the contact edge of ∂B′.

In the three–dimensional case, the following types of contact between ∂Ω and
the boundaries ∂B′ of almost maximal balls are possible:

1. A vertex of ∂Ω is in contact with a facet of ∂B′,
2. a vertex or an edge of ∂Ω is in contact with an edge of ∂B′, and
3. a vertex, an edge or a facet of ∂Ω is in contact with a vertex of ∂B′.

Again we exclude the case of almost maximal balls with two contacts of the first
type which are realized in the interior of only one facet of ∂B′, and the case of
almost maximal balls with two contacts of the second type at two coplanar edges
of ∂Ω which are realized in the interior of only one edge of ∂B′, by assuming
that Ω and B are in general position.
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Similar to the discussion in the planar situation one may observe that an al-
most maximal ball B′ with only two contacts that are realized at two neighboring
entities (i.e., facets, edges, or vertices) of ∂B′ is not maximal, since it is possible
to apply a uniform scaling with a center that is located in the intersection of the
two contact entities.

2.4 Medial Axis

We define the medial axis MA(Ω) as the union of the centers of all almost max-
imal balls associated with Ω. The medial axis transform MAT(Ω) additionally
contains the information about the scaling of the almost maximal balls which
are centered at the points of MA(Ω).

The medial axis of a planar shape Ω consists of bisector curves (edges) and
trisector points (branching points). In the general (non-degenerate) case, three
edges meet at a branching point.

Consider the case (L) of a piecewise linear metric. Here, some of the bisectors
correspond to nested families of almost maximal balls, which share the same
contacts of type 1 on the boundary. These bisectors will be called jump edges,
since the maximal inscribed balls jump between the two extreme positions, see
Fig. 2a. If we did not consider jump edges, using only truly maximal balls for the
definition, the medial axis of a connected planar domain Ω would possibly consist
of several disconnect components. Moreover, if we relaxed the assumption of the
general position by allowing almost maximal balls with two contacts of type 1 in
the interior of only one edge of ∂B′, these balls would produce two-dimensional
components of the medial axis.

The medial axis of a three-dimensional domain Ω consists of bisector surfaces
(sheets), trisector curves (seams) and junctions. In the generic case – meaning
that there do not exist maximal balls with more than four contacts on the
boundary of Ω – three sheets meet at a seam, and four seams meet at a junction
point [13]. For the case (L), similar to the case of jump edges for planar domains,
some of the sheets correspond to partially nested families of almost maximal
balls. We will refer to them as jump sheets. Once again, these jump sheets – and
consequently the consideration of almost maximal balls – are needed in order
to guarantee that the medial axis of connected domains is again connected. By
relaxing the assumption of general position one would obtain three-dimensional
components of the medial axis, which do not occur in the Euclidean case and
thus are clearly not desirable.

Proposition 1. The medial axis in the case (L) is a piecewise linear structure.

Proof. The bisectors of linear structures with respect to a piecewise linear metric
or quasi-metric are again linear structures. The medial axis of a triangulated
solid with respect to such a metric is composed of these bisectors and their
intersections, which are also linear. �	
Another new phenomenon that occurs when using a piecewise linear metric (L)
instead of the Euclidean one (E) is the implicit pruning of convex features (edges
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or vertices) of the boundary, which are flat with respect to the unit ball, in the
sense that a vertex of the unit ball fits into the wedge defined by the feature.
Such features lead to the appearance of special branching points (see Fig. 2b)
or seams, which we will call pseudo-branchings and -seams, respectively. The
almost maximal balls centered there share only two points with the boundary
of Ω. In the planar case, one of these contacts has to be of type vertex-vertex.
In the 3D case, one of these contacts is of the type edge-vertex or vertex-edge.

We will come back to this issue in the next section.

3 Contacts and Contact Arrangements

In the next three sections we consider solely the case of piecewise linear metric
(L) in three-dimensional space. All arguments are easily adaptable to the planar
case.

3.1 Contacts

Recall that a ball B′ is a scaled and translated copy of the polyhedral unit ball
B. We shall denote the vertices, edges and facets of ∂B, ∂B′, and Ω uniformly
as components of these boundaries.

For any boundary component x of B, we denote with x′ its image under the
restricted similarity transformation (translation and scaling) that maps B to
B′. Moreover, for each boundary component x of ∂B we choose an arbitrary
but fixed representative vertex v = v(x), which is one of the three vertices of a
triangle, one of the two end points of an edge, or the vertex itself in the case of
a vertex.

Since we assumed that B and Ω are in general position, every boundary
component (vertex, edge or facet) of an almost maximal ball shares at most one
point with a component of ∂Ω.

Definition 2. Consider an almost maximal ball B′ and assume that the com-
ponent y of ∂Ω has a common point with the component x′ of B′. We say that
the pair (x, y) is a contact.

The regular combinations of boundary components – which determine the struc-
ture of the medial axis – are vertex-facet contacts, edge-edge contacts and facet-
vertex contacts. Even for objects and unit balls in general position, vertex-edge,
edge-vertex and vertex-vertex contacts do occur, but they can be regarded as
being singular. They define pseudo-structures of the medial axis, but do not
induce any sheets or seams.

An almost maximal ball with two contacts is centered on a sheet of the medial
axis, a ball with three contacts on a seam (cf. Fig. 3). An almost maximal ball
centered on a pseudo-seam is also defined by three contacts, where two of these
contacts are adjacent, meaning that the ball components, as well as the mesh
components, are incident, respectively. As a consequence, the almost maximal
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B
′

o
′

C1

C2

C3

v
′

Fig. 3. The center o′ of an almost max-
imal ball B′ lies on a seam of the axis.
The point v′ is its projection on the con-
tact plane of C3.

B
′

o
′

C1

C2

C3

v
′

f1

f2

Fig. 4. The contact C1 = (v, f1) is ad-
jacent to C2 = (v, f2). Consequently, the
three contacts define a pseudo-seam con-
taining o′.

ball’s contact that is induced by these two adjacent contacts is, dependent on
their types, of type vertex-edge or edge-vertex (see Fig. 4 for an illustration).

For every possible contact (x, y) the component y ∈ ∂Ω and the transformed
ball component x′ ∈ B′ span a plane, which will be called the contact plane
associated with the contact.

3.2 Projections

An almost maximal ball B′ possesses at least two contacts. Let v(x) be the
representative vertex of the ball part x of one contact (x, y) among them. We
call v′, i.e., the equivalent of v on the translated and scaled copy B′ of the unit
ball B, the projection of the center o′ into the contact plane of (x, y).

Definition 3. Given a contact (x, y), let B′(x, y) be the set of all almost maxi-
mal balls which realize this contact (x, y). The set of all projections of the balls
in B′(x, y) into the contact plane describes a polygonal region on the contact
plane of (x, y). We will call D(x, y) the contact domain of (x, y).

A contact domain is the union of projections of medial axis components on the
contact plane. As these components are piecewise linear, so are the projections
on the plane and their union. Therefore a contact domain is a polygonal region.

Roughly speaking, the contact domain D(x, y) describes the trace of the repre-
sentative vertex v for all almost maximal balls B′ which share the contact (x, y).
For a vertex-facet contact (x, y), the contact domain is contained in the mesh
facet y, and there is only one contact with this facet. For the other non-singular
types of contacts, the domain is contained in a plane containing the boundary
component, and there may be several contacts sharing a boundary component.
A more detailed discussion will be given in [3]. The singular contacts (vertex-
vertex, edge-vertex, and vertex-edge contacts) do not define a two-dimensional
domain.



Exact Medial Axis Computation for Triangulated Solids 9

3.3 Contact Arrangements

A seam of the medial consists of the center points o′ of almost maximal balls
B′ that possess the same three contacts. For each of these three contacts (x, y),
the projections of the centers o′ into the contact plane define a line segment
on the contact plane, see Fig. 3. This line segment is contained in the contact
domain D(x, y). In a similar way we obtain line segments that are projections
of pseudo-seams.

The projections of all seams and pseudo-seams that share a given contact
(x, y) form an arrangement of line segments, which we will call the contact ar-
rangement, in the contact domain D(x, y).

Every edge of the contact arrangement represents a seam or a pseudo-seam.
The junction points of the medial axis correspond to the vertices of the contact
arrangement.

Remark 1. The medial axis may possess jump sheets, which correspond to par-
tially nested families of almost maximal balls. While general sheets of the medial
axis correspond to two-dimensional parts of the contact arrangements, the jump
sheets may be represented by one-dimensional components (i.e., edges) as well,
by choosing the representative vertex in a suitable way. Therefore, we need to
treat jump sheets in a special way. This will be described in more detail in [3].

4 Computing the Contact Arrangements

As an almost maximal ball is implicitly defined by its contacts, the medial axis
is fully represented by the contact arrangements. In order to analyze the me-
dial axis, we compute the contact arrangements for all possible contacts (x, y).
Consequently, we reduce the problem of medial axis computation to a finite
number of two-dimensional problems in the respective contact planes, which can
moreover be addressed in parallel, since they are mutually independent.

4.1 Outline of the Algorithm

For each contact (x, y) and its contact plane P , we perform the following algo-
rithm, which is summarized visually in Fig. 5.

1. Create a stack of subdomains lying in P , and initialize it with the entire
contact domain.

2. If the stack is empty, then continue with step 4, otherwise take a subdomain
from the stack.

3. Check if there exists a seam or pseudo-seam which defines a projection line
segment in P that hits the subdomain. If such a projection line is found,
then split the subdomain along the line spanned by the segment into new
subdomains and add them to the stack. Continue with the previous step.

4. Remove all line segments in the arrangement that do not represent projec-
tions of seams or pseudo-seams.
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D(x, y)

(a) Contact domain

e

l

(b) Projection line

C1

C1

C2

C3

(c) Clean subdo-
mains

C1

C2

C3

(d) Arrangement

Fig. 5. Computation of a contact arrangement in a contact plane P

4.2 Constructing Almost Maximal Balls

Once again, let v = v(x) be the representative vertex of the contact (x, y). The
most frequent (and also most expensive) operation of the algorithm is to compute
an almost maximal ball B′ for a point p on the contact domain, such that v′ and
p coincide. In particular, it is crucial to identify the remaining contacts of such
an almost maximal ball. If there is only one additional contact, then p lies on a
face of the contact arrangement, otherwise, it belongs to an edge.

An almost maximal ball is found by iterative shrinking, where p is the center
of scaling. We start with a ball satisfying p = v′ which is sufficiently large
to intersect the boundary mesh (see Fig. 6a). With help of an AABB (Axis
Aligned Bounding Box) tree [4], the intersections between components of the
ball boundary and the mesh are efficiently detected. The component of the mesh
closest to p determines the shrinking factor. This is done iteratively until the
shrunk ball and the mesh are intersection-free (see Fig. 6b). The last component
of the mesh which is used to define the shrinking induces the second contact of
the almost maximal ball. As all the above computations are done within the set
of rational numbers, the resulting almost maximal ball and its center point are
exact.

4.3 Finding Projection Lines

A projection line in the contact domain – which may be determined by a seam
or a pseudo-seam – always corresponds to a change of the second contact of
the associated almost maximal balls. Thus, the projection lines subdivide the
contact domain into subdomains whose points define almost maximal balls with
the same second contact.

Consider two points p and q on a contact domain. If the two associated almost
maximal balls have different second contacts then we know that there exists
a projection line crossing pq. On the other hand, if the balls share the same
opposite contact, then this does not imply that there is no such crossing line,
since the faces of the contact arrangement are not necessarily convex.



Exact Medial Axis Computation for Triangulated Solids 11

p

C

(a) Ball before shrinking

p

C

C∗

(b) almost maximal ball at p

Fig. 6. Iterative computation of an almost maximal ball with a given projection p in
a given contact plane (x, y). The second contact is C∗.

If the associated second contacts Cp and Cq of p and q are different we need to
find a point on the segment pq which lies on a projection line. Roughly speaking,
this is achieved by constructing a ball based on pq and confined by the contact
planes of Cp and Cq. If this ball turns out to be a valid almost maximal ball of Ω
with three contacts, then its center lies on a seam or pseudo-seam and induces
a projection line. Otherwise the interval between q and p is split and the search
for two opposite contacts that define a projection line is continued iteratively
by binary search. In non-singular configurations, this process is guaranteed to
terminate.

On the other hand, in order to verify that no projection line crosses the
edge pq, where p and q have the same second contact, the family of almost
maximal balls along pq (which spans a convex polyhedron) has to be contained
in Ω, see again [3] for more details. If the line segment pq is not crossed by
any projection line, then we call this segment clean. The final subdomains of
the contact arrangement are characterized by the fact that they are bounded by
clean segments.

4.4 Summary

For any given point on the contact domain we can construct the associated
almost maximal ball. For two points on the domain we can decide if there exists a
projection line that crosses the connecting segment of the points, and eventually
find such a line. This is all we need to build the contact arrangement.

We start with the complete contact domain, and iterate over its boundary
segments (Fig. 5a). If one of the segments induces a projection line, we split the
domain at this line into two new subdomains and continue recursively (e.g., the
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edge e induces projection line l in Fig. 5b). If all boundary edges of a subdomain
are clean, then the subdomain is clean and all points contained in it are associated
with almost maximal balls having the same opposite contact, and thus lie on the
same sheet of the axis (Fig. 5c). When all subdomains are clean we remove all
artifact edges between neighboring subdomains describing the same sheet (two
faces with opposite contact C1 are merged in Fig. 5d). This finally gives us the
contact arrangement.

Remark 2. As said in Remark 1, a jump sheet may, depending on the represen-
tative vertex, correspond to a one-dimensional projection on a contact plane.
Such a special jump projection edge is detected by an algorithm similar to the
one for seams and pseudo-seams, which is, however, a bit more involved. For the
computation of the contact arrangement such an edge is handled like any other
projection line. For other representative vertices the jump sheet corresponds to a
two-dimensional component (i.e., face) of the arrangement. In this case no jump
projection edge occurs. For more details in this context see [3].

5 Assembling the Medial Axis and Offset Computation

Once we have computed all contact arrangements, the medial axis can be as-
sembled by a simple algorithm. Based on this result we address the problem of
trimmed offset computation. Finally we report experimental results that indi-
cate the relation between the complexity of the input data (number of facets on
∂Ω and ∂B), the computing times and the size of the generated output.

5.1 Assembling the Medial Axis from Its Projections

When all contact arrangements are computed, the assembling of the axis can be
performed by a simple computation. Any sheet of the axis is associated with two
faces of two different contact arrangements, a seam with three edges of three
arrangements. A pseudo-seam is induced by one arrangement edge, and two
segments on the domain boundaries of two neighbored contacts. A jump sheet
is associated with a jump projection edge or a face of a contact arrangement,
depending on the representative vertex chosen for this contact. Every vertex of
the arrangement is associated with an almost maximal ball B′, and the center
points o′ span the medial axis.

The resulting medial axis is a non-manifold connected piecewise linear mesh.
Connectivity can in general be derived from the contact arrangements. This
means that two axis components are incident if their projections are incident
in a contact arrangement. The radial edge structure introduced in [25] is one of
several data structures that recommends itself for storing such a non-manifold
mesh.

As a first example we consider a slightly perturbed octahedron Ω and compute
its medial axis with respect to several polyhedral unit balls B, where the number
of facets increases from 4 to 128. The results are shown in Fig. 7.
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B with 4 facets B with 20 facets B with 128 facets

contact arrangements

medial axes

Fig. 7. Contact arrangements (top row) and medial axes (bottom row) of a slightly
perturbed octahedron with respect to polyhedral unit balls with 4, 20 and 128 facets
(from left to right). Dashed lines are projections of pseudo-seams.

Since Ω is convex in this example, all contact domains are contained in
the facets of Ω and only vertex-face contacts need to be considered. Conse-
quently, the projections and contact arrangements can be visualized directly on
∂Ω (shown in the first row). The medial axis of the octahedron Ω with respect to
the Euclidean unit ball consists of three squares which intersect each other along
their diagonals. The medial axis with respect to a sparse polyhedral unit ball (a
tetrahedron) is quite different (bottom left), since some of the vertices of the ball
fit into the edge and vertex wedges of of the domain. When using a a polyhedral
unit ball with a larger number of facets (bottom center and right), however, the
structure of the computed medial axis is quite similar to the Euclidean case.

As a second example, we consider the “tower” object. Fig. 8 shows the object,
the contact arrangements (projections) and the medial axis with respect to a
piecewise linear quasi-metric generated by a tetrahedron. The mesh consists of
80 triangular facets and the resulting medial axis counts 269 sheets. As the object
is non-convex, not all projections are realized directly on its boundary.
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(a) Tower mesh (b) Projections (c) Medial axis

Fig. 8. Tower mesh, projections, and medial axis. The grey lines in (b) are the projec-
tions of pseudo-seams.

5.2 Offset Computation

The medial axis is a useful tool for trimmed offset computation. While this is
well-established in the two-dimensional case [1,8], the structure has not yet been
used much in 3-space for this purpose [6].

The medial axis representation which is generated by our algorithm is directly
useful for offset computation with respect to a linear (quasi-)metric. Each sheet S
of the medial axis is associated with two contacts C1 and C2. An almost maximal
ball B′ with center point o′ on S and scaling factor s′ has a unique point of
contact pi on Ci for i ∈ {1, 2}. Let ρ be the offset size. Then the offset operation
with ρ applied to B′ gives us a new point pρ

i for each of the two contacts. This
new point pρ

i lies on the line defined by pi and o′. The position of pρ
i with respect

to the sheet S determines whether or not it has to be trimmed:

– If s′ > ρ then pρ
i lies between pi and o′. Therefore pρ

i is a valid point of the
offset surfaces.

– If s′ < ρ then o′ lies between pi and pρ
i . Therefore pρ

i has to be trimmed.
– If s′ = ρ then pρ

1 = pρ
2 = o′ and the point lies on the axis sheet where the

trimmed and valid part of the offset surfaces are joined.

The axis sheets as well as the assigned faces of the contact arrangements are
polyhedral regions. A triangulation on the sheet induces a triangulation on the
faces, leaving us with a configuration as visualized in Fig. 9, where the three
almost maximal balls at the corner points are known. Depending on the offset
size ρ, certain parts of the triangles that lie on planes parallel to the contact
planes define the valid offset surface. Note that a part derived from an edge-
edge or facet-vertex contact resides on a plane which is partially defined by
features of the unit ball.

We define the trimmed offset in 3D analogously to the planar one in [1].
It should be noted that the obtained offset is induced by the distance function
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Δ1

Δ2

t(Δ1)

t(Δ2)

v(Δ1)

v(Δ2)

ΔMA

Fig. 9. The triangle ΔMA of an axis sheet induces two triangles Δ1 and Δ2 on two
different contact arrangements. The offset surface generated from each of these tri-
angles is split into a valid (v(Δ)) and a trimmed (t(Δ)) part, which intersect in the
corresponding axis sheet.

d−B, where −B is the image of B under reflection at the origin o. Clearly, the
two distance functions dB and d−B are identical for centrally symmetric unit
balls B.

We performed the trimmed offset computation for the Armadillo mesh. A
typical result is shown in Fig. 10.

5.3 Computing Time and Size of the Medial Axis

The time needed for the computation of the contact arrangements depends on
various criteria. The quality of the boundary mesh influences the computing
time gain provided by the AABB-tree structure. A rather complex and strongly
branched shape has more reflex features and thus more edge-edge and facet-
vertex contacts. On the other hand the nesting complexity of the single contact
arrangements is in average higher for less ramified shapes, which also increases
the computing time.

At this stage we cannot present any theoretical results. In order to obtain
empirical data, we used several instances of the Armadillo mesh (see Fig. 10),
and tested it against various polyhedral unit balls (see Fig. 11). The computation
times are reported in Fig. 12. They, as well as the ones provided in Table 1 for
several instances of the “Venus”-shape, compare favorably with the ones reported
in [13], which is the only implementation we are aware of that constructs the
exact medial axis with respect to a specific metric. There, the computation of
the medial axis for the “Venus”-shape with 250 faces is performed in 5.6 hours,
with computing times growing considerably with respect to the number of faces.
As can be seen in Table 1, we compute the exact medial axis with respect to
the quasi-metric induced by a tetrahedral B for an instance with 267 faces (see
Figure 14) in less than 5 minutes. Also, the computation times for the Armadillo
and the Venus example grow only slightly super-linearly with respect to the
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(a) Armadillo mesh with 3, 124 facets (b) Mesh detail

(c) Offset for tetrahedral B (d) Offset detail

Fig. 10. A version of the Armadillo mesh with 3124 facets and its trimmed offset for
dB with respect to a tetrahedral unit ball B

number of facets of the mesh, and even sub-linearly with respect to the number
of facets in the unit ball.

Finally we analyze the relation between the size (i.e., the number of planar
sheets) of the computed medial axis and the number of facets on the boundaries
of ∂Ω and of ∂B, see Fig. 13, again for the Armadillo example. The size of the
medial axis grows linearly with the size of ∂Ω, but only very slowly (much less
than linear) with the size of ∂B. This will be analyzed in more detail in the
future.
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(a) B with 4 facets (b) Medial axis detail

(c) B with 128 faces (d) Medial axis detail

Fig. 11. The medial axis of the armadillo mesh from Fig. 10 for two different unit balls
B

6 Convergence

The quasi-metric defined by a convex polyhedron B can be seen as an approx-
imation of the Euclidean metric. Indeed, if the unit ball B converges to the
Euclidean unit ball, then the quasi-metric defined by it converges to the Eu-
clidean metric. The convergence of the unit balls can be described with the help
of the Hausdorff distance. Recall that the Hausdorff distance of two sets X and
Y is defined as

HD(X, Y ) = max(sup
x∈X

inf
y∈Y

‖x − y‖, sup
y∈Y

inf
x∈X

‖x − y‖). (2)
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# faces 4 8 20 128

96 0.03 0.05 0.15 1.28
194 0.05 0.12 0.34 2.63
390 0.10 0.24 0.66 5.05
780 0.21 0.51 1.43 10.13

1562 0.43 0.95 2.44 19.17
3124 0.85 1.74 4.67 34.24
6250 1.66 3.34 8.40 58.09

12500 3.37 6.23 15.39 101.12
25000 7.32 12.39 28.13 170.69
50000 18.28 27.46 57.38 -

100000 52.30 66.80 124.09 -

Fig. 12. Left: Computation times (in
hours) for several polyhedral unit balls
(shown in the different columns; the first
row specifies the number of faces) and vari-
ous instances of the Armadillo mesh (shown
in the rows) on a single CPU with 2.5 GHz.
Right: Results plotted on a log-log scale.

 0.01

 0.1

 1

 10

 100

 100  1000  10000  100000

el
ap

se
d 

ho
ur

s

number of mesh faces

Runtimes with respect to boundary mesh

4
8

20
128

 0.01

 0.1

 1

 10

 100

 10  100

el
ap

se
d 

ho
ur

s

number of ball faces

Runtimes with respect to unit ball

780
1562
3124
6250

12500
25000

# faces 4 8 20 128

96 315 325 375 542
194 661 714 819 1097
390 1410 1437 1709 2315
780 2879 3154 3661 4945

1562 6106 6689 7316 10091
3124 12514 13365 15043 20655
6250 24764 26519 29841 39906

12500 48592 52655 58055 78155
25000 94715 101733 111355 148967

Fig. 13. Number of sheets of the medial
axis for several polyhedral unit balls (shown
in the different columns; the first row spec-
ifies the number of faces) and various in-
stances of the Armadillo mesh (shown in
the rows). Right: Results plotted on a log-
log scale.
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Table 1. Computation times in seconds for different combinatorial sizes of B (rows)
and different instances (columns) of the Venus model shown in Figure 14

# faces 4 8 20 128

115 115.54 270.44 834.66 4645.03
267 284.04 594.75 1846.20 11770.50
575 525.19 1117.43 3011.68 21619.20

1396 1209.51 2120.49 6005.36 37837.30

In this section we consider simultaneously two metrics and the associated medial
axes. On the one hand, we have the piecewise linear (quasi-) metric dB defined
by the convex polyhedron B and the medial axis MAB(Ω) of the given domain
Ω with respect to it. On the other hand, we have the usual Euclidean metric
and the standard medial axis, which we will now denote with MA(Ω).

6.1 Planar Domains

For planar domains Ω ⊂ R2, the following result establishes a close connection
between the two skeletal structures MAB(Ω) and MA(Ω):

Theorem 1. Consider a planar domain Ω ⊂ R2 with piecewise linear boundary
∂Ω. If the convex polygon B that serves as the unit ball of the (quasi-) metric dB

converges to the Euclidean unit circle, then the Hausdorff distance between the
medial axes MAB(Ω) and MA(Ω) with respect to the piecewise linear (quasi-)
metric and the Euclidean metric, respectively, tends to zero.

Thus, the convergence of the unit ball implies the convergence of the medial axis.
Before proving this result we present the following result, which is visualized in
Fig. 15.

Lemma 1. Each point c′ of the medial axis MAB(Ω) of the planar domain Ω
sees any two of its associated closest points on the boundary under a certain angle
α′(c′). For polygonal unit balls B that are sufficiently close to the Euclidean unit
circle, there exists a lower bound ϕ′ of this angle, which is independent of B.
Each point c of the medial axis MA(Ω) sees any two of its associated closest
points on the boundary under a certain angle α(c). There exists a lower bound
ϕ of this angle.

Proof. First we observe that none of the almost maximal polyhedral balls B′ has a
contact with the boundary of Ω in a convex vertex, provided that B is sufficiently
close to the Euclidean unit circle. Similarly, none of the maximal Euclidean balls
touches the boundary of Ω in a convex vertex. Consequently, each almost maximal
polyhedral ball B′ and each maximal Euclidean ball has contact
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(a) Mesh (b) Medial axis (c) Trimmed offset

Fig. 14. (a) A mesh instance of the Venus model with 267 faces. (b) The medial axes
induced by a unit ball B with 4 faces. (c) The resulting trimmed offset.

– with two edges of ∂Ω (both contacts are of type 1),
– with an edge and with a reflex (non-convex) vertex of ∂Ω (the contacts are

of type 1 and type 2), or
– with two reflex vertices of ∂Ω (both contacts are of type 2).

Some balls may have more than two contacts, but we need to consider only two
of them.

In the latter two cases, we consider the minimum distance d between any
two reflex vertices and between any reflex vertex and any edge not starting
or ending at this vertex. For all points c corresponding to these two types of
contact, the angle α(c) satisfies α(c) ≥ 2 arcsin(d/D), where D is the diameter
of Ω (which is also an upper bound on the diameter of the maximal Euclidean
circles). Consequently, if B is sufficiently close to the Euclidean unit circle, the
angle α′(c′) satisfies α′(c′) ≥ arcsin(d/D).

In the first case, the two contacts are realized at two non-parallel edges of
∂Ω. Let β be the smallest angle between any two non-parallel edges of ∂Ω. Here
we consider all pairs of edges, not just the adjacent ones. For all points c corre-
sponding to this type of contact, the angle α(c) satisfies α(c) ≥ β. Consequently,
if B is sufficiently close to the Euclidean unit circle, the angle α′(c′) satisfies
α′(c′) ≥ β/2. �

Now we are ready to prove the convergence result.

Proof (Theorem 1). First we consider a point c′ ∈ MAB(Ω) and prove that there
exists a point c ∈ MA(Ω) such that ‖c′ − c‖ ≤ ε(B), where ε(B) tends to zero
as B converges to the Euclidean unit ball.
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Fig. 15. Each center of a maximal (or almost maximal ) ball sees any two of its
associated boundary points under a certain angle. For piecewise linear boundaries,
which are in general position with respect to the unit ball, this angle has a lower
bound.

b
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′

b
′′

c
′

(a) c′ on MAB(Ω)

b

b
′

c
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′

(b) c on MA(Ω)

Fig. 16. The almost maximal polyhedral ball with center c′ (left) and the construction
of the associated maximal Euclidean ball (dashed) with center c (right)

For a given c′ ∈ MAB(Ω) we consider the associated almost maximal ball B′,
along with its inscribed circle and circumscribed circle. The almost maximal ball
B′ touches the boundary in at least two points b′, b′′ ∈ ∂Ω, see Fig. 16a.

Consider the largest inscribed Euclidean ball with center c′. It touches the
boundary ∂Ω at a point b, which is generally different from both b′ and b′′.
The boundary of this Euclidean ball lies between the inscribed circle and the
circumscribed circle. The center c′ sees b and one of the other two points – say
b′ – under an angle α > ϕ′

2 .
We consider the maximal inscribed Euclidean ball which is obtained by apply-

ing uniform scaling with center b and scaling factor 1 + δ to the ball with center
c′, see Fig. 16b. This scaling maps the center c′ into a new center c satisfying



22 O. Aichholzer et al.

b

b
′

p

c

c
′

α
′

(a) b, p and b′

b

b
′

p

c

c
′

ϕ′

2

(b) The bound δ0

Fig. 17. The construction of an upper bound on the scaling factor 1 + δ

‖c − c′‖ = δ‖c′ − b‖ ≤ δD (3)

where D is the diameter of the domain Ω. We find an upper bound on δ by
considering the intersection p of the line segment from b to b′ with the Euclidean
circle with center c′. The uniform scaling moves this point towards b′, but not
beyond b′, hence

δ <
‖p − b′‖
‖p− b‖ , (4)

cf. Fig. 17a. This upper bound on δ remains valid if the following operations
are applied: First, we apply a uniform scaling with center c′ and a scaling factor
≤ 1 which moves b and p to the inscribed circle. Second, we shift b′ to the
circumscribed circle along the line bb′. Third, the enclosed angle ∠bc′b′ is reduced
to ϕ′

2 , see Fig. 17b.
Let δ0 be the upper bound on δ obtained after these operations, i.e., from the

configuration in Fig. 17b. We can bound the distance ‖c−c′‖ by ε(B) = δ0(B)D.
Finally, if the polyhedral ball B converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks. Consequently, we
obtain δ0(B) → 0 and hence ε(B) → 0.

In the second part of the proof we consider a point c ∈ MA(Ω) and prove that
there exists a point c′ ∈ MAB(Ω) such that ‖c′ − c‖ ≤ ε′(B), where again ε′(B)
tends to zero as B converges to the Euclidean unit ball. This can be proved by
swapping the roles of circles and polyhedral balls with respect to the Euclidean
and the piecewise linear metric, as follows.

For a given c ∈ MA(Ω) we consider the associated maximal Euclidean ball,
along with its inscribed piecewise linear circle and circumscribed piecewise linear
circle. This situation is visualized in Fig. 18a. The inscribed and circumscribed
piecewise linear circles are shown as dashed polygons.
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Fig. 18. The maximal Euclidean ball with center c (left) and the construction of the
associated almost maximal polyhedral ball (dashed) with center c′ (right)

The inscribed piecewise linear circle possesses an inscribed Euclidean circle,
and the circumscribed piecewise linear circle possesses a circumscribed Euclidean
circle. We will now refer to these two Euclidean circles as the inscribed circle
and the circumscribed circle, respectively.

The maximal Euclidean ball with center c touches the boundary in at least
two points b′, b′′ ∈ ∂Ω, see Fig. 18a. Consider the largest inscribed piecewise
linear ball with the same center c. It touches the boundary ∂Ω at a point b,
which is generally different from both b′ and b′′. The boundary of this Euclidean
ball lies between the inscribed circle and the circumscribed circle. The center c
sees b and one of the other two points – say b′ – under an angle α > ϕ

2 .
Similar to the first part of the proof we consider the almost maximal inscribed

piecewise linear ball which is obtained by applying uniform scaling with center
b and scaling factor 1+ δ′ to the piecewise linear ball with center c, see Fig. 18b.
This scaling maps the center c into a new center c′ satisfying

‖c − c′‖ = δ′‖c− b‖ ≤ δ′D. (5)

As in the first part of the proof we are now able to construct an upper bound δ′0
on δ′. If the polyhedral ball B converges to the Euclidean ball, then the distance
between the inscribed and the circumscribed circle shrinks, which again implies
δ′0(B) → 0, and hence ε′(B) → 0.

Finally, by combining the results of both parts we see that the Hausdorff
distance of MA(Ω) and MAB(Ω) tends to zero as B converges to the Euclidean
unit ball. �

Let h denote the Hausdorff distance between B and the Euclidean ball. The
upper bounds δ0 and δ′0 can be bounded by Ch, where the constant C depends
on the angles ϕ and ϕ′. Consequently, the Hausdorff distance of MA(Ω) and
MAB(Ω) is bounded by CDh. The constant C, however, is rather large for
small values of ϕ and ϕ′.
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6.2 Towards a Convergence Proof for the 3D Case

In order to extend this approach to the spatial case, it is first necessary to analyze
the possibility of generalizing Lemma 1. Unfortunately, for triangulated solids in
3D, it turns out that no such lower bound the angles α and α′ exists in general.

If the piecewise linear ball is sufficiently close to the Euclidean one, then it
suffices again to consider only piecewise linear balls that do not fit into any of
the convex edges of the domain. Each almost maximal piecewise linear ball and
each maximal Euclidean ball of Ω has contact

– with two facets of ∂Ω, or
– with two entities of ∂Ω, where at least one of them is a reflex edge or a

non-convex vertex.

In the first case, a lower bound on the angles ϕ and ϕ′ can be derived as in the
planar case. In the second case, this is possible only if the two contact entities
do not possess any common points.

More precisely, if the two entities which are present in the second case are
two reflex edges with a common vertex, or a reflex edge and a facet possessing
a common vertex, then the technique used for proving the result in the planar
case can no longer be applied, since it requires a lower bound on the distance
between the two entities. Thus, a more sophisticated approach is required in
order to generalize the convergence result to the 3D case.

We expect that the following approach allows to extend Theorem 1 to triangu-
lated solids in space. First, we consider only the subset of the medial axes which
are generated by almost maximal balls and by maximal Euclidean balls where
the angle introduced in Lemma 1 exceeds a certain threshold φ∗. We denote
these subsets by MA∗

B(Ω) and MA∗(Ω), respectively.
Next we consider a sequence (Bn)n=1,2,... of unit balls with the property that

the ratio between the radii of the circumscribed and the inscribed ball has the
upper bound 1 + 1/n3. For each of these balls we use the associated threshold
φ∗

n = 1/n to define the subsets MA∗
B(Ω) and MA∗(Ω). Thus, after an appro-

priately scaling of Bn, the Hausdorff distance between the piecewise linear unit
ball and the unit ball tends to zero as 1/n3, while the lower bound on the angle
tends to zero as 1/n.

Using the same techniques as in the proof of Theorem 1, we can conclude that
the one-sided Hausdorff distances between MA∗

B(Ω) and MA(Ω) and between
MA∗(Ω) and MAB(Ω) converge to zero as n → ∞. Simultaneously, the lower
bound φ∗

n on the angle φ used for defining MA∗
B(Ω) and MA∗(Ω) tends to zero.

Finally, it should be possible to prove that the Hausdorff distances between
MA∗(Ω) and MA(Ω), and between MA∗

B(Ω) and MAB(Ω) converge to zero as
well. The desired convergence result can then be obtained by combining these
observations. The details of this proof cannot be described satisfactorily in the
frame of this paper and will be reported elsewhere.
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7 Concluding Remarks

We have presented an algorithm which computes a piecewise linear medial axis
representation MA(Ω) of a triangulated polyhedron Ω with respect to a piece-
wise linear quasi-metric dB. The representation allows convenient trimmed offset
computation, and all computations can be performed within the field of rational
numbers. We would like to point out that the shape is not required to be simply
connected, as the axis-representing contact arrangements are computed indepen-
dently. This makes the algorithm easily accessible for parallel implementation.
The algorithm shows convincing computational complexity and is suitable for
larger meshes.

The complexity of the polyhedral unit ball can be chosen depending on the re-
spective application. This is also one of the interesting issues for future research
in this area. Given a mesh, what does a (preferably combinatorially small) poly-
hedral unit ball have to look like to reduce the occurrence of pseudo-seams? With
a decreasing number of pseudo-seams, a combinatorial structure close to the Eu-
clidean medial axis is to be expected. On the other hand the implicit pruning
induced by the piecewise linear metric might be a welcome feature. This leads
to the question how to locate points on the unit sphere, such that the vertices
of the resulting convex polyhedral ball enter as many flat convex features of a
mesh as possible.

Modifications of the unit ball B do affect the geometric as well as the com-
binatorial appearance of MA(Ω). Another interesting task is to identify and
isolate the combinatorially stable – and thus essential – parts of the medial axis
by comparing the representations for different quasi-metrics dB resulting from
several different polyhedral unit balls B.
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Medial axis computation for planar free-form shapes. Comput. Aided Des. 41,
339–349 (2009)

3. Aigner, W.: Generalized representation of geometric objects in 2D and 3D. PhD
thesis, Graz University of Technology (2011) (in preparation)



26 O. Aichholzer et al.

4. Alliez, P., Tayeb, S., Wormser, C.: AABB Tree. In: CGAL User and Reference
Manual. CGAL Editorial Board (2010)

5. Attali, D., Boissonnat, J.-D., Edelsbrunner, H.: Stability and computation of me-
dial axes: a state of the art report. In: Hamann, B., Moeller, T., Russell, B. (eds.)
Mathematical Foundations of Scientific Visualization, Computer Graphics, and
Massive Data Exploration. Mathematics and Visualization, Springer, Heidelberg
(2007)
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Abstract. We propose a method to compute the algebraically correct
medial axis for simply connected planar domains which are given by
boundary representations composed of rational circular arcs. The algo-
rithmic approach is based on the Divide-&-Conquer paradigm, as used
in [2]. However, we show how to avoid inaccuracies in the medial axis
computations arising from a non-algebraic biarc construction of the
boundary. To this end we introduce the Exact Circular Arc Boundary
representation (ECAB), which allows algebraically exact calculation of
bisector curves. Fractions of these bisector curves are then used to con-
struct the exact medial axis. We finally show that all necessary compu-
tations can be performed over the field of rational numbers with a small
number of adjoint square-roots.

Keywords: medial axis, circular boundary, exact computation.

1 Introduction

The medial axis is an important concept for shape description introduced by
Blum [4]. We call a domain S in the plane a simple shape, if it is bounded by
a non-selfintersecting closed curve ∂S. The medial axis of S is composed of the
union of all center points of maximal disks inscribed in S. If S is simple then its
axis has a tree-like structure. The following two definitions stem from [4]:

Definition 1. Given a shape S, a disk D ⊆ S is called maximal, if there does
not exist a disk D′ ⊆ S, D′ �= D, which contains D. We denote the set of all
maximal disks with MAT (S) (medial axis transform of S).

Definition 2. Given a shape S, its medial axis MA(S) is defined as the union
of all centers of maximal disks in S:

MA(S) := {cD | D ∈ MAT (S), and cD is the center of D} .

The medial axis construction for shapes with simple boundary representations
as straight lines or circular arcs is a field that has been tackled with various
techniques. The Divide-&-Conquer approach used in [2] is a simple method for
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efficient axis computation, however, with some minor drawbacks. The biarc con-
struction as described in [2] provides theoretical smoothness, that is however
not representable by usual float or rational number types. Furtheron, degener-
ate branching points of the medial axis cannot be detected exactly. In particu-
lar, the correct representation of the medial axis curve is a challenging task if
the boundary input data does not comply with certain (numerical or algebraic)
quality criteria as being rational representable or providing algebraically smooth
joints between arcs.

An important part of most medial axis algorithms is the bisector computation.
This problem has been approached for various types of rational curves, but
mostly relying on machine arithmetic as in [11,7].

Our goal is to compute the algebraically correct medial axis. Thus, we have
to cope with exact bisector computation of (arc-supporting) circles. For this
purpose we require all arcs on the boundary, that are involved in the bisector
computation, to be rational. Arcs which do not directly contribute to the medial
axis, but describe a local curvature maximum and thus merely a leaf-point of
the axis, are allowed to be rational square-root expressions (rasqex).

Integers are rasqex. If x and y are rasqex, so are x+y, x−y, x ·y, x/y and
√
x.

Rasqex have exact comparison operators =, <, and >, realized in LEDA [6,14]
or the Core library [13,16]. Actually, these two packages are able to represent
arbitrary k-th root numbers, what is more than we need. For our purposes the
FieldWithSqrt concept as provided by the CGAL library [1] is sufficient.

Several details of our algorithm, e.g. bisectors and tritangent circles, are sim-
ilar to those needed for the construction of an Apollonius diagram, as examined
extensively in the work of Emiris and Karavelas [8]. They show that the opera-
tions allowed in the rasqex number type are sufficient to compute all predicates.
Similar efforts have been made for ellipses and even more general smooth con-
vex sites [9,10]. Beside the similarities there are serveral additional aspects we
have to take into account for our approach. First, the medial axis construction
needs parts from the underlying bisectors different from the ones needed for the
Apollonius diagram. Second, while in [8] an incremental approach is pursued, we
intend to show that all steps of our Divide-&-Conquer algorithm can be accom-
plished with rasqex numbers as well, a fact that is not obvious. Furthermore, as
opposed to the Apollonius diagram, we do not deal with single sites and com-
plete circles, but one closed curve composed of circular arcs representing a planar
shape. In this context we consider boundaries that are at least C1-smooth to de-
fine an Exact Circular Arc Boundary or ECAB. (The extension to non-smooth
boundaries only requires an extension of the cases that may occur for bisector
computation.) See Section 2 for detailed definitions.

Given an ECAB, the divide-part of the algorithm presented in [2] is applied
(overview in Section 3) with some minor modification of the construction of the
dividing disks (Section 4), as they are crucial for the final reassembling of the
medial axis. The main bisector calculus takes place when arriving at the base
cases which terminate the decomposition process. Pairs of (rational) arcs are
adequately chosen, and the bisectors of their supporting circles are computed.
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It is shown in Section 5 that the bisectors are algebraic curves of degree 4 over
the rational numbers Q, which can be expressed as the product of two quadratic
polynomials (conics) over a simple extension field of Q. The center points of the
arcs stemming from the dividing disks (called artificial arcs) lie on the bisectors,
and are used to isolate those parts of the conic curves which contribute to the
partial medial axes of specific base cases. Details about these base cases are
discussed in Section 6, representing the conquer-part of the algorithm.

2 Exact Circular Arc Boundary

We define a circular boundary representation which fits our needs for an exact
bisector and medial axis construction. This requires some definitions, starting
with rational circles. Let Q denote the set of rational numbers.

Definition 3. For a circle C with center c the following definitions are equiva-
lent:

C is a rational circle ⇐⇒ c ∈ Q2 and ∃u ∈ C : u ∈ Q2 (1)
⇐⇒ ∃u, v, w ∈ Q2 : u, v, w ∈ C . (2)

Note that the squared radius of a rational circle is rational. It is also well-
known that on a rational circle C points with rational coordinates are lying
dense (see [15]). This means that near an arbitrary point p on C and for any
ε > 0 one can find a rational point in an ε-environment around p, that lies on
C. We say that an arc is rational, if its supporting circle and its two endpoints
are rational. By extending to rasqex numbers, we can now define rasqex circles
as a superset of rational circles.

Definition 4. For a circle C with center c and squared radius r the following
definitions are equivalent:

C is a rasqex circle ⇐⇒ c and r are rasqex .

An arc is rasqex, if its supporting circle and its two endpoints are rasqex. A
rational circle is always a rasqex one, but not vice versa. For our C1-boundary
representation we want to rely on rational circles as much as possible, but to build
a C1-smooth boundary consisting exclusively of rational arcs means a severe
restriction. We therefore soften our demands by allowing rasqex arcs whenever
they are not directly contributing to bisector calculation. This is true for arcs
which describe a local curvature maximum, as such a maximum always defines a
leaf-point of the medial axis which just represents the endpoint of a medial axis
curve. This means such an arc does not contribute to any bisector computation
later on (Section 5), only its center point is eventually required for point location
(Section 6). According boundary construction rules are given in Section 7.

Definition 5. Consider a C1-circular arc boundary representation. An arc that
constitutes a local curvature maximum, and thus a leaf point of the medial axis,
has to be at least rasqex. If all other arcs are rational, then we call this structure
an Exact Circular Arc Boundary (ECAB).
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Note that the restriction to C1 is not a necessary one. For general circular arc
boundaries however we have to deal with more base cases and with bisector con-
struction between points and circles. This does not pose any problems concerning
computation, but is left aside for reasons of lucidity.

3 The Divide-and-Conquer Algorithm

We are interested in computing the medial axis for a given ECAB boundary.
As our approach is closely related to the work introduced in [2] we first give an
overview here. The algorithm is based on the Divide-&-Conquer paradigm. The
dividing step consists of finding a random disk D ∈ MAT (S) (called dividing
disk) and decomposing S, with the help of D, into sub-shapes. The latter is
done by splitting the boundary, adding artificial arcs that originate from D, and
rearranging the original arcs. After this has been applied recursively, down to
predefined base cases, the merge step is a simple concatenation of the partial
axes at the center points of the dividing disks, as they are guaranteed to lie on
the original medial axis. For a list of base cases that may occur for C1-smooth
boundaries, see Figure 3. We leave the basic algorithmic approach almost un-
changed. But with the help of the properties of the ECAB structure (as opposed
to numerical biarc constructions), and by modifying a few specific steps, a math-
ematically correct representation of the medial axis is made possible:

– The construction of a dividing disk has to be done with care, to take advan-
tage of the properties of rational arcs. The centers of the dividing disks play
a more important role, as they are required to lie exactly on the bisector
curves for segment confinement. This is discussed in Section 4.

– The bisector computation is now done in an algebraic way, avoiding any nu-
merical errors. The whole computation can be done over the field of rational
numbers with only a few adjoint square-roots, as shown in Section 5.

– The handling of the base cases is more sophisticated, however the alge-
braic approach allows us to detect degenerate constellations more easily
(Section 6).

4 Constructing Dividing Disks

Dividing disks, being maximal disks as defined in Section 1, are required for the
recursive decomposition of a shape S. A general maximal disk has two contact
points on ∂S, which lie on two different arcs when dealing with an ECAB.

As in [2] we start by choosing a random arc p on the boundary. The only
limitation is that p must not define a local curvature maximum, meaning it does
not induce a leaf-point of the medial axis. The ECAB structure then tells us that
p is rational and thus we can choose a rational point tp as close to an arbitrary
point on p as we see fit. See [5] for a detailed algorithm and implementation on
how to choose such a point. For every arc q �= p of ∂S we construct the disk that
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Fig. 1. Construction of a disk that is tangent to two arcs

touches p at tp and is tangent to q (see Figure 1). First we construct the line l
passing through the center cp of the supporting circle of p and tp. The center cD

of the maximal disk we are looking for has to be on l. As can be decided by the
signs of curvature of p and q, one of the two points on l being at distance √

rq

(radius of the supporting circle of q) from tp is denoted with c′q. This point c′q
forms, together with cD and cq, an isosceles triangle. The bisector l′ between cq

and c′q also contains cD, which means that cD is the intersection point of l and
l′. From all q �= p only one induces a disk (the smallest one) that lies completely
inside S. This is the sought-after dividing disk D. The use of the ECAB structure
guarantees certain algebraic properties of D. As the point cp as well as tp are
rational, also the line l is rational. The value √

rq is not rational in general, as
a consequence so isn’t c′q. However, c′q ∈ Q(√rq)2. Therefore also the point of
intersection between l and l′, being the center of D, is in this extension field.
Values in Q(√rq) can be represented exactly by the rasqex numbers, which makes
later point location on the bisector curves convenient (see Sections 5.2 and 6).

Furthermore, we note that the (rasqex) artificial arcs, stemming from the
(rasqex) boundary circle of a dividing disks, always describe a local curvature
maximum when used to extend the partial shapes. This is coherent with the
definition of the ECAB-structure in Section 2.

5 Bisector Computation and Point Location

5.1 Bisector Computation

We next show how to compute the bisector between two rational arcs. Let Cp

and Cq be the supporting circles of the two arcs with centers cp and cq and
squared radii rp and rq, respectively:

Cp(x, y) := (x− (cp)x)2 + (y − (cp)y)2 − rp

Cq(x, y) := (x− (cq)x)2 + (y − (cq)y)2 − rq .

As before, we assume cp, cq ∈ Q2 and rp, rq ∈ Q.
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Definition 6. The bisector curve between the two circles Cp and Cq consists of
all points (x, y) in the plane for which∣∣|(x, y) − cp| ± √

rp

∣∣ =
∣∣|(x, y) − cq| ± √

rq

∣∣ .
Roughly speaking, this bisector curve consists of all center points of circles, which
share exactly one point (of tangency) with Cp and Cq respectively.

Theorem 1. The bisector curve of the two circles Cp and Cq factors into two
curves B1(x, y) = 0 and B2(x, y) = 0 with

B1(x, y) = (d2
1 + d2

2 − r2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y] (3)

B2(x, y) = (d2
1 + d2

2 − r̃2)2 − 4d2
1d

2
2 ∈ Q(

√
rprq)[x, y], (4)

with d1 := d1(x, y) := |(x, y)−cp|, d2 := d2(x, y) := |(x, y)−cq |, r := √
rp−√

rq,
and r̃ := √

rp + √
rq.

Proof. For the bisector-curve there are two cases:

Case 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
d1 + √

rp = d2 + √
rq ∨ d1 −√

rp = d2 −√
rq

∨ d1 + √
rp = −d2 + √

rq ∨ d1 −√
rp = −d2 −√

rq

⇐⇒
{

d1 − d2 = −r ∨ d1 − d2 = r
∨ d1 + d2 = −r ∨ d1 + d2 = r

| 2

⇐⇒ d2
1 + d2

2 − r2 = 2d1d2 ∨ d2
1 + d2

2 − r2 = − 2d1d2 | 2

⇐⇒ (d2
1 + d2

2 − r2)2 = 4d2
1d

2
2

This is exactly the equation for B1(x, y) = 0. Similar for B2(x, y) = 0:

Case 2

⎧⎪⎨⎪⎩
{

d1 + √
rp = −d2 −√

rq ∨ d1 −√
rp = −d2 + √

rq

∨ d1 + √
rp = d2 −√

rq ∨ d1 −√
rp = d2 + √

rq

⇐⇒ (d2
1 + d2

2 − r̃2)2 = 4d2
1d

2
2

Since d2
1, d

2
2 ∈ Q[x, y], r̃2 = (√rp + √

rq)2 = rp + 2√rprq + rq ∈ Q(√rprq),
and r2 = (√rp − √

rq)2 = rp − 2√rprq + rq ∈ Q(√rprq), it follows that
B1(x, y), B2(x, y) ∈ Q(√rprq)[x, y]. 
�
From now on B1 and B2 denote the curves described by B1(x, y) = 0 and
B2(x, y) = 0 respectively.

Theorem 2. B1 and B2 in Theorem 1 are conics, i.e., planar curves of degree
two.

Proof. We will prove that B1 and B2 are conics when the centers of the circles
Cp and Cq lie on the x-axis and symmetrically on both sides of the y-axis:

Cp(x, y) := (x + d)2 + y2 − rp, Cq(x, y) := (x − d)2 + y2 − rq .
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This is no restriction because every pair of circles with d being half the distance
between their two center points can be moved to this position by rotation and
translation. B1 and B2 are then subject to the same transformation which does
not change their degrees.

For Cp and Cq in this special position, we have

d2
1 = d2

1(x, y) = | (x, y) − cp |2 = | (x, y) − (−d, 0) |2 = (x + d)2 + y2

d2
2 = d2

2(x, y) = | (x, y) − cq |2 = | (x, y) − (d, 0) |2 = (x− d)2 + y2 .

This yields for the two cases

Case 1

⎧⎪⎪⎨⎪⎪⎩
(d2

1 + d2
2 − r2)2 = 4d2

1d
2
2

⇐⇒ (x2 + d2 + y2 − r2

2 )2 = ((x + d)2 + y2)((x − d)2 + y2)

⇐⇒ 0 = 4x2d2 − x2r2 − d2r2 − y2r2 + r4

4

This is the quadratic equation for B1.

Case 2

{
(d2

1 + d2
2 − r̃2)2 = 4d2

1d
2
2

⇐⇒ 0 = 4x2d2 − x2r̃2 − d2r̃2 − y2r̃2 + r̃4

4

This is the quadratic equation for B2. 
�
Altogether this means that the bisector of the two circles Cp and Cq in our
original coordinate system factors into two conics over the field Qpq = Q(√rprq),
which is in rasqex.

Corollary 1. Each of B1 and B2 is either a hyperbola or an ellipse or a pair
of identical lines.

Proof. Looking further at the equations for B1 and B2 in the special case where
the center-points lie on the x-axis we first observe that B1 and B2 are the two
conics described by

B1(x, y) := bx2 − ay2 − ab, B2(x, y) := b̃x2 − ãy2 − ãb̃

with

a =
(√rp −√

rq)2

4
=

r2

4
, b = d2 − a = d2 − r2

4
and

ã =
(√rp + √

rq)2

4
=

r̃2

4
, b̃ = d2 − ã = d2 − r̃2

4
.

First consider B1. If rp = rq we have a = 0, b = d2 and B1(x, y) = d2x2 consists
of two identical lines along the y-axis. If rp �= rq it is true that a > 0 and

b > 0 ⇔ d2 >
r2

4
⇔ 4d2 > (

√
rp −√

rq)2 ⇔ 2d > |√rp −√
rq| .

That means,
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– if 2d > |√rp −√
rq|, then b > 0 and B1 is an hyperbola,

– if 2d = |√rp−√
rq|, then b = 0 and B1(x, y) = −ay2 consists of two identical

lines along the x-axis,

– if 2d < |√rp −√
rq|, then b < 0 and B1 is an ellipse.

For B2 we always have ã > 0 and

b̃ > 0 ⇔ d2 >
r̃2

4
⇔ 4d2 > (

√
rp +

√
rq)2 ⇔ 2d >

√
rp +

√
rq .

– The two circles Cp and Cq do not intersect iff 2d >
√
rp + √

rq. In this case
b̃ > 0 and B2 is a hyperbola.

– Cp and Cq touch tangentially iff 2d = √
rp + √

rq. Then B2(x, y) = −ãy2

consists of two identical lines along the x-axis.

– Cp and Cq intersect iff 2d <
√
rp + √

rq. In this case b̃ < 0 and B2 is an
ellipse. 
�

5.2 Medial Axis Representation and Point Location

In order to compute and represent the medial axis of the exact circular arc
boundary we must be able to analyze a bisector-conic over the extension field
Qpq. This means that in a so called one-curve analysis we will divide a bisector-
conic B, described by B(x, y) ∈ Q(√rprq)[x, y] = Qpq[x, y], into x-monotone
arcs. This is not difficult and works analogously to the one-curve analysis of a
conic over Q described in [3]. The bisector-conic B is split at its x-extreme points,
that are points where B(x, y) and the partial derivative B(x, y)y = ∂B(x,y)

∂y vanish
simultaneously. If the bisector-conic consists of a pair of identical lines, we make
the defining polynomial square-free. Now every resulting x-monotone arc can
be represented by a tuple ([le, ri], nr), where le and ri are the x-coordinates of
the left and right endpoint, respectively. Since le and ri are roots of quadratic
polynomials over Qpq[x], they can be represented by rasqex numbers. The branch
number nr is either 0 or 1 and indicates which of the two x-monotone arcs of
the curve above the x-interval [le, ri] is meant.

As described in Section 4, one major step is point-location. For a given point
u = (ux, uy), the coordinates of which are rasqex, we have to determine the
x-monotone arc of B1 or B2 it lies on. First of all we check whether u lies on B1

or B2 by testing
B1(ux, uy) = 0 or B2(ux, uy) = 0 . (5)

Since all the numbers in B1(ux, uy) and B2(ux, uy) are rasqex numbers, the
exact test for zero can be realized by using the equality operator of the rasqex
numbers. Let us assume that p lies on B1. Next we use the <-operator of the
rasqex numbers to determine the two x-monotone arcs of B1 for which

le ≤ ux ≤ ri . (6)
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The last step is to determine whether u lies on the upper or lower branch,
i.e., algebraically whether uy is the greater or smaller root of the polynomial
B1(ux, y). Since B1(ux, y) is a quadratic polynomial the coefficients of which are
rasqex, its two roots r1 and r2 can be computed symbolically by introducing a
new square-root. Now we have to check whether

uy − r1 = 0 or uy − r2 = 0 . (7)

Again this can be done by using rasqex numbers. Notice that in cases where
locally around u neither the second bisector-conic nor the second arc pass by
and all x-extreme points are far away, the three steps for point-location can be
sped up by using isolating intervals for ux and uy and evaluating the expressions
in (5), (6) and (7) with interval arithmetic, if desired.

5.3 Confining the Partial Axis

In our construction, the medial axis is computed as the union of bisector-conic
segments. Each conic segment is limited by center points of artificial arcs. Con-
sider the case where the bisector of two rational arcs on the circles Cp and Cq

contribute to the medial axis, see for example Figure 3 case (b). The coordinates
of the limiting center points of the artificial arcs are rasqex. With the algorithm
described above the center points can be located on x-monotone arcs of the
bisector-conic. If the bisector-conic is a line or hyperbola, the two center-points
uniquely define the part of the medial axis we are interested in, possibly as a
concatenation of x-monotone arcs. If the underlying bisector-conic is an ellipse,
we have two possibilities for the partial axis. In this case we choose an additional
rational point on one rational arc, say on Cp. With the algorithm from Section 4
we construct a third point on the bisector-conic. For the partial axis we choose
the part of the bisector-curve between the two center points which contains this
new point.

5.4 Center Points of Tritangent Circles

The center points of (at least) tritangent circles, being the branching points of
the medial axis, are another kind of points which are needed for the confinement
of the axis. We will show that the coordinates of such points are rasqex too,
if the three defining circles are rational. A bisector curve between two rational
circles is an algebraic curve of degree 4, and the branching point is one of the
intersection points where all three bisectors between three circles meet.

There exist two different possibilities how a point on a bisector-curve may
describe tangency at its footpoint on a defining circle.

Definition 7. Consider a bisector-curve B and one of its two defining circles C.
For a point t ∈ B let t′C be its unequivocal footpoint on C and ΓC the open region
bounded by C. Then we define the function ϕ(t, C) on B as follows:

ϕ(t, C) =

{
0 if t t′C ∩ ΓC = ∅
1 otherwise.
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Cp
Cq

Cs

u1

u2

Fig. 2. Two tritangent circles resulting from one line of similitude of the Gergonne
construction. (ϕ(u1, Cp), ϕ(u1, Cq), ϕ(u1, Cs)) = (ϕ(u2, Cp), ϕ(u2, Cq), ϕ(u2, Cs)) =
(1, 0, 0).

Roughly speaking ϕ(t, C) is 0 if the circle with center t and radius t t′C is “outer”-
tangent to C, and 1 otherwise (see also Figure 2). As proved in Section 5 every
bisector B consists of two conic curves, B1 and B2. By construction, the points
of these two conics have certain properties concerning ϕ(., .) which we investigate
next.

Lemma 1. Consider the bisector B consisting of the two bisector-conics B1 and
B2 and its two defining circles Cp and Cq, then

∀t ∈ B1 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 0), (1, 1)} (8)
∀t ∈ B2 : (ϕ(t, Cp), ϕ(t, Cq)) ∈ {(0, 1), (1, 0)} . (9)

Proof. As derived in the proof of Theorem 1, for every point t on B1 it holds
that

|t− cp| + √
rp = |t− cq| + √

rq ∨ |t− cp| − √
rp = |t− cq| − √

rq

∨ |t− cp| + √
rp = −|t− cq| + √

rq ∨ |t− cp| − √
rp = −|t− cq| − √

rq .

This leads to

ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 ∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 1 .

For every point x on B2 it is

|t− cp| + √
rp = −|t− cq| − √

rq ∨ |t− cp| − √
rp = −|t− cq| + √

rq

∨ |t− cp| + √
rp = |t− cq| − √

rq ∨ |t− cp| − √
rp = |t− cq| + √

rq .

This leads to

undefined ∨ ϕ(t, Cp) = 0/1 ∧ ϕ(t, Cq) = 1/0
∨ ϕ(t, Cp) = 1 ∧ ϕ(t, Cq) = 0 ∨ ϕ(t, Cp) = 0 ∧ ϕ(t, Cq) = 1 . 
�
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We are interested in the situation where three rational circles Cp, Cq and Cs

are given. They define three bisectors: B
′

between Cp and Cq, B
′′

between Cq

and Cs and B
′′′

between Cp and Cs. A branching point u, being the center of a
tritangent circle, lies on all three bisectors and so ϕ(u, .) is well defined for all
three circles. Let

Φ(u) := (ϕ(u,Cp), ϕ(u,Cq), ϕ(u,Cs)) . (10)

Observation 1. Depending on which bisector-conics intersect in a branching
point u, we distinguish between four different sets of contact tuples. For all other
possible combinations of three bisector-conics a common intersection point is
impossible.

u ∈ B
′
1 ∩B

′′
1 ∩B

′′′
1 ⇒ Φ(u) ∈ {(0, 0, 0), (1, 1, 1)} (11)

u ∈ B
′
1 ∩B

′′
2 ∩B

′′′
2 ⇒ Φ(u) ∈ {(0, 0, 1), (1, 1, 0)} (12)

u ∈ B
′
2 ∩B

′′
1 ∩B

′′′
2 ⇒ Φ(u) ∈ {(1, 0, 0), (0, 1, 1)} (13)

u ∈ B
′
2 ∩B

′′
2 ∩B

′′′
1 ⇒ Φ(u) ∈ {(1, 0, 1), (0, 1, 0)} (14)

For example, considering case (11), if u ∈ B
′
1 ∩B

′′
1 ∩B

′′′
1 , then due to Lemma 1

it holds that

(ϕ(u,Cp), ϕ(u,Cq)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(u,Cq), ϕ(u,Cs)) ∈ {(0, 0), (1, 1)}
∧ (ϕ(u,Cp), ϕ(u,Cs)) ∈ {(0, 0), (1, 1)} .

This is only true if ϕ(u,Cp) = ϕ(u,Cq) = ϕ(u,Cs) = 0 or ϕ(u,Cp) = ϕ(u,Cq) =
ϕ(u,Cs) = 1. The other cases work analogously.

The construction of all possible circles that are tangent to three given circles
is a much discussed topic, with various possible ways of solution (see e.g. [12]).
It is folklore that there exist at most 8 different tritangent circles in this case.
The Gergonne construction, named after french mathematician Joseph Diaz Ger-
gonne, is based on inverse geometry and uses so called lines of similitude. For
three circles in general position, there exist 4 lines of similitude. Each line in-
duces at most 2 tritangent circles, which can both together be assigned to one
specific case (11) to (14) from Observation 1. Note however, that e.g. for case
(13) there may be two solutions of the form (1, 0, 0) and none for (0, 1, 1) (see
Figure 2 for an example).

This means that constellations of three bisector-conics as shown in Obser-
vation 1 have at most two common intersection points. The x-coordinates of
the intersection points of two of the three conics are roots of a degree four
polynomial P1 (which can be derived by a resultant computation). For another
pair of conics we obtain another polynomial P2. We now isolate the common
x-components by computing the greatest common divisor P ′ = gcd(P1, P2). As
at most two common solutions may exist, P ′ is a quadratic polynomial. Its roots
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can be represented exactly by rasqex numbers.1 The same way the possibly two
y-coordinates can be computed. This shows that the coordinates of the center
points of tritangent circles can be represented as rasqex numbers and we get
2 · 2 = 4 candidates for them.

j1
j2

p1

p2 p3

(a) (b) (c) (d)

Fig. 3. The four combinatorial different base cases that may occur for the ECAB
structure, as described in Section 6

6 Partial Axis Construction

In general, four combinatorially different base cases with ≤ 3 original arcs may
stem from the iterative dividing process (Figure 3). The medial axes of these
base cases are then represented directly by portions of algebraically simple circle
bisectors. After the mathematical elaboration in Section 5 we now have a closer
look at the combinatorial composition of the axes.

(a) The medial axis of base case (a) in Figure 3 consists of parts of the two
bisectors between one of the two arcs incident to p1 and the opposite arc.
As we have a smooth transition at the rational point p1, the two resulting
bisector segments have a tangent point at the joint point j1, which has rasqex
coordinates. Together with the (rasqex) center points of the artificial arcs,
j1 is used to confine the required parts of the conic bisectors as described in
Section 5.3.

(b) The axis is the segment of the two original arcs’ bisector, which is confined
by the two center points of the artificial arcs, see Section 5.3.

(c) The base case of this form represents the generic case for branching points of
the medial axis. Its axis is composed of bisector parts from all pair constel-
lations of original arcs. Let Cp, Cq and Cs be the three circles the original
arcs lie on. For isolation of these segments, in addition to the three artificial
center points, the intersection point j2 has to be identified. How to compute

1 In the special case where P1 and P2 have more than two common roots due to
covertical intersection points, we shear the coordinate system, compute the center
points of the tritangent circles in the sheared system and transform the result back
to the original coordinate system.
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the potential coordinates of such a point, which are also rasqex, is shown
in Section 5.4. Finally we choose the correct intersection point among the
computed ones by computing additional points on the bisector curves and
following them starting at the center point of an artificial arc.

(d) Bisector construction is done as in case (b). However, unlike in case (b), one
of the two confining points is not an artificial center point, but a center point
of an original arc which represents a leaf point of the medial axis structure.

An arbitrary variation of the case depicted in Figure 4 may arise as a degenerate
exception, which is an occurrence of an axis branching, where more than three
bisectors meet in one point. For our dividing process this means that we arrive
at a shape, whose boundary is an alternating sequence of artificial and original
arcs. Here no generic dividing disk exists that would lead to combinatorially
smaller partial shapes.

Granted algebraic correctness, as is the case in our setting, such degenerate
cases can be detected easily: whenever an alternating arc sequence is recognized
we compute the bisectors of all pairs of arcs which are only separated by one
artificial arc. If all these bisectors intersect in one single point then a degen-
erate case has occured. Computation is based on the principle introduced in
Section 5.4, meaning that again rasqex numbers are sufficient for exact calcu-
lation. This guarantees a correct indication of such a case which then can be
handled accordingly. This elegant and intuitive handling of degnerate cases is
one of the main improvements over the numerical afflicted approach in [2].

For the axis construction the bisector curves between original arcs that are
neighbored via a single artificial arc are of interest. They all intersect in one
common point which is, together with the center points of the artificial arcs,
required for the segment confinement.

7 ECAB Construction

Our approach works on shapes S whose boundary ∂S is an ECAB. Thus in this
final chapter we present a simple construction to obtain such a shape. In this
construction only one single arc cannot be chosen rational but has to be rasqex.
In accordance to the defintion of ECAB we shift this rasqex arc to a region
where the curvature has a local maximum and therefore the medial axis has a
leaf-point.

1. We start by choosing two rational points which represent the center of a
circle and one endpoint of an arc on it (c0 and p0 in Figure 5). This circle is
rational with respect to our definition in Section 2.

2. On the (rational) line through c0 and p0 we choose another rational point
c1, being the center of the next circle.

3. As c1 and p0 are rational, we can choose the next rational point p1 in any
ε-neighborhood around an arbitrary point on the circle with center c1 and
radius ‖c1 − p0‖.
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Fig. 4. Degenerate case example

c0

c1

c2

c̃

c
′

p0

p1

p2

p̃

p
′

Fig. 5. Boundary construction which sat-
isfies ECAB properties

4. We repeat the last two steps until we arrive at the closing circle which has
to represent a local curvature maximum of the boundary.

5. It is in general not possible to find a rational closing circle. But following the
construction of a maximal disk as described in Section 4 we obtain a rasqex
arc with the supporting circle centered at c′ and with radius ‖c′ − p′‖.

Note: If the closing arc resulting from this ECAB construction, which is generally
not rational, is treated like an artificial arc, then it can be handled without any
further modification as part of the base cases depicted in Figure 3.

8 Conclusion

We showed that, given a boundary essentially composed of rational arcs (ECAB),
the Divide-&-Conquer approach for medial axis construction from [2] can be
adapted for algebraically exact calculation. Furthermore, encouraged by [8], we
were able to show that the rasqex number type is sufficient for all arising com-
putations. Intermediate steps and procedures are discussed in detail, and a con-
struction guide for a simple ECAB is provided. What is missing so far is an
analysis of the degrees of the geometric predicates involved in our computation.
This is left as a topic for future research.

An extension to circular boundaries with non-differentiable arc joints only
causes an increase of base and bisector cases (see also [2]). The same applies for
straight line segments, which also introduce parabolic curves to the axis. Exact
computation for boundary representations with curves of algebraically higher
degree may be a topic for future work, although the bisector complexity grows
considerably in this context.

We would like to point out again, that the self-contained representation by
rasqex numbers is a beneficial one. Correctness of the result and exactness during
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computation (allowing e.g. the efficient detection and handling of degenerate
cases) are achieved by applying only moderate changes to the original (floating
point) algorithm. We think that with the exact computability of the medial axis
the algorithm recommends itself for implementation in geometric libraries as
CGAL [1].
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14. Mehlhorn, K., Näher, S.: The LEDA Platform for Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1999)

15. Schinzel, A., Sierpinski, W.: Elementary Theory of Numbers, 2nd edn. North-
Holland Mathematical Library, vol. 31 (1988)
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Abstract. In this paper, we study the shape of the control polygon of a
complex Bézier curve over a complex interval. We show that the location
of the complex roots of the polynomial dictates geometrical constraints
on the shape of the control polygon. Along the work, new proofs and
generalizations of the Walsh coincidence Theorem and the Grace The-
orem are given. Applications of the geometry of the control polygon of
complex polynomials to Bernstein type inequalities are discussed.
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1 Introduction

Parametric Bézier curves are widely used in Computer Aided Geometric Design
due mainly to the practical ramifications of two fundamental properties. The
first property relies on the existence of the notion of a control polygon, in which
the shape of the parametric curve can be readily guessed or controlled. The
second property appears in the so-called de Casteljau algorithm; a subdivision
scheme for efficient polynomial evaluation and fast curve design [6]. To define
the control polygon of a parametric Bézier curve, two polynomials with real co-
efficients P and Q are given, and upon taking the coefficients pi (resp. qi) of the
polynomial P (resp. Q) with respect to the Bernstein basis over a real interval,
we form the planar control polygon with vertices the points (pi, qi). In this work,
we propose to study the notion of complex Bézier curves and associated control
polygons [2]. In this setting, we start with a polynomial P with complex coef-
ficients. Representing the complex polynomial P in the Bernstein basis over a
complex interval [a, b], we obtain complex coefficients pi and therefore, a planar
control polygon with vertices the points (Re(pi), Im(pi)). We generalize the de
Casteljau algorithm for the evaluation of the polynomial at any complex argu-
ment and show that the location of the complex roots, or the critical points, of
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the polynomial P dictates geometrical constraints on the shape of the control
polygon. To illustrate what is meant by geometrical constraints, we can cite the
following fact, proven in Section 4 : If a polynomial P of exact degree n has all its
critical points on a circle C, then the control polygon of the polynomial P over
any diameter of the circle C is a staircase polygon (Figure 1) with possibly some
coincident control points. Some applications of the geometry of the control poly-
gon to Bernstein type inequalities will be discussed. The paper is organized as
follows : In the first section, we introduce the notion of complex Bézier curve and
generalize the de Casteljau algorithm using the notion of polar form of a polyno-
mial. For later use, we will also introduce the de Boor-Fix bracket on the linear
space of polynomials. In Section 2, we introduce the notion of polar derivative.
We give a new expression of the polar derivative that will enable us to give sim-
ple proofs and new generalizations to the well-known Laguerre Theorem, Grace
Theorem and Walsh coincidence Theorem. The material of this section, did not
stem only from our desire for a self-contained account of this work or from our
need of new generalizations and simple proofs of the mentioned theorems, but
it also stems from our dissatisfaction of some of the practices in the litterature
in dealing with Laguerre Theorem, even in the classical book of Marden [11].
More precisely, the degree of a polynomial is explicit in the definition of the
polar derivative and Laguerre Theorem is not always correct if we consider the
polynomial under investigation as having degree higher than its exact degree.
Therefore, naively, iterating Laguerre Theorem by successive use of the polar
derivative is not correct in general, unless we check at each step the exact degree
of the polynomial and apply the polar derivative accordingly. Our strategy to
resolve this issue is to prove that Laguerre Theorem is true independently of the
considered degree of the polynomial only if the chosen circular region contains
the point at infinity. Using the inherent pseudo-symmetry of the de Boor-Fix
bracket, we will be able to always choose circular regions that contain the point
at infinity. This strategy allows for a clear proof and generalization of Grace
Theorem and Walsh coincidence Theorem. In section 3, we study the geometry
of the control polygon of a complex polynomial, when the roots of the polyno-
mial lie in a circle, or in a disk or outside of a disk. In the last section, we apply
the preceding informations on the geometry of the control polygon in deriving
Bernstein, Turan and Erdos-Lax inequalities. The idea of using the polar form
to derive these inequalities was already in the classical work of de Bruijn [5], in
which there was not explicit terminology for the blossom. Our contribution in
this section is merely to give elegant geometrical interpretations to these proofs
and to stress the importance of studying the geometry of the control polygon
of complex polynomials. The general connection between the geometry of the
control polygon and Bernstein type inequalities can be understood as follows :
Every condition on the control polygon is translated to a condition on the po-
lar form, thereby leading to a Bernstein type inequality. Although we studied
such connection in only three cases, namely a polynomial with roots in a cir-
cle, or inside a disk or outside a disk, we can ask similar questions about the
shape of the control polygon for polynomials with roots in a half-plane, univalent
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Fig. 1. For a polynomial with all critical points in a circle C, the control polygon over
a diameter [a, b] of the circle has a staircase shape. In the figure, pi are the control
points of the polynomial, zi its roots and ωi its critical points.

polynomials in a disk, reciprocal polynomials,... Each of this learned properties
on the control polygon will be associated to a Bernstein type inequality. Due to
space limitation, we were not able to touch upon these questions and it will be
the theme of a subsequent effort on the subject.

2 Complex Bézier Curves and Blossom

2.1 Complex Bézier Curves and Complex de Casteljau Algorithm

Within this work, we will always refer to polynomials of degree at most n as
polynomials of degree n. We will often stress the exact degree of the polynomial
when it is needed.

Let P be a complex polynomial of degree n, then for any complex interval
[a, b],(a �= b), we can express the polynomial P in the Bernstein basis over the
interval [a, b] as

P (z) =
n∑

i=0

piB
n
i (z), (1)

where the Bernstein polynomials Bn
i , i = 0, ..., n are given by

Bn
i (z) = Cn

i

(
b− z

b − a

)n−i (
z − a

b− a

)i

, Cn
i =

n!
i!(n− i)!

.

Under the identification of a complex number z = x + iy with the planar point
z = (x, y), we obtain from (1), a polygon (p0, p1, ..., pn) called the control polygon
associated with the polynomial P over the interval [a, b]. A fundamental concept
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for the rest of this work, in dealing with the control polygon of Bézier curves, is
the notion of polar form (or blossom) [13] associated with the polynomial P .

Definition 1. Let P be a polynomial of degree n. There exists a unique multi-
affine, symmetric function in n variables fP : Cn −→ C such that for each z in
C we have fP (z, z, . . . ., z) = P (z). The function fP is called the polar form or
the blossom associated with the polynomial P .

The control polygon (q0, q1, ..., qn) of a polynomial P over any interval [c, d],
(c �= d) can be computed using the polar form fP of the polynomial P as follows:

qi = fP (c{n−i}, d{i}), i = 0, 1, . . . , n, (2)

in which the notation z{k} indicates that the complex number z has to be re-
peated k times.

To generalize the de Casteljau algorithm to complex polynomials, it is conve-
nient to introduce the notion of shape parameter of a triangle as in [10].

Definition 2. Let T = (a, b, c) be an oriented triangle in the complex plane. We
define the shape ΔT of the triangle as

ΔT =
a− b

a− c
.

It is straightforward to show that two oriented triangles T1 and T2 have the same
shape if and only if they are similar. Using this notion of shape, we can show
the following

Lemma 1. Let P be a polynomial of degree to n, let fP be its polar form and
u1, u2, . . . , un−1 be complex numbers. Then for any complex numbers z1, z2, and
z3, the two oriented triangles T1 = (fP (u1, u2, . . . , un−1, z1), fP (u1, u2, . . . , un−1,
z2), fP (u1, u2, . . . , un−1, z3)) and T2 = (z1, z2, z3) are similar.

Proof. The shape of the triangle T1 is

ΔT1 =
fP (u1, u2, . . . , un−1, z1)− fP (u1, u2, . . . , un−1, z2)
fP (u1, u2, . . . , un−1, z1)− fP (u1, u2, . . . , un−1, z3)

. (3)

By the multi-affinity of the polar form, we have

fP (u1, . . . , un−1, z1)− fP (u1, . . . , un−1, z2) =
1
n

(z1 − z2)fP ′(u1, . . . , un−1),

where P ′ is the derivative of the polynomial P . Inserting the last equation into
(3) leads to ΔT1 = (z1 − z2)/(z1 − z3), which is the shape of the triangle T2. �

The multi-affinity of the blossom reveals that by an appropriate iterative use
of Lemma 1, over a control polygon of a polynomial over a complex interval,
we can evaluate the value of the polynomial at complex arguments - as well as
the value of its polar form over arbitrary poles - in a similar fashion as in the
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case of parametric Bézier curves. Namely, a complex de Casteljau algorithm in
which instead of using the multi-affinity over a line, we use the triangle similarity
over the complex plane. The idea of the complex de Casteljau algorithm is easily
illustrated using two simple examples. In the first example, we compute the value
of the polynomial at a complex argument, while in the second example, we use
the complex de Casteljau algorithm for computing the value of the blossom of
the polynomial over certain complex poles.

Fig. 2. The generalized de Casteljau algorithm for the evaluation of a complex poly-
nomial at a complex argument. Refer to Example 1 for a detailed explanation of the
Figure.

Example 1. Consider the cubic polynomial P (z) = z3 + 3iz2 + 6z + 5 and con-
sider the control polygon P of the polynomial P over the interval [−1, 1]. From
the polar form, we can calculate the control polygon of the polynomial P as
(p0, p1, p2, p3) = (−2 + 3i, 4− i, 6− i, 12 + 3i) (Figure 2). In order, for example,
to calculate the value P (

√
3i) we proceed as follows : Since the oriented triangle

(−1, 1,
√

3i) is equilateral, the point fP (−1,−1,
√

3i) is such that the oriented
triangle (p0, p1, fP (−1,−1,

√
3i)) is also equilateral. The same argument can be

applied to the points fP (−1, 1,
√

3i), fP (1, 1,
√

3i). This is the level one complex
de Casteljau algorithm. To proceed, we calculate the point fP (−1,

√
3i,
√

3i)
as the point such that the oriented triangle (fP (−1,−1,

√
3i), fP (−1, 1,

√
3i),

fP (−1,
√

3 i,
√

3i)) is equilateral, and so on until we reach the last level of the
complex de Casteljau algorithm where we calculate fP (

√
3i,
√

3i,
√

3i) = P (
√

3i).
(See Figure 2).
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Example 2. Consider the same cubic polynomial P (z) = z3 + 3iz2 + 6z + 5 in
which we would like to compute the polar form fP (1/2, u1, u2), where u1 and u2

are, for example, points in the complex plane such that the triangle (−1, u1, 1)
is isosceles with apex angle at u1 equal to π/2, and the triangle (−1, u2, 1) is
also isosceles with an apex angle of π/4 at u2. To proceed, we first insert the
pole 1/2 into the blossom of the polynomial P using only the multi-affinity of
the blossom. This is the first level de Casteljau algorithm that would give us
the points q1 = fP (−1,−1, 1/2), q2 = fP (−1, 1, 1/2) and q3 = fP (1, 1, 1/2). To
insert the pole u1 into the polar form, we proceed by drawing on each edge of
the polygon (q1, q2, q3) isosceles triangles with apex angle π/2. This second level
de Castejau algorithm gives us an edge [fP (−1, 1/2, u1), fP (1, 1/2, u1)]. Drawing
an isosceles triangle based on this edge with an apex angle equal to π/4 leads to
the desired polar value fP (1/2, u1, u2).

We can represent the complex de Casteljau algorithm using the familiar trian-
gular array (Figure 3), in which every triangle inside the triangular polar values
represent the similarity constraint within the construction.

Fig. 3. The generalized de Casteljau algorithm for the computation of the polar form at
complex polar values. The triangle inside each two given polar values and the computed
one reflect the similarity constraint that has to be respected in inserting the polar value.
For example, the value fP (a{n−1}, u1) is computed from the given polar values fP (a{n})
and fP (a{n−1}, b) as the point such that the triangle (in the figure) inside these three
values is similar to the oriented triangle (fP (a{n}), fP (a{n−1}, b), fP (a{n−1}, u1)). Refer
to Example 2 for an illustration.
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2.2 de Boor-Fix Bracket and Blossom

In the linear space Pn of polynomials of degree n, we define the de Boor-Fix
bracket operator [, ]n as follows : Given two polynomials P , Q of degree n,
[P,Q]n is given by

[P,Q]n =
n∑

k=0

(−1)n−k

n!
P (k)(z)Q(n−k)(z),

where R(j) stand for the j-th derivative of a polynomial R.
The de Boor-Fix operator [, ]n is bilinear and independent of z. Moreover, it

is symmetric if n is an even integer and skew-symmetric if n is an odd integer.
There is an ultimate relationship between the de Boor-Fix operator and the polar
form, and it can be stated as follows [7] : For any complex numbers u1, u2, ..., un

and any polynomial P of degree n, we have

[P, (u1 − z)(u2 − z) . . . (un − z)]n = fP (u1, u2, . . . , un),

where fP is the polar form of the polynomial P . If the polynomials P and Q
have exact degree n, with respective roots z1, z2, ..., zn and u1, u2, ..., un, we have

[P,Q]n =
(−1)nQ(n)(z)

n!
fP (u1, u2, ..., un). (4)

However, if the polynomial Q has an exact degree m ≤ n, we have

[P,Q]n =
(−1)mm!

n!
Q(m)(z)[P (n−m), Q]m. (5)

Note that if we write the polynomials P and Q explicitly as

P (z) =
n∑

k=0

Ck
nakz

k, Q(z) =
n∑

k=0

Ck
nbkz

k,

then we have

[P,Q]n =
n∑

k=0

(−1)n−kCk
nakbn−k.

The last equation leads to the familiar definition of apolar polynomials

Definition 3. Two polynomials P and Q of degree n are said to be apolar if,
and only if

[P,Q]n = 0.

3 Polar Derivative of a Polynomial

Let P be a complex polynomial of degree n and ζ be a complex number. The
polynomial

P ′
ζ(z) = fP (ζ, z, z, . . . , z)
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is called the polar derivative of the polynomial P with respect to the pole ζ. It
can be expressed explicitly as

P ′
ζ(z) = P (z) +

(ζ − z)
n

P ′(z).

In the following, we will give a different and convenient expression of the polar
derivative that enables us to study the location of its zeros in the complex plane.
We consider the following two linear operators in the C-space of polynomials
d : Pn → Pn−1 and ψζ,n : Pn → Pn defined by

d(P (z)) = P ′(z) and ψζ,n(P (z)) = (z − ζ)n P (ζ +
1

z − ζ
) . (6)

Introducing the map

ζ̂ : z �→ ζ̂(z) = ζ + 1/(z − ζ), (7)

we have ζ̂ ◦ ζ̂(z) = z for all z �= ζ, from which we deduce

ψζ,n ◦ ψζ,n = Id , (8)

where Id is the identity on Pn. By direct inspection, we can show the following
proposition relating the polar derivative of a polynomial P with respect to a
pole ζ and the two operators d and ψζ,n [1].

Proposition 1. For every polynomial P of degree n and for any complex num-
ber ζ, we have

ψζ,n−1 ◦ d ◦ ψζ,n(P ) = nP ′
ζ . (9)

Before studying the location of the zeros of the polar derivative, we introduce
the familiar notion of circular regions. A circular region of the complex plane is
defined as the image of either the closed or the open unit disk under a nonsingular
Möbius map γ of the form

γ(z) =
az + b

cz + d
,

where a, b, c and d are complex numbers such that ad− bc �= 0. Möbius maps are
1 − 1 mapping of the extended plane into itself with the property of mapping
every circle onto either a circle or a line, and every line onto either a circle
or a line. Therefore, a circular region is one of the following : an open disk,
a closed disk, an open half plane, a closed half plane including ∞, the open
exterior of a circle including ∞ or a closed exterior of a circle including ∞. We
will always refer to the circular regions that include ∞, as simply, the circular
regions containing the point at infinity.

Now, consider a polynomial P of exact degree n with all its roots zi, i =
1, ..., n, in a circular region C and let ζ be a complex number outside of C.
The map ζ̂ in equation (7) sends the complex point ζ to ∞, thus it maps the
circular region C to a circular region ξ̂(C) not containing the point at infinity.
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Thereby, ξ̂(C) is necessarily convex. Therefore, the roots ζ̂(zi) of the polynomial
ψζ,n(P ) of equation (6) belong to ζ̂(C). By Gauss-Lucas Theorem, the roots of
the polynomial d ◦ ψζ,n(P ) also belong to ζ̂(C). Applying again the involutive
transformation ζ̂ to the roots of the polynomial d◦ψζ,n(P ) according to equation
(9), we conclude that the roots of the polar derivative P ′

ζ belong to the circular
region C. Summarizing,

Theorem 1. (Laguerre Theorem). If all the zeros of a polynomial P of exact
degree n lie in a circular region C and if ζ is a complex number outside of C,
then the zeros of the polynomial P ′

ζ belong to the circular region C.

Laguerre Theorem is wrong if we do not assume that the polynomial P is of
exact degree n. For example, consider the polynomial P (z) = z2 + 1 viewed as
a polynomial of degree n > 2. The polar derivative of the polynomial P with
respect to a pole ζ is given by nPζ(z) = (n − 2)z2 + 2ξz + n. The roots i and
−i of the polynomial P belong to the circular region C given as the closed unit
disk. However, for the pole ζ =

√
n(n− 2) lying outside the circular region C,

the polar derivative has a root −ζ/(n− 2) of multiplicity 2, which for n > 2 lies
outside the circular region. To understand what fails in the proof of Laguerre
Theorem in such a case, we could first give the following informal explanation:
The polynomial P above, when considered as a polynomial of degree n > 2, can
be viewed as a polynomial with two roots in the circular region C and n − 2
roots at ∞. Therefore, not all the roots of the polynomial P lie in the circular
region C as the point ∞ does not belong to the closed unit disk. However, to
understand what exactly fails within the proof, we proceed as follows : When a
polynomial P of exact degree s and roots z1, z2, ..., zs in a circular region C, is
viewed as a polynomial of degree n, we rewrite the transformation ψζ,n(P ) as

ψζ,n(P (z)) = (z − ζ)(n−s)
(
(z − ζ)s P (ζ +

1
z − ζ

)
)
.

In this case, the polynomial ψζ,n(P ) has as roots the complex numbers ζ̂(zi)
and ζ as a root of multiplicity (n − s). If ζ does not belong to the circular
region ζ̂(C), we cannot use the essence of Gauss-Lucas Theorem. However, if we
assume that the circular region C contains the point at infinity, and the pole
ζ does not belong to C, then ζ belongs to the circular region ζ̂(C), otherwise,
by applying again the transformation ζ̂ to both ζ̂(C) and ζ, we arrive at the
contradiction that there is a separating line between the circular region C and
the point at infinity. In this case, Laguerre Theorem remains true independently
of the viewed degree of the polynomial. Therefore, we have

Proposition 2. If all the zeros of a polynomial P of degree n lie in a circular
region C that contains the point at infinity and if ζ is a complex number outside
of C, then the zeros of the polynomial P ′

ζ belong to the circular region C.

Let P be a polynomial of degree n. As we have already seen, the polar deriva-
tive P ′

ζ1
of the polynomial P viewed as a polynomial of degree n can be writ-

ten as fP (ζ1, z{n−1}). If we consider the polar derivative of the polynomial
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Q = P ′
ζ1

, viewed as a polynomial of degree n − 1, with respect to a pole ζ2,
then we have Q′

ζ2
(z) = fP (ζ1, ζ2, z{n−2}). Therefore, for any complex numbers

ζ1, ζ2, ..., ζs, (s ≤ n), the polynomial fP (ζ1, ζ2, ..., ζs, z
{n−s}) is the successive po-

lar derivative of the polynomial P with respect to the poles ζ1, ζ2, ..., ζs and in
which at each iterative step, we view the obtained polynomial as a unit degree
less than the degree of the polynomial obtained in the preceding iterative step.
It is very important to respect this rule on the degree at each iterative step
when performing the polar derivative, even if at a certain step the degree of the
polynomial is strictly less than expected, as the following example shows :

Example 3. Consider the polynomial P (z) = z3−3z2+6z+1. The polar deriva-
tive of the polynomial P with respect to the pole ζ = 1 is P ′

1(z) = 2z + 3,
which is of exact degree less than the expected number 2. In order to express
the polynomial fP (1, i, z) as successive polar derivative, we should consider the
polynomial P ′

1 as a polynomial of degree 2 and proceed with its polar derivative
with respect to the pole i. Otherwise, if we consider the polynomial P ′

1 as a
polynomial of degree 1 and proceed with the polar derivative, we would not find
the right answer, namely fP (1, i, z).

As proposition 2 is independent of the exact degree of the considered polynomial,
we have

Theorem 2. Let P be a polynomial of degree n whose roots lie in a circular
region C that contains the point at infinity. Let ζ1, ζ2, ..., ζk, k ≤ n be k complex
numbers outside of C. Then, if the polynomial Q(z) = fP (ζ1, ζ2, ..., ζk, z

{n−k})
is not constant, all its roots lie in the circular region C.

This Theorem leads us to the well-known Grace Theorem [12]

Theorem 3. (Grace Theorem). If P and Q are two apolar polynomials of
exact degree n and if one of them has all its roots in a circular region C, then
the other will have at least one zero in C.

Proof. Let z1, z2, ..., zn be the roots of the polynomial P and u1, u2, ..., un the
roots of the polynomial Q . From the hypothesis of apolarity, and by (4), we
have fP (u1, u2, ..., un) = 0 and fQ(z1, z2, ..., zn) = 0. Let us assume that the
roots of the polynomial Q are inside a circular region C, while the roots of the
polynomial P are outside the circular region C, which is also a circular region
which we denote by D. As the two regions C and D are complementary, one of
them will contain the point at infinity. Without loss of generality, we can assume
that it is the region D that contains the point at infinity and that ui �= uj for
i �= j. By Theorem 2, the polynomial fP (u1, u2, ..., ui−1, ui+1, ..., un, z), if not
constant, has a root in the circular region D, but by hypothesis it has also a
root in the region C, namely ui. Therefore, by the multi-affinity of the blossom,
we have fP (u1, u2, ..., ui−1, ui+1, ..., un, z) ≡ 0, for i = 1, ..., n. In the special
case in which the polynomial fP (u1, u2, ..., ui−1, ui+1, ..., un, z) is constant, then
the constant has to be zero as we have fP (u1, u2, ..., un) = 0. Therefore, in
both cases, we have fP (u1, u2, ..., ui−1, ui+1, ..., un, z) ≡ 0. That shows, again by
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the multi-affinity of the blossom, that the polynomial P ≡ 0, which leads to
a contradiction. Therefore, one of the roots of the polynomial P belong to the
circular region C. �
Grace’s Theorem leads to the following celebrated Walsh coincidence Theorem
[11].

Theorem 4. (Walsh coincidence Theorem). Let f be a symmetric multi-
affine function of n complex variables and total degree equal to n . Let u1, u2, . . . ,
un be n complex numbers which lie in a circular region C. Then, there exists a
ζ in C such that

f(u1, u2, . . . , un) = f(ζ, ζ, . . . , ζ).

Proof. Let P be the polynomial defined by P (z) = f(z, z, ..., z). Then the poly-
nomial P is of exact degree n and f = fP its blossom. Consider the polynomial
of exact degree n defined by Q(z) = P (z)− fP (u1, u2, ..., un). From the hypoth-
esis on the complex numbers ui, we have fQ(u1, u2, ..., un) = 0. Therefore, by
Grace Theorem, the polynomial Q has a root in the circular region C. �

Consider, now, a polynomial P of exact degree n and roots zi, i = 1, ..., n and
consider another polynomial Q of exact degree m ≤ n such that [P,Q]n = 0. In
this case, we have fQ(z1, z2, ..., zn) = 0 where fQ is the blossom of Q viewed as
a polynomial of degree n. Therefore, from (5), we have fQ(w1, w2, ..., wm) = 0
where w1, ..., wm are the roots of the polynomial P (n−m). Consequently, by Grace
Theorem, any circular region that contains the roots of the (n −m)-derivative
of the polynomial P contains a root of the polynomial Q. Therefore, we get the
following generalization of Grace and Walsh Theorems.

Theorem 5. Let P be a polynomial of exact degree n and Q a polynomial of
exact degree m ≤ n. If the two polynomials P and Q are apolar, then any circular
region containing the roots of P (n−m), contains at least one root of Q.

Equivalently, we can formulate this corollary in term of the blossom as

Corollary 1. Let f be a symmetric multi-affine function of n complex variables
and total degree m ≤ n. Let u1, u2, . . . , un be n complex numbers which lie in a
circular region C. Then, there exists a ζ in a circular region containing the roots
of P (n−m), where P is the polynomial P (z) =

∏n
i=1(z − ui) such that

f(u1, u2, . . . , un) = f(ζ, ζ, . . . , ζ).

The last corollary essentially expresses the fact that the control polygon of the
degree elevation has the potential of giving more refined informations on the
location of the roots of the polynomial. This is consistent with the fact that the
control polygon of degree elevation reveals more information on the shape of the
curve and even converges to the curve with successive degree elevation.

Note that if in Theorem 5, the roots of the polynomial P are in a disk or a
half plane (closed or open), then the roots of the successive derivatives are also
located in the same region. Therefore, Theorem 5, constitutes a generalization
of the following results of Aziz [4] and Jain [9].
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Corollary 2. Let P be a polynomial of exact degree n and Q a degree m ≤ n
polynomial such that P and Q are apolar. If the roots of P are in a disk D (resp.
a half plane H), then at least one of the roots of the polynomial Q lies in the
disk D (resp. the half plane H).

Equivalently, we can formulate this corollary in term of the blossom as

Corollary 3. Let f be a symmetric multi-affine function of n complex variables
and total degree m ≤ n. Let u1, u2, . . . , un be n complex numbers which lie in a
disk D (resp. a half plane H). Then there exists a ζ in D (resp. H) such that

f(u1, u2, . . . , un) = f(ζ, ζ, . . . , ζ).

4 Geometry of the Control Polygon

In this section, we study the shape of the control polygon of a complex polyno-
mial when the relative location of the roots of the polynomial with respect to a
disk is given.

4.1 Polynomial with Roots on a Circle

Proposition 3. Let P be a polynomial of exact degree n whose roots lie in a
circle C and let ζ be a complex number that lies in the circle C. Then all the
roots of the polar derivative P ′

ζ lie in the circle C, unless P (z) = λ(z − ζ)n and
in which case we have P ′

ζ ≡ 0.

Proof. The proof follows the same lines as in our proof of Laguerre Theorem,
in which this time we use Rolle Theorem instead of Gauss-Lucas Theorem. Let
z1, z2, ..., zn be the roots of the polynomial P which are assumed to lie in a circle
C and let ζ be a complex number in C. Let us assume that s (0 ≤ s < n)
roots z1, z2, ..., zs of the polynomial P coincide with the pole ζ. In this case, the
polynomial ψζ,n(P ) is of exact degree n − s, where ψζ,n is defined in (6). As
the map ζ̂ of (7) sends the point ζ to infinity, the points ζ̂(zi), i = s + 1, ..., n
belong to a line L. Therefore, the roots of the polynomial ψζ,n(P ) belong to L,
thereby by Rolle Theorem, the roots of the polynomial d ◦ ψζ,n(P ) also belong
to L. By applying again the transformation ζ̂ with respect to (9), we arrive at
the statement that the polar derivative P ′

ζ has n−s−1 roots on the circle C and
s − 1 roots that coincide with the pole ζ. Therefore, all the roots of the polar
derivative P ′

ζ lie in the circle C. The only case we did not yet deal with is the
one in which s = n, i.e.; all the roots of the polynomial P coincide with the pole
ζ. In this case, we have P (z) = λ(z − ζ)n and then P ′

ζ ≡ 0. �

Consider now a polynomial P of exact degree n whose roots zi, i = 1, ..., n lie in
a circle C, we further assume that the polynomial P is not of the form P (z) =
λ(z−ρ)n. Let ζ1 be a complex number in the circle C. From the last Proposition,
the polynomial fP (ζ1, z, z, ..., z) is a polynomial of degree n−1 with all its roots
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in the circle C. To be able to iterate the statement of Proposition 3, we have to
show that the polynomial fP (ζ1, z, z, ..., z) is of exact degree n− 1. Writing the
polynomial P in the monomial basis as P (z) = anz

n + an−1z
n−1 + ... + a0 and

computing the higher term of the polar derivative, we find fP (ζ1, z, z, ..., z) =(
anζ1 + (an−1/n)

)
zn−1 + .... Therefore, the polynomial Pζ1 is of degree strictly

less than n− 1 if and only if the pole ζ1 satisfy the equation ζ1 = (
∑

zi)/n. As
the roots zi belong to the circle C, its centroid lie strictly inside the circle unless
all the roots coincide and in which case we have P (z) = λ(z − ζ1)n. Therefore,
we have shown that the polynomial fP (ζ1, z, z, ..., z) is of exact degree n − 1.
Iterating then the process of taking successive polar derivatives and applying
Proposition 3, we find that for any complex numbers ζ1, ζ2, ..., ζk in the circle C,
the polynomial fP (ζ1, ..., ζk, z, ...z) has all its roots in the circle C. In particular,
consider two complex numbers a, b such that the segment [a, b] is a diameter
of the circle C, then for any i = 1, ..., n, the degree 1 polynomial Qi(z) =
fP (an−i, bi−1, z) has its unique root in the circle C, for every i = 1, ..., n− 1, i.e;
there exist ρi in the circle C such that fP (an−i, bi−1, ρi) = 0. Since the oriented
triangle (fP (an−i, bi−1, a), fP (an−i, bi−1, b), fP (an−i, bi−1, ρi)) is similar to the
oriented triangle (a, b, ρi), we deduce that the control polygon of the polynomial
P over the interval [a, b] satisfy < pi, pi+1 >= 0 for i = 0, ..., n− 1.(the notation
< z1, z2 > is referred here to the scalar product of the complex numbers z1 and
z2 i.e., Re(z1z̄2)). Consider now the case in which the polynomial P is of the
form P (z) = λ(z − ρ)n, where ρ lies in the circle C and let [a, b] be a diameter
of the circle C. If ρ is different from a and b, then the preceding arguments
are still valid and the control polygon (p0, p1, ..., pn) of the polynomial P satisfy
< pi, pi+1 >= 0 for i = 0, ..., n− 1. In the case the complex number ρ coincide
with a (resp. b) then the control polygon (p0, p1, ..., pn) is (0, 0, ..., 0, λ(b − ρ)n)
(resp. (λ(a− ρ)n, 0, 0, ..., 0)) and therefore, in all cases we have < pi, pi+1 >= 0
for i = 1, ..., n− 1. Therefore

Theorem 6. If all the zeros of a polynomial P of exact degree n lie in a circle
C, then its control polygon (p0, p1, ..., pn) over a diameter [a, b] of the circle C
satifies < pi, pi+1 >= 0 for i = 0, ..., n−1 i.e.; for every i = 0, ..., n−1 the circle
of diameter [pi, pi+1] passes through the origin (Figure 4).

In Figure 4, we have shown an example of the control polygon of a polynomial
with all its roots in a circle C over a diameter of the circle. We can notice the
existence of two orthogonal lines L1 and L2 that intersect at the origin and in
which the location of the control points of the polynomial alternates between
the two lines L1 and L2. In the case all the control points are non-zeros, such a
property can be deduced directly from Theorem 6. However, in the case where
some control points are zero, the existence of the two orthogonal lines is not
obvious.

In the following, we will show that the condition of Theorem 6 imposes the ex-
istence of such two orthogonal lines or in other words, we will show that we also
have det(pi, pi+2) = 0 for i = 1, ...n−2. To do so, we first notice that for a polyno-
mial with exact degree n with all its roots in a circle, a sequence of control points,
over a diameter of the circle, of the form (p0, p1, ..., pk, 0, 0, ..., 0, pk+s, ..., pn) in
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Fig. 4. For a polynomial with all it roots in a circle C, there exist two orthogonal lines
L1 and L2 intersecting at the origin, such that the control points, over a diameter [a, b]
of the circle, alternate between the two lines. In the figure, pi are the control points of
the polynomial, O the origin and zi the roots of the polynomial.

which the number of zero control points between pk and pk+s is strictly bigger
than 1 (s > 2) and pk �= 0 and pk+s �= 0 is forbiden. Indeed, if such a sequence
exists, then the polynomial Q(z) = fP (a{n−(k+s)+1}, b{k+1}, z{s−2}) ≡ 0. How-
ever, from the proof of Theorem 6, such a polynomial has exact degree s−2 > 0
unless P (z) = λ(z − a)n (resp. λ(z − b)n) and in which case the control point
pk = 0 (resp. pk+s = 0), contradicting our initial assumption. Therefore, the
only non obvious case to consider is a sequence of control points of the form
(p0, p1, ..., pk, 0, pk+2, ..., pn), where pk �= 0 and pk+2 �= 0. To such a sequence,
we associate the polynomial Q(z) = fP (a{n−k−2}, b{k}, z, z). The polynomial Q
has all its roots in the circle C and has (pk, 0, pk+2) as a control polygon over
the interval [a, b]. Let c be the point in the circle C such that the diameter [a,b]
is orthogonal to the segment [(a + b)/2, c] i.e., c = (a + ib)/(1 + i). The polar
derivative Q′

c of the polynomial Q with respect to the pole c has its only root
in the circle C. The control points of Q′

c over the interval [a, b] are given by
q0 = pk/(1 + i) and q1 = ipk+2/(1 + i). Therefore, we have < q0, q1 >= 0, which
can be rewritten as < pk, ipk+2 >= −det(pk, pk+1) = 0. Therefore, we have
proven

Corollary 4. If all the zeros of a polynomial P of exact degree n lie in a circle
C, then its control polygon (p0, p1, ..., pn) over a diameter [a, b] of the circle C
satifies < pi, pi+1 >= 0 for i = 0, ..., n−1 and det(pi, pi+2) = 0 for i = 0, ..., n−2
i.e.; there exist two orthogonal lines L1 and L2 that intersect at the origin and
in which the location of the control points pi alternates between the two lines.

From now on, a control polygon that satisfy the geometrical conditions of the
last corollary will be called an orthogonal control polygon.
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Remark 1. Consider a polynomial P with real coefficients and of exact degree
n. Let us assume that all the roots of the polynomial P lie in the unit circle. Let
(p0, p1, ..., pn) be the control polygon of P over the interval [−1, 1]. In this case,
all the control points are reals. Moreover, the control points should alternate
between two orthogonal lines. The only possible scenario for this to happen is
that the odd or the even control points of the polynomial are all equal to zero.

In the following, we show that if the control polygon of a polynomial P is or-
thogonal over a diameter [a, b] of a circle C, then the control polygon of P over
a different diameter remains orthogonal, independently of the condition on the
roots of the polynomial. In some sense, it shows that it is redundant to always
stress that the orthogonality is true for any diameter of the circle, if it is true
for a single diameter. For such purpose, we need the following lemma.

In the following, we show that if the control polygon of a polynomial P is
orthogonal over a diameter [a, b] of a circle C, then the control polygon of P
over a different diameter remains orthogonal, independently of the condition on
the roots of the polynomial. In some sense, it shows that it is redundant to
always stress that the orthogonality is true for any diameter of the circle, if it is
true for a single diameter. For such purpose, we need the following lemma.

Lemma 2. Let P be a polynomial of exact degree n ≥ 3 such that its control
polygon (p0, p1, ..., pn) over a diameter [a, b] of a circle C is orthogonal. Let ζ be
a complex number in C, then the polynomial P ′

ζ has the property that its control
polygon (q0, q1, ..., qn−1) over [a, b] is orthogonal.

Proof. Let (p0, ..., pn) be the control polygon of the polynomial P over [a, b] and
(q0, q1, ..., qn−1) be the control polygon of P ′

ζ over the same interval. We have

qi =
b− ζ

b − a
pi +

ζ − a

b − a
pi+1.

Using the fact that < pi, pi+1 >= 0, we have

< qi, qi+1 >=
1

‖b− a‖2
(
< (b− ζ)pi, (ζ − a)pi+2 > + ‖pi+1‖2 < ζ − a, b− ζ >

)
.

Since [a, b] is a diameter of the circle C and ζ lies in C, we have < ζ−a, b−ζ >= 0.
Moreover, using the fact that there exist real numbers λi such that pi+2 = λipi,
leads to < qi, qi+1 >= 0, for i = 0, ..., n − 2. Similar computations show that
det(qi, qi+2) = 0. �

Corollary 5. Let P be a polynomial of exact degree n such that its control
polygon (p0, p1, ..., pn) over a diameter [a, b] of a circle C is orthogonal. Then,
the control polygon (q0, q1, ..., qn) of the polynomial P over a different diameter
[c, d] is also orthogonal.

Proof. Let us assume that the degree of the polynomial P is greater than 3. Let
[c, d] be a diameter of the circle C and (q0, q1, ..., qn) be the control polygon of
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Fig. 5. For a polynomial with all its roots inside a disk with boundary the circle C,
and a control polygon over a diameter [a, b] of the circle, the disk of diameter any two
consecutive control points contains the origin. In the figure, pi are the control points
of the polynomial, O the origin and zi the roots of the polynomial.

the polynomial P over the diameter [c, d]. Using iteratively Lemma 2, with the
hypothesis that the control polygon (p0, p1, ..., pn) of the polynomial P over the
interval [a, b] is orthogonal, we know that for any 0 ≤ j ≤ n − 2, the control
polygon of the polynomial Qj(z) = fP (c{n−2−j}, d{j}, z, z) over the interval [a, b]
is orthogonal. The control polygon of the polynomial Qj over the interval [a, b]
is given by r0 = fP (c{n−2−j}, d{j}, a, a), r1 = fP (c{n−2−j}, d{j}, a, b) and r2 =
fP (c{n−2−j}, d{j}, b, b). Therefore, we have

(b− a)2qj = r0(b− c)2 + 2r1(c− a)(b − c) + r2(c− a)2,

(b−a)2qj+1 = r0(b−c)(b−d)+r1((c−a)(b−d)+(d−a)(b−c))+r2(c−a)(d−a),

and
(b− a)2qj+2 = r0(b − d)2 + 2r1(d− a)(b − d) + r2(d− a)2.

Straightforward computations then show that < qj , qj+1 >= 0 and det(qj , qj+2)
= 0 (It may be helpful, and without loss of generality, to assume that C is the
unit circle and take a = eiθ, b = −eiθ, c = eiφ and d = −eiφ in carrying the
computations). The case of degree 1 polynomials is obvious, while for degree
2 polynomials, we can use direclty the last equations to describe the control
polygon of the quadratic polynomial over the interval [c, d]. �

If we apply Theorem 6, to the derivative of the polynomial P , we get an inter-
esting geometrical property of the control polygon of polynomials with critical
points in a circle, namely
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Proposition 4. If a polynomial P of exact degree n has all its critical points
in a circle C, then the control polygon (p0, p1, ..., pn) of the polynomial P over
a diameter [a, b] of the circle C satisfies < pi+1 − pi, pi+2 − pi+1 >= 0, for
i = 0, ..., n− 2. i.e.; the control polygon has a staircase shape (Figure 1).

4.2 Polynomial with Roots Inside a Disk

Consider a polynomial P of exact degree n with all its roots inside a closed disk
D and let ζ1 be a complex number in the circle ∂D. Then, similar arguments that
was used in Laguerre Theorem proof, show that the polynomial fP (ζ1, z, z, ..., z)
is a polynomial of degree n−1 with all its roots inside the disk D. (Note that we
can also invoke Hurwitz Theorem on the continuity of the roots with respect to
the coefficients of the polynomial. As the roots are inside the disk, no root can
escape to infinity during the continuity process). Moreover, similar arguments
as in the proof of Theorem 6, shows that the polynomial fP (ζ1, z, z, ..., z) is of
exact degree n− 1, unless the polynomial P is of the form λ(z− ζ1)n. Excluding
this particular case, allows us to iterate this process for any complex numbers
ζ1, ζ2, ..., ζk in the circle ∂D, i.e.; the polynomial fP (ζ1, ..., ζk, z, ...z) has all its
roots in the disk D. In particular, consider two complex numbers a, b such that
the segment [a, b] is a diameter of the circle ∂D, then the degree 1 polynomial
Qi(z) = fP (an−i, bi−1, z) has it unique root in the disk D, i.e; there exists
ζ in the disk D such that fP (an−i, bi−1, ζ) = 0. Since the oriented triangle
(fP (an−i, bi−1, a), fP (an−i, bi−1, b), fP (an−i, bi−1, ζ)) is similar to the oriented
triangle (a, b, ζ), we have < pi, pi+1 >≤ 0. The case in which the polynomial P
is of the form λ(z − ρ)n has been already treated in the last section, and in all
cases we have the following

Theorem 7. If all the zeros of a polynomial P of exact degree n lie inside a
disk D, then its control polygon (p0, p1, ..., pn) over a diameter [a, b] of the circle
∂D satifies < pi, pi+1 >≤ 0 for i = 0, ..., n− 1 i.e.; for every i = 0, ..., n− 1 the
disk of diameter [pi, pi+1] contains the origin (Figure 5).

Remark 2. Unlike the orthogonality condition on the control polygon of poly-
nomials with roots in a circle, the geometrical condition on the control polygon
for polynomials with all roots inside the disk depends on the interval in which
the control polygon is taken. A simple illustration of this point would be the
quadratic polynomial P (z) = z2 − 2iz. Its control polygon over the interval
[−1, 1] is (p0, p1, p2) = (1 + 2i,−1, 1− 2i) and satisfies < pi, pi+1 >≤ 0, i = 0, 1.
However, its control polygon (q0, q1, q2) = (−3, 1, 1) over the interval [−i, i] does
not satisfy the condition < q1, q2 >≤ 0

If we apply Theorem 7 to the derivative of the polynomial P , we get the follow-
ing interesting geometrical property of the control polygon of polynomials with
critical points inside a disk, namely
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Fig. 6. For a polynomial with all its critical points inside a disk with boundary the
circle C, and a control polygon over a diameter [a, b] of the circle, the non-oriented
apex angle θi of the triangle (pi−1, pi, pi+1) at the vertex pi is less or equal to π/2. In
the figure, pi are the control points of the polynomial, ωi its critical points.

Proposition 5. If a polynomial P of exact degree n has all its critical points
inside a disk D, then the control polygon (p0, p1, ..., pn) of the polynomial P over
a diameter [a, b] of the circle ∂D satisfies < pi+1 − pi, pi+2 − pi+1 >≤ 0, for
i = 0, ..., n− 2. i.e.; the non-oriented angle of the triangle (pi, pi+1, pi+2) at the
vertex pi+1 is smaller than π/2 (Figure 6).

4.3 Polynomial with Roots Outside a Disk

Consider a polynomial P with all its roots outside a disk D. As the roots of
P belong to a circular region that contains the point at infinity, the issue of
the exact degree of the polynomial does not manifest itself. Therefore, using the
same proof as in Laguerre Theorem, complemented with a similar treatement
on the control polygon as in the last section leads to

Theorem 8. If all the zeros of a polynomial P of degree n lie outside a disk
D, then the control polygon (p0, p1, ..., pn) over a diameter [a, b] of the circle ∂D
satifies < pi, pi+1 >≥ 0 for i = 0, ..., n− 1 i.e.; for every i = 0, ..., n− 1 the disk
of diameter [pi, pi+1] does not contain the origin (Figure 7).

Again, applying this result to the derivative of the polynomial P leads to

Proposition 6. If a polynomial P of degree n has all its critical points outside
a disk D, then the control polygon (p0, p1, ..., pn) of the polynomial P over a
diameter [a, b] of the circle ∂D satisfies < pi+1 − pi, pi+2 − pi+1 >≥ 0, for
i = 0, ..., n− 2. i.e.; the non-oriented angle of the triangle (pi, pi+1, pi+2) at the
vertex pi+1 is larger than π/2 (Figure 8).
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Fig. 7. For a polynomial with all its roots outside a disk with boundary the circle C,
and a control polygon over a diameter [a, b] of the circle, the disk of diameter any two
consecutive control points does not contain the origin. In the figure, pi are the control
points of the polynomial, O the origin and zi the roots of the polynomial.

5 Bernstein-Type Inequalities

In this section, we will show some applications of the shape of the control polygon
of a polynomial to Bernstein type inequalities.

For a complex polynomial P , and for a region D in the complex plan, we
denote

||P ||D = maxz∈D|P (z)|.
Theorem 9. (Bernstein Inequality). Let P be a complex polynomial of degree
n and D a disk of radius R. Then

||P ′||D ≤ n

R
||P ||D.

Proof. Let fP be the polar form of the polynomial P viewed as a polynomial of
degree n. By Corollary 3, we have |fP (u1, u2, ..., un)| ≤ ||P ||D for all u1, u2, .., un

in the disk D, otherwise, we will have a complex number ζ in the disk D such
that |fP (u1, u2, ..., un)| = |P (ζ)| > ||P ||D. In particular, for any complex number
a in ∂D, we have |fP (a, a, .., a)| ≤ ||P ||D and |fP (a, a, ..a, 2c− a)| ≤ ||P (z)||D; c
being the center of the disk D ([a, 2c−a] is a diameter of the disk D). Therefore

|fP (a, a, .., a)− fP (a, a, ..a, 2c− a)| ≤ 2||P ||D.

By the multi-affinity of the polar form, the last equation can be rewritten as
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Fig. 8. For a polynomial with all its critical points outside a disk with boundary the
circle C, and a control polygon over a diameter [a, b] of the circle, the non-oriented
apex angle θi of the triangle (pi−1, pi, pi+1) at the vertex pi is greater or equal to π/2.
In the figure, pi are the control points of the polynomial, ωi its critical points.

|P ′(a)| ≤ n

|a− c| ||P ||D =
n

R
||P ||D.

As the last inequality is true for any a in ∂D, the maximum principle leads to a
proof of the Bernstein inequality. �

Theorem 10. (Turan Inequality). Let P be a complex polynomial of exact
degree n, with all its roots in a disk D of radius R. Then

||P ′||D ≥ n

2R
||P ||D. (10)

Proof. Let fP be the polar form of the polynomial P . Let a be an arbitrary
complex number in ∂D. Since all the roots of the polynomial P are inside the disk
D, by Theorem 7, the disk of diameter the first two control points fP (a, a, ..., a)
and fP (a, a, ..., a, 2c− a) of the polynomial over the diameter [a, 2c− a] contains
the origin (Figure 9). Therefore,

|fP (a, a, ..., a)| ≤ |fP (a, a, ..., a)− fP (a, a, ..., a, 2c− a)|.
Using the multi-affinity of the polar form, the last equation can be rewritten as

|fP (a, a, ..., a)| ≤ 2|a− c|
n

|P ′(a)| ≤ 2R
n
||P ′||D.

As a is arbitrary in ∂D, the maximum principle leads to Turan inequality. �
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Fig. 9. A geometric illustration of the proof of Turan Inequality. Refer to the proof for
an explanation.

Theorem 11. (Lax-Erdos Inequality). Let P be a complex polynomial of
degree n, with no roots in a disk D of radius R. Then

||P ′||D ≤ n

2R
||P ||D. (11)

Proof. Let fP be the polar form of the polynomial P and let a be an arbitrary
complex number in ∂D. Since all the roots of the polynomial P are outside the
disk D, then, by Theorem 8, the disk H with boundary C1 of diameter the two
first control points fP (a, a, ..., a) and fP (a, a, ..., a, 2c− a) does not contain the
origin (Figure 10). Therefore,

|(fP (a, a, ..., a) + fP (a, a, ..., a, 2c− a))/2| ≥ |(fP (a, a, ..., a)− fP (a, a, ..., a, 2c − a))/2|.

Using the multi-affinity of the polar form, the last equation can be rewritten as

|fP (a, a, ..., a, c)| ≥ |a− c|
n
|P ′(a)|.

Consider the point A in the circle C1 defined as the farthest intersection of
the line [0, fP (a, a, ..., a, c)] and the circle ∂H. The point A can be expressed as
A = fP (a, a, ..., a, δ) with δ in the circle C (Figure 10). We have

|fP (a, a, ..., a, δ)| = |fP (a, a, ..., a, c)|+ |a− c|
n
|P ′(a)|.

Therefore,

||P ||D ≥ |fP (a, a, ..., a, δ)| ≥ 2|a− c|
n

|P ′(a)| = 2R
n
|P ′(a)|.
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Fig. 10. A geometric illustration of the proof of Lax-Erdos Inequality. Refer to the
proof for an explanation.

Again, as a is arbitrary in ∂D, the maximum principle leads to the proof of the
Erdos-Lax inequality. �

6 Conclusions

In this work, we initiated the study of the geometry of the control polygon of a
complex Bézier curve. We showed that the location of the roots or the critical
points of the polynomial dictates geometrical constraints on the shape of the
control polygon. Some applications to Bernstein type inequalities were given.
Although we have studied the geometry of the control polygon for three special
cases, namely, when the roots of the polynomial are in a circle, or belong to a
disk or lie outside a disk, similar questions can be answered for other geomet-
rical configuration of the roots of the polynomial or implicit conditions on the
polynomial. Such conditions could be for example, what is the geometry of the
control polygon when the polynomial has all its roots in a half-plane, or when
the polynomial is univalent in a disk and so on. The most important fact is
that every information on the geometry of the control polygon has an associated
Bernstein type inequality and even an integral Bernstein type inequality. Due to
space limitation, such a program has not been carried in this paper and it will
be the theme of our forthcoming effort on the subject. We believe that studying
the geometry of the control polygon of a complex Bézier curve will shed more
light into different aspects of the geometry of polynomials, such as complex Rolle
Theorem, root location algorithms and extremal problems.
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Abstract. The classical conchoid construction, well-known in Mathe-
matics since its introduction more than 2200 years ago, has been
recently revisited in the context of algebraic curves. Partially, the moti-
vation for this has been the analogy, up to a certain extent, between the
conchoid and a well-known transformation in CAGD, namely the offset
transformation. In this paper, we contribute to this study by addressing
properties on the shape of conchoids to plane algebraic curves. For this
purpose we introduce the notions of exterior and interior conchoids, and
we compare the shapes of these objects with that of the original curve.

1 Introduction

Given a curve C, a fixed point F (the focus), and a distance d, the conchoid of C
is the curve obtained from C by applying the following geometric transformation:
for each point P ∈ C, (i) trace the line connecting F, P ; (ii) mark on this line the
points P1, P2 lying at a distance d of P . Classical examples of this construction
are the Conchoid of Nicomedes, where C is a line, and Pascal’s Conchoids, where
C is a circle. Recently, this construction has been revisited in several papers.
More precisely, algebraic properties of conchoids of algebraic curves have been
considered in [11], rationality questions have been discussed in [12], and algebraic
properties of a more general class of transformations generalizing the conchoid
construction have been addressed in [1].

The purpose of this paper is to contribute to the study of conchoids of plane
algebraic curves by addressing topological questions. For this purpose, one takes
advantage of the analogy between the conchoid construction considered here, and
a well-known transformation arising in the context of Computer Aided Geometric
Design, namely the offset transformation (see [7,9,10] for further reading on
offsets and their properties). One may notice this analogy if one examines the
equations of both transformations in vector form:

r̄c = r ± d
r

‖r‖ , r̄o = r ± d
N

‖N‖
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(here, r stands for the position vector of each point in the original curve, N is
the normal vector, and rc, ro stand for the corresponding points in the conchoid
and the offset, respectively) Questions on the offset shape have been addressed
in [2,3,4,5,7,8]. In these papers, one considers the offset to be the union of two
subsets, called the exterior and the interior offsets, respectively, and applies dif-
ferent techniques to predict the topological behavior of the offset just from the
original curve (i.e. without making use of the offset equation). In our case, we
proceed in an analogous way. First, we define the exterior and interior conchoids;
then we use the notion of local shape (introduced in [2,3,5] to study local prop-
erties of the offset, and used also in [4] to address global aspects of the offset
shape) in order to study some local phenomena, and finally we address global
properties. In this sense, we provide necessary and/or sufficient conditions for
the exterior and/or the interior conchoids, or even the whole conchoid in certain
cases, to be homeomorphic to the original curve.

The structure of this paper is the following. Preliminary questions (a brief
review of the notion of local shape, and general results on the exterior and the
interior conchoids) are provided in Section 2. Some local aspects on the conchoid
shape are addressed in Section 3. Global questions are considered in Section 4.
Finally, conclusions and comments on further work are presented in Section 5.

2 Preliminaries

2.1 Local Shape

Let C be an algebraic curve, and let P = (x0, y0) be a real non-isolated point of
C. Then P is the center of at least one real place (see [13] for more information
on places) of the curve, i.e. a local parametrization P(h) = (x(h), y(h)) of C
around P where x(h), y(h) are real analytic functions, and x(0) = x0, y(0) = y0.
Denoting by I ⊂ R the interval where x(h), y(h) (that will be referred to as the
coordinates of the place) are convergent, the set of real points of C described by
P(h) for h ∈ I is called a real branch of C. Now in [3], places are used to formally
describe the shape of a real branch by means of the notion of local shape. For
the convenience of our readers, we briefly recall this notion here.

Given a real place P(h) centered at P ∈ C, a P(h)-standard system is a
perpendicular system of coordinates where the origin is P , and where the x-axis
is parallel to the tangent to P(h) at its center. In such a system, P(h) can be
written (see [3]) in its so-called standard form, as

P(h) = (hp, βqh
q + γrh

r + · · ·),

where p, q ∈ N, and 1 ≤ p < q; the pair (p, q) is called the signature of the place
(in fact, in [3] the place P(h) is written as P(h) = (αph

p, βqh
q + γrh

r + · · ·),
but we can get rid of αp by considering a simple change of parameter). Then
P(h) can exhibit four different “shapes”, shown in Figure 1, denoted as: local
shape (I), or a thorn; (II), or an elbow; (III), or a beak; (IV ), or a flex. Notice
that since there are algorithms for computing places starting from the implicit
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equation of a curve and a point in it (see [13]), we can compute the local shape
of a particular place by determining p, q and then checking whether p, q are even
or odd, respectively.

Fig. 1. Local Shapes

We will say that p is the order of P(h), i.e. the least power of h arising in the
components x(h), y(h) of P(h). Also, we will say that a place is regular if p = 1;
otherwise we will say that it is singular. Notice that a regular point of C is always
the center of a regular place. Singularities of C correspond to points which are
either the center of several different places, or of just one, singular, place. In tthe
first case we say that the curve has a self-intersection at the point: non-ordinary,
if some places share a same tangent, ordinary if all the tangents are distinct.
Finally, we will say that a place P(h) is cuspidal if p is even (in which case P(h)
is either a thorn, or a beak; notice that in this case the center of the place is a
(cusp-like) singularity of C.

2.2 Exterior and Interior Conchoids

The conchoid to a curve C (the base curve) from focus F and distance d, is usually
defined as the geometrical locus of all the points Q of the form

Q = P ± d · FP

‖FP ‖ ,

with P ∈ C. We will refer to the geometric construction that lies behind this
definition as the original conchoid construction. A more algebraic definition of
conchoid is given in [11] for the case when C is an algebraic curve: in that
situation, the conchoid of C from focus F = (a1, a2) ∈ C2 and distance d ∈ C,
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represented as Cd,F (C), is defined as the Zariski closure of the points (i.e. the
smallest algebraic curve containing the points) computed by applying the original
conchoid construction to C\C0, where

C0 = {P ∈ C/‖FP ‖ = 0}
With this definition, the implicit equation of Cd,F (C) can be computed by means
of elimination methods like the Gröbner basis, or resultants, see [11,1]. However,
as it also happens in the case of offsets, this equation tends to be bigger than
that of the base curve. Hence, it is preferable to determine the properties of the
conchoid, without manipulating or even computing its equation.

In the rest of the paper we will use the above notion for Cd,F (C). Furthermore,
we will assume that F and d are fixed, and hence we will represent the conchoid
as C(C), without explicitly spelling the focus or the distance. We will also assume
that the curve C we work with is a real curve; in fact, we will be interested in
analyzing the real part of C(C). Finally, we will also assume that d ∈ R, d > 0,
that F ∈ R2 and in fact, without loss of generality, that F = (0, 0).

Now let us introduce two mappings: for σ ∈ {−1,+1} let

C\C0 ψσ,d�−→ C(C)
(x, y) �−→ (X,Y ) = ψσ,d(x, y) =

(
x + dσ

x√
x2 + y2

, y + dσ
y√

x2 + y2

)
We will write ψ+1,d = ψ+d and ψ−1,d = ψ−d, respectively. Notice that since we
are assuming that F = (0, 0), then

√
x2 + y2 represents the distance between

the focus and any point of C\C0. Then, ψ+d, ψ−d are defined for all the real
points of C, except for F in the case when F ∈ C. These mappings allow us to
introduce the following definition, that will be essential for our purposes.

Definition 1. The Exterior Conchoid of C, Cext(C) (resp. the Interior Conchoid
of C, Cint(C)) is the set consisting of all the points Q ∈ C(C) of the form Q =
ψ+d(P ) (resp. Q = ψ−d(P )) for some point P ∈ C.
According to the definition of conchoid given in [11], C(C) is Cint(C) ∪ Cext(C)
together with the points added when taking the Zariski closure of this last set,
which, by the Closure Theorem (Theorem 3 in [6], see p. 125), consists just
of finitely many points. The geometric construction lying behind the above
definition is illustrated in Figure 2. Here, we have denoted P+d = ψ+d(P ),
P−d = ψ−d(P ). At the left of Figure 2, we have the case when the distance
dis(P, F ) between the focus F and the point P is greater than d; at the right,
we have the case when dis(P, F ) < d.

In Figure 3 we can see Cext(C) and Cint(C) for two algebraic curves, namely
the cardioid (left) and the epitrochoid (right). In both cases, Cext(C) is plotted
in thick solid line, and Cint(C) in thick dotted line. We will follow the same
criterion (i.e. solid line for Cext(C), dotted line for Cint(C)) in all the pictures of
the paper. In the case of the cardioid, we have fixed F = (0.− 7.5), and d = 4.7;
for the epitrochoid, F = (0, 1.6) and d = 0.3.
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Fig. 2. Constructions for Cext(C) and Cint(C)s

Fig. 3. Exterior and Interior Conchoids of the Cardioid (left) and the Epitrochoid
(right)

Although C, C(C), etc. are in principle objects of C2, we will be interested in
studying their real parts. For this purpose, we need to recall some more results
of [11]. In that paper it is proven that C(C) has at most two components, and
that whenever C is not a circle of center F and radius d, these components have
dimension 1 (i.e. they do not degenerate into 0-dimensional subsets). Also in [11]
a component M of C(C) is said to be special if the points of M are generated
by more than one point of the original curve. It is also shown that given C there
are only finitely many distances such that C(C) has some special component. So,
in the sequel we will also assume that C is different from a line, and that C(C)
has no degenerated or special components. Under this last assumption one may
see that there are just finitely real many points of C(C) which are generated,
via ψ−d, ψ+d, by complex points of C. So, one can prove the following theorem,
which makes clear the relationship between the real parts of the objects of our
interest. Here F denotes the set of real points generated in C(C) by F ; so, F = ∅
when F /∈ C.
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Theorem 1. If C(C) has no special component, then the points of C(C)∩R2 are
generated by the points of C ∩R2. Furthermore, discarding isolated singularities,

C(C) ∩ R2 −F =
(
Cint(C) ∩R2

) ∪ (Cext(C) ∩ R2
)
.

The above theorem provides the following corollary.

Corollary 1. The only points of C(C) ∩ R2 which are not of the form ψ+d(P )
or ψ−d(P ) for some real point P ∈ C, are the points generated by the focus, in
the case when it is on C.
For simplicity, in the sequel whenever we write C, C(C), we will mean the real
parts of these objects, discarding isolated singularities. Furthemore, whenever
we write Cint(C), Cext(C), we will mean the topological closures (in the usual
topology of R2) of the real parts of these objects, discarding isolated singularities.
The reason for taking the closures is to include the points of F and therefore to
avoid cumbersome statements.

3 Local Analysis around the Focus

In order to see how the conchoid construction affects the shape of C (which is
basically the purpose of next section), one has to separately study the cases
when F /∈ C and F ∈ C. In this last case, it is necessary to know the effect of
ψ+d, ψ−d on the vicinity of F . This can be done by making use of the notion of
local shape, recalled in Subsection 2.1. So, assume that F ∈ C, and let P(h) be
a real place centered at F , given in standard form. Since we are assuming that
F = (0, 0), we have that P(h) = (hp, βqh

q + · · ·). So, by applying ψ+d, ψ−d to
P(h) and making computations with power series (as in [3]), we can determine
the conchoid places that P(h) generates. First, we get that:

1√
x(h)2 + y(h)2

=
1
|hp| ·

(
1− β2

q

2
h2(q−p) + · · ·

)
Substituting the above expression into ψ+d(P(h)) and ψ−d(P(h)) we find the

step function
hp

|h|p . Then we get two real places of C(C), that we denote as P+d(h)

and P−d(h), that can be written (in a compact form) as

P±d(h) =

(
±d + hp ∓ dβ2

q

2
h2(q−p) + · · ·,∓dβqh

q−p ±+ · · ·
)

(1)

Because of the behavior of
hp

|h|p when h→ 0, the equalities

P+d(h) = ψ+d(P(h)), P−d(h) = ψ−d(P(h))

hold if and only if p is even, i.e. iff P(h) is cuspidal. Otherwise we still get two
places, but none of them is fully contained either in Cext(C) or in Cint(C); in
fact, in this case ψ+d(P(h)) and ψ−d(P(h)) “jump” from Cext(C) to Cint(C) or
conversely, as the focus is crossed. We summarize this in the following result.
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Theorem 2. Assume that F ∈ C, and let P(h) be a real place of C centered at
P . Also, let P±d(h) denote the places generated by P(h) in C(C). Then P+d(h)
(resp. P−d(h)) is fully contained in Cext(C) (resp. Cint(C)) if and only if P(h)
is cuspidal.

The situation in Theorem 2 is illustrated in Figure 4. Here we can see the con-
choid of a circle (i.e. a Pascal’s Snail) computed in the case when F is a point
on the circle, and the distance d is bigger than the radius. The place P(h) gives
rise to two conchoid places, but none of them lies completely either in Cint(C)
(in dots) or Cext(C) (in thick solid line). In fact, each of these places lie half in
Cint(C), and the other half in Cext(C).

Fig. 4. Places generated by a circle place centered at the focus

On the other hand, from the expression (1) we can see that F generates the
points (d, 0) and (−d, 0), expressed in a P(h)-standard system (in fact these are
the centers of the places P±d(h)). Thus if F is the center of several places of
C which do not share a same tangent, we have different standard systems for
different tangents, and hence F generates different points for different tangent
directions. Otherwise if F is the center of several places of C sharing a same
tangent (in which case F is a non-ordinary self-intersection of C), then only two
points in C(C) are generated. In this situation, by Theorem 2, F gives rise to one
self-intersection of Cext(C) and another self-intersection of Cint(C), both with the
same multiplicity than F , iff all these places are cuspidal. We summarize these
reasonings in the following result.

Theorem 3. Let F ∈ C be a self-intersection of C with multiplicity m (i.e. with
m real branches of C intersecting there). Then the following statements are true:

(i) F is never invariant under the conchoid transformation.
(ii) F generates a self-intersection of Cext(C) and a self-intersection of Cint(C)

both with multiplicity m, if and only if all the real places of C centered at F
are cuspidal, and share the same tangent.
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Remark 1. When F ∈ C and is the center of one real cuspidal place P(h), the
functions ψ−d, ψ+d introduced in Subsection 2.2, that are defined over C − {F},
can be extended to functions ψ̃−d, ψ̃+d, well-defined and continuous over C. In-
deed, in order to do this it suffices to define ψ̃+d(F ) (resp. ψ̃−d(F )) as the center
of the place P+d(h) (resp. P−d(h)). This is also true when F ∈ C is the center
of several cuspidal places of C sharing a same tangent line.

4 Global Questions

In this section we consider global aspects on the topology of conchoids. Basically,
the problem that we address is to find conditions so that the topology of C is
kept invariant when computing Cext(C) or Cint(C). This idea is made precise in
the following definition.

Definition 2. We say that Cext(C) (resp. Cint(C) or C(C)) has a good global
behavior, if it is homeomorphic to C (i.e. if their topologies coincide).

The functions ψ+d, ψ−d can be used for studying this. Indeed, whenever ψ+d

(resp. ψ−d) is a homeomorphism (i.e. continuous and with continuous inverse),
or can be extended to a homeomorphism, of C onto Cext(C) (resp. Cint(C)), we can
ensure that Cext(C) (resp. Cint(C)) has a good global behavior. Thus, our strategy
will be: (i) address conditions for ψ+d (resp. ψ−d) to be a homeomorphism; (ii)
study the cases when these conditions are also necessary.

We start studying when ψ+d, ψ−d are invertible. This is done in the following
lemma, which can be proven by making elementary computations with ψ+d, ψ−d.
The reader may also intuitively check the statement in the lemma by inspecting
Figure 2 in Subsection 2.2.

Lemma 1. Let Q ∈ C(C), Q �= F . Then the following statements are true:

(i) If Q ∈ Cext(C) and there exists P ∈ C such that Q = P+d, then ψ−1
+d(Q) =

P = ψ−d(Q).
(ii) If Q ∈ Cint(C) and there exists P ∈ C such that Q = P−d, then

ψ−1
−d(Q) = P =

{
ψ+d(Q) if dis(ψ+d(Q,F ) ≥ d
ψ−d(Q) if dis(ψ−d(Q,F ) < d

From the expressions of ψ+d and ψ−d (see Subsection 2.2) one may see that they
are continuous at any point different from F . In order to ensure that they are
homeomorphisms we have to check the continuity of their inverses as well. Since
from the above lemma these inverses involve also ψ+d and ψ−d, it is important
to know whether F belongs to C(C), or not. For this purpose, we consider the
following result.

Lemma 2. The focus F never belongs to Cext(C). Moreover, it belongs to Cint(C)
if and only if there exists P ∈ C such that dis(P, F ) = d.
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Proof. From the original conchoid construction it holds that if P ∈ C, P �= F ,
generates P ′ ∈ Cext(C), then dis(P ′, F ) > dis(P, F ), and therefore P ′ �= F ;
furthermore, if F ∈ C, from the statement (ii) in Theorem 3 we deduce that it
does not generate F , either. Hence, we conclude that F /∈ Cext(C). On the other
hand, if there exists some non-isolated real point P ∈ C such that dis(P, F ) = d,
then ψ−d(P ) = F and therefore F ∈ Cint(C). Conversely, let F ∈ Cint(C). Since
F is not invariant when computing the conchoid, from Corollary 1 there exists
P ∈ C such that ψ−d(P ) = F , and therefore dis(P, F ) = d.

Now let us provide conditions for ψ+d to be a homeomorphism. This is done in
the following proposition.

Proposition 1. Assume that one of the following conditions happen: (1) F /∈ C;
(2) F ∈ C and is the center of just one real, cuspidal, place of C; (3) F ∈ C is the
center of several cuspidal places all of them sharing a same tangent. Then, either
ψ+d is a homeomorphism over C, or it can be extended to a homeomorphism over
C.

Proof. Whenever F /∈ C, ψ+d is continuous over C. Furthermore, if F ∈ C is the
center of just one cuspidal real place, or the center of several cuspidal places
sharing a same tangent, then from Remark 1 one may see that ψ+d can be
extended to a continuous function over C. On the other hand, since by Lemma 1
it holds that ψ−1

+d = ψ−d, and by Lemma 2 we have that F /∈ Cext(C), then ψ−1
+d

is always continuous over Cext(C).

We are going to prove that the conditions in Proposition 1 are also necessary for
the topologies of C and Cext(C) to coincide. For this purpose, first we need the
following lemma. This result states that Cext(C) has no other self-intersections
apart from those corresponding to the self-intersections of C.

Lemma 3. Every self-intersection of C, different from the focus, gives rise to a
self-intersection of Cext(C). Conversely, every self-intersection of Cext(C) comes
from a self-intersection of C.

Proof. The implication (⇒) follows from the conchoid construction. So, let us
see (⇐). For this purpose, by Lemma 1 it holds that ψ−1

+d = ψ−d. Now, given
Q ∈ Cext(C), by Lemma 2 it follows that Q �= F , and therefore ψ−1

+d(Q) is well
defined. Finally, by the conchoid construction if Q is a self-intersection, then
ψ−1

+d(Q) ∈ C is also a self-intersection of C. Hence, the statement holds.

Then we are finally ready for the following theorem on the good global behavior
of Cext(C).

Theorem 4. Cext(C) has a good global behavior if and only if one of the follow-
ing situations happen: (1) F /∈ C; (2) F ∈ C and is the center of just one real,
cuspidal, place of C; (3) F ∈ C is the center of several cuspidal places all of them
sharing a same tangent.
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Proof. The statement (⇐) is Proposition 1. So, we just have to prove (⇒).
Indeed, if Cext(C) is homeomorphic to C then either F /∈ C (and (1) happens), or
F ∈ C. Let us see that in this last case either (2) or (3) must occur. Assume first
that F is the center of just one real place P(h), and let Q(h) be the place of C(C)
generated by P(h); also, let Q be the center of Q(h). Since Q is generated by F ,
and F is not a self-intersection, then by Lemma 3 Q is not a self-intersection,
either. Now if P(h) is not cuspidal, then by Theorem 2 just half of Q(h) is
contained in Cext(C). Furthermore, since Q is not a self-intersection of Cext(C)
we get that Cext(C) has a branch at Q which is not continued. But then it
cannot be homeomorphic to C (which is the real zero-set of an algebraic curve,
discarding isolated singularities). Hence, (2) happens. Finally, assume that F is
the center of several real places. If these places are not cuspidal, and sharing a
same tangent, then by Theorem 3 we cannot have a self-intersection of Cext(C)
with the same multiplicity as F (in C). Hence, if (3) does not occur, then Cext(C)
cannot be homeomorphic to C. So, (3) must happen.

Now let us consider Cint(C). For this purpose, as in the above case we start giving
conditions for ψ−d to be homeomorphism. In this sense, the following lemma,
that can be easily proven, is needed.

Lemma 4. The following statements are true:

(i) Every self-intersection of C, different from the focus, gives rise to a self-
intersection of Cint(C).

(ii) Conversely, if Q is a self-intersection of Cint(C), then one of the following
statements hold: (a) Q is generated by a self-intersection of C; (b) Q is
the focus; moreover, this happens iff there exist at least two different points
P, P ′ ∈ C such that dis(P, F ) = dis(P, F ′) = d; (c) Q is generated by two
different points P, P ′ ∈ C, placed at different sides of the focus (i.e. FP ·
FP ′ < 0), such that dis(P,Q) = dis(P ′, Q) and dis(P, P ′) = 2d.

We refer to the points fulfilling the condition (c) in the statement (ii) of the above
lemma, as special self-intersections. This kind of self-intersections is illustrated
in Figure 5.

Fig. 5. Self-intersection of the Interior Conchoid

Special self-intersections are important because if Q is such a point, then in
a vicinity of Q, the mapping ψ−1

−d is not continuous: indeed, from Lemma 1 in
that case ψ−1

−d is a piecewise function and the point where the expression of ψ−1
−d
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changes (in fact, in a non-continuous way) is Q. Furthermore, we will speak
about additional self-intersections to mean self-intersections of Cint(C) which
are not generated by self-intersections of the base curve. Now we also need the
following result, that has to do with the behavior of ψ−1

−d around the focus in
one particular case.

Lemma 5. If there is just one non-isolated point P ∈ C fulfilling that dis(P, F ) =
d (in which case the line connecting P, F is normal to C at P ), then ψ−1

−d|Cint(C)

is continuous in the vicinity of the focus.

Proof. Since P is not isolated then it is the center of a real place P(h) of C.
Since dis(P, F ) = d > 0 then P �= F , and therefore ψ−d(P(h)) = Q(h) is a place
contained in Cint(C), centered at F . Furthermore, by Lemma 2 then P is the
only point of C transforming onto the focus. Thus, there exists a neighborhood
E ⊂ R2 of P such that Cint(C)∩E = Q(h). Since ψ−1

−d(Q(h)) = P(h), we deduce
that ψ−1

−d|Cint(C))∩E is continuous.

Hence, we can provide conditions for ψ−d to be a homeomorphism. This is done
in the following proposition.

Proposition 2. Assume that there are no additional self-intersections. Assume
also that one of the following conditions happen: (1) F /∈ C; (2) F ∈ C and
is the center of just one real, cuspidal, place of C; (3) F ∈ C is the center of
several cuspidal places all of them sharing a same tangent. Then, either ψ−d is
a homeomorphism over C, or it can be extended to a homeomorphism over C.
Proof. If (1) holds, then ψ−d is continuous. Furthermore, since by hypothesis
there are no additional self-intersections, then either F /∈ Cint(C), or F ∈ Cint(C)
but it is the center of just one real place. In the first case ψ−1

−d is continuous around
the focus; the same happens in the second case, because of Lemma 5. Since by
hypothesis there are no special self-intersections, then ψ−1

−d is continuous over
Cint(C), and therefore ψ−d is a homeomorphism. (2) can be proven in a similar
way, taking also into account Theorem 2. (3) can also be proven similarly, taking
also into account Theorem 3.

Now let us prove that the conditions in Proposition 2 are also necessary, in some
cases, for Cint(C) to have a good global behavior. First, we have the following
result on Cint(C), for the case when F /∈ C.
Theorem 5. Assume that F /∈ C. Then, Cint(C) has a good global behavior if
and only no additional self-intersections occur.

Proof. (⇐) follows from Proposition 2. (⇒) can be proven as in Theorem 4.

In the case when F ∈ C, but F is not a self-intersection of C, the following
theorem, that can be proven as Theorem 5, holds.

Theorem 6. Let F ∈ C, and assume that F is the center of just one real place
P(h) of C. Then, Cint(C) has a good global behavior if and only if P(h) is cuspidal,
and no additional self-intersections occur.
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Finally, in the case when F ∈ C is a self-intersection of C it is not true in general
that the conditions in Proposition 2 are necessary. So, we have the following
result.

Theorem 7. Assume that F ∈ C, and it is a self-intersection of C. Then, the
following statements are true.

(i) If Cint(C) has a good global behavior, then every place of C centered at F
must be cuspidal.

(ii) If F is the center of several cuspidal places of C, all of them sharing a same
tangent, and no additional self-intersections occur, then Cint(C) has a good
global behavior.

Proof. The statement (i) follows from Theorem 3. The statement (ii) is Propo-
sition 2.

Let us see that the converse statements of Theorem 7 do not hold. Indeed,
in Figure 6, right, one may see the picture of the algebraic curve defined by
f(x, y) := (16y2 − 4x3 + x4)(16x2 − 4y3 + y4) = 0, together with its interior
conchoid, for F = (0, 0) and d = 3. Notice that the origin is the center of
two cuspidal places, but however Cint(C) and C are not homeomorphic; so, the
converse of the statement (i) of the theorem does not hold. Furthermore, also in
Figure 6, at the left, we have plotted the curve together with its interior conchoid,
for F = (0, 0) and d = 4. In this case, both objects are homeomorphic. However,
the places of f(x, y) centered at the origin do not share a same tangent, and
therefore the converse of the statement (ii) of Theorem 7 does not hold. What
is happening here is that although the self-intersection of the base curve at the
focus is “lost” when computing the interior conchoid, another self-intersection,
in fact an additional self-intersection, is gained; so, in the end the topology is
kept invariant.

Fig. 6. Counterexamples to the converse statements of Theorem 7

We end this section by analyzing the special case when C is a closed curve
homeomorphic to a circle, and the focus is a point of C. If F is the center of a
cuspidal place, then the analysis follows from the above results. So, in the sequel
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we address the case when F is the center of a non-cuspidal place of C. In that
situation, neither Cext(C) nor Cint(C) have a good global behavior. However, as it
happens in the case of Figure 4, C(C) can have a good global behavior. We begin
with the following lemma, concerning the intersections between the exterior and
the interior conchoid.

Lemma 6. Let P, P ′ ∈ C, P �= F , P ′ �= F . Then P, P ′ generate a common
point of Cext(C) and Cint(C) if and only if P, P ′, F are aligned, dis(P, P ′) = 2d
and F does not lie in between P, P ′ (i.e. FP · FP ′ > 0).

Moreover we also need the following result.

Lemma 7. Let C be a closed curve homeomorphic to a circle and let F ∈ C
be the center of just one real, non-cuspidal, place. Then, C(C) is a closed and
connected curve.

Proof. Since C is homeomorphic to a circle and F ∈ C, then C−{F} is connected.
Thus, since ψ+d is continuous over C − {F}, we have that ψ+d(C − {F}) is also
a connected set. In fact, since F is the center of just one real, non-cuspidal,
place P(h), by Theorem 3 it gives rise to two different points, A,B, which are
joined by the closure ψ+d(C − {F}). Similarly, ψ−d(C − {F}) is a connected
set, and ψ−d(C − {F}) also connects A,B. Finally, since A,B both belong to
ψ+d(C − {F}) and ψ−d(C − {F}), and C(C) is the union of these two curves, we
deduce that C(C) is a closed curve. Moreover, it is connected because it is the
union of two connected subsets with a common point (in fact, with two points
in common, A and B)

So, we finally deduce the following theorem, which follows from Lemma 6 and
Lemma 7.

Theorem 8. Assume that C is a closed curve, homeomorphic to a circle, and
such that F ∈ C is the center of just one real place P(h) with signature (p, q),
where p is odd. Then, C(C) has a good global behavior if and only if the following
two conditions hold: (1) Cext(C) and Cint(C) do not have common points; (2)
Cint(C) has no additional self-intersections.

Proof. Since C has no self-intersections, then (1) and (2) are necessary conditions.
So, let us see that they are also sufficient. By Lemma 7 we have that C(C) is
closed and connected. Furthermore, since (1) and (2) hold then it has no self-
intersections, and thus we conclude that it is homeomorphic to a circle.

5 Conclusions and Further Work

We have presented results that allow to predict, under certain hypotheses, some
features of the topology of C(C) from the topology of C. In the case when F /∈ C,
the study is relatively easy. However, when F ∈ C the problem is more difficult,
and requires to address the local behavior of the conchoid transformation around
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F . This can be done by means of the notion of “local shape”, already used in the
offset case. Using this tool, we provide necessary and sufficient conditions for a
good global behavior of: (i) Cext(C); (ii) Cint(C), in certain cases; (iii) C(C), when
C is homeomorphic to a circle and F ∈ C. We also provide sufficient conditions
for Cint(C) to have a good global behavior under more general hypotheses. The
natural continuation of this paper is the study of conchoids of algebraic surfaces;
however, in order to do that the necessary algebraic background on such surfaces
has still to be developed.

Acknowledgements. The author wants to thank Fernando San Segundo for
his help with the package Geogebra (http://www.geogebra.org), which has
been a very useful tool to explore many of the questions addressed in the paper.
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Abstract. In this paper, we present a method based on a quadratic
spline quasi-interpolant for the estimation of integral properties of a
planar closed curve. The latter include the length, area, center of gravity
and moment of inertia of the given curve. Then, we analyze the error
estimates on the approximations of these properties and we validate the
theoretical results by numerical examples.

Keywords: Length, Area, Center of gravity, Spline quasi interpolant.

1 Introduction

Computing the arc length of a parametric curve has been well studied in the
literature and has been treated in various ways. For example, in [7], the authors
use numerical quadrature for estimating the length of the curve and in [6], a cubic
spline interpolation based on the chord length parameterization. The method
introduced in [7] is also used in [9] for estimating the area of a parametric
surface. Let

σ : t ∈ [0, 1]→ R2

σ(t) = (f(t), g(t))

be a parametric closed curve, by which we mean a continuously differentiable
function such that σ′(t) �= 0 for all t ∈ [0, 1]. Denote by |.| denote the Euclidian
norm in R2. Then the length of σ (see [8]) is

L(σ) :=
∫ 1

0

|σ′(t)|dt =
∫ 1

0

√
f ′(t)2 + g′(t)2dt, (1)

and its area is given by the formula

A(σ) :=
1
2

∫ 1

0

(f(t)g′(t)− f ′(t)g(t))dt. (2)
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In this paper, we obtain approximations of L(σ) and A(σ) by replacing each
component of σ by a quadratic spline quasi-interpolant and we compute the
exact length and area of the spline approximant. We do the same for the center
of gravity G = (x∗, y∗) of σ which has the coordinates

x∗ :=
1
L(σ)

∫ 1

0

f(t)|σ′(t)|dt, y∗ :=
1
L(σ)

∫ 1

0

g(t)|σ′(t)|dt (3)

and the moments of inertia with respect to an axis passing through G defined by

M(σ) :=
∫ 1

0

|σ(t)− G|2|σ′(t)|dt. (4)

We show that the orders of these approximations are that of the quadrature
formula based on the used spline quasi-interpolant.

The paper has been arranged in the following way. In Section 2, we give
the definition and the main properties of the used quadratic spline quasi-
interpolant. In Section 3, we give details on the computation of the approximate
length and center of gravity. We also study the error of the approximation. The
approximations of the moment of inertia and the area are discussed in Sections 4
and 5. Numerical validation is given in Section 6.

2 Periodic Quadratic Spline Quasi-Interpolant

Let Xn = {[xi, xi+1], 0 ≤ i ≤ n} be the uniform partition of the interval [0, 1]
with meshlength h = 1

n ; whenever necessary this partition will be extended
periodically to R. For j = 1, 2, . . . , n + 2, let Bj = B(. − j) be the classical
C1-quadratic B-spline of support [xj−3, xj ]. The family {Bj , j = 1, 2, . . . , n+ 2}
is a basis of the space S2(I,Xn) of C1 quadratic splines defined in I endowed
with the partition Xn. The C1 periodic quadratic spline quasi interpolant (abbr.
QI) used here is the spline operator given for any f in C[0, 1] by

Qnf :=
n+2∑
j=1

μj(f)Bj , (5)

where

μj(f) =
1
8
(−fj−2 + 10fj−1 − fj), for 1 ≤ j ≤ n + 2,

with fi = f(ti) and ti =
(
i− 1

2

)
h, i = −1, . . . , n + 2.

Theorem 1. For all periodic function f ∈ C3[0, 1] we have (see [11])

‖f (k) −Qnf
(k)‖∞ ≤ Ck

(
1
n

)3−k

‖f (3−k)‖∞, k = 0, 1, 2, (6)
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where Ck is a constant independent of n. Moreover, for f ∈ C4[0, 1] we have the
following superconvergent result

f(xi)−Qnf(xi) = O
(

1
n

)4

, i = 0, . . . , n. (7)

Now, by integrating the quadratic QI Qn, we obtain the midpoint rule Mn(f) =∫ 1

0
Qnf(x)dx = 1

n

∑n
i=1 fi. By using the symmetry of B-splines and the

evaluation points ti, one can prove the following result.

Theorem 2. For a periodic function f of class C4 and a smooth weight function
w we have (see [9])

E(f, w) =
∫ 1

0

[Qnf(x)− f(x)]w(x)dx < C2

(
1
n

)4

, (8)

where C2 > 0 is a constant independent of n.

In the interval [xi−1, xi], i = 1, . . . n, by using the change of variable
x = (1− u)xi−1 + uxi, the QI Qn becomes a quadratic polynomial in the
variable u ∈ [0, 1] and it can be written as follows

Qnf = aiB0 + biB1 + ai+1B2, (9)

where {Br =
(
2
r

)
(1− u)2−rur, r = 0, 1, 2} is the Bernstein basis of the space Π2

of polynomials of degree 2 and

ai =
1
16

(−fi−1 + 9fi + 9fi+1 − fi+2) , bi =
1
8

(−fi−1 + 10fi − fi+1) .

The representation (9) is used in the rest of the paper.

3 Length and Center of Gravity

Throughout this paper we denote f̄n = Qnf, ḡn = Qng and σn(t) =
(f̄n(t), ḡn(t)). For i = 1, . . . , n, let f̄n|[xi−1,xi] = pi and ḡn|[xi−1,xi] = qi. From
(9), the quadratic polynomials pi and qi can be written in the forms

pi = aiB0 + biB1 + ai+1B2, qi = αiB0 + βiB1 + αi+1B2.

We propose to approximate L(σ) by

L(σn) =
∫ 1

0

|σ′
n(t)|dt =

∫ 1

0

√
f̄ ′

n(t)2 + ḡ′n(t)2dt

and the center of gravity G = (x∗, y∗) by Gn = (x∗
n, y

∗
n) where

x∗
n =

1
L(σn)

∫ 1

0

f̄n(t)|σ′
n(t)|dt, y∗n =

1
L(σn)

∫ 1

0

ḡn(t)|σ′
n(t)|dt.

In the next subsection, we give some details on the computation of the
approximations of L(σn) and Gn.
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3.1 Approximations of L(σ) and G
Let

πi(u) = c0,i + 2c1,iu + c2,iu
2, i = 1, . . . , n,

where ⎧⎨⎩
c0,i = γ2

i + γ̄2
i

c1,i = 4[(γi − δi)2 + (γ̄i − δ̄i)2]
c2,i = γi(δi − γi) + γ̄i(δ̄i − γ̄i)

and {
γi = bi − ai, δi = ai+1 − bi

γ̄i = βi − αi, δ̄i = αi+1 − βi.

We have the following result.

Theorem 3. The approximate length and center of gravity are given by

L(σn) = h
n∑

i=1

J0,i

x∗
n = h

n∑
i=1

[
aiJ0,i + 2(bi − ai)J1,i + (ai+1 − 2bi + ai)J2,i

]
y∗n = h

n∑
i=1

[
αiJ0,i + 2(βi − αi)J1,i + (αi+1 − 2βi + αi)J2,i

]
.

where

J0,i =
c2

2a

[
(t1 − t0) +

1
2
(sinh(2t1)− sinh(2t0))

]
J1,i =

c3

3a2

[
cosh(t1)3 − cosh(t0)3

]− b

a
J0,i

J2,i =
c4

8a3

[
1
4
(sinh(4t1)− sinh(4t0)) − (t1 − t0)

]
− 2b

a
J1,i − b2

a2
J0,i.

and

a =
√
c2,i, b =

c1,i√
c2,i

, c = c0,i −
c21,i√
c2,i

, sinh(t0) =
b

c
, sinh(t1) =

a + b

c
.

Proof. From (8), we obtain

L(σn) =
n∑

i=1

∫ xi

xi−1

√
f̄ ′

n(t)2 + ḡ′n(t)2dt

= h
n∑

i=1

∫ 1

0

√
p′i(u)2 + q′i(u)2du
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and

x∗
n = h

1
L(σn)

n∑
i=1

∫ 1

0

pi(u)
√

p′i(u)2 + q′i(u)2du,

y∗n = h
1

L(σn)

n∑
i=1

∫ 1

0

qi(u)
√

p′i(u)2 + q′i(u)2du.

Thus, we have to compute the following integrals∫ 1

0

pi(u)
√

p′i(u)2 + q′i(u)2du and
∫ 1

0

qi(u)
√

p′i(u)2 + q′i(u)2du

which is equivalent to evaluate integrals of type

J0,i :=
∫ 1

0

√
πi(u)du, J1,i :=

∫ 1

0

u
√

πi(u)du, J2,i :=
∫ 1

0

u2
√

πi(u)du,

where

πi(u) := c0,i + 2c1,iu + c2,iu
2 =

(√
c2,iu +

c1,i√
c2,i

)2

+

(
c0,i −

c21,i

c2,i

)
.

For the sake of notational simplicity, the index i in ck,i, k = 0, 1, 2 is dropped.
It is easy to show that c21 − c0c2 < 0, (πi(u) does not vanish), then by denoting
a :=

√
c2, b := c1√

c2
, c := c0 − c2

1√
c2
, we can write πi(u) as

πi(u) = (au + b)2 + c2 = c2

[
1 +

(
au + b

c

)2
]
.

Setting φ(u) := 1 + (au+b
c )2, we obtain

J0,i := c

∫ 1

0

√
φ(u)du, J1,i := c

∫ 1

0

u
√
φ(u)du, J2,i := c

∫ 1

0

u2
√

φ(u)du.

Taking the change of variable

sinh(t) =
au + b

c
where u =

1
a
(c sinh(t)− b), du =

c

a
cosh(t)dt,

we define the new bounds t0 and t1 by

sinh(t0) :=
b

c
, sinh(t1) :=

a + b

c
.

Then, we get t0 = ln
(

b
c +

√
1 +

(
b
c

)2)
, t1 = ln

(
a+b

c +
√

1 +
(

a+b
c

)2)
and cosh(t0) =

√
1 + b2/c2, cosh(t1) =

√
1 + (a + b)2/c2.
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The integrals become

J0,i =
c2

a

∫ t1

t0

√
1 + sinh(t)2 cosh(t)dt =

c2

a

∫ t1

t0

cosh(t)2dt

=
c2

2a

∫ t1

t0

(1 + cosh(2t))dt =
c2

2a

[
(t1 − t0) +

1
2
(sinh(2t1)− sinh(2t0))

]

J1,i =
c2

a2

∫ t1

t0

(c sinh(t)− b) cosh(t)2dt =
c3

a2

∫ t1

t0

cosh(t)2 sinh(t)dt− b

a
J0,i

=
c3

3a2

[
cosh(t1)3 − cosh(t0)3

]− b

a
J0,i

J2,i =
c2

a3

∫ t1

t0

(c sinh(t)− b)2 cosh(t)2dt

=
c4

a3

∫ t1

t0

sinh(t)2 cosh(t)2dt− 2b
a
J1,i − b2

a2
J0,i

=
c4

8a3

∫ t1

t0

(cosh(4t)− 1)dt− 2b
a
J1,i − b2

a2
J0,i

=
c4

8a3

[
1
4
(sinh(4t1)− sinh(4t0))− (t1 − t0)

]
− 2b

a
J1 − b2

a2
J0,i.

Hence, we obtain∫ 1

0

pi(u)
√

πi(u)du = ai

∫ 1

0

√
πi(u)du + 2(bi − ai)

∫ 1

0

u
√

πi(u)du

+ (ai+1 − 2bi + ai)
∫ 1

0

u2
√

πi(u)du

= aiJ0,i + 2(bi − ai)J1,i + (ai+1 − 2bi + ai)J2,i

and similarly∫ 1

0

qi(u)
√

πi(u)du = αi

∫ 1

0

√
πi(u)du + 2(βi − αi)

∫ 1

0

u
√

πi(u)du

+ (αi+1 − 2βi + αi)
∫ 1

0

u2
√

πi(u)du

= αiJ0,i + 2(βi − αi)J1,i + (αi+1 − 2βi + αi)J2,i,

which completes the proof.

3.2 Convergence Orders

Theorem 4. For σ ∈ C4[0, 1], we have

|L(σ)− L(σn)| = O(h4), as h→ 0 (10)
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and
|G − Gn| = O(h4), as h→ 0 (11)

where |G − Gn| =
√

(xG − x∗
n)2 + (yG − y∗n)2 and h = 1

n .

Proof. Let e(t) = σ(t)− σn(t). From (6) we have

‖e‖ = O(h3), ‖e′‖ = O(h2), as h→ 0. (12)

Let us use the identity

|σ′
n| − |σ′| = −2e′.σ′ + e′.e′

|σ′
n|+ |σ′|

and the fact that |σ′| and |σ′
n| are bounded away from zero for small enough h,

by the bound on e′ in (12), we so obtain

L(σn)− L(σ) =
∫ 1

0

[|σ′
n(t)| − |σ′(t)|]dt = −2

∫ 1

0

e′(t).σ′(t)
|σ′

n(t)|+ |σ′(t)|dt +O(h4).

But since e(0) = e(1) = O(h4), an integration by parts implies

−
∫ 1

0

e′(t).σ′(t)
|σ′

n(t)|+ |σ′(t)|dt =
∫ 1

0

e(t).
d

dt

(
σ′(t)

|σ′
n(t)|+ |σ′(t)|

)
dt +O(h4).

Since |σ′(t)|, |σ′′(t)|, |σ′
n(t)| and |σ′′

n(t)| are bounded as h→ 0, so too is

d

dt

(
σ′(t)

|σ′
n(t)|+ |σ′(t)|

)
and the estimate (10) follows from the bound in (8). Now we write

x∗ − x∗
n =

1
L(σ)

∫ 1

0

f(t)|σ′(t)|dt− 1
L(σn)

∫ 1

0

f(t)|σ′
n(t)|dt

=
(

1
L(σ)

− 1
L(σn)

)∫ 1

0

f(t)|σ′(t)|dt

+
1

L(σn)

(∫ 1

0

(f̄n(t)|σ′(t)| − f̄n(t)|σ′
n(t)|)dt

)
.

(13)

From (10), we have(
1
L(σ)

− 1
L(σn)

)∫ 1

0

f(t)|σ′(t)|dt

=
(L(σn)− L(σ)
L(σn)L(σ)

)∫ 1

0

f(t)|σ′(t)|dt = O(h4). (14)

On the other hand

1
L(σn)

∫ 1

0

(
f̄n|σ′| − f̄n|σ′

n|
)

=
1

L(σn)

∫ 1

0

(
f(|σ′| − |σ′

n|) + (f − f̄n)|σ′
n|
)



Estimation of Integral Properties of a Planar Curve Based on a Spline QI 87

we proceeded as for (10) to show that∫ 1

0

f(t)(|σ′(t)| − |σ′
n(t)|) = O(h4). (15)

Moreover, using (8) we have∫ 1

0

(f(t)− f̄n(t))|σ′
n(t)|dt = E(f, |σ′

n(t)|) = O(h4). (16)

Now combining the estimates (13)-(16), we deduce that |x∗ − x∗
n| = O(h4).

Similarly, we prove that |y∗ − y∗n| = O(h4), and the estimate (11) follows.

4 Moment of Inertia

4.1 Approximate Moment of Inertia

By using the same notations as before, we have the following result.

Theorem 5. Let {
āi = ai − x∗

n, b̄i = bi − y∗n,
ᾱi = αi − x∗

n, β̄i = βi − y∗n.

The approximate moment of inertia is given by

M(σn) = h

n∑
i=1

4∑
k=0

dkJk,i,

where

J3,i =
c5

a4

∫ t1

t0

sinh (t)3 cosh (t)2dt− 3b
a
J2,i − 3b2

a2
J1,i − b3

a3
J0,i,

J4,i =
c6

a5

∫ t1

t0

sinh (t)4 cosh (t)2dt− 4b
a
J3,i − 6b2

a2
J2,i − 4b3

a3
J1,i − b4

a4
J0,i,

and {dk, 0 ≤ k ≤ 4} are the canonical basis coefficients of the polynomial

ki(u) = (āi(1−u)2+2b̄iu(1−u)+ āi+1u
2)2+(ᾱi(1−u)2+2β̄iu(1−u)+ᾱi+1u

2)2.

Proof. Since

M(σn) =
∫ 1

0

|σn(t)− Gn|2|σ′
n(t)|dt

=
∫ 1

0

[
(f̄n(t)− x∗

n)2 + (ḡn(t)− y∗n)2
]√

f̄ ′
n(t)2 + ḡ′n(t)2dt

= h

n∑
i=1

∫ 1

0

[
(pi(u)− x∗

n)2 + (qi(u)− y∗n)2
]√

πi(u)du,
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then, we have to compute the integrals∫ 1

0

[
(pi(u)− x∗

n)2 + (qi(u)− y∗n)2
]√

πi(u)du, i = 1, . . . , n. (17)

The expression between brackets can be written

ki(u) := (āi(1−u)2+2b̄iu(1−u)+ āi+1u
2)2+(ᾱi(1−u)2+2β̄iu(1−u)+ᾱi+1u

2)2

(18)
or simply

ki(u) = d0 + d1u + d2u
2 + d3u

3 + d4u
4.

Thus, the integrals given by (17) become

4∑
k=0

dkJk,i, with Jk,i :=
∫ 1

0

uk
√

πi(u)du.

Hence, we have to compute the new integrals

J3,i :=
∫ 1

0

u3
√

πi(u)du =
c2

a4

∫ t1

t0

(c sinh (t)− b)3 cosh (t)2dt

J4,i :=
∫ 1

0

u4
√

πi(u)du =
c2

a5

∫ t1

t0

(c sinh (t)− b)4 cosh (t)2dt.

By using the expression of the integrals Jk,i, k = 0, 1, 2, we get

J3,i : =
c5

a4

∫ t1

t0

sinh (t)3 cosh (t)2dt− 3bc4

a4

∫ t1

t0

sinh (t)2 cosh (t)2dt

+
3b2c3

a4

∫ t1

t0

sinh (t) cosh (t)2dt− b3c2

a4

∫ t1

t0

cosh (t)2dt

=
c5

a4

∫ t1

t0

sinh (t)3 cosh (t)2dt− 3b
a
J2,i − 3b2

a2
J1,i − b3

a3
J0,i

and similarly

J4,i : =
c6

a5

∫ t1

t0

sinh (t)4 cosh (t)2dt− 4b
a

(
J3,i +

3b
a
J2,i +

3b2

a2
J1,i +

b3

a3
J0,i

)
+

6b2

a2

(
J2,i +

2b
a
J1,i +

b2

a2
J0,i

)
− 4b3

a3

(
J1,i +

b

a
J0,i

)
+

b4

a4
J0,i

=
c6

a5

∫ t1

t0

sinh (t)4 cosh (t)2dt− 4b
a
J3,i − 6b2

a2
J2,i − 4b3

a3
J1,i − b4

a4
J0,i.

Now, by linearizing

sinh (t)3 cosh (t)2 =
1
16

(sinh (5t)− 2 sinh (t)− sinh (3t))

sinh (t)4 cosh (t)2 =
1
32

(2− cosh (2t)− 2 cosh (4t) + cosh (6t))
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we deduce that∫ t1

t0

sinh (t)3 cosh (t)2dt =
[

1
80

cosh (5t)− 1
8

cosh (t)− 1
48

cosh (3t)
]

=
[
1
5

cosh (t)5 − 1
3

cosh (t)3
]t1

t0∫ t1

t0

sinh (t)4 cosh (t)2dt =
[

1
16

t− 1
64

sinh (2t)− 1
64

sinh (4t) +
1

192
sinh (6t)

]t1

t0

=
[

1
16

t + sinh (t) cosh (t)
(

1
16
− 7

24
cosh (t)2 +

1
6

cosh (t)4
)]t1

t0

which completes the computation of J3,i and J4,i.

4.2 Convergence Order

Theorem 6. For σ ∈ C4[0, 1], we have

|M(σ)−M(σn)| = O(h4), as h→ 0. (19)

Proof. Writing

M(σ)−M(σn) =
∫ 1

0

|σ(t)− G|2|σ′(t)|dt −
∫ 1

0

|σn(t)− Gn|2|σ′
n(t)|dt

=
∫ 1

0

|σ(t)− G|2(|σ′(t)| − |σ′
n(t)|)dt

+
∫ 1

0

|σ′
n(t)| (|σ(t)− G|2 − |σn(t)− Gn|2

)
dt

= Cn + Dn

and

Dn =
∫ 1

0

|σ′
n(t)|[(f − f̄n + x∗

n − x∗)(f + f̄n − x∗ − x∗
n)

+ (g − ḡn + y∗n − y∗)(g + ḡn − y∗ − y∗n)]dt.

Since |x∗ − x∗
n| = O(h4) and |y∗ − y∗n| = O(h4), we deduce from (8) that Dn =

O(h4). We proceeded as for (10) to show that Cn = O(h4), then the result
follows.

5 Area

5.1 Approximate Area

Theorem 7. The approximate area is given by

A(σn) =
h

6

n∑
i=1

[2(aiβi − biαi) + (aiαi+1 − ai+1αi) + 2(biαi+1 − ai+1βi)].
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Proof. We approximate A(σ) by

A(σn) :=
1
2

∫ 1

0

(f̄n(t)ḡ′n(t)− f̄ ′
n(t)ḡn(t))dt.

Thus, we have to compute the integrals

1
2

∫ 1

0

(pi(u)q′i(u)− p′i(u)qi(u))du, i = 1, . . . , n

with
p′i = 2[γi(1− u) + δiu], q′i = 2[γ̄i(1− u) + δ̄iu]

and {
γi = bi − ai, δi = ai+1 − bi

γ̄i = βi − αi, δ̄i = αi+1 − βi.

Then, we obtain

1
2
(piq

′
i − p′iqi) = (ai(1− u)2 + 2biu(1− u) + ai+1u

2)(γ̄i(1 − u) + δ̄iu)

− (γi(1− u) + δiu)(αi(1− u)2 + 2βiu(1− u) + αi+1u
2)

= (aiγ̄i − αiγi)(1 − u)3 + (aiδ̄i + 2biγ̄i − αiδi − 2αi+1γi)u(1− u)2

+ (2biδi + ai+1γ̄i − 2βiδi − αi+1γi)u2(1 − u) + (ai+1δ̄i − αi+1δi)u3

= (aiβi − biαi)(1− u)3 + (ai(βi + αi+1)− (bi + ai+1)αi)u(1− u)2

+ ((αi+1(ai + bi)− (αi + βi)ai+1))u2(1− u) + (biαi+1 − ai+1βi)u3

and consequently

1
2

∫ 1

0

(piq
′
i − p′iqi) =

1
12

(3aiβi − 3biαi + aiβi + aiαi+1 − biαi − ai+1αi)

+
1
12

(aiαi+1 + biαi+1 − ai+1αi − ai+1βi + 3biαi+1 − 3ai+1βi)

=
1
6
(2(aiβi − biαi) + (aiαi+1 − ai+1αi) + 2(biαi+1 − ai+1βi)),

which completes the proof. �

5.2 Convergence Order

Theorem 8. For σ ∈ C4[0, 1], we have

|A(σ) −A(σn)| = O(h4), as h→ 0. (20)

Proof. Writing

fg′ − f ′g − f̄nḡ
′
n + f̄ ′

nḡn = f(g′ − ḡ′n) + ḡ′n(f − f̄n)− f ′(g − ḡn)− ḡn(f ′ − f̄ ′
n)
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and using the fact that f(0) = Qnf(0) and f(1) = Qnf(1), then an integration
by parts gives∫ 1

0

f(g′ − ḡ′n) = −
∫ 1

0

f ′(g − ḡn) and
∫ 1

0

ḡn(f̄ ′
n − f ′) = −

∫ 1

0

ḡ′n(fn − f).

Hence

A(σ) −A(σn) = −2
∫ 1

0

f ′(g − ḡn)− 2
∫ 1

0

ḡ′n(f − f̄n) = −2E(g, f ′)− 2E(f, g′)

and consequently (20) follows from (8). �

6 Numerical Results

We consider the following closed curves:

(Raphal Laporte heart [8]): σ1(s) = (sin3 (s), cos (s)− cos4 (s)).

(Cassini oval [1]): σ2(s) = R(s)(cos (s), b sin (s)), where

R(s) =

√
cos (2s) +

√
a− sin2(2s).

(Amoeba [3]): σ3(s) = R(s)(cos (s), sin (s)), where R(s) = ecos (s) cos2(2s) +
esin (s) sin2(2s).

Fig. 1. Several closed curves

In Tables 1-5 for different values of n we give the approximation errors
obtained by the estimation of integral properties of the curves σi, i = 1, 2, 3 using
the QI Qn. We give also the numerical convergence orders of the approximations.
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Table 1. Arc length approximation with a = 3
2

and b = 1

n —L(σ1) − L(σ1,n)— —L(σ2) − L(σ2,n)— —L(σ3) − L(σ3,n)—

8 1.17(-00) - 5.57(-01) - 4.32(-00) -
16 1.33(-01) 3.13 7.85(-02) 2.83 1.30(-00) 1.73
32 9.60(-03) 3.79 6.24(-03) 3.65 1.40(-01) 3.22
64 6.14(-04) 3.97 4.16(-04) 3.90 9.80(-03) 3.84
128 3.82(-05) 4.01 2.64(-05) 3.98 6.27(-04) 3.97
256 2.35(-06) 4.02 1.66(-06) 3.99 3.97(-05) 3.98
512 1.45(-07) 4.02 1.04(-08) 4.00 2.50(-06) 3.99

Table 2. Approximation of the center of gravity

n |G − Gn|(σ1) |G − Gn|(σ2) |G − Gn|(σ3)

8 2.71(-02) - 0. - 4.89(-02) -
16 2.13(-03) 3.67 0. - 7.93(-04) 5.95
32 1.72(-04) 3.63 0. - 1.52(-03) 0.94
64 1.19(-05) 3.85 0. - 1.44(-04) 3.40
128 7.79(-07) 3.93 0. - 1.02(-05) 3.83
256 5.04(-08) 3.95 0. - 6.35(-07) 4.00
512 3.27(-09) 3.95 0. - 3.90(-08) 4.03

Table 3. Approximation of the center of gravity

n |G − Gn|(σ2)

7 1.24(-02) -
15 3.27(-04) 4.76
31 4.91(-07) 8.96
63 3.69(-12) 16.25
127 3.24(-16) 12.86

Table 4. Approximation of the moment of inertia

n —M(σ1) − M(σ1,n)— —M(σ2) − M(σ2,n)— —L(σ3) − M(σ3,n)—

8 1.52(-00) - 1.79(-00) - 14.19(-00) -
16 1.72(-01) 3.14 2.51(-01) 2.84 4.58(-00) 1.63
32 1.23(-02) 3.80 1.87(-02) 3.75 5.07(-01) 3.17
64 7.88(-04) 3.97 1.21(-03) 3.94 3.61(-02) 3.81
128 4.91(-05) 4.01 7.66(-05) 3.99 2.33(-03) 3.96
256 3.04(-06) 4.02 4.80(-06) 4.00 1.47(-04) 3.99
512 1.87(-07) 4.02 3.00(-07) 4.00 9.20(-06) 3.99

Remark 1. It can be seen from the above tables, that the orders of convergence
agree with the theoretical results. However we see that we obtain an exactness
for the curve σ2 for even values of n. This result can be proved by using the
symmetry of the curve and the periodicity of the QI.
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Table 5. Area approximation with a = 3
2

and b = 1

n —A(σ1) − A(σ1,n)— —A(σ2) − A(σ2,n)— —A(σ3) − A(σ3,n)—

8 3.21(-02) - 3.70(-01) - 8.04(-01) -
16 2.12(-03) 3.92 4.88(-02) 2.92 4.98(-01) 0.69
32 1.34(-04) 3.98 3.81(-03) 3.68 5.72(-02) 3.12
64 8.43(-06) 4.00 2.52(-04) 3.92 4.11(-03) 3.80
128 5.27(-07) 4.00 1.59(-05) 3.98 2.66(-04) 3.95
256 3.30(-08) 4.00 1.00(-06) 4.00 1.67(-05) 3.99
512 2.06(-09) 4.00 6.26(-08) 4.00 1.05(-06) 4.00
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Abstract. Using multiresolution based on Harten’s framework [J. Appl.
Numer. Math., 12 (1993), pp. 153–192.] we introduce an alternative to
construct a prediction operator using Learning statistical theory. This
integrates two ideas: generalized wavelets and learning methods, and
opens several possibilities in the compressed signal context. We obtain
theoretical results which prove that this type of schemes (LMR schemes)
are equal to or better than the classical schemes. Finally, we compare
traditional methods with the algorithm that we present in this paper.
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1 Introduction and Review

Multiscale representations of signals and images into wavelet bases have been
successfully used in applications such as compression and denoising. In these
applications, one essentially takes advantage of the sparsity of the representation
of the image (see, e.g., [6,9,16]).

Harten [15] integrates ideas from three different fields such as theory of
wavelets, numerical solution of partial differential equations (PDEs), and sub-
division schemes. The aim of this paper is to incorporate the Learning theory
(see, e.g., [10,17]) into the general framework for multiresolution of data and to
use these results to data compression.

Based on multigrid methods (which typically use discretization by point-
value and reconstruction by interpolation), Harten developed the idea that if we
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consider a sequence of grids with corresponding discretization {Dk} and recon-
struction {Rk}, then the most natural way to go from the kth grid to the coarser
(k − 1)th grid is by the operator Dk−1

k = Dk−1Rk and similarly to use the op-
erator Pk

k−1 = DkRk−1 to go from (k − 1)th grid to the finer kth grid.
Then we consider the notion of nested discretization in a more abstract set-

ting and observe that the operators Dk−1
k and Pk

k−1 can serve, respectively, as
decimation and prediction in a pyramid scheme of the type that is used in signal
processing. Using ideas from the theory of wavelet, we remove the redundancy
that is typical of frames achieved by the use of pyramid schemes and we obtain
a multiresolution representation. Furthermore, Harten used knowledge from the
theory of wavelets to relate the discrete multiresolution representation to a mul-
tiresolution basis in the space of functions F (see, e.g., [8,7,16]). He shows that
the construction of wavelets (see, e.g., [8]) can be formulated in terms of dis-
cretization and reconstruction (corresponding to a nested dyadic sequence of
uniform grids). For this, the operator reconstruction may or may not be a linear
operator. This is Harten’s main contribution.

At this point we observe ([4,14,15]) that data compression based on multires-
olution (as in Harten’s) uses the fact that one discrete space V k is divided in
two spaces V k−1 and W k−1, i.e.,

V k = V k−1 ⊕W k−1,

where V k−1 = Dk−1
k (V k) and W k−1 represents non redundant information

present in V k and not predictable from V k−1 by the prediction operator Pk
k−1,

i.e., W k−1 = V k−Pk
k−1(V

k−1). So, if the prediction operator is a “good approx-
imation” the details are close to zero and the data can be compressed better.
Therefore, Harten (see, e.g., [14,15]), and Aràndiga and Donat [4] emphasize
the importance to construct a good reconstruction operator. They formulate the
problem as a typical problem in approximation theory:

Find a “good approximation” to V k from V k−1.

However, we observe that we know the space V k, that is we have all the informa-
tion of the next step. Why don’t we use this information to obtain a prediction
operator? So, we can formulate the problem as a typical problem in Learning
theory (see, e.g., [10,17]):

Knowing V k−1 and V k, find a “good approximation” to V k from V k−1.

This work is organized as follows: In §2 we review the Multiresolution “à la
Harten”, then we introduce Learning-based multiresolution based on the mini-
mization of a functional (see [2,18]). We develop this technique in the theoretical
sense in §3, in particular in discretization for point-value context and explain the
Learning process in MR context with an extensive example. We review LMR
methods using the minimization of �p norm. Finally we do some numerical ex-
periments comparing with classical linear methods and obtaining relevant results
in §4.
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2 Learning-Based Multiresolution in Harten’s Framework

2.1 Generalized Wavelets. Brief Review

In Harten’s framework there are two principal operators: the discretization oper-
ator, Dk, that assigns to any function f a sequence of real numbers fk; and the
reconstruction operator, Rk, that for any sequence of real numbers fk obtains a
function Rkf

k. We find in the literature some references about the design of Dk

(see e.g. [3,11,14,15]) but the main issue in Harten’s MR literature is to obtain a
good reconstruction operator using linear and nonlinear interpolation techniques
(see e.g. [4,1,3]).

Combining these operators we obtain two other operators: The decimation
operatorDk−1

k = Dk−1Rk is a linear operator that yields the discrete information
contents of the signal at the resolution k − 1 from the discrete information
at level k (an increasing k implies more resolution). The prediction operator,
Pk

k−1 = DkRk−1, yields an approximation to the discrete information contents
at the kth level from the discrete information contents at level k − 1. Thus,

Dk−1
k : V k → V k−1, Pk

k−1 : V k−1 → V k,

where {V k} is a sequence of finite spaces. We define the prediction error as

ek = fk − Pk
k−1f

k−1.

The operators Dk−1
k and Pk

k−1 can be used to construct a multiresolution pyra-
mid. If fk is the input, then one stage of decomposition results in the decimated
signal fk−1 and the prediction error ek. Because ek is at the same sample rate as
fk, (fk−1, ek) redundantly represents fk. This single decomposition stage is iter-
ated on the decimated signal for a multiresolution representation (f0, e1, . . . , eL).

If the operators Dk−1
k and Pk

k−1 satisfy the consistence property, i.e.,

Dk−1
k Pk

k−1 = IV k , (1)

then, it is possible to design a non-redundant multiresolution decomposition.
Let Gk be a detail encoder such that dk = Gke

k is at half the sample rate of
ek, and let G̃k be the corresponding decoder such that G̃kGke

k = ek. Then
(fk−1, dk) is a non-redundant representation of fk. This single stage is iterated
on the decimated signal for a multiresolution representation (f0, d1, . . . , dL).

A multiresolution scheme within Harten’s framework is characterized by six
operators: The fundamental discretization Dk and reconstruction Rk, the deci-
mation operator Dk−1

k , the prediction operator Pk
k−1, and the detail operators

Gk and G̃k. The main classical problem in the MR schemes is to design a good
prediction operator that we will obtain using statistical Learning techniques.

2.2 Learning-Based Multiresolution (LMR)

In multiresolution analysis, we predict the results of the kth scale from the (k−
1)th scale without using the information of the k level. In order to compress the
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data, it is important that the components forming dk are zero (or close to zero).
We reformulate the problem as a typical Learning problem: Knowing Dk−1f and
Dkf , with f ∈ F , find an approximation to Dkf from Dk−1f . The underlying
idea is very easy; in the classical multiresolution the discrete data fk contains the
same information than fk−1 and dk, which represent non-redundant information
present in fk and non-predictable from fk−1 by the prediction operator Pk

k−1.
In order to construct this operator we do not use the information of fk. We need
details to be zero (or close to zero); for this we use fk to obtain our prediction
operator Pk

k−1 and we transfer part of the information contained in dk to Pk
k−1.

This allows us to obtain smaller details dk using this prediction operator. In this
case we have fk ≡ {fk−1, dk,Pk

k−1}. In this section we explain the Learning-
based multiresolution problem following Aràndiga et al. [2]. The aim is to learn
to predict, i.e., to adapt our operator to the data in each problem.

In a Learning problem there are two principal components:

1. Some input vectors x̃ ∈ Rn.
In Learning-based MR our random vectors are the data in the (k − 1)th
scale, fk−1 = Dk−1

k (fk) ∈ V k−1. These vectors are our input vectors.
2. A supervisor (S) returns an output value y to every input vector x̃.

In Learning-based MR our output value is each value in the kth scale,
i.e., each value of fk ∈ V k.

The problem in LMR is the following: from the given class of continuous lin-
ear operators (K, || · ||) find the one which best approximates the supervisor’s
response.

In Learning-based MR our prediction operator Pk
k−1 is the minimum of

the empirical risk functional, i.e., our general problem can be described as the
minimization of the functional:

Pk
k−1 = argmin

G∈K,||G||≤M

L(fk, G(fk−1)), (2)

where M is a fixed parameter, (K, || · ||) is the class of continuous linear operators
and L(y,G(x̃)) =‖ y −G(x̃) ‖ is the loss-function.

3 Learning-Based Multiresolution Schemes for
Point-Value Discretization

In this section we specify how to construct a prediction operator in the LMR
context ([2]). For this, we solve the learning problem which can be divided in
four parts:

i. First, we need the data. For this, in the MR context, we have to specify the
discretization operator.

ii. We have chosen the class of the continuous linear operators (K, || · ||) to
minimize the risk operator.

iii. Then, we have to choose the loss-function for the risk functional. Depending
on this function we can obtain different prediction operators, §3.3.

iv. Finally, we have to solve the problem of risk minimization.
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3.1 Learning-Based Multiresolution Schemes for Point-Value
Discretization on [0, 1]

In order to understand which is the Learning process in the Multiresolution
scheme, we explain the multiresolution schemes for point-value (PV). This is a
classical context employed in several examples (see, e.g., [4,15]).

Let us consider F = B[0, 1], the space of bounded functions on the closed unit
interval, and let XL a uniform partition of [0, 1].

XL = {xL
i }JL

i=0, xL
0 = 0, xL

i = ihL, hL = 1/JL, JL = 2LJ0, (3)

where J0 is some integer. We define the lower resolution grids Xk = {xk
i }Jk

i=0,
k = L− 1, . . . , 0, by the dyadic coarsening

xk−1
i = xk

2i, i = 0, . . . , Jk−1 := Jk/2. (4)

and we define fk = Dkf by

fk
i = (Dkf)i = f(xk

i ), fk = {fk
i }Jk

i=0. (5)

From xk−1
i = xk

2i the decimation can be defined as:

fk−1
i = (Dk−1

k fk)i = fk
2i, i = 0, . . . Jk−1. (6)

In Learning problem we also consider the next level fk and use this information
to obtain the prediction operator. The input vector is the stencil

Sr,s(fk−1
i ) = (fk−1

i−r , . . . , fk−1
i+s ) =: f̃k−1

i,r,s ,

and for each stencil f̃k−1
i,r,s we have an output value in the k-level fk

2i−1. With the
inputs and outputs we assemble a training set of observations (f̃k−1

i,r,s , f
k
2i−1), i =

r, . . . , Jk−1 − s.
We take the class of operators Kn = {ga : Rn → R : ga(x̃) =< x̃, a >: a ∈

Rn} ⊂ Π1
n(R) with n = r + s+ 1, where < ·, · > is the scalar product. It is easy

to prove that if a ∈ Rn then ||ga|| = ||a||. We fix a constant M and we select
the loss function Q�p = |y − ga(x̃)|p with 1 ≤ p < ∞. Then we formulate the
problem as follows:

τ = argmin
ga∈Kn,||ga||≤M

∑
i

Q�p(fk
2i−1, ga(f̃k−1

i,r,s )) =
∑

i

|fk
2i−1 − ga(f̃k−1

i,r,s )|p. (7)

or if p =∞,
τ = arg min

ga∈Kn,||ga||≤M

max
i
|fk

2i−1 − ga(f̃k−1
i,r,s )|. (8)

Then we define the prediction operator as{
(Pk

k−1f
k−1)2i = fk−1

i ,

(Pk
k−1f

k−1)2i−1 = τ(f̃k−1
i,r,s ).

(9)
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And finally the error is defined as

dk
i = ek

2i−1 = fk
2i−1 − (Pk

k−1f
k−1)2i−1 = fk

2i−1 − τ(f̃k−1
i,r,s ).

3.2 LMR Methods versus Linear Piecewise Interpolation Methods

We review the classical interpolation methods in the MR context. By the con-
sistence property (1) and by the definition of the discretization operator (5) a
reconstruction procedure is given by any operator Rk such that DkRkf

k = fk,
i.e. (Rkf

k)(fk
i ) = fk

i = f(xk
i ). Thus, (Rkf

k)(x) have to be a bounded function
that interpolates the set {fk

i }Jk

i=0 at the nodes {xk
i }Jk

i=0.
Using piecewise centered polynomial interpolation we obtain that if

Sr,s(xk−1
i ) = (xk−1

i−r , . . . , x
k−1
i+s )

is the stencil of points used with s = r − 1 (centered) then

(Pk
k−1f

k−1)2i−1 =
r∑

l=1

βl(fk−1
i+l−1 + fk−1

i−l ) (10)

where the coefficients βl are⎧⎪⎨⎪⎩
r = 1⇒ β1 = 1

2 ,

r = 2⇒ β1 = 9
16 , β2 = − 1

16 ,

r = 3⇒ β1 = 150
256 , β2 = − 25

256 , β3 = 3
256 .

In all the cases
(Pk

k−1f
k−1)2i = fk−1

i . (11)

If we use interpolation techniques (PV) the filters are always the same and they
are independent of the data that we have. On the other hand, with the LMR
methods we adapt the filters to the data. In order to appreciate these differences
we introduce the next example.

Example. Let the function

f(x) = (x + 1/4)2 sin(40π(x + 1/2)).

We discretize it in Jk = 32 values in the interval [0, 1] with the operator D5

defined in (5). We show these data in Table 2. We choose a centered stencil with
s = 1 and r = 2, so the class of functions will be K4. Therefore, for each input
vector of the level k − 1 we have an output value of the level k (Table 1).

Remark 1. In the boundary we use piecewise cubic interpolation not centered
for both methods: PV and LMR.
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Table 1. Training set of observations: Input vectors and output values for the Learning
process

Node Input Vector Output value

i f̃k−1
i,2,1 fk

2i−1

2 (0, 0.0977, 0,−0.1914) −0.0836
3 (0.0977, 0,−0.1914, 0) 0.1167
4 (0,−0.1914, 0, 0.3164) 0.1554
5 (−0.1914, 0, 0.3164, 0) −0.1996
6 (0, 0.3164, 0,−0.4727) −0.2493
7 (0.3164, 0,−0.4727, 0) 0.3045
8 (0,−0.4727, 0, 0.6602) 0.3653
9 (−0.4727, 0, 0.6602, 0) −0.4316
10 (0, 0.6602, 0,−0.8789) −0.5034
11 (0.6602, 0,−0.8789, 0) 0.5807
12 (0,−0.8789, 0, 1.1289) 0.6636
13 (−0.8789, 0, 1.1289, 0) −0.7520
14 (0, 1.1289, 0,−1.4102) −0.8459
15 (1.1289, 0,−1.4102, 0) 0.9453

We choose as loss function Q�2 , i.e. we pose the typical least squares problem.
Finally we take the bound for the norm of the prediction operator M = 1.
Therefore, a = (0.2021,−0.5556,−0.5087, 0.1552)T , where

a = min
ã∈R4,||ã||2≤1

15∑
i=2

|fk
2i−1 − (a1f

k−1
i−2 + a2f

k−1
i−1 + a3f

k−1
i + a4f

k−1
i+1 )|2

We define the LMR prediction operator for this example as:{
(Pk

k−1f
k−1)2i = fk−1

i ,

(Pk
k−1f

k−1)2i−1 = 0.2021fk−1
i−2 − 0.5556fk−1

i−1 − 0.5087fk−1
i + 0.1552fk−1

i+1 .
(12)

In the compress context when we use the LMR method we have to store the
details and also the filters values. We will denote by fn (filters number) the
number of the filters values to store. In this case fn= 4.

Now, from fk−1 (second column of the Table 2) we try to predict fk (sec-
ond column of the Table 2) using the polynomial interpolator ((10) with r = 2
and (11)) obtaining the sixth column of the Table 2 and using the LMR pre-
diction operator (12) obtaining the third column. We observe that the details
obtained with the LMR method are much smaller that those obtained with the
PV method.

In the next section we explain the choice of the loss-function and with this we
develop some theoretical properties.
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Table 2. Point-value reconstruction using the LMR4 and the cubic linear interpolation
(PV4) methods. There are some important differences in the error vector. The LMR
method adapts the prediction operator to the output values.

LMR4 PV4

fk fk−1 Pk
k−1fk−1 ek dk Pk

k−1fk−1 ek dk

0 0 0 0 0 0
−0.0559 0.0181 −0.0740 −0.0740 0.0181 −0.0740 −0.0740

0.0977 0.0977 0.0977 0 0.0977 0
−0.0836 −0.0840 0.0004 0.0004 0.0669 −0.1504 −0.1504

0 0 0 0 0 0
0.1167 0.1171 −0.0004 −0.0004 −0.1138 0.2305 0.2305

−0.1914 −0.1914 −0.1914 0 −0.1914 0
0.1554 0.1555 −0.0001 −0.0001 −0.1274 0.2828 0.2828

0 0 −0.0000 0 0 0
−0.1996 −0.1997 0.0001 0.0001 0.1899 −0.3895 −0.3895

0.3164 0.3164 0.3164 0 0.3164 0
−0.2493 −0.2492 −0.0001 −0.0001 0.2075 −0.4568 −0.4568

0 0 0 0 0 0
0.3045 0.3044 0.0001 0.0001 −0.2856 0.5902 0.5902

−0.4727 −0.4727 −0.4727 0 −0.4727 0
0.3653 0.3651 0.0002 0.0002 −0.3071 0.6724 0.6724

0 0 −0.0000 0 −0.0000 0
−0.4316 −0.4314 −0.0002 −0.0002 0.4009 −0.8325 −0.8325

0.6602 0.6602 0.6602 0 0.6602 0
−0.5034 −0.5032 −0.0002 −0.0002 0.4263 −0.9297 −0.9297

0 0 0.0000 0 0 0
0.5807 0.5806 0.0002 0.0002 −0.5356 1.1164 1.1164

−0.8789 −0.8789 −0.8789 0 −0.8789 0
0.6636 0.6636 0.0000 0.0000 −0.5649 1.2285 1.2285

0 0 0 0 0 0
−0.7520 −0.7519 −0.0000 −0.0000 0.6899 −1.4419 −1.4419

1.1289 1.1289 1.1289 0 1.1289 0
−0.8459 −0.8461 0.0002 0.0002 0.7231 −1.5690 −1.5690

0 0 0 0 0 0
0.9453 0.9456 −0.0002 −0.0002 −0.8638 1.8091 1.8091

−1.4102 −1.4102 −1.4102 0 −1.4102 0
1.0503 −0.1587 1.2090 1.2090 −0.1587 1.2090 1.2090

0 0 0 0 0 0

3.3 The Loss-Function in LMR Schemes

The choice of the loss function is very important for the LMR scheme. We
can choose several possible functions because we work with the set of linear
operators. The typical choice is the �p- norm, i.e., Q�p(y, ga(x̃)) = |y − ga(x̃)|p
with 1 ≤ p <∞; so, our problem is:

τ (x̃) = arg min
ga∈K,||ga||≤M

∑
i

Q�p(fk
2i−1, ga(f̃k−1

i,r,s)) = arg min
ga∈K,||ga||≤M

∑
i

|fk
2i−1 − ga(f̃k−1

i,r,s)|p,

(13)

where Kn = {ga : Rn → R : ga(x̃) =
∑n

j=1 ajxj : aj ∈ R, 1 ≤ j ≤ n} with
n = r + s + 1. Then:

a = min
ã∈Rn,||ã||≤M

∑
i

|fk
2i−1− < f̃k−1

i,r,s , ã > |p = min
ã∈Rn,||ã||≤M

||fk −Fk−1
r,s ã||pp, (14)

where f̃k = (fk
1 , f

k
3 , . . . , f

k
Jk−1)

T and Fk−1
r,s is a matrix with the i-row equal to

f̃k−1
i,r,s .
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If p =∞ then the problem (14) is:

b̃ = min
ã∈Rn,||ã||≤M

||fk−Fk−1
r,s ã||∞ = min

ã∈Rn,||ã||≤M
max

i
|fk

2i−1− < f̃k−1
i,r,s , ã > |, (15)

that is the classical Chebyshev problem.
When p = 2 is the typical least squares problem. We can reformulate the

�p problem as a second-order cone programs (SOCP) (see, e. g., [5]) and if the
dimensions of the system are not very large we can solve it using the cvx package
designed by Grant et al. [12,13]. In this work we will only use p = 1, 2,∞.

3.4 Some Properties of LMR Context

In this section we study some properties of LMR. For this, we present two im-
portant definitions.

Definition 1. Let the set of polynomials of degree less than or equal to r

p ∈ Πr
1 (R) = {g | ga(x) =

r∑
i=0

aix
i, ai ∈ R, ∀ i}.

Then the order of the prediction operator is r + 1 if

Pk
k−1(Dk−1p) = Dkp, (16)

i.e., the prediction operator is exact for polynomials of degree less than or equal
to r.

Theorem 1. The order of the prediction operator Pk
k−1 obtained by LMR

schemes with the class of functions Kn and the loss function Q�p, 1 ≤ p ≤ +∞
and n ≤M is at least n + 1.

Proof. We are going to obtain a solution for the problems (14) and (15) that
belongs to Kn and it is of order n + 1. Therefore, let the set of points

Sr,s(xk−1
i ) = {xk−1

i−r , . . . , x
k−1
i+s },

and {Lm(x)}m=−r,...,s is the Lagrange interpolation polynomials of grid points
Sr,s(xk−1

i ). Then, we define

qk−1
i (x; fk−1, r, s) :=

s∑
m=−r

fk−1
i+mLm

(
x− xk−1

i+m

hk−1

)
.

Thus
Ik−1(x; fk−1) = qk−1

i (x) x ∈ [xk−1
i−1 , x

k−1
i ], 1 ≤ i ≤ Jk−1

and we define the prediction operator as:

(Pk
k−1f

k−1)i = Ik−1(xk
i ; fk−1),
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a straightforward algebraic manipulation shows that

(Pk
k−1f

k−1)2i = fk−1
i ,

(Pk
k−1f

k−1)2i−1 =
∑s

m=−r Lm(−1/2)fk−1
i+m.

(17)

This prediction operator is of order n + 1, with n = r + s + 1. Then let

b̃ = (L−r(−1/2), . . . , Ls(−1/2)),

for some polynomial p of degree n we have that

|pk
2i−1− < pk−1

i,r,s, b̃ > | = 0, ∀ 1 ≤ i ≤ Jk−1, ∀ k (18)

and as |Lm(−1/2)| ≤ 1, ∀m = −r, . . . , s then ||b̃||p ≤ n with p = 1, . . . ,∞.
Therefore, b̃ is a solution of the problems (14) and (15). �

Definition 2 (Stability of the multiresolution). The decomposition algo-
rithm is stable with respect to the norm || · || if ∃ C such that ∀ k, ∀ fk �→
(fJ0 , d1, . . . , dk) and f̂k �→ (f̂J0 , d̂1, . . . , d̂k), then

||fJ0 − f̂J0 || ≤ C||fk − f̂k||
||dm − d̂m|| ≤ C||fk − f̂k||, ∀ 1 ≤ m ≤ k.

The reconstruction algorithm is stable with respect to the norm || · || if ∃ C such
that ∀ k > J0, ∀ (fJ0 , d1, . . . , dk) �→ fk, (f̂J0 , d̂1, . . . , d̂k) �→ f̂k:

||fk − f̂k|| ≤ C sup(||fk−1 − f̂k−1||, ||dk − d̂k||). (19)

The question of stability is, of course, crucial when one intends to use the MR
transform in a signal compression context. Indeed, the difference between the
initial signal and the reconstructed signal after compression is controlled by
stability constants.

Theorem 2. The reconstruction algorithm with a bounded linear prediction op-
erator is stable.

Proof. First, we have that

||fk − f̂k|| = ||Pk
k−1f

k−1 −Pk
k−1f̂

k−1 + dk − d̂k|| ≤ ||Pk
k−1||||fk−1 − f̂k−1||+ ||dk − d̂k||,

(20)

as the prediction operator is bounded, we have a constant M > 0 such that
||Pk

k−1|| ≤M . Therefore,

||fk − f̂k|| ≤ (M + 1) sup(||fk−1 − f̂k−1||, ||dk − d̂k||). � (21)

Corollary 1. The reconstruction algorithm with the prediction operator Pk
k−1

obtained by LMR schemes with the class of functions Kn and the loss function
Q�p, 1 ≤ p ≤ +∞ (problems (14) and (15)) in the PV context is stable.
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4 Numerical Experiments

We consider multiresolution schemes in the point-value framework using re-
construction operators obtained from Lagrange polynomial interpolatory tech-
niques; using LMR techniques using loss function Q�p with p = 1, 2,∞ and the
PPH reconstruction.

Each multiresolution scheme is identified by an acronym. The equivalences
are as follows:

PV4: Point-value with interpolatory techniques using four centered points. The
prediction operator is:{

(Pk
k−1f

k−1)2i = fk−1
i ,

(Pk
k−1f

k−1)2i−1 = − 1
16f

k−1
i−2 + 9

16f
k−1
i−1 + 9

16f
k−1
i − 1

16f
k−1
i+1 .

PPH: This scheme introduced by Amat et al. [1] is a nonlinear stable algorithm
which consists in modifying the PV4 scheme:{

(Pk
k−1f

k−1)2i = fk−1
i ,

(Pk
k−1f

k−1)2i−1 = 1
2 (fk−1

i−1 + fk−1
i )− 1

8pph(d2fk−1
i , d2fk−1

i−1 ).

where d2fk−1
i = fk−1

i+1 − 2fk−1
i + fk−1

i−1 and pph is the function

pph(x, y) =
(
sign(x) + sign(y)

2

)
2|x||y|
|x|+ |y| , ∀ x, y ∈ R \ {0};

pph(x, 0) = 0, ∀ x ∈ R; pph(0, y) = 0, ∀ y ∈ R.

pLMRm: LMR methods with the �p norm chosen for the loss function (p =
1, 2,∞) and with m points used (here we will use m = 4 centered points).

We take J0 = 17 and JL = 1025, thus L = 6. In the LMR case we have
to store the filters of each level as we have indicated in §3.1. In §3.2 we have
denoted as fn (filters number). In this paper we take m = 4 and L = 6 then
fn= L×m = 24.

We truncate our details as follows:

d̂k
i =

{
dk

i , if |dk
i | ≥ ε;

0, if |dk
i | < ε.

with i = 0, . . . , Jk, where ε is the threshold parameter introduced. We measure
the error in the �p discrete norm with p = 1, 2,∞, so

E1 =
1
JL

∑
i

|fL
i − f̂L

i |, E2 =

√
1
JL

∑
i

|fL
i − f̂L

i |2, E∞ = ||fL − f̂L||∞.

A measure of the compression capabilities of the scheme can be given by the
factor:

rc =
JL − J0 − (nnz + fn)

JL − J0
(22)
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where nnz is the number of details different to zero (Dε = {(i, k) : |dk
i | > εk}).

In the LMR case we also include the number of filters, fn.
We attain full compression (rc = 1) when nnz=0 and fn=0. When nnz=JL−

J0 (and fn=0) we have no compression (rc = 0).
The discrete data to be analyzed consist of the point-values of different func-

tions, f1, f2, f3, on the finest grid (see Fig. 1). We use different types of functions:
oscillatory, oscillatory with a smooth part and oscillatory with a smooth part
and a discontinuity. Compressing this type of functions tends to be difficult us-
ing interpolation techniques because it needs more points to correctly interpolate
each wave.

f1(x) = 40(x + 1/4)2 sin(40π(x + 1/2)),

f2(x) =

⎧⎨⎩40 sin(40πx), 0 ≤ x ≤ 7/20;
−1.96, 7/20 ≤ x ≤ 267/500;
10 sin(30πx)− 2, 267/500 ≤ x ≤ 1,

f3(x) =

⎧⎨⎩
sin(0.2x), x ∈ [−2π, 0[∪[2π, 4π[;
sin(0.2x) + 0.2 sin(10x), x ∈ [0, 2π[;
sin(0.2x) + 1, in other case.

(a) (b) (c)

Fig. 1. Functions: (a) f1, (b) f2, (c) f3

The function f1 is specially difficult to compress with linear methods (PV) as
we can see in Table 3. In the LMR methods the prediction operator has much
information; thus, we can see that these methods have a high compression rate
because the part of information is transfered from the details to the prediction
operator. There are not differences between the methods with Q�1 and Q�2 .

In the next example, function f2, we can see that if the function has an
oscillatory zone and a smooth zone, the loss function Q�2 acts only about the
oscillatory zone and it losses information about the smooth zone, so this scheme
does not offer good results.

We have chosen the function f1 because the training set is similar. In f2 we
introduce a constant part with two oscillatory parts. In this example, we will
see that the LMR scheme with loss function Q�2 needs many details to obtain a
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Table 3. Function f1. Errors and number of details obtained with various compression
schemes.

m = 4, ε = 10−3

E1 E2 E∞ fn nnz rc

PV4 1.16 · 10−4 2.66 · 10−4 9.97 · 10−4 0 741 0.264
∞LMR4 1.20 · 10−4 2.12 · 10−4 1.17 · 10−3 24 95 0.882
2LMR4 1.83 · 10−4 2.95 · 10−4 9.97 · 10−4 24 79 0.897
1LMR4 1.80 · 10−4 2.80 · 10−4 9.33 · 10−4 24 66 0.910
PPH 4.87 · 10−5 1.81 · 10−4 9.99 · 10−4 0 925 0.082

Table 4. Function f2. Errors and number of details obtained with various compression
schemes.

m = 4, ε = 10−3

E1 E2 E∞ fn nnz rc

PV4 7.36 · 10−5 1.72 · 10−4 9.83 · 10−4 0 554 0.450
∞LMR4 3.48 · 10−6 4.82 · 10−5 9.01 · 10−4 24 1002 −0.017
2LMR4 8.71 · 10−6 7.40 · 10−5 8.56 · 10−4 24 991 −0.006
1LMR4 2.69 · 10−4 4.43 · 10−4 9.67 · 10−4 24 375 0.604
PPH 8.09 · 10−5 2.05 · 10−4 9.79 · 10−4 0 639 0.366

Table 5. Function f3. Errors and number of details obtained with various compression
schemes.

m = 4, ε = 10−3

E1 E2 E∞ fn nnz rc

PV4 5.37 · 10−5 1.24 · 10−4 9.30 · 10−4 0 165 0.836
∞LMR4 1.20 · 10−4 2.88 · 10−4 1.55 · 10−3 24 832 0.150
2LMR4 1.97 · 10−4 3.71 · 10−4 1.55 · 10−3 24 670 0.311
1LMR4 6.72 · 10−5 1.20 · 10−4 5.47 · 10−4 24 89 0.887
PPH 1.16 · 10−5 2.24 · 10−4 1.58 · 10−3 0 164 0.837

good approximation. We have more quantity of nnz using LMR methods with
p = 2,∞. However, if we use the loss function Q�1 we obtain the third part of
the details than the PV method with lower errors E2, E1, E∞. We can see this
in Table 4.

In the last experiment, function f3 (Table 5), we introduce an oscillatory
part, a smooth part and a discontinuity. In Table 5, we can see that the results
obtained with 1LMR4 are really good, taking into account that the signal is
quite difficult to compress. The other methods obtain worse results than the
linear method (PV) and PPH method.

In conclusion the prediction operator using the loss function Q�2 reduces the
errors in the difficult zones of the function as the oscillatory zones. Problems can
arise when the function presents oscillatory zones and smooth zones; then, the
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method 2LMR losses its efficiency. In order to solve this problem, we introduce
the robust norm Q�1 and we obtain a highly compression rate in every type of
signals.

5 Conclusions and Future Research

In this work, we use the method developed by Aràndiga et al. (see, e.g., [2,18])
based on Harten’s framework [15]. It consists in adapting our prediction operator
to the data of the level that we have to predict, i.e., knowing the result find
the best prediction operator in an admissible class, K. In order to obtain our
prediction operator we use a loss function, Q, to measure the difference between
the real value and our approximate value. So, the LMR problem is to find an
operator within the class K which minimizes the loss function Q.

Therefore, we integrate ([2]) one new idea from a new field, Learning statistical
theory, into Harten’s framework.

We use this method to compress signals with some conclusions:

i. The method obtains a high compression rate in signals that are difficult to
compress.

ii. We adapt our prediction operator to the data. Therefore, we have to store
the coefficients of this operator (fn).

iii. When the training set has similar characteristics, then the method with
some �p-norm produces good results.

iv. When the training set has not similar characteristics, then the only method
which produces great results is when the loss function is the �1 norm.
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Francesc Aràndiga, Rosa Donat, and Maria Santágueda

Depto. Matematica Aplicada. Universitat de Valencia
Avda Dr Moliner 50, 46100 Burjassot, Spain
{arandiga,donat,m.santagueda}@uv.es

http://gata.uv.es/

Abstract. In this paper we present and analyze a generalization of the
Powerp subdivision schemes proposed in [3,12]. The Weighted-Powerp

schemes are based on a harmonic weighted version of the Powerp aver-
age considered in [12], and their development is motivated by the desire
to generalize the nonlinear analysis in [3,5] to interpolatory subdivision
schemes with higher than second order accuracy.

Keywords: Nonlinear subdivision scheme, convergence, stability, regu-
larity.

1 Introduction

Subdivision schemes are a powerful tool for the fast generation of curves and
surfaces in computer-aided geometric design, as well as an essential ingredient
in many multiscale algorithms used in data compression. The convergence pro-
perties of the recursive process specified by a subdivision scheme is of great
importance in image, or surface, generation, as well as in image compression,
hence it has been, and continues being, the subject of active research.

Many classical, data-independent, subdivision schemes can be described as
linear operators between spaces of sequences. The convergence properties of li-
near subdivision schemes is a well understood subject nowadays (see e.g. [9,15]
and references therein). The inability of linear subdivision schemes to reconstruct
’discontinuous’ discrete data without creating spurious oscillations is also a well
known deficiency which motivates the search for nonlinear schemes with specific
properties.

In recent years, several nonlinear subdivision schemes have been proposed (see
e.g.[4] and references therein) in an attempt to avoid the Gibb’s-like oscillatory
behavior that occurs when linear techniques are used to refine discrete data that
displays a nearly discontinuous behavior. The analysis of nonlinear subdivision
schemes cannot be carried out with the same techniques as in the linear case.
A successful way to study the convergence properties of a nonlinear subdivision
scheme follows from the ability to write the nonlinear scheme as a perturbation of
a standard linear subdivision scheme whose convergence properties are known. It
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is shown in [5] that, in such cases, convergence can be obtained if the perturbation
satisfies certain contraction properties.

In this paper we propose a new class of nonlinear subdivision schemes that
generalize the Powerp interpolatory subdivision schemes analyzed in [3,12]. Our
schemes are based on a weighted harmonic mean, instead of the regular harmonic
mean used in [3,12], in the definition of the nonlinear part of the scheme. Our
motivation for considering the weighted harmonic mean stems from the desire
to construct nonlinear versions of the six-point Deslauries-Dubuc interpolatory
schemes, in a similar way to the construction of the PPH scheme in [4,5,6], or
the Powerp schemes, as non-linear counterparts to the 4-point Deslauries-Dubuc
interpolatory scheme.

The paper is organized as follows: in Section 2 we recall several well known
linear and nonlinear subdivision schemes, in order to motivate the introduction
of the nonlinear weighted mean studied in this paper. We also recall the main
results about interpolatory subdivision schemes which are used to study the
proposed nonlinear schemes. In Section 3 we briefly recall the schemes Powerp

and in Section 4 we introduce the Weighted-Powerp mean, and the corresponding
subdivision schemes. We also study their properties with respect to convergence,
stability and polynomial reproduction. Finally, in Section 5 we present a nume-
rical example that shows that the proposed subdivision schemes also behave in
a non-oscillatory manner when refining discrete discontinuous data. We close in
Section 6 with some conclusions and future perspectives.

2 Linear and Nonlinear Interpolatory Subdivision
Schemes

In subdivision algorithms, discrete data are recursively generated from coarse to
fine scales by means of local rules. A linear (uniform) subdivision scheme S is
defined as follows

(Sf)n =
∑
m∈Z

an−2mfm, ∀f ∈ l∞(Z), ∀n ∈ Z.

The mask of the scheme, i.e. the sequence {an}, is of finite length, and charac-
terizes the subdivision procedure. Interpolatory subdivision schemes have the
property that the set of control points at each level of refinement remain un-
changed after the application of the refinement rules which, in terms of the mask
means that a2n = δ0,n.

An important class of linear (that is, data-independent) interpolatory subdi-
vision schemes are the Deslauries-Dubuc (DD henceforth) subdivision schemes,
[14]. As noticed by A. Harten [16], the local refinement rules of DD subdivision
schemes can be obtained by evaluating a Lagrange interpolatory polynomial
whose interpolation stencil is symmetric with respect to the evaluation point.
As in [16], we shall refer to the Deslauries-Dubuc subdivision schemes whose
interpolation stencil comprises l points on the left and l points on the right to
the evaluation point as Sl,l. Most relevant to the contents of this paper are the
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two-point, S1,1, the four point, S2,2, and the six-point, S3,3, DD interpolatory
subdivision schemes, based on first, third and fifth order interpolatory polyno-
mials. These schemes can be expressed as follows (see e.g. [16]){

(S1,1f)2n = fn,
(S1,1f)2n+1 = 1

2fn + 1
2fn+1.

(1)

{
(S2,2f)2n = fn,
(S2,2f)2n+1 = − 1

16fn−1 + 9
16fn + 9

16fn+1 − 1
16fn+2.

(2){
(S3,3f)2n = fn,
(S3,3f)2n+1 = 3

256fn−2 − 25
256fn−1 + 150

256fn + 150
256fn+1 − 25

256fn+2 + 3
256fn+3.

(3)
This paper is concerned with the study of a generalization of the nonlinear
operator used in the construction of the nonlinear versions of the S2,2 scheme
defined in [4,3,12].

The S2,2 scheme can also be written as{
(S2,2f)2n = fn,

(S2,2f)2n+1 = fn+fn+1
2 − 1

8 mean(∇2fn+1,∇2fn),

with mean(x, y)=x+y
2 and∇2fk = fk+1−2fk+fk−1. The PPH 1 scheme proposed

in [4] substitutes the arithmetic mean above by the PPH -mean of the same two
values, where

PPH(x, y) =
sign(x) + sign(y)

2
2|x||y|
|x|+ |y| . (4)

The Powerp schemes are a generalization of the PPH scheme (which is seen to
be a Powerp scheme, with p = 2). As shown in [4,12], these schemes manage
to avoid Gibb’s like behavior close to a discontinuity in the data because the
Powerp mean stays close to the minimum of the two values if their relative size
is very large. We can explain this behavior by rewriting the S2,2 scheme as

S2,2 =
1
2
S2,1 +

1
2
S1,2,

where Sl,r is the interpolatory subdivision scheme whose interpolation stencil
spans l points to the left and r points to the right of the evaluation point. It can
readily be seen that

(S1,2f)2n+1 =
1
2
(fn + fn+1)− 1

8
∇2fn+1,

(S2,1f)2n+1 =
1
2
(fn + fn+1)− 1

8
∇2fn,

so that these nonlinear schemes stay closer to the S2,1, or the S1,2 scheme when
there is a large gradient, thus avoiding the oscillations associated to interpolatory
stencils that cross a discontinuity in the data.
1 PPH stands for Piecewise Polynomial Harmonic, see [4].
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In [8], we show that a similar reasoning can be carried out in order to design a
non-linear version of the S3,3 DD-scheme. In this case it is necessary to consider
non-linear versions of weighted averages, where the weights are different from
1/2, which motivates the introduction of the Weighted-Powerp mean defined in
this paper. It is easy to see (see [12]) that Power2(x, y) = PPH(x, y). We shall
define the weighted nonlinear mean in such a way that

WPp, 1
2 , 1

2
(x, y) = Powerp(x, y),

and study, in this paper, what properties of the Powerp mean can also be ex-
tended to the weighted case, and under what conditions.

We shall consider next the simpler case of constructing a nonlinear version of
the S3,2 scheme, which is an interpolatory subdivision scheme that considers an
interpolatory stencil composed of 3 points to the left and two points to the right
of the interpolation point. It is not difficult to see that

S3,2 =
3
8
S3,1 +

5
8
S2,2,

and also that

(S3,1f)2n+1 =
1
2
(fn + fn+1)−

(
3
16
∇2fn − 1

16
∇2fn−1

)
,

hence
(S3,2f)2n+1 =

1
2
(fn + fn+1)− 3

8
A− 5

8
B, (5)

with
A =

1
16

(
3∇2fn −∇2fn−1

)
, B =

1
16

(∇2fn +∇2fn+1

)
.

Hence, if we try to define a nonlinear version of the S3,2 scheme that would
remain as close as possible to the S3,1 scheme, for example because we would
like to diminish the influence of the singularity-crossing stencil, it would be more
appropriate to consider weighted versions of the PPH mean, or Powerp mean.
The study performed in this paper can be considered as a first step in order to
design and study non-linear versions of the S3,2, and the S3,3 schemes.

2.1 Convergence and Stability of a Subdivision Scheme

It is important to remark that the tools to analyze the convergence and stability
properties of a nonlinear subdivision scheme are very different from those applied
in the linear case. In this paper, we follow the framework in [4] in order to analyze
the convergence properties of our proposed schemes. We give below the relevant
definitions for the sake of completeness, see e.g. [2,3,4,12].

Definition 1. Convergence. A subdivision operator is called uniformly con-
vergent if, for every set of initial data f0 ∈ l∞(Z), there exists a continuous
function S∞f0 ∈ C(R), such that

lim
k→∞

||Skf0 − S∞f0(2−k·)||l∞(Z) = 0.
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Definition 2. Cα− Convergence. A convergent subdivision scheme S is said
to be Cα− convergent if S∞f ∈ Cα−, for all f ∈ l∞(Z). We recall (see e.g. [12])
that the space Cα−, 0 < α ≤ 1, is the space of bounded continuous functions
such that there exists a constant C > 0 so that

∀x, y ∈ R, |f(x)− f(y)| ≤ C|x− y|α1 , ∀α1 < α.

If α > 1, α = p + r > 0 with p ∈ N and 0 < r < 1,

Cα− = {f : f (p) ∈ Cr−},
where f (p) stands for the derivative of order p.

Definition 3. Stability. A convergent subdivision operator is called stable, if
there exists a constant C such that, for every pair of initial data f0, f̃0 ∈ l∞(Z),

||S∞f0 − S∞f̃0||L∞ ≤ C||f0 − f̃0||l∞(Z).

In [3], the authors develop a tool to analyze the convergence and stability of
nonlinear subdivision schemes SNL : l∞(Z) → l∞(Z) that can be written as a
nonlinear perturbation of a convergent linear scheme, i.e.,

∀f ∈ l∞(Z),
{

(SNL)2n = fn,
(SNL)2n+1 = (Sf)2n+1 + F (δf)2n+1,

∀n ∈ Z, (6)

where F is a nonlinear operator defined on l∞(Z), δ is a linear and continuous
operator on l∞(Z) and S is a linear subdivision scheme. The following results
can be found in [3].

Theorem 1. Let SNL be a nonlinear subdivision scheme which can be written
in the form (6), with S a convergent linear subdivision scheme. If F and δ satisfy
the following conditions:

∃M > 0, : ∀d ∈ l∞(Z) ||F (d)||∞ ≤M ||d||∞, (7)

∃L > 0, ∃T < 1 : ∀f ∈ l∞(Z) ||δSL
NL(f)||∞ ≤ T ||δf ||∞, (8)

then the subdivision scheme SNL in (6) is uniformly convergent. Moreover, if S
is Cα− convergent, then SNL is Cβ− convergent with β = min{− log2(T )

L , α}.
Theorem 2. Let SNL be a nonlinear subdivision scheme that reproduces cons-
tants and which can be written in the form (6), with S a linear subdivision scheme
which is convergent. If F and δ satisfy the following two conditions,

∃M > 0 : ||F (d1)− F (d2)||∞ ≤M ||d1 − d2||∞, (9)

∃L > 0 ∃T < 1 : ||δ(SL
NL(f)− SL

NL(g))||∞ ≤ T ||δ(f − g)||∞, (10)

∀f, g, d1, d2 ∈ l∞(Z), then the nonlinear subdivision scheme SNL is stable.
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Amat et al. use these results in [3] in order to obtain convergence and stability
results for the Powerp interpolatory subdivision schemes. In this paper, we use
these results in order to study the convergence and stability properties of a new
class of nonlinear interpolatory subdivision schemes based on a generalization of
the Powerp mean. We recall next certain basic facts about the Powerp schemes.

3 Powerp Interpolatory Subdivision Schemes

The Powerp schemes are introduced in [3,12], as a generalization of the PPH
scheme in [4]. These schemes are defined as follows [3]{

(SPowerpf)2n = fn,
(SPowerpf)2n+1 = 1

2 (fn + fn+1)− 1
8Powerp(∇2fn,∇2fn+1),

(11)

where the nonlinear mean

Powerp(x, y) =
sign(x) + sign(y)

2

∣∣∣∣x + y

2

∣∣∣∣ (1−
∣∣∣∣x− y

x + y

∣∣∣∣p) , (12)

is introduced in [18] in the context of nonlinear approximation techniques to the
solution of hyperbolic conservation laws.

It is easy to see that PPH (x, y) = Power2(x, y). Moreover (see [18])

Power1(x, y) =
sign(x) + sign(y)

2
min{|x|, |y|} =: minmod(x, y).

4 Weighted-Powerp Interpolatory Subdivision Schemes

In this paper we propose to study the class of schemes that result from conside-
ring the following generalization of the Powerp mean: For any a > 0, b > 0, we
define the Weighted-Powerp of two real numbers, x, y as follows,

WPp,a,b(x, y) =
sign(x) + sign(y)

2

∣∣∣∣ax + by

a + b

∣∣∣∣
(

1− |x− y|p
(M + d

cm)(M + c
dm)p−1

)
,

(13)
where M = max{|x|, |y|}, m = min{|x|, |y|}, c = max{a, b} and d = min{a, b}.

It is easy to see that WPp,γ,γ(x, y) = Powerp(x, y), ∀γ ∈ R+\{0}. In addition,

WPp,a,b(x, y) = WPp, a
a+b , b

a+b
(x, y),

is also deduced directly from (13). Therefore we shall henceforth assume that
the parameters a, b satisfy 0 < a, b < 1 and a + b = 1.

The definition of the scheme SWPp,a,b
is, then, as follows{

(SWPp,a,b
f)2n = fn,

(SWPp,a,b
f)2n+1 = 1

2 (fn + fn+1)− 1
8WPp,a,b(∇2fn,∇2fn+1).

(14)

The properties of the SWPp,a,b
scheme are directly related to some properties of

the Weighted-Powerp mean, which are described next.
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4.1 Properties of the Weighted-Powerp Mean

In what follows, and unless specifically stated, we shall assume that a ≥ 0, b ≥ 0,
a + b = 1, p ≥ 1. The following algebraic properties of the weighted average
WPp,a,b are deduced directly from its definition (13).

Proposition 1. Let (x, y) ∈ R2. The following properties hold

E1. WPp,a,b(x, x) = x. (15)
E2. WPp,a,b(x, y) = 0 if xy ≤ 0. (16)
E3. WPp,a,b(x, y) = WPp,b,a(y, x). (17)
E4. WPp,a,b(−x,−y) = −WPp,a,b(x, y). (18)

The following proposition generalizes a key result in [3]. It is a consequence of
an additive property, similar to the one obtained for the Powerp mean.

Proposition 2. Let α = c/d = max{a, b}/min{a, b}. Then for each p ≥ 1, the
Weighted-Powerp mean satisfies the following relation

WPp,a,b(x, y) =
sign(x) + sign(y)

2
ax + by

cM + dm
m

[
1 + α

p−1∑
k=1

|x− y|k
(M + αm)k

]
. (19)

Proof. Let us asume that x, y > 0, since all other cases are either trivial or
can be reduced to this one using (16) and (18). The result can be deduced from
exploting the relation between the Weighted-Powerp means corresponding to two
consecutive indices, say p and p + 1. Notice that

WPp+1,a,b(x, y) = (ax + by)

(
1− |x− y|p+1

(M + d
cm)(M + c

dm)p

)

= (ax + by)
(

1− |x− y|p
(M + 1

αm)(M + αm)p−1

|x− y|
(M + αm)

)
.

Since
M = 1

2 (|x + y|+ |x− y|)
m = 1

2 (|x + y| − |x− y|) i.e.
|x + y| = M + m

|x− y| = M −m,
(20)

we have that

|x− y|
M + αm

=
M −m

M + αm
= 1− (1 + α)

m

M + αm
, (21)

so that we can write

WPp+1,a,b(x, y) = WPp,a,b(x, y) + (1 + α)m
ax + by

(M + 1
αm)

|x− y|p
(M + αm)p

= WPp,a,b(x, y) + αm
ax + by

(cM + dm)
|x− y|p

(M + αm)p
,
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where we have used that

c(α + 1) = c
c + d

d
=

c

d
= α.

On the other hand, it is easy to see that

|x− y|
M + m

α

=
M −m

M + m
α

= 1−
(

1 +
1
α

)
m

M + m
α

= 1− m

c(M + m
α )

, (22)

from which we readily deduce

WP1,a,b(x, y) = (ax + by)
(

1− |x− y|
M + 1

αm

)
=

ax + by

cM + dm
m.

This allows us to prove (19). �

The next result states certain estimates for the Weighted- Powerp mean which
generalize those in [3] for the Powerp mean.

Proposition 3. The mean WPp,a,b with p ≥ 1 satisfies:

C1 |WPp,a,b(x, y)| ≤ max{|x|, |y|}, ∀(x, y) ∈ R2. (23)
C2 |WPp,a,b(x, y)| ≤ 2 max{|ax|, |by|}, ∀(x, y) ∈ R2. (24)
C3 |WPp,a,b(x, y)| ≤ pαmin{|x|, |y|}, ∀(x, y) ∈ R2. (25)
C4 ∀x, y > 0, ∀q > p,WPp,a,b(x, y) ≤WPq,a,b(x, y), and

1
α

min{x, y} ≤ ax + by

cM + dm
min{x, y} ≤WPp,a,b(x, y) ≤ ax + by. (26)

where α = c/d = max{a, b}/min{a, b}.
Proof. As in the case of the previous proposition, it is enough to consider the
case x, y > 0 in order to prove C1, C2 and C3.
C1: From (21) we readily deduce that

|x− y|
M + αm

= 1− m

dM + cm
,

and since

0 <
m

dM + cm
=

(d + c)m
dM + cm

< 1,

we readily get that

0 <
|x− y|
M + αm

< 1.

Similarly, using (22) we get

0 <
|x− y|
M + m

α

< 1,
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hence

0 < 1− |x− y|p
(M + 1

αm)(M + αm)p−1
< 1.

Thus,

|WPp,a,b(x, y)| ≤ |(ax + by)|
∣∣∣∣(1− |x− y|p

(M + 1
αm)(M + αm)p−1

)∣∣∣∣ ≤ |ax + by|

≤max{|x|, |y|},

since a + b = 1.

C2: Proceeding as before, but using |ax+ by| ≤ |ax|+ |by| in the last step of the
estimations above, we get

|WPp,a,b(x, y)| ≤ |ax + by| ≤ 2 max{|ax|, |by|}.

C3: We use equation (19). We have seen that |x− y|/(M + αm) ≤ 1. In addition,
it is easy to deduce that (ax + by)/(cM + dm) ≤ 1. Hence

1 + α

p−1∑
k=1

|x− y|k
(M + αm)k

≤ (1 + α(p− 1)) ≤ pα,

since 1− α < 0. The desired estimate follows easily.

C4: This follows in a straightforward manner from relation (19).

In the following section we will see that these properties lead to a proof of the
convergence of the SWPp,a,b

schemes, based on Theorem 1.

4.2 Convergence Analysis

Notice that the scheme SWPp,a,b
in (14) can be written as a nonlinear pertur-

bation of the S1,1 scheme, which is C1− convergent. The perturbation is given
by the operator F (d) so that F (d)2n+1 = − 1

8WPp,a,b(dn, dn+1), and the li-
near operator δ is (δf)n = ∇2fn = fn+1 − 2fn + fn−1. The properties of the
Weighted-Powerp mean shown in the previous section will allow us to generalize
the convergence results in [3,12] for the Powerp schemes.

Theorem 3. For all p ≥ 1, the nonlinear subdivision scheme SWPp,a,b
is uni-

formly convergent, and for any initial sequence the limit function belongs to C1−.

Proof. The necessary estimates on the norm of the nonlinear operator F are
derived from the estimates for the Weighted-Powerp mean. Using (23), we get
for d ∈ l∞(Z)

|(F (d))2n+1| ≤ 1
8

max{|dn|, |dn+1|}, ∀n → ||F (d)||∞ ≤ 1
8
||d||∞. (27)
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In order to check (8), we consider separately the case of odd and even indices.

(∇2(SWPp,a,b
f))2n+1 = fn − 2(SWPp,a,b

f)2n+1 + fn+1

=
1
4
WPp,a,b(∇2fn,∇2fn+1).

Hence, from (23), we get

|(∇2(SWPp,a,b
f))2n+1| ≤ 1

4
||∇2f ||∞. (28)

For even components we have instead

(∇2(SWPp,a,b
f))2n = (SWPp,a,b

f)2n+1 − 2fn + (SWPp,a,b
f)2n−1

=
∇2fn

2
− 1

8
(WPp,a,b(∇2fn,∇2fn+1) + WPp,a,b(∇2fn−1,∇2fn)).

From these relations and (23) we easily get that

|(∇2(SWPp,a,b
f))2n| ≤ 3

4
||∇2f ||∞,

hence ||∇2SWPp,a,b
f ||∞ ≤ 3

4 ||∇2f ||∞ and, from Theorem 1, we have SWPp,a,b
f

is Cβ− convergent with β = −log2(3/4). However, the bound above can be set
to 1/2 by using the same trick as in [6]. Define the function

Zp,a,b(x, y, z) =
x

2
− 1

8
(WPp,a,b(x, y) + WPp,a,b(z, x)).

Then, following the same steps as in [12]-Theorem II.7, we have |Zp,a,b(x, y, z)| ≤
1
2 max{|x|, |y|, |z|}. Hence,

|(∇2(SWPp,a,b
f))2n| ≤ 1

2
||∇2f ||∞, (29)

and
||∇2(SWPp,a,b

f)||∞ ≤ 1
2
||∇2f ||∞ ∀p.

This estimate, allows us to conclude that the WPp,a,b schemes are, in fact, at
least C1− convergent.

4.3 Stability Analysis

As in the case of the Powerp schemes, stability follows from certain estimates
on the difference of two weighted harmonic means. We have only been able to
obtain the necessary estimates for p = 2. We notice that for p = 2, the WPp,a,b

mean takes the following simpler form.

Proposition 4

WP2,a,b(x, y) =
sign(x) + sign(y)

2
xy

a|y|+ b|x| . (30)
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Proof. We first notice that(
M +

d

c
m

)(
M +

c

d
m
)

= M2 + m2 +
(
d

c
+

c

d

)
Mm = (M −m)2 +

Mm

cd

= (x− y)2 +
|x||y|
ab

,

since Mm = |x||y|, c + d = a + b = 1 and cd = ab.
Let us assume that x > 0, y > 0 since all other cases are either trivial or can

be reduced to this one, by using the properties of the WPp,a,b mean. Then

1− (x− y)2

(M + d
cm)(M + c

dm)
= 1− (x − y)2

(x− y)2 + xy
ab

=
xy
ab

(x− y)2 + xy
ab

.

But we can also write

(x− y)2 +
xy

ab
= x2 + y2 +

(
a

b
+

b

a

)
xy =

1
ab

(ax + by)(ay + bx).

Hence, substituting into the definition of WP2,a,b we have

WP2,a,b(x, y) = (ax + by)

(
1− (x− y)2

(M + d
cm)(M + c

dm)

)
=

xy

bx + ay
. �

These relations become useful in proving the following proposition.

Proposition 5. ∀(x1, y1), (x2, y2) ∈ R2

|WP2,a,b(x1, y1)−WP2,a,b(x2, y2)| ≤ 2αmax{|x1 − x2|, |y1 − y2|}. (31)

Proof. We consider the following cases:

1. The cases x1y1 ≤ 0 and x2y2 ≤ 0 are trivial since the left hand side (l.h.s)
of (31) is zero.

2. If x1y1 > 0 and x2y2 ≤ 0, we get

|WPp,a,b(x1, y1)−WPp,a,b(x2, y2)| = |WPp,a,b(x1, y1)| ≤ pαmin{|x1|, |y1|}.
Then, given the sign combination between the points, we can have only two
situations: Either x1x2 < 0, in which case

|WPp,a,b(x1, y1)−WPp,a,b(x2, y2)| ≤ pα|x1| ≤ pα|x1 − x2|
≤ pαmax{|x1 − x2|, |y1 − y2|},

or y1y2 < 0, which is absolutely similar.
3. The case x1y1 ≤ 0 and x2y2 > 0 is equivalent to the previous one.
4. Let us assume now that x1y1 > 0 and y2x2 > 0. Then either (x1, y1) and

(x2, y2) both belong to the first or the third quadrant, i.e. x1x2 > 0 and
y1y2 > 0, or to opposite quadrants, in which case x1x2 < 0 and y1y2 < 0.
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(a) If x1x2 < 0 and y1y2 < 0 the two points belong to opposite quadrants
of the plane. Then, we have from equation (25):

|WPp,a,b(x1, y1)−WPp,a,b(x2, y2)| ≤ pα(min{|x1|, |y1|}+ min{|x2|, |y2|})
≤ pαmax{|x1 − x2|, |y1 − y2|}.

(b) If x1x2 > 0 and y1y2 > 0 both points belong to the same quadrant.
Without loss of generality, we can assume x1,2 > 0, y1,2 > 0.
Using (30) we have

WP2,a,b(x, y) =
xy

bx + ay
.

Applying the mean value theorem, we have

|WP2,a,b(x1, y1)−WP2,a,b(x2, y2)|
≤ ||∇WP 2,a,b(ξx, ξy)||∞||(x1, y1)− (x2, y2)||∞,

so that we only need to bound

∂xWP2,a,b(x, y) =
ay2

(ay + bx)2
, ∂yWP2,a,b(x, y) =

bx2

(ay + bx)2
.

We can easily prove that

0 ≤ ∂xWP2,a,b(x, y) ≤ 1
a
, 0 ≤ ∂yWP2,a,b(x, y) ≤ 1

b
,

hence
||∇WP 2,a,b(ξx, ξy)||∞ ≤ 1

d
,

and

|WP2,a,b(x1, y1)−WP2,a,b(x2, y2)| ≤ 1
d

max{|x1 − x2|, |y1 − y2|}.
Since 1/d < 2α, the bound (31) holds in all cases. �

As in [6], the stability of the Weighted-Powerp schemes for p = 2 follows from
Theorem 2, thanks to a two step contraction property, analogous to the one
shown in [6] for the PPH scheme.

Proposition 6. If ab ≥ 1
8 , f̂ = SWP2,a,b

(f), ĝ = SWP2,a,b
(g), f̄ = SWP2,a,b

(f̂),
ḡ = SWP2,a,b

(ĝ), then

1 ||∇2f̂ ||∞ ≤ 1
2
||∇2f ||∞.

2. |∇2(f̂2n+1 − ĝ2n+1)| ≤ α

2
||∇2(f − g)||∞.

|∇2(f̂2n − ĝ2n)| ≤
(

1
2

+
α

2

)
||∇2(f − g)||∞.

3. ||∇2(f̄ − ḡ)||∞ ≤ τ ||∇2(f − g)||∞, τ = max
{

1 + α + α2

4
,
2α + α2

4

}
,

where α = c/d = max{a, b}/min{a, b}.
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The proof follows the same steps in [6] and is omitted. As in [6], it requires
certain bounds on an auxiliary function Z2,a,b(x, y, z), which are provided by the
following lemma. We include the proof of the lemma, because it serves to show
that the lack of symmetry of the WP2,a,b-mean leads to certain constraints in
the coefficients, in order to ensure analogous stability bounds.

Lemma 1. Let Z2,a,b : R3 → R be defined as

Z2,a,b(x, y, z) =
x

2
− 1

8
(WP2,a,b(x, y) + WP2,a,b(z, x)), (32)

then, provided ab ≥ 1/8, the following two inequalities hold:

1 |Z2,a,b(x, y, z)| ≤ |x|2 , (33)

2 |Z2,a,b(x1, y1, z1)− Z2,a,b(x2, y2, z2)|
≤ 1

2
|x1 − x2|+ α

2
max{|y1 − y2|, |z1 − z2|}. (34)

Proof. To prove (33), we use (30) and

0 ≤ sign(x) + sign(y)
2

y

a|y|+ b|x| ≤
1
a
, 0 ≤ sign(z) + sign(x)

2
z

a|x|+ b|z| ≤
1
b
.

Then,∣∣∣∣1− 1
4
sign(x) + sign(y)

2
y

a|y|+ b|x| −
1
4
sign(z) + sign(x)

2
z

a|x|+ b|z|
∣∣∣∣ ≤ 1,

provided ab ≥ 1/8, which proves (1).
Let us prove (34). We denote Zi := Z2,a,b(xi, yi, zi), i = 1, 2. Suppose first

that x1 ≥ 0 and x2 ≤ 0. Then

|Z1 − Z2| ≤ |Z1|+ |Z2| ≤ |x1|
2

+
|x2|
2

=
x1 − x2

2
=
|x1 − x2|

2
.

Let us assume now that x1 > 0, x2 > 0. We can write

Z1 − Z2 =
x1 − x2

2
− 1

8
B − 1

8
C,

where

B = WP2,a,b(x1, y1)−WP2,a,b(x2, y2), C = WP2,a,b(z1, x1)−WP2,a,b(z2, x2).

Then, if y1 > 0, y2 > 0 we can write

B =
x1y1

(bx1 + ay1)
− x2y2

(bx2 + ay2)
= B′ + B′′,
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where

B′ =
bx1x2

(bx1 + ay1)(bx2 + ay2)
(y1 − y2), B′′ =

ay1y2

(bx1 + ay1)(bx2 + ay2)
(x1 − x2).

Likewise, if z1 > 0, z2 > 0, we can write

C =
x1z1

(bz1 + ax1)
− x2z2

(bz2 + ax2)
= C′ + C′′,

where

C′ =
ax1x2

(ax1 + bz1)(ax2 + bz2)
(z1 − z2), C′′ =

bz1z2

(ax1 + bz1)(ax2 + bz2)
(x1 − x2).

It can readily be observed that, since all variables involved have the same sign,

|B′| ≤ 1
b
|y1 − y2|, |C′| ≤ 1

a
|z1 − z2|.

For the terms B′′ and C′′, we notice that

x1 − x2

2
− 1

8
B′′ − 1

8
C′′

=
(
x1 − x2

2

)(
1− ay1y2

4(bx1 + ay1)(bx2 + ay2)
− bz1z2

4(ax1 + bz1)(ax2 + bz2)

)
.

Since all variables involved have the same sign, we have that

0 ≤ ay1y2

(bx1 + ay1)(bx2 + ay2)
≤ 1

a
, 0 ≤ bz1z2

(ax1 + bz1)(ax2 + bz2)
≤ 1

b
,

from which we can easily deduce that∣∣∣∣1− ay1y2

4(bx1 + ay1)(bx2 + ay2)
− bz1z2

4(ax1 + bz1)(ax2 + bz2)

∣∣∣∣ ≤ 1,

provided ab ≥ 1/8.
Summarizing, if all variables involved are positive,

|Z1 − Z2| ≤
∣∣∣∣x1 − x2

2
− 1

8
B′′ − 1

8
C′′

∣∣∣∣+ |y1 − y2|
8b

+
|z1 − z2|

8a

≤ 1
2
|x1 − x2|+ 1

8ab
max{|y1 − y2|, |z1 − z2|},

provided that ab ≥ 1/8.
Let us assume now that y1y2 < 0, and, without loss of generality, assume y1 >

0, y2 < 0. Then, B = WP2,a,b(x1, y1), so that C3 gives |B| ≤ 2αmin{x1, y1} ≤
2α|y1 − y2|. Analogously, if z1z2 < 0, we deduce that |C| ≤ 2α|z1 − z2|.
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Then, if y1 · y2 < 0 and z1 > 0, z2 > 0 we can write

|Z1 − Z2| ≤
∣∣∣∣x1 − x2

2
− 1

8
C′′

∣∣∣∣+ 1
8
|B|+ 1

8
|C′|

≤
∣∣∣∣x1 − x2

2
− 1

8
C′′

∣∣∣∣+ 1
8

(
2α|y1 − y2|+ 1

a
|z1 − z2|

)
.

To bound the first term, we proceed as before. In this case, we can easily prove
that ∣∣∣∣1− bz1z2

4(ax1 + bz1)(ax2 + bz2)

∣∣∣∣ ≤ 1,

provided b ≥ 1/8. Hence

|Z1 − Z2| ≤
∣∣∣∣x1 − x2

2

∣∣∣∣+ 1
8

(
2α +

1
a

)
max{|y1 − y2|, |z1 − z2|},

provided b ≥ 1/8.
A similar argument allows us to prove that if y1 > 0, y2 > 0 and z1 · z2 < 0

we get

|Z1 − Z2| ≤
∣∣∣∣x1 − x2

2

∣∣∣∣+ 1
8

(
1
a

+ 2α
)

max{|y1 − y2|, |z1 − z2|},

provided a ≥ 1/8.
Lastly, if y1 · y2 < 0 and z1 · z2 < 0, we have

|Z1 − Z2| ≤
∣∣∣∣x1 − x2

2

∣∣∣∣+ 1
8
|B|+ 1

8
|C|

≤
∣∣∣∣x1 − x2

2

∣∣∣∣+ 2α
8

(|y1 − y2|+ |z1 − z2|)

≤
∣∣∣∣x1 − x2

2

∣∣∣∣+ α

2
max{|y1 − y2|, |z1 − z2|}.

Since ab ≥ 1/8 implies a ≥ 1/8 and b ≥ 1/8, we conclude that

|Z1 − Z2| ≤ 1
2
|x1 − x2|+ ρmax{|y1 − y2|, |z1 − z2|},

with ρ = 1
8 max{ 1

ab , 2α + 1
d , 4α} = α/2, which concludes the proof. �

It is worth to remark that WP2,.5,.5(x, y) = PPH(x, y), and that in this case
α = 1 and we recover exactly the same bounds found in [6] for the PPH scheme.

The previous result leads to the following

Theorem 4. If ab ≥ 1
8 and α = max{a,b}

min{a,b} ≤ −1 +
√

5 then the scheme SWP2,a,b

is stable.

Proof. Since α > 1, τ = max
{

1+α+α2

4 , 2α+α2

4

}
= α

2 + (α
2 )2. Then 0 < τ < 1 if

and only if α < −1 +
√

5.
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4.4 Order of Approximation

In this section we study the order of approximation of the WPp,a,b schemes. For
this task we rely on the following definitions and results, which can be found in
[12].

Definition 4. Polynomial Reproduction. A subdivision scheme S is said to
reproduce exactly polynomials of degree k if for all polynomial, P , of degree at
most k the following condition holds true: if fn = P (n), n ∈ Z, then (Sf)n =
P (2−1n), n ∈ Z.

Definition 5. Order of Approximation. A subdivision scheme S is said to
have an order k of approximation if for any function g ∈ Ck the following
condition holds true:

if f = g(h ·), then |Sf − g(2−1h ·)| ≤ Chk, ∀h > 0.

Definition 6. Let S be a convergent subdivision scheme. We say that S∞ has
order of approximation equal to k if for any function g ∈ Ck and any h > 0 we
have

||S∞f − g||∞ ≤ Chk, f = {g(nh)}n∈Z, (35)

where C is a constant which is independent of h but may depend on g.

Proposition 7. If a scheme S is stable and reproduces exactly polynomials of
degree k then S has order of approximation equal to k + 1.

The reader is referred to [11] for a recent contribution to the issue of the more
general concept of polynomial generation versus exact polynomial reproduction,
which are equivalent for interpolatory schemes.

Theorem 5. Let SNL be a convergent scheme and S a linear convergent scheme
which has order of approximation equal to k, and such that ∀f0 = g(nh)n g ∈
C∞([0, 1])

||SNLf0 − Sf0|| = O(hr). (36)

Then SNL has order of approximation equal to min{r, k}.
The following lemma provides straightforward generalizations of analogous re-
sults for the Powerp schemes.

Lemma 2. For all p,a,b, the scheme SWPp,a,b
reproduces exactly polynomials of

degree 2. In addition,

||SWPp,a,b
f − S1,1f ||∞ = O(h2). (37)

Proof. To prove the polynomial reproduction property, we take P (x) = Ax2 +
Bx+C. Then (∇2P )n = 2A ∀n ∈ Z, and WPp,a,b((∇2P )n, (∇2P )n+1)) = 2A =
mean((∇2P )n, (∇2P )n+1)) ∀n ∈ Z, from (13). Hence

(SWPp,a,b
f)2n+1 = (S2,2P )2n+1,
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and we obtain the result from the polynomial reproduction property of the S2,2

scheme.
To prove (37), we consider g ∈ C∞([0, 1]) and fn = g(nh) n ∈ Z and h > 0.

By Taylor’s expansion, we get that ∇2fn = O(h2), ∀n. Using (23) we get

(SWPp,a,b
f)2n+1 − (S1,1f)2n+1 = −1

8
WPp,a,b(∇2fn,∇2fn+1) = O(h2).

Lemma 2 and Theorem 5 allow us to state the following general result.

Proposition 8. The WPp,a,b schemes have order of approximation equal to 2.

On the other hand, in the previous section we have proven the stability of the
WP2,a,b schemes, under certain conditions on the coefficients a, b. Then, Lemma 2
and Proposition 7 lead to the following result

Proposition 9. If the WP2,a,b scheme is stable, then it has order of approxi-
mation equal to 3.

Remark: We notice that the Power2 schemes have order of approximation equal
to 4 (see [12]). The results in this section can be interpreted as follows: if a and b
are not 1/2, the WP2,a,b scheme defined in (14) only represents a weighted mean
of schemes that are third order accurate, which is in turn third order accurate.
Fourth order accuracy can only be obtained for the choice a = 1/2, b = 1/2.
Similarly, for the S3,2 scheme described in Section 2, it will be necessary to
consider the coeficients a = 3/8, b = 5/8 in order to attain maximum accuracy.

5 Numerical Examples

In this section we shall present several numerical experiments in order to illus-
trate the non-oscillatory properties of the WPp,a,b mean and the influence of the
parameters in the proposed nonlinear schemes.

The initial data are obtained from the function f(x)

f(x) =
{

sin(πx), for x ∈ [0, 0.5]
− sin(πx), for x ∈]0.5, 1],

over the mesh x = 0 : 0.1 : 1.
In Figure 1 we show the result of three applications of the S2,1, S2,2 and

WPp,1/2,1/2 for p = 1, 2, i.e. the Powerp schemes with p = 1, 2. It can be clearly
appreciated in these figures that the Powerp mean forces the scheme to behave
as the S2,1 scheme to the left of the discontinuity, and as the symmetric S1,2

scheme to the right of the discontinuity. At the discontinuity, it behaves as the
S1,1 scheme. The behavior of the Powerp schemes for p = 1 and p = 2 is quite
similar for the discrete data considered.
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Fig. 1. (•) Initial data, results after 3 applications of S2,2 (solid line), S2,1 (dashdot
line) and SWP2,0.5,0.5 (dotted line) on the left plot and SWP1,0.5,0.5 (dotted line) on the
right plot

Fig. 2. (•) Initial data. Zoom of results after 3 applications of S2,1 (dashdot line),
SWP2,0.5,0.5 (dotted line) and SWP2,0.25,0.75 (dashed line)

Fig. 3. (•) Initial data. Zoom of results after 3 applications of S2,1 (dashdot line),
SWP1,0.5,0.5 (dotted line) and SWP1,0.25,0.75 (dashed line)
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In Figures 2 (p = 2) and 3 (p = 1) we show a close-up view of the region
around the discontinuity after 3 applications of the WPp,a,b schemes with a =
b = 1/2 and a = 1/4, b = 3/4, together with the S2,1 scheme. We have shown
in the previous sections that we can only ensure third order accuracy for the
WP2,.25,.75, provided the scheme is stable. We see that ab = 3/16 > 1/8, but
max(a, b)/min(a, b) = 3 >

√
5 − 1, so that the stability of this scheme cannot

be ensured. The fact that a < b seems to lead to a larger influence of the S1,2

scheme, while still producing essentially non-oscillatory results.

Fig. 4. (•) Initial data. Zoom of results after 7 applications of S2,1 (dashdot line),
SWP2,0.5,0.5 (dotted line) and SWP2,0.25,0.75 (dashed line)

Fig. 5. (•) Initial data. Zoom of results after 7 applications of S2,1 (dashdot line),
SWP1,0.5,0.5 (dotted line) and SWP1,0.25,0.75 (dashed line)

In Figures 5 and 4 we show the outcome of the WPp,a,b for p = 2 (left) and
p = 1 (right), for a = 1/4, b = 3/4, and a = b = 1/2, after 7 applications of
the scheme. We can see that there is no noticeable difference between the results
after 3 or 7 applications, hence the data shown can be considered as the limit
function.
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6 Conclusion

We have introduced a weighted version of the Powerp mean, called Weighted-
Powerp mean and have used it to define a class of nonlinear interpolatory sub-
division schemes that generalize the Powerp schemes considered in [12]. Our
analysis shows that the WPp,a,b mean shares many desirable properties with the
Powerp mean, and that the new schemes are also non-oscillatory around discrete
data with large gradientes.

Clearly, the new schemes represent an improvement over the linear, 4-point,
S2,2 scheme. However, both the theoretical results and the numerical experiments
reveal that there is no improvement with respect to the symmetric case, a = b =
1/2, i.e. the Powerp schemes. The choice of parameters a = b = 1/2 is optimal
from the point of view of the accuracy of the scheme, and the stability of the
resulting schemes can only be ensured if the parameters are very close to that
value.

On the other hand, we expect that the ability to consider weighted harmonic
means can be of use in constructing nonlinear versions of other linear schemes,
of higher order of approximation. In particular, the nonlinear scheme given as{

(Ŝ3,2f)2n = fn,

(Ŝ3,2f)2n+1 = 1
2 (fn + fn+1)− 1

16WPp, 3
8 , 58

(
3∇2fn −∇2fn−1,∇2fn −∇2fn+1

)
(38)

will be fifth order accurate. We also expect that the tools developed in this paper
can serve to analyze the convergence and stability of this scheme. Ultimately,
we want to develop a nonlinear version of the 6-point DD interpolatory scheme
with high order accuracy and a non-oscillatory behavior around discontinuities.
This is currently work in progress.
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Abstract. We introduce a non-linear stochastic filtering technique to
track the state of a free curve from image data. The approach we pro-
pose is implemented through a particle filter, which includes color mea-
surements characterizing the target and the background respectively. We
design a continuous-time dynamics that allows us to infer inter-frame de-
formations. The curve is defined by an implicit level-set representation
and the stochastic dynamics is expressed on the level-set function. It
takes the form of a stochastic partial differential equation with a Brow-
nian motion of low dimension. Specific noise models lead to the tradi-
tional level set evolution law based on mean curvature motions, while
other forms lead to new evolution laws with different smoothing behav-
iors. In these evolution models, we propose to combine local photometric
information, some velocity induced by the curve displacement and an
uncertainty modeling of the dynamics. The associated filter capabilities
are demonstrated on various sequences with highly deformable objects.

Keywords: Tracking, Particle filtering, Level set, Continuous dynamic.

1 Introduction

The video tracking of an interface between two regions is a central process in
numerous domains like medical imaging, meteorology or traffic control. Despite
the many solutions proposed, no optimal solution exists yet for state variables
defined on large dimensional spaces such as curves.

In order to deal with regions undergoing a complex deformation along time
and potentially involving topological changes, we will confine ourself to a level
set representation of the region boundaries. This representation has the great
advantage to formulate the curve evolution within an Eulerian framework which
avoids the definition of splitting/merging stratagem of Lagrangian splines curve
representations when the curve is subject to topological changes.

Many tracking approaches proposed so far for the tracking of a level set
curve representation are often defined as techniques implementing successive
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almost independent detection processes on each image of the image sequence
[3,7,8,9,11,12]. Even if those techniques includes a temporal initialization strat-
egy, they cannot truly be considered as tracking processes, as they do not
guaranty any temporal coherence of the curve point trajectory. Such temporal
incoherences are all the more pregnant that ambiguities due to clutter noise or
illumination variations are observed. In addition to this, the few probabilistic
techniques that have been proposed so far in the literature for curve tracking
[5,14] are built upon adhoc linear models of the curve evolution law which limits
them to the tracking of objects undergoing small or quasi-rigid deformations.

In the solution we propose, the evolution law is defined as a continuous-time
stochastic dynamical model. The tracking is formulated as a stochastic filtering
problem in which the available photometric data are filtered by such stochastic
evolution laws. Stochastic filtering in high dimensional spaces is excruciatingly
difficult to implement with particle or ensemble filters due to obvious sampling
difficulties of high dimensional pdf., it is hence very important to devise dynamics
that are the most accurate as possible. In the same time, we have to circumscribe
the space of the random deformations applied on the curve in order to be able
to efficiently draw samples, but also to make possible an efficient exploration of
the considered curve’s state space. To that end, the curve dynamics on which
we rely is formulated as a stochastic transport equation defined directly on the
implicit surface function. It includes constant displacement uncertainties along
the curve tangent and normal directions. The transport velocity at each point
of the curve is inferred from its past trajectory. This transport velocity field is
computed through an additional vectorial level set function maintaining along
time the correspondences between the current curve’s points location and their
original positions. The dynamics describing the evolution of this auxiliary func-
tion incorporates the uncertainties on the curve deformations as well. The curve
dynamics is supplemented with a local photometric information that takes the
form of a data-driven force, in order to guide more efficiently the curve prediction
toward the next image observation.

2 Continuous-Time Dynamical Model of Level Set and
Filtering

This section first recalls the general principles of particle filtering and presents
the level set framework. Built on these ingredients, the proposed approach is
then detailed.

2.1 Particle Filter

In this subsection, we introduce the filtering method we are using in the rest of
the paper. The corresponding filters, called particle filters, are very general in the
sense they enable coping with nonlinear dynamics and nonlinear measurement
with additive eventually non-Gaussian noises. Denoting by x0:k the trajectory
from the initial time up to the current time instant k of the hidden Markov
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process we want to estimate from the whole set of past observations z1:k, a
recursive expression of the filtering distribution p(x0:k|z1:k) can be obtained
from Bayes’ law and the assumption that the measurements depends only on
the current state:

p(x0:k|z1:k) = p(x0:k−1|z1:k−1)
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
. (1)

Particle filtering techniques implement an approximation of this density, using a
sum of N Diracs centered on hypothesized locations in the state space. At each
one of these locations - called particles - is assigned a weight w(i)

k describing his
relevance. This approximation can be formulated as

p(x0:k|z1:k) ≈
N∑

i=1

w
(i)
k δx0:k (x0:k) . (2)

It is impossible to simulate the samples directly from this unknown distribu-
tion. Particles are thus simulated from a proposal distribution π(x0:k|z1:k). This
distribution, called the importance distribution, approximates the true filter-
ing distribution. Each sample is then weighted using the ratio between the two
distributions. The value of w(i)

k accounts for the deviation with respect to the
unknown true distribution.

As a result, the target distribution will be fairly sampled by the particles x(i)
0:k

weighted by weights w
(i)
k , defined as

w
(i)
k =

p(x(i)
0:k|z1:k)

π(x(i)
0:k|z1:k)

. (3)

To get the best efficiency the approximation needs obviously to be the closest
as possible to the true distribution. However, any importance function can be
chosen, with the only restriction that its support contains the target density’s
one. The importance ratio can be recursively computed assuming the importance
density can be written in the following recursive form:

π(x0:k|z1:k) = π(x0:k−1|z1:k−1)π(xk |z1:k,x0:k−1) (4)

As p(zk|z1:k−1) is the same for every particle, it can be removed from relation
(1), which leads to a general recursive update formulation of the weights at the
current time when the measurement zk becomes available:

w
(i)
k ∝ w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

π(x(i)
k |x(i)

0:k−1, z1:k)
. (5)

Using (2) and the normalized weights, it is then easy to obtain marginals of the
complete filtering density:

p(xk|z1:k) ≈
N∑

i=1

w
(i)
k δxk

(xk) . (6)
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Thus, by propagating the particles from time k−1 through the proposal density
π(x(i)

k |x(i)
0:k−1, z1:k), and by weighting the sampled states with w

(i)
k , we obtain a

sampling of the filtering law.
Asymptotically, for a number of particles tending to infinity, convergence to-

ward the Bayesian filtering distribution of various classes of particle filters has
been demonstrated [4] with a rate of 1/

√
N . In practical implementations the

number of particles is difficult to fix. The number of required particles to en-
sure the filter convergence depends on the state space dimension but also on the
ability we have to draw samples in meaningful areas of this state space.

A resampling step of the particles is necessary to avoid the increase over time
of the weight variance. Without this step, the number of significant particles
decreases significantly along time. This procedure discards particles with weak
weights, and duplicates particles with high weights.

When the proposal distribution is set to the dynamics, the weights updating
rule (5) simplifies to the data likelihood p(zk|x(i)

k ). This particular instance of the
particle filter is called the Bootstrap filter and constitutes the filtering method
we will use in this study.

2.2 Implicit Representation of the Curve

In order to cope with curve’s deformation of any kinds, it is essential to rely on a
curve representation enabling easily the handling of topological changes arising
when the region of interest splits apart in several separated components or on
the contrary reassembles. The Level set formalism [11,15] has been specifically
introduced in that goal to bypass the deficiency of splines based curves repre-
sentation to manage such situations. In this representation the curve Ct at time
t is defined as the zero level set of a scalar function ϕ(x, t) : Ω × R+ → R:

Ct = {x ∈ Ω|ϕ(x, t) = 0} , (7)

where Ω stands for the image spatial domain. The implicit surface function, ϕ,
is chosen so as to have for instance positive values inside the curve and negative
values outside. A common choice for the implicit function is the signed distance
function but any other surface whose level set fits the curve of interest is pos-
sible. The surface evolution is then defined in order to stick at all time to the
contour dynamics. This representation has the great advantage to allow describ-
ing through a single implicit surface a set of non-intersecting closed curves. The
main geometric features of the curve that will be needed for the curve evolution
computation can be directly obtained from the implicit surface. In particular,
the inward unit normal and the mean curvature are respectively given by:

n =
∇ϕ
‖∇ϕ‖ and κ = div

( ∇ϕ
‖∇ϕ‖

)
=

1
‖∇ϕ‖ (Δϕ−∇ϕT∇2ϕ ∇ϕ), (8)

where Δϕ and ∇2ϕ denote the Laplacian and the Hessian of ϕ, respectively.
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2.3 Stochastic Dynamics

Efficient random sampling in high dimensional state space are known to be
problematic. Some work have been done on Quasi-Random Sampling-High Di-
mensional Model Representation [6], but there is no optimal solution for random
sampling in our case. In order to circumvent this problem, we will restrain the
potential uncertainty on the curve’s deformations to belong to a space of low di-
mension. To that end, the uncertainty on the curve deformation will be defined
from two independent constant Brownian motions directed along the curve’s
normal and tangent:

dCt = vnndt + σnndBn,t + στn⊥dBτ,t. (9)

In this equation dBn,t and dBτ,t denote the two Brownian motions, σn and στ are
two diffusion coefficients, n is the unit vector normal to the curve and vn = vT n
is the projection on the curve’s normal of a deterministic transport velocity
field v. The random Brownian diffusion terms encode the curve deformation
uncertainty. The deterministic transportation drift component will be further
detailed in Section 2.4.

The surface ϕ can be used to express the deformation of the curve (9) on
space Ω:

dXt = w∗
n

∇ϕ
|∇ϕ|dt + σn

∇ϕ
|∇ϕ|dBn,t + στ

∇ϕ
|∇ϕ|

⊥
dBτ,t. (10)

where w∗
n is an extension on the whole image domain of the curve’s drift strength

component.
The curve at time t is defined by construction through its implicit represen-

tation at time t:

ϕ(., t) = ϕ(., 0) +
∫ t

0

dϕ(., s). (11)

It is thus a function of the stochastic process Ct.
As for a fixed point x, ϕ(x, t) is a semi-martingale, the differential of ϕ(X�,�)

has to be calculated through the Ito-Wentzell formula (differential of the com-
position of two stochastic process):

dϕ(x, t) = dϕt(x)+∇ϕT dX+
1
2

∑
i,j

d
〈
X i

t ,X j
t

〉 ∂2ϕ

∂xi∂xj
+
∑

i

d

〈
∂ϕ

∂xi
,X i

t

〉
. (12)

It then leads to

dϕt(x) = b(y, t)dt + f(y, t)dBn,t (13)

= −∇ϕTw∗
ndt−

σ2
τdt

2

(
Δϕ− 1

|∇ϕ|2∇ϕ
TΔϕ∇ϕ

)
+

σ2
ndt

2

(
1
|∇ϕ|2∇ϕ

TΔϕ∇ϕ
)
− σn|∇ϕ|dBn,t.
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Compared to the classical deterministic level set differential, this expression in-
troduces a Brownian component directed along the curve normal and an ad-
ditional second-order smoothing term. The mean curvature component results
from the introduction of the curve motion uncertainty along the curve tangent.
It is worth noting that this formulation permits to interpret the mean curvature
motion component as a consequence of the uncertainty one has on the curve’s de-
formation along its tangent. This stochastic representation of the curve temporal
evolution will enable us to draw samples of forecasted deformed curves.

2.4 Velocity Computation by Keeping Curve’s Point
Correspondences

The evolution law introduced in the previous section depends on a transport
velocity field. This transport component could be derived from motion mea-
surements estimated from the image sequence. However this solution has several
drawbacks. It increases substantially the computational cost of the approach and
requires the use of an external estimation technique. Furthermore, such a solu-
tion is not adapted to handle occlusions areas, where motion estimation is prone
to errors. The use of such velocity measures would require thus the introduction
of an additional occlusion detection mechanism and the definition of an alter-
native velocity field when occlusions occur. We propose instead to infer directly
the velocity from each particle displacements, via a second implicit representa-
tion that keeps track of each point’s starting location in the image plane. As
proposed in [13] to keep this point correspondences, we introduce an additional
vectorial level set w encoding on the level set domain the transportation of the
curve’s point location at the initial time. Keeping track of these backward point
correspondences between the current evolving curve and a recent predecessor
will allow us to derive an estimate of the curve’s point velocity field.

More precisely, introducing the previous Cartesian coordinates of the curve’s
points location and encoding them through a vector-valued level set function
ψk : R2 × R+ → R2 such that ψk(x, t) define the location that point x ∈ Ω at
time t ∈ [k, k − 1] was occupying at previous instant k − 1:

ψk(x, k − 1) = x. (14)

This new level set function is intrinsically attached to the curve and undergoes
deformations dictated by the stochastic curve’s evolution law (9). Applying in
the same way as previously the Ito formula, its differential reads:

dψi(x, t) = dψi
t(x) + (∇ψi

t)
TdX�

+
1
2

∑
i,j

d
〈
X i

t ,X j
t

〉 ∂2ψi
t

∂xi∂xj
+
∑

i

d

〈
∂ψi

t

∂xi
,X i

t

〉
= 0. (15)

In this case, the tangential component of the Brownian motion is not null. This
function enables us to define the curve’s transportation component (13) as

v(x, t)dt =
1
Δt

(x− E(ψk−1(x, k − 1)|Ck−1)), t ∈ [k − 1, k], (16)
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where E(·|Ct) denotes the expectation with respect to the the path of Ct up
to time t (formally the natural filtration associated to the process Ct). This
transportation velocity field is thus defined as a deterministic function computed
from the realization of the curve (through its level set function ϕt) up to the
previous instant k−1. Considering the particle approximation this velocity field
is computed as

v(x, t)dt =
1
Δt

(
x− 1

N

N∑
i=1

w(i)ψk−1,(i)(x, k − 1)

)
, t ∈ [k − 1, k], (17)

where ψk−1,(i) corresponds to the auxiliary level set distance function associated
to particle ϕ(i) and w(i) its importance weight.

Let us note that as v(x, t) can only be used from instant t = 1, we have to
define a transport component for t between 0 and 1. This initial transportation
component is set to the velocity field estimated from the two first images through
an optical-flow estimator.

The velocity field is complemented with a local potential F (ϕ) that cor-
responds to the Chan and Vese segmentation operator [2] extended to color
histograms. It allows us to refine the tracking by taking into account color in-
formation, using local measurements that are inexpensive to compute1.

The two components are combined linearly with proportions β(t) ∈ [0, 1] and
1− β(t) respectively, yielding:

vn = β(t)vT n + (1− β(t))∂ϕF (ϕ). (18)

For our tracking purpose, the photometric component is especially helpful in
the temporal vicinity of the second image, whereas the velocity component is
more likely to be meaningful in the temporal vicinity of the first image. As a
consequence we choose to change gradually the proportion of each components
according to

β(t) = t− k + 1, t ∈ [k − 1, k]. (19)

Equations (13-15) allows us to forecast instances of deformed curves and to
sample the proposal distribution. The importance weights of these curve particles
have to be updated from the data likelihood. We detail in the following section
this likelihood and propose a technique for estimating the variances of the curve
evolution law uncertainties.

3 Measurement Models and Parameters Estimation

3.1 Likelihood Definition

In bootstrap filters, the data likelihood associated to each particle directly de-
termines its weight. It is therefore crucial for this distribution to be sufficiently
1 As a consequence of the use of a data-driven force in the dynamics, the state space

model is not anymore a classical hidden Markov model. It has been shown, however,
that standard derivations that lead to filtering recursion can still be conducted with
such models, leading to so-called conditional filters [1].
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discriminant in order to discard curves which are too distant from the intended
result. To this end, we choose to define a likelihood that depends on the simi-
larity between the color distributions inside the curve at times t = 0 and t = k
respectively. This is a classical choice in literature [10]. For each particle, it reads:

p(zt|x(i)
t ) ∝ exp−λd(h0,h

(i)
k ), (20)

where d is the Bhattacharyya distance between h0 the reference interior color
histogram instantiated at time 0 and h

(i)
k the interior color histogram associ-

ated to the i-th level set sample at time k, and λ is a positive parameter. For
discrete probability distributions p and q defined over the same domain X , the
Bhattacharyya distance is defined as

d(p, q) =

(
1−

∑
x∈X

√
p(x)q(x)

)1/2

. (21)

3.2 Parameters Estimation

The dynamics defined through equations (13-15) involves two diffusion coefficient
related to the uncertainty associated to the curve motion. These parameters σn

and στ can be derived from the displacements field between two consecutive
images, as follows. Let u(x, t) be the displacement of point x ∈ Ω at time k
to its corresponding position at time k + 1, according to the evolution of the
implicit function ϕ conditioned on the past observation. We assume that this
displacement field is a noisy version of v,

u(x, k) = v(x, k)dt + σnndBn,t + στn⊥dBτ,t, (22)

with noises along the normal and the tangent of ϕ level-lines having same char-
acteristics as those in (9). We are therefore making here the assumption that
the noises associated with the level set displacement and the curve noises are
collinear and have the same variances. Furthermore, we assume that the trans-
port velocity field is such that v(x, t) = E(u(x, k))/dt. The empirical covariances
with respect to the filtering law of this observed displacement along the curve
normal and tangent provide an estimation of the noise variances σ2

n and σ2
τ :

σ2
n =

1
N − 1

∑
i=1:N

⎛⎝ 1
n− 1

∑
x∈C(i)

w(i) ((u(x, k)− v(x, k)) · n(x, t))2
⎞⎠ (23)

σ2
τ =

1
N − 1

∑
i=1:N

⎛⎝ 1
n− 1

∑
x∈C(i)

w(i)
(
(u(x, k)− v(x, k)) · n⊥(x, t)

)2⎞⎠ . (24)

For the time interval between the two first images, the values of these parameters
are computed from the initial motion field used to initialize our filter. The next
section shows results obtained for different kinds of image sequences.
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4 Experiments and Results

This section reports several tracking results obtained with our approach. We aim
here at highlighting the main abilities of the method. Note that in all these exper-
iments, the number of particles is fixed as N = 100. Each curve initialization is
performed manually, at the initial time. This initial curve will be systematically
plotted for all the sequences tested.

4.1 Interest of a Continuous-Time Stochastic Dynamics and
Auxiliary Level-Set

One of the main distinctive features of our approach is that it relies on a
continuous-time stochastic dynamics. This allows the exploitation of temporal
continuity even when deformations between successive images are drastic, as
illustrated in the jellyfish sequence in Fig. 1 (a - e). This is in contrast with ap-
proaches relying on a succession of segmentation tasks. On the same sequence,
for instance, the Chan-Vese segmentation method fails to recover an appropriate
tracking of the delineated region (Fig. 1 : f - j). In this approach the segmenta-
tion process is initialized with the results obtained on the previous frame. There
is no explicit handling of the possible deformation between two images. On the
tracking results, in addition to the mean curve we plot through a white band a
representation of the variance of the filtering. This aspect is further detailed in
the next section.

Getting inter-frame tracking information is also of potential interest in con-
text where successive images of the sequence are fairly distant in time, e.g., in
meteorology and weather forecast.

(a) t = 0 (b) t = 20 (c) t = 40 (d) t = 60 (e) t = 80

(f) t = 0 (g) t = 20 (h) t = 40 (i) t = 40 (j) t = 40

Fig. 1. Tracking of a jellyfish, with a highly deformable body using our method (a - e)
and deterministic Chan-Vese technique (f - j)

4.2 Variance Visualization and Analysis

Beyond the tracking results provided by the weighted mean curve, local confi-
dence assessment via local variance visualization (or analysis) is an interesting
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feature of our approach. The weighted set of implicit function samples provided
by particle filtering permits such a visualization. The weighted local variance of
the level set functions around the mean level set, which is obtained by comput-
ing V =

∑N
i=1 w

(i)(ϕ(i) − ϕ)2, is here represented by a white band around the
mean curve, the lower the variance, the narrower the uncertainty band. To illus-
trate this variance representation, we show results obtained on a second sequence
(Fig. 2) showing a tiger running. In this sequence the colors of the background
and the target are very close, which is an important source of ambiguities. We
can observe in particular that for areas around the legs, the uncertainty is impor-
tant. We observe that the results are good without using any external estimated
motion field.

(a) t = 0 (b) t = 20 (c) t = 40

(d) t = 60 (e) t = 80 (f) t = 100

Fig. 2. Tracking of running tiger with our particle filter on the space of implicit func-
tions

To be able to access to an estimation of the tracking uncertainty is a great
advantage of our technique. This should be of great interest in several application
domains such as medical imaging in which the ability to quantify locally the
quality of a result is essential for end-users.

4.3 Occlusions Management

One of the advantage provided by our transport velocity formulation compared
to any optical flow measurements, is that it authorizes a natural handling of
occlusion situations. As a matter of fact, no matter the region of interest be
visible or not a velocity measure of the curve’s is always available. This measure
can thus be used at all instants without any distinction on the visibility or not
of the considered point. There is here no need of empirical external occlusion
detectors. For example, on Fig. 3, the person disappears on frames d and g, but
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(a) t = 0 (b) t = 10 (c) t = 20 (d) t = 30

(e) t = 40 (f) t = 50 (g) t = 60 (h) t = 70

Fig. 3. Example of occlusions on a body walking behind trees

tracking relocks on it after the occlusions end. We can observe that during the
occlusions, the uncertainty is growing all around the curve, as the parameter σn

is growing.
As for the computational load. This approach can be straightforwardly on a

multicore or grid computer as all the particles are independent. Only the weight-
ing and the resampling requires communications between the processors. All
these results have been run on a grid composed of 100 nodes, and the approach
took nearly 5 minutes for a 100 images sequences. Let us note however that the
level set has been implemented with a narrow band efficient implementation and
could be hence much more faster than the present version.

5 Conclusion

In this paper we have proposed a probabilistic filtering method for the tracking
of level sets. The underlying model combines discrete-time image measurements
with a continuous-time stochastic dynamics. This dynamics relies on two dif-
ferent uncertainties on the curve motion, directed respectively along the curve
normal and along the curve tangent. It also includes a transport vector field
that combines an image-based force (related to local photometry) and a velocity
induced by previous curve displacements and deformations. The measurement
considered in this model are built from color histograms of the object delineated
by the user at the initial time. The implementation of the filter is done via a
particle filter whose proposal density amounts to simulating several steps of a
discretized stochastic differential equation.

We have illustrated on several examples the interest of the continuous-time
dynamics and of the estimation confidence assessment that proper stochastic
filtering permits via the approximation of the filtering distribution. In partic-
ular, displaying the estimation uncertainty along the curve, which is done by
computing the variance of each point of this curve, could be an interesting tool
for, e.g., biology or meteorology imaging. Also, the ability to show inter-frame
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results is an other potential advantage that could be used to infer potential curve
deformations between the two frames instant.

Finally, besides allowing to deal with occlusions, using the velocity of the
curve could help predicting the evolution of this curve for a few frames ahead of
time, which should be useful in various domains for forecast application.
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Abstract. It was recently proved in [27] that all rational hypocycloids and epicy-
cloids are Pythagorean hodograph curves, i.e., rational curves with rational off-
sets. In this paper, we extend the discussion to a more general class of curves
represented by trigonometric polynomial support functions. We show that these
curves are offsets to translated convolutions of scaled and rotated hypocycloids
and epicycloids. Using this result, we formulate a new and very simple G2 Her-
mite interpolation algorithm based on solving a small system of linear equations.
The efficiency of the designed method is then presented on several examples. In
particular, we show how to approximate general trochoids, which, as we prove,
are not Pythagorean hodograph curves in general.

1 Introduction

The planar G2 Hermite interpolation problem requires a construction of a suitable pla-
nar curve matching a given set of data, which consists of pairs of points, unit tangent
vectors and signed curvatures at those points. Then, a solution of this interpolation
problem allows one to construct a G2 Hermite interpolating spline between neighbour-
ing pairs of points, cf. [5,9,12,21,22,32] for some algorithms and related discussions.
This property is desirable in CAD and CAGD applications – e.g. for planning cutting
paths of CNC machines, for computing robot trajectories, in the design of highways or
railways.

Pythagorean hodograph (PH) curves are rational curves distinguished by the
property that their offsets are also rational, which is another attractive property desir-
able in CAD and CAGD applications, for more details see [8] and references therein.
In addition, the Pythagorean hodograph property under Minkowski metric was stud-
ied e.g. in [4,23,15,16,17,18]. However, there are not many algorithms in curve de-
sign with segments of Pythagorean hodograph curves preserving G2 continuity – see
e.g. [11,14,31,13,2,6,24]. Moreover, these techniques are often based on solving dif-
ficult systems of nonlinear equations with a tough and time-consuming subsequent
discussion.

It was shown recently in [27] that all rational hypocycloids and epicycloids (cf.
[7,33]) are rational PH curves. In addition, a simple G1 Hermite interpolation algorithm
using hypo/epicycloids with rational offsets was designed. That algorithm is based on an
application of the so called support function representation of algebraic curves, which

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 142–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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was introduced to geometric modelling in [10,28,29] and later used e.g. in [1,20]. In this
paper, we extend this discussion to a general class of curves represented by trigono-
metric polynomial support functions, which are nothing else than offsets to translated
convolutions of scaled and rotated rational hypocycloids and epicycloids. The reader
who is more interested in the theory of convolutions of algebraic curves can find more
details e.g. in [29,19,20,30].

We will prove that all curves supported by trigonometric polynomials (in generalized
sense) are PH and show that they are very suitable for constructing G2 Hermite inter-
polating splines with rational offsets. The main advantage of the designed algorithm,
compared to other G2 Hermite interpolation techniques, is its simplicity as our method
is based only on solving a simple system of (generally 6) linear equations. Neverthe-
less, since hypo/epicycloids (nor their convolutions) do not contain inflection points, a
constructed spline possesses the same property. Hence, if the data points fail to have the
same signs of curvatures, a simple preprocessing step is needed, i.e., we have to insert
a data point at the inflection. This reduces the G2 to G1 continuity at that point.

The remainder of the paper is organized as follows. Section 2 recalls some basic facts
concerning support functions and fundamental theory of hypo/epicycloids. Section 3
is devoted to the curves supported by trigonometric polynomials and their relation to
hypo/epicycloids. In addition, we provide a method for computing their rational PH
parameterizations. In Section 4, we formulate an algorithm forG2 Hermite interpolation
with arcs of curves represented by trigonometric polynomial support functions. The
designed algorithm is then demonstrated on several examples and approximation order
is studied. Finally, we conclude the paper in Section 5.

2 Preliminaries

We recall some fundamental properties of hypo/epicycloids, and summarize the basic
theory of support function representation of algebraic curves in connection with their
convolutions and with the theory of rational offsets.

2.1 Support Function Representation of Algebraic Curves

Any algebraic curve in the plane (which is not a line) has the dual representation

D(n, h) = 0, (1)

where D is a homogeneous polynomial in h and n = (n1, n2)
 (the normal vector).
This equation specifies the set of tangents of the curve. In addition, if n is unit then h
expresses the oriented distance of the corresponding tangent to the origin.

If the partial derivative ∂D/∂h does not vanish at (n0, h0) ∈ R3 and D(n0, h0) = 0
holds, then (1) implicitly defines a function

n �→ h(n) (2)

in a certain neighborhood of (n0, h0) ∈ R3. The restriction of this function to the unit
circle S1 = {n ∈ R2 : |n| = 1} is the so called (generally multi-valued) support
function of the curve.
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On the other hand, from any smooth real function on S1 we can reconstruct the
corresponding curve by the mapping xh : S1 → R2

xh(n) = h(n)n + h′(n)n⊥, (3)

where n⊥ denotes the clockwise rotation of n about the origin by the angle π
2 and h′ is

the derivative with respect to the arc-length, see [28].
For later use we recall how the support function h(n) is affected by selected geomet-

ric operations, cf. [25,28]:

(i) translation: h(n) �→ h(n) + v · n, where v ∈ R2 is a translation vector;
(ii) rotation: h(n) �→ h(An), where A is an orthogonal matrix from SO(2);

(iii) scaling: h(n) �→ λh(n), where λ ∈ R is a scaling factor;
(iv) offsetting: h(n) �→ h(n) + δ, where δ ∈ R is an offsetting distance.

(4)

Moreover, the support function representation is very suitable for describing the con-
volution C3 = C1 � C2 of curves C1, C2 as this operation corresponds to the sum of the
associated support functions

h3 = h1 + h2, (5)

see [28,20] for more details.
Another very useful property of the support function representation (especially in

connection with G2 Hermite interpolation problem) is that it can be efficiently used for
describing the signed curvature of a given curve, cf. [28], in the form

κ(θ) = − 1
h(θ) + h′′(θ)

. (6)

2.2 Rational Hypocycloids and Epicycloids

A hypocycloid is a plane curve generated by the trace of a fixed point x on a circle
with radius r which rolls without sliding within a fixed circle with radius R > r. If the
fixed circle is centered at the origin and x(0) = (0, R − r)
, then the hypocycloid is
parameterized by

x(ϕ) = (R− r) · n(ϕ)− r · n(kϕ), k = 1− R

r
, (7)

where n(ϕ) = (sinϕ, cosϕ)
.
If the moving circle roles outside the fixed circle, we generate an epicycloid, whose

parametric equations are obtained by using a negative r in (7). Moreover, the beautiful
double generation theorem (first noticed by Daniel Bernoulli in 1725) guarantees that,
without loss of generality, we can assume R > 2r in the rest of this paper (see [27,33]).

Let us recall that hypo/epicycloids are rational curves if and only if k is a rational
number, otherwise they are transcendental. In what follows we assume that R : r is
a rational number and we introduce the name HE-cycloid as a unified term for both
rational hypo/epicycloids.
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It was proved in [27] than any HE-cycloid (7) admits the support function represen-
tation in the form

h(θ) = (R − 2r) cos
(

R

R− 2r
θ

)
(8)

with respect to the parameterization n(θ) = (sin θ, cos θ)
. The coordinates are chosen
such that the fixed circle is centered at the origin and for θ = 0 the center of the rolling
circle is located at (0, R− r)
 and the tracing point starts at (0, R− 2r)
.

If we set � = GCD(R, r), a = R/� and b = (R − 2r)/� then (8) can be rewritten
as follows

h(θ) = (b�) cos
(a
b
θ
)
. (9)

As the multiplication by a constant factor b� represents scaling, cf. (4-iii), we omit this
factor and introduce the so called canonical HE-cycloids with parameters a, b described
by

h(θ) = cos
(a
b
θ
)

(10)

and denoted by Ca
b . Obviously, (10) represents an epicycloid for a < b and a hypocy-

cloid for a > b. For more details about geometric meaning of a, b see [27]. Many
famous rational curves are examples of HE-cycloids – e.g. C1

2 is the nephroid, C1
3 is the

cardioid, C2
1 is the astroid and C3

1 is the deltoid, cf. Fig. 1.

Fig. 1. Examples of HE-cycloids – the nephroid C1
2 , the cardioid C1

3 , the astroid C2
1 and the

deltoid C3
1

Furthermore, let us recall that the support function representation was used in [27]
to prove that all HE-cycloids are rational Pythagorean hodograph (PH) curves, i.e., they
are rational curves with rational offsets. The reader who is more interested in the theory
of PH curves is referred to [8] and references therein.
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3 Rational Curves Supported by Trigonometric Polynomials

In this section, we will study curves whose support functions can be expressed as linear
combinations of the support functions of the canonical HE-cycloids.

3.1 Trigonometric Polynomials and Convolutions of HE-Cycloids

Let us consider all curves supported by the trigonometric function

h(θ) = A0 +
�∑

q=1

nq∑
p=1

(
Apq cos

(
p

q
θ

)
+ Bpq sin

(
p

q
θ

))
, (11)

where Apq , Bpq ∈ R, p, q ∈ N. By setting ψ = θ/LCM(2, . . . , �), where LCM de-
notes the least common multiple, (11) can be rewritten into a standard trigonometric
polynomial defined by

A0 +
N∑

m=1

Am cos(mψ) +
N∑

m=1

Bm sin(mψ), (12)

where Am, Bm ∈ R, m ∈ N. In what follows, we will work with the notion trigono-
metric polynomial in this broader sense. Trigonometric polynomials are widely used
e.g. for trigonometric approximations of periodic functions.

Now, we will study a relation of the functions (11) to the canonical HE-cycloids.
One can see that A0 describes offsetting, cf. (4-iv), and the term

(B11 + B22 + . . .) sin θ + (A11 + A22 + . . .) cos θ = v1n1 + v2n2 (13)

represents a translation, see (4-i). Next, we consider terms of the form

Apq cos
(
p

q
θ

)
+ Bpq sin

(
p

q
θ

)
, q �= p. (14)

Cp
q scaled through a factor λ and rotated through an angle αq , cf. (4-ii,iii), has the

support function

λ cos
[
p

q
(θ − αq)

]
= λ cos

(
p

q
αq

)
︸ ︷︷ ︸

Apq

cos
(
p

q
θ

)
+ λ sin

(
p

q
αq

)
︸ ︷︷ ︸

Bpq

sin
(
p

q
θ

)
. (15)

Inversely, from Apq, Bpq we can easily compute λ and αq . Finally, sums of the terms
(14) represent the convolutions of associated primal curves, cf. (5). An example of the
convolution of two HE-cycloids is illustrated in Fig. 2. Hence, we may formulate

Proposition 1. The curve given by the support function (11) is an offset to a translated
convolution of scaled and rotated canonical HE-cycloids.



G2 Interpolation with Curves with Trigonometric Support Functions 147

Fig. 2. Convolution of the nephroid C1
2 and the cardioid C1

3

3.2 Rational Offsets of Convolutions of HE-Cycloids

We will study curves supported by the function (14) from the point of view of the
rationality of their offsets. We will look for a simultaneous rational parameterization of
h and of n ∈ S1, which guarantees that the associated primal curve is a PH curve.

Proposition 2. The convolution of two scaled and rotated canonical HE-cycloids is a
rational Pythagorean hodograph curve and thus it possesses rational offsets.

Proof. We consider two scaled and rotated canonical HE-cycloids supported by the
functions

h1 = A1 cos
(
a1

b1
θ

)
+B1 sin

(
a1

b1
θ

)
, h2 = A2 cos

(
a2

b2
θ

)
+B2 sin

(
a2

b2
θ

)
(16)

and their convolution represented by (5). Firstly, we convert the both arguments to a
common denominator b = LCM(b1, b2) and work with (ā1θ)/b and (ā2θ)/b

Using the de Moivre’s formula and the binomial theorem we get the following equiv-
alent expressions

[
cos

(
p

q
θ

)
+ i sin

(
p

q
θ

)]q

=

⎧⎨⎩
cos(pθ) + i sin(pθ),∑q

j=0

(
q
j

) [
cos

(
p
q θ
)]q−j [

i sin
(

p
q θ
)]j

.
(17)

Comparing the real and imaginary parts, respectively, we obtain the formulae

cos(pθ) =
� q

2 �∑
j=0

(−1)j

(
q

2j

)[
cos

(
p

q
θ

)]q−2j [
sin

(
p

q
θ

)]2j

, (18)

sin(pθ) =
� q−1

2 �∑
j=0

(−1)j

(
q

2j + 1

)[
cos

(
p

q
θ

)]q−2j−1 [
sin

(
p

q
θ

)]2j+1

. (19)
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It is also well known that

cos(pθ) =
� p

2 �∑
j=0

(−1)j

(
p

2j

)
(cos θ)p−2j (sin θ)2j

, (20)

sin(pθ) =
� p−1

2 �∑
j=0

(−1)j

(
p

2j + 1

)
(cos θ)p−2j−1 (sin θ)2j+1

. (21)

Now, we use the above mentioned formulae for finding a rational parameterization of
n1, n2, h. We denote ψ = θ/b. Using formulae (18), (19), taken for p = 1 and q = b,
we obtain

n1 = sin θ =
� b−1

2 �∑
j=0

(−1)j

(
b

2j + 1

)
[cosψ]b−2j−1 [sinψ)]2j+1

, (22)

n2 = cos θ =
� b

2 �∑
j=0

(−1)j

(
b

2j

)
[cosψ]b−2j [sinψ)]2j

. (23)

Furthermore, if we apply (20), (21) on h3 = h1 + h2, taken for p = ā1, ā2, we get

h3 = [A1 cos (ā1ψ) + B1 sin (ā1ψ)] + [A2 cos (ā2ψ) + B2 sin (ā2ψ)] =

=

⎡⎣A1

� ā1
2 �∑

j=0

(−1)j

(
ā1

2j

)
[cosψ]ā1−2j [sinψ)]2j +

+ B1

� ā1−1
2 �∑

j=0

(−1)j

(
ā1

2j + 1

)
[cosψ]ā1−2j−1 [sinψ)]2j+1

⎤⎦+

+

⎡⎣A2

� ā2
2 �∑

j=0

(−1)j

(
ā2

2j

)
[cosψ]ā2−2j [sinψ)]2j +

+ B2

� ā2−1
2 �∑

j=0

(−1)j

(
ā2

2j + 1

)
[cosψ]ā2−2j−1 [sinψ)]2j+1

⎤⎦ .

(24)

Finally, after setting

cosψ =
1− t2

1 + t2
and sinψ =

2t
1 + t2

(25)

to (22), (23) and (24), we arrive at a rational parametrization of n1, n2 and h3. This
completes the proof. ��
Clearly, the previous result can be immediately extended to all curves supported by (11).

Corollary 1. All curves given by the support function (11) are rational Pythagorean
hodograph curves.
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4 Interpolating G2 Hermite Data with Convolutions of
HE-Cycloids

In this section we will present an algorithm for G2 Hermite interpolation with arcs of
convolutions of HE-cycloids. G2 Hermite data consists of two points, two unit tan-
gent/normal vectors and two signed curvatures at those points. In general, Hermite in-
terpolation is useful for approximations of general curves by spline curves with a given
continuity. Input data for Hermite interpolation are sampled from a given curve and the
segments between two consecutive sample points are approximated by arcs of a given
type.

As shown in [27], translations, rotations and scalings of canonical HE-cycloids are
described by four coefficients which appear linearly in the support function represen-
tation of general HE-cycloids. For G2 Hermite interpolation, six input data are given,
so it is necessary to introduce two new free parameters. This can be done by taking
convolutions of two canonical HE-cycloids Ca1

b1
and Ca2

b2
(a1, b1, a2, b2 are arbitrary but

fixed).
It was proved in Section 3.1 that the curve given by the support function

h(θ) = vx sin θ + vy cos θ + s1 sin
a1

b1
θ + c1 cos

a1

b1
θ + s2 sin

a2

b2
θ+ c2 cos

a2

b2
θ (26)

is a translated convolution of scaled and rotated HE-cycloids Ca1
b1

and Ca2
b2

and all such
transformations can be obtained by a suitable choice of coefficients vx, vy , s1, c1, s2,
c2 ∈ R. The curve with the support function (26) has the parameterization

x(θ) = h(θ)(sin θ, cos θ)
 + h′(θ)(cos θ,− sin θ)
 (27)

and the signed curvature radius of this curve is given by

R(θ) = −h(θ)− h′′(θ). (28)

Thus, coefficients vx, vy, s1, c1, s2, c2 appear in (27) and (28) linearly. This means
that for given G2 Hermite boundary data, it is possible to find coefficients
vx, vy, s1, c1, s2, c2 by solving a system of linear equations, so that (a segment of) con-
volution of scaled and rotated Ca1

b1
and Ca2

b2
interpolates the given data.

Let us suppose that we are given G2 Hermite input data, i.e., two distinct points
P0 = [x0, y0]
 and P1 = [x1, y1]
 with associated unit normal vectors ni =
(sin θi, cos θi)
, i = 0, 1 and signed curvatures κ0 and κ1. We distinguish the follo-
wing two cases:

1. Both κ0 and κ1 are non-zero and have the same sign, i.e., κ0κ1 > 0

This represents a general case. For such data we obtain four linear equations for
given points and normal vectors using (27) and additional two linear equations for
given curvature radii 1/κi, i = 0, 1 using (28). The system for unknown coefficients
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vx, vy, s1, c1, s2, c2 can be written in the following form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ka1
b1

(θ0) la1
b1

(θ0) ka2
b2

(θ0) la2
b2

(θ0)
0 1 ma1

b1
(θ0) na1

b1
(θ0) ma2

b2
(θ0) na2

b2
(θ0)

1 0 ka1
b1

(θ1) la1
b1

(θ1) ka2
b2

(θ1) la2
b2

(θ1)
0 1 ma1

b1
(θ1) na1

b1
(θ1) ma2

b2
(θ1) na2

b2
(θ1)

0 0 pa1
b1

(θ0) qa1
b1

(θ0) pa2
b2

(θ0) qa2
b2

(θ0)
0 0 pa1

b1
(θ1) qa1

b1
(θ1) pa2

b2
(θ1) qa2

b2
(θ1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
vx

vy

s1

c1
s2

c2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
x0

y0

x1

y1

1/κ0

1/κ1

⎞⎟⎟⎟⎟⎟⎟⎠ , (29)

where
ka

b (θ) = cos (θ) cos
(

a
b θ
)

+ a
b sin (θ) sin

(
a
b θ
)
,

lab (θ) = cos (θ) sin
(

a
b θ
)− a

b cos
(

a
b θ
)
sin (θ) ,

ma
b (θ) = cos

(
a
b θ
)
sin (θ)− a

b cos (θ) sin
(

a
b θ
)
,

na
b (θ) = sin (θ) sin

(
a
b θ
)

+ a
b cos (θ) cos

(
a
b θ
)
,

pa
b (θ) = b2−a2

b2 cos
(

a
b θ
)
,

qa
b (θ) = b2−a2

b2 sin
(

a
b θ
)
.

It is obvious that the coefficient matrix of the system (29) is singular for θ0 = θ1,
i.e., if the normal vectors associated to P0 and P1 have the same direction and
orientation (in what follows we omit this degenerated case). Otherwise, we can
always choose sample points sufficiently close to each other to guarantee that the
matrix is regular and hence (29) has exactly one solution.

2. Either κ0 = 0, or κ1 = 0.

This means that one of the input points P0, or P1 is an inflection point of the
approximated curve. Since convolutions of HE-cycloids have no inflection points,
it is not possible to find an interpolating arc for such G2 Hermite data. Without loss
of generality, let us suppose that P0 corresponds to the inflection point and, thus,
κ0 = 0. In this case, it is enough to consider only an offset of a rotated and scaled
HE-cycloid Ca

b given by the support function

h(θ) = d + vx sin θ + vy cos θ + s sin
a

b
θ + c cos

a

b
θ. (30)

Similarly to the previous case, we obtain four linear equations from (27) and one
additional linear equation for a given curvature radius in the non-inflection point
P1 from (30). The system for unknown coefficients vx, vy, s, c, d can be written in
the following form⎛⎜⎜⎜⎜⎝

1 0 ka
b (θ0) lab (θ0) cos(θ0)

0 1 ma
b (θ0) na

b (θ0) sin(θ0)
1 0 ka

b (θ1) lab (θ1) cos(θ1)
0 1 ma

b (θ1) na
b (θ1) sin(θ1)

0 0 pa
b (θ1) qa

b (θ1) 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
vx

vy

s
c
d

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
x0

y0

x1

y1

1/κ1

⎞⎟⎟⎟⎟⎠ . (31)
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Again, we assume that θ0 �= θ1 and sample points to obtain a regular coefficient
matrix of the system (31). Let us emphasize that the interpolant obtained by this
method is connected to neighbouring arc of the spline curve at P1 with G2 conti-
nuity and at P0 with only G1 continuity.

To summarize, an approximation spline curve, which is obtained by our algorithm, is
everywhere G2 continuous except the inflection points, where it is only G1 continuous.
Moreover, after the reparameterization, see Section 3.2, we obtain a piecewise rational
PH curve.

Fig. 3. Bézier curve and its approximation by a spline curve composed of arcs of the convolution
of scaled and rotated C1

3 and C1
2 (left) and the curvature of the approximation spline curve (right)

Example 1. Let us consider two Bézier quartic curves on the interval t ∈ [0, 1]. The
first curve has the control points [0, 0]
, [0, 1]
, [1, 2]
, [2, 1]
 and [1, 0]
 and no
inflection points (see Fig. 3). The second curve has the control points [0, 0]
, [2, 1]
,
[2,−1]
, [3, 2]
 and [4, 0]
 and two inflection points (see Fig. 4). In both cases, each
curve segment without inflections is replaced by 2N , N = 1, . . . , 10, interpolating arcs
of the convolution of C1

3 (the cardioid) and C1
2 (the nephroid). Table 1 summarizes the

approximation error and its improvement (ratio of two consecutive errors). The error
was obtained by sampling the Hausdorff distance. When no inflections are present, the
approximation order is 6. At the inflections it drops to 3, which is due to the absence
of inflection points on HE-cycloids and also on convolutions of HE-cycloid and G1

continuity of the approximation at inflection points, cf. [27].
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Fig. 4. Bézier curve with inflection points and its approximation by a spline curve composed of
arcs of the convolution of C1

3 and C1
2

Table 1. Example for approximation by convolution of C1
3 and C1

2 conversion: Sampled errors
and their improvements (ratios of two consecutive errors)

No inflections Inflections
Parts Error Ratio Error Ratio

2 1.56137 × 10−2 0.610492

4 3.00896 × 10−4 51.8907 2.56347 × 10−2 23.815

8 5.10253 × 10−6 58.9701 7.64343 × 10−4 33.5383

16 8.22261 × 10−8 62.0548 3.02679 × 10−5 25.2526

32 1.30374 × 10−9 63.0694 3.76836 × 10−6 8.03212

64 2.04001 × 10−11 63.9085 4.70233 × 10−7 8.01381

128 3.19175 × 10−13 63.9151 5.87338 × 10−8 8.01381

256 4.98878 × 10−15 63.9786 7.33906 × 10−9 8.00290

512 7.79562 × 10−17 63.9947 9.17222 × 10−10 8.00140

1024 1.21809 × 10−18 63.9987 1.14643 × 10−10 8.00069
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Hypo/epicycloids are special cases of the so called hypo/epitrochoids given by the
expression

x(ϕ) = (R− r) · n(ϕ) − d · n(kϕ), k = 1− R

r
, (32)

where d is not necessarily equal to r, i.e., the tracing point x does not have to lie on the
moving circle. Trochoidal profiles are widely used for designing volumetric machines
(pumps, compressors, engines) and cycloidal speed reducers, cf. [3,26]. However, they
are not generally PH and thus do not possess rational offsets, which is shown in the
following example.

Example 2. Let us consider HE-trochoid given by (32) where R = 3, r = 1, d = 2/5.
To prove that this HE-trochoid does not possess rational offsets, we need its rational
parameterization

x(t) =
(

4/5t(7 + 3t2)
(1 + t2)2

,
−4/5(−2 + 3t4 − 3t2)

(1 + t2)2

)

. (33)

We find the corresponding implicit support function, cf. [20,1],

D1(n, h1) = −104544n6
2 + 293868n4

2n2
1 − 718632n2

2n4
1 − 37044n6

1 + 148500n5
2h1−

−297000n3
2n2

1h1 − 445500n2n4
1h1 − 37575n4

2h2
1 − 75150n2

2n2
1h

2
1−

−37575n4
1h

2
1 − 25000n3

2h3
1 + 75000n2n2

1h
3
1 + 10000n2

2h4
1 + 10000n2

1h4
1.

Fig. 5. Hypotrochoid (R = 3, r = 1, d = 2/5) and its approximation by spline curve composed
of arcs of the convolution of C1

3 and C1
2
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Next, we compute the implicit support function D3 of the convolution of the hy-
potrochoid given by D1 with the unit circle, see [20] for more details. Since the genus
of D3 is equal to 3, the curve is not rational which proves non-rationality of offsets of
HE-trochoid given in this example (see Theorem 11 in [20]).

Finally, since this HE-trochoid is not a PH curve and it has no inflection points, we
can construct its PH approximation with G2 continuity everywhere using our method
(see Fig. 5).

5 Conclusion

We have studied the Hermite interpolation of planar G2 data with curves supported
by trigonometric polynomials. It was shown that all curves of this type are nothing
else but offsets to translated convolutions of scaled and rotated hypo/epicycloids. Their
distinguished feature is the Pythagorean hodograph property, i.e., a rationality of their
offsets.

The main advantage of the designed algorithm lies in the fact that the construction
of the spline is based only on the solution of a simple system of (generally 6) linear
equations. It was presented that an interpolant uniquely exists under some natural as-
sumptions on the data (non-zero determinant of the system matrix) and the asymptotic
approximation order 6 at non-inflection points was confirmed.

One can find some algorithms yielding C2 (not just G2) continuous polynomial PH
spline curves (see e.g. [2,6,24]). However, as far as we are aware of the literature, this
paper is the first paper which proposes a method for G2 Hermite interpolation by non-
polynomial PH curves.

Acknowledgement. The work on this paper was supported by the Research Plan MSM
4977751301. We thank all referees for their comments which helped us to improve the
paper.
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Pythagorean-hodograph spline curves. Mathematics of Computation (79), 305–326 (2010)
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Abstract. We introduce a new method to approximate algebraic space
curves. The algorithm combines a subdivision technique with local ap-
proximation of piecewise regular algebraic curve segments. The local
technique computes pairs of polynomials with modified Taylor expan-
sions and generates approximating circular arcs. We analyze the connec-
tion between the generated approximating arcs and the osculating circles
of the algebraic curve.

Keywords: algebraic space curve, circular arc, subdivision.

1 Introduction

Representing algebraic space curves is a fundamental problem of geometric com-
puting. These curves are defined as the intersection curves of algebraic surfaces.
Computation of such a surface-surface intersection is a basic operation in ge-
ometric modeling. It is important for evaluating set operations, for computing
boundary curves and closely related to self-intersection problems. Several algo-
rithms have been introduced to compute algebraic space curves. A survey of the
topic is given by Patrikalakis and Maekawa [1].

Intersecting low degree implicitly defined surfaces has attracted a lot of in-
terest in the literature. Quadratic surfaces are the simplest curved surfaces,
therefore they are frequently used in computational geometry. The intersection
computation of such surfaces has been discussed thoroughly in [2,3,4,5,6].

Several different methods have been developed for computing the intersec-
tion of algebraic surfaces (see [8,9,10]). Many of them are symbolic-numeric
algorithms. The most widely used numeric methods are the lattice evaluation,
tracing and subdivision-based methods. The lattice evaluation techniques solve a
set of low dimensional sub-problems. Then the solution of these sub-problems is
interpolated to approximate the general solution. Marching or tracing methods
generate point sequences along the connected components of the curve. They
necessarily use some topological information to find starting, turning and sin-
gular points [11,12,13,14]. Subdivision algorithms are based on the ”divide and
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conquer” paradigm. They decompose the problem into several sub-problems,
and sort these problems according to the curve topology [15,16]. The decompo-
sition terminates if suitable approximating primitives can be generated for each
sub-problem [17]. In order to construct these approximating primitives, several
local approximation techniques can be applied, such as interpolation, bounding
region generation, least-squares approximation or Newton-type methods [18].

The existing local approximation techniques are based on the use of different
types of approximating primitives. These primitives are often low degree curves
since they have low computational costs. Several approximation algorithms gen-
erate line segments. However, algorithms that use quadratic curves may achieve a
better convergence rate. A general quadratic curve represented in algebraic form
can have self-intersection points or cups. In order to avoid to use non-regular
curves as approximating primitives we generate circular arcs to approximate reg-
ular segments of the algebraic curve. As an alternative one can consider circular
splines or bi-arcs as regular approximation primitives [23,24,25]. Circular arcs
have many advantages compared to spline curves, such as exact arc length, offset
and simple closest point computation. Therefore our local technique generates
fat arcs (i.e., circular arcs with an error tolerance) as bounding primitives. The
method we describe here can be used as a preprocessing step for approximating
general curves by arc splines with a given tolerance, cf. [7].

In this paper we describe a hybrid algorithm which combines a subdivision
technique with a new local approximation method. First we describe a technique
for generating approximating circular arcs for regular algebraic curve segments.
These arcs are closely related to the differential geometry of the algebraic curve.
We discuss this relation and use it to confirm the convergence of the approxima-
tion technique. Then we present an algorithm using the arc generation technique
combined with error estimation. In the end of the paper we describe how to com-
bine the local arc generation approach with the global subdivision process and
demonstrate the behavior of the algorithm by several examples.

2 Generating Approximating Circular Arcs

A segment of an algebraic space curve is given as the zero sets of two polynomials
f and g in an axis-aligned box Ω0 ⊂ IR3. It allocates the point set

C(f, g,Ω0) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω0}.

In order to use a local approximation method, we consider different segments
of the curve in different sub-domains of the original box Ω ⊂ Ω0. All these
sub-domains are again assumed to be axis-aligned boxes. We would like to ap-
proximate segments of the curve by circular arcs. Clearly this is possible only for
sub-domains, that do not contain singularities of the algebraic curve. In order to
control this property on a certain domain we define regular points and regular
segments of algebraic space curves as follows.
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Definition 1. A point p of an algebraic space curve K = C(f, g,Ω) ⊂ IR3

is called regular, if the vectors ∇f(p) and ∇g(p) are linearly independent
(and called singular otherwise). An algebraic space curve is regular in
the sub-domain Ω, if any point of the segment in Ω is regular.

We suppose that the sub-domain Ω ⊆ Ω0, where we compute, contains only
regular segments of the algebraic curve. Then it does not contain curve segments
with self-intersections [16]. However, the domain can contain several segments
(even closed loops) of the curve.

We present a local approximation technique. First it reformulates the alge-
braic equations, which define the curve. More precisely, we try to find a certain
combination of the given polynomials f and g, that possesses a special Hessian
matrix in the center point c = (cx, cy, cz) of the sub-domain Ω. Such a new
polynomial h can be defined as the combination

h = kf + lg, (1)

where k and l are linear polynomials and (x, y, z) ∈ Ω

k(x, y, z) = a + k1(x− cx) + k2(y − cy) + k3(z − cz),
l(x, y, z) = b + l1(x − cx) + l2(y − cy) + l3(z − cz).

The zero level set of the polynomial h

Z(h,Ω) = {x : h(x) = 0 ∧ x ∈ Ω}
is a surface, which contains the algebraic curve defined by f and g

K = C(f, g,Ω) ⊆ Z(h,Ω).

We choose the coefficients of k and l such that the Hessian of h is a scalar
multiple of the identity matrix in the center of the domain c

Hess(h)(c) =

⎛⎝λ 0 0
0 λ 0
0 0 λ

⎞⎠ , λ ∈ IR. (2)

If such an h can be computed, then the quadratic Taylor expansion of h about
c has a spherical zero level set. In order to find h, we solve a linear system
with eight variables (the coefficients of k and l) and five equations, that can be
deducted from (2)

hxx(c)− hyy(c) = 0
hyy(c) − hzz(c) = 0

hxy(c) = 0
hyz(c) = 0
hxz(c) = 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (3)

where
huv =

∂h

∂u∂v
, u, v ∈ {x, y, z}.
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If the system has full rank, then the solution set in the space of coefficients of
k and l is three-dimensional. Therefore we choose two coefficients as parameters
in advance. More precisely, we suppose that the value of the constant term of
the polynomials k and l are arbitrary but fixed (a, b) ∈ IR2 and different from
zero (a �= 0 and b �= 0).

Lemma 1. Given two polynomials f and g over the domain Ω ⊂ IR3. We sup-
pose that

‖∇f(c)×∇g(c)‖ �= 0 (4)

holds in the center c of the domain. Then for any pair of (a, b) ∈ IR2, where
a �= 0 and b �= 0, there exist an exactly one-dimensional family of non-trivial
polynomials, k and l, such that h = kf + lg satisfies (3).

Proof. The Hessian matrix of h can be expressed with the help of f, g, k and l
as

Hess(h)(c) = ∇k(c)∇f(c)T +∇f(c)∇k(c)T + aHess(f)(c)

+∇l(c)∇g(c)T +∇g(c)∇l(c)T + bHess(g)(c). (5)

For any values of the parameters a �= 0 and b �= 0 the system (3) can be
reformulated as

Ak =

⎛⎜⎜⎜⎜⎝
fx(c) −fy(c) 0 gx(c) −gy(c) 0

0 fy(c) −fz(c) 0 gy(c) −gz(c)
fy(c) fx(c) 0 gy(c) gx(c) 0

0 fz(c) fy(c) 0 gz(c) gy(c)
fz(c) 0 fx(c) gz(c) 0 gx(c)

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
k1

k2

k3

l1
l2
l3

⎞⎟⎟⎟⎟⎟⎟⎠ = b, (6)

where the vector of constants is

b = −a

⎛⎜⎜⎜⎜⎝
1
2 (fxx(c)− fyy(c))
1
2 (fyy(c) − fzz(c))

fxy(c)
fyz(c)
fxz(c)

⎞⎟⎟⎟⎟⎠− b

⎛⎜⎜⎜⎜⎝
1
2 (gxx(c)− gyy(c))
1
2 (gyy(c) − gzz(c))

gxy(c)
gyz(c)
gxz(c)

⎞⎟⎟⎟⎟⎠ .

In order to be certain that the system (6) has a one-dimensional solution set,
we have to show that the matrix A has rank 5. Therefore we analyze the 5× 5
sub-matrices of A. We denote with Ai the matrix, which we derive from A by
deleting ith column. The determinants of the matrices A4, A5 and A are

det(A4) = −fx(c)‖∇f(c) ×∇g(c)‖2,
det(A5) = fy(c)‖∇f(c) ×∇g(c)‖2,
det(A6) = −fz(c)‖∇f(c) ×∇g(c)‖2.

We know that ‖∇f(c)×∇g(c)‖ �= 0. This also implies, that one of the coordi-
nates of ∇f(c), fx(c), fy(c) or fz(c) is non-zero. Consequently, that one of the
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determinants of A4,A5 or A6 is not zero. So A always has a full rank 5. The
solution of the system Ak = b exists, and it is a one-dimensional subspace in
IR6. �

According to Lemma 1, for any pair of (a, b) where a �= 0 and b �= 0, there exists
a one-parameter family of polynomials k and l, such that kf + lg satisfies (3).
From this family of polynomials we always choose the one, which minimizes the
Euclidean norm

‖k‖2 → min subject to Ak = b, (7)

where k = (k1, k2, k3, l1, l2, l3) is the common coefficient vector of k and l. This
guarantees that the solution behaves as numerically well as possible during the
computations.

Given the polynomials f and g, a value of (a, b) and a center point c of the
domain Ω, we define the function

F(f, g, (a, b), c) = h = kf + lg (8)

according to the construction in Lemma 1 and the assumption (7).

Remark 1. Suppose that the right-hand side of the system (6), i.e. the vector b,
vanishes for a certain pair of (a, b). In this case the solution set of (6) is a line
in IR6, which passes through the origin. Then the linear combination af + bg
fulfills the condition (2). According to (7) we always choose the solution of the
system (6), which has the smallest length. In this special case, both k and l are
constants.

The polynomial h = F(f, g, (a, b), c) fulfills the special condition for the Hessian
(2). Thus the quadratic Taylor expansion of h about c has a spherical zero
level set

T 2
c h(x) = h(c) +∇h(c)T (x− c) +

1
2
hxx(c)(x − c)T (x− c), ∀x ∈ Ω. (9)

If we compute two polynomials for two different pairs of parameters (a, b) �=(a′, b′)

f̂ = F(f, g, (a, b), c) and ĝ = F(f, g, (a′, b′), c), such that a, b, a′, b′ �= 0,

then their quadratic Taylor expansions about c can be denoted by

p = T 2
c f̂ and q = T 2

c ĝ.

These two polynomials define the algebraic set

S = C(p, q,Ω) = {x : p(x) = 0 ∧ q(x) = 0 ∧ x ∈ Ω}. (10)

If this algebraic set is not empty and p �= q, then it forms a circular arc. This
arc can be used as an approximating circular arc of the curve K = C(f, g,Ω).
Later on the error of the approximation is estimated by a distance bound of the
algebraic curves K̂ = C(f̂ , ĝ,Ω) and S.
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3 Convergence of Approximating Arcs

We analyze in this section the behavior of the generated approximating arcs and
its convergence properties.

3.1 Connection with the Osculating Circle

Now we suppose that the center of the computational domain Ω is a point of the
algebraic curve K = C(f, g,Ω) defined by the polynomials f and g and that it is
not an inflection point of the curve. If the center point is denoted by c, then

f(c) = g(c) = 0. (11)

This special case plays an important role during the computations, since later we
would like to approximate the curve in such sub-domains of the original domain,
which tightly enclose the algebraic curve.

For an arbitrary pair of parameters we compute a new polynomial as the
combination of f and g as we defined in (8)

h = F(f, g, (a, b), c).

Consider the quadratic polynomial

s = T 2
c h.

According to the assumption (11) the center of the domain is a point of the zero
set of h and s

h(c) = s(c) = af(c) + bg(c) = 0. (12)

Then the quadratic approximating polynomial s takes the following form

s(x) = ∇h(c)T(x− c) + λ(x− c)T(x− c), (13)

where
∇h(c) = a∇f(c) + b∇g(c), (14)

and
Hess(h)(c) = λI3,

as in (2). Suppose that λ �= 0, then s = 0 can be written in the form〈
x−

(
c +

1
λ
∇h(c)

)
,x−

(
c +

1
λ
∇h(c)

)〉
=
|∇h(c)|2

λ2
, (15)

which is an equation of a sphere. Therefore the radius of this sphere can be
computed as

r =
|∇h(c)|

λ
. (16)
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(a) (b)

Fig. 1. Sphere family computed with Taylor expansion modification about a point on
the algebraic curve (a) and its intersection with the normal plane of the curve (b). The
thin, black curve is the algebraic curve. The red circle is the osculating circle.

Remark 2. The zero set of s defined in (13) depends only on the ratio of the
chosen parameters a and b. Therefore the sphere family, computed for different
values of (a, b), is a one-parametric surface family. It can be parametrized by the
ratio of a and b. This follows from the computational method of k and l and the
special form of the sphere equations (13). Fig. 1 (a) visualizes several members
of such a sphere family for different values of a/b.

Lemma 2. We assume that (11) is satisfied in the point c. Then for each sphere
equation, computed for a certain (a, b) ∈ IR2, a, b �= 0, the center of the sphere
s = 0 lies in the normal plane of the algebraic curve in the point c. Moreover
the inverse of the radius of the sphere is exactly the normal curvature κn of the
tangent direction ∇f(c)×∇g(c) of the surface F(f, g, (a, b), c) in the point c.

Proof. Suppose that in a certain neighborhood of the point c the algebraic curve
can be parametrized with arc length parametrization. It is not a restriction, since
we are computing only with the regular segments of the algebraic curve. The
parametrization is denoted by

p(t), where p(t0) = c.

This curve lies on the surface h = 0 according to the definition, therefore it
satisfies

dih(p(t))
dti

= 0,
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for any i. If we compute the first derivative in the point c, we obtain that

dh(p(t))
dt

∣∣∣∣
t=t0

= 〈∇h(c),p′(t0)〉 = 0.

Thus the tangent vector of the algebraic curve is parallel to the cross product of
the gradients ∇f(c) and ∇g(c). In (14) we observed, that

∇h(c) = a∇f(c) + b∇g(c).

Since s is the quadratic Taylor expansion of h about c, we obtain that

〈∇s(c),p′(t0)〉 = 0.

This implies, that for any values of the parameters (a, b) the gradient of the
associated sphere is in the normal plane of the algebraic curve in the point c.

The second derivative is

d2h(p(t))
dt2

∣∣∣∣
t=t0

= 〈∇h(c),p′′(t0)〉+ p′(t0)THess(h)(c)p′(t0) =

= 〈∇h(c),p′′(t0)〉+ λ〈p′(t0),p′(t0)〉 = 0.

Since we used the arc length parametrization, therefore

〈∇h(c),p′′(t0)〉+ λ = 0.

The polynomial s is the quadratic Taylor expansion of h about c, therefore also

〈∇s(c),p′′(t0)〉 = −λ.

If we expand the scalar product, then we get

|∇s(c)||p′′(t0)| cosϕ = −λ,

where ϕ denotes the angle of the surface normal ∇h(c) = ∇s(c) and the normal
direction of the algebraic curve in c. According to the Theorem of Meusnier and
(16) we finally arrive at

κ cosϕ = κn =
λ

|∇s(c)| =
1
r
,

which proves the lemma. �

As an example, Fig. 1 (b) shows the intersection of the sphere family and the
normal plane of the algebraic curve. Each sphere of the family intersects this
plane in a great circle. These circles intersect each other in two points on the
normal of the algebraic space curve. The second intersection point is not shown
in the figure.
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Corollary 1. The functions f and g define an algebraic curve K = C(f, g,Ω)
in Ω ⊂ IR3. We assume that the point c ∈ Ω lies on the algebraic curve c ∈ K.
We compute the function family h(a, b) = F(f, g, (a, b), c) with special Hessian
for f and g in the point c. The quadratic Taylor expansion for any (a, b) pair
a, b �= 0 has a spherical zero level set. The intersection of this sphere family is a
circle, which is the osculating circle of K in the point c.

Proof. In each point of a curve on a surface, the osculating circle is the normal
section of the curvature sphere of the surface [19]. In Lemma 2 we observed,
that this curvature sphere for any h(a, b) = 0 surface is the zero set of the
quadratic Taylor expansion. These spheres have the same intersection curve with
the osculating plane of K in the point c, which is exactly the osculating circle. �

3.2 Convergence of Approximating Circles

The method, which is described in Sect. 2, generates an approximation of the
intersection curve of two algebraic surfaces f and g in the sub-domain Ω ⊆ Ω0 by
a circular arc. This approximating arc is defined as the intersection curve of two
spheres. These spheres are given as the zero level set of two polynomials p and
q. The polynomials are the quadratic Taylor expansion of certain polynomials
with a special Hessian about the center point c of the domain Ω. The special
polynomials are computed as the combination of the functions f and g in the
form kf + lg = F(f, g, (a, b), c) for certain pair a, b �= 0. Note that c is not
required to lie on the curve segment.

In order to prove the convergence of the generated circles, we have to show
that the computed polynomials depend continuously on the points of Ω0 for
a fixed choice of (a, b). It means, that the polynomial F(f, g, (a, b), c) depends
continuously on the choice of the point c.

Lemma 3. Given two polynomials f, g ∈ C2 over the domain Ω0. We suppose
that for any point c ∈ Ω0

‖∇f(c)×∇g(c)‖ �= 0. (17)

For an arbitrary but fixed pair of a and b ∈ IR \ {0} we compute the polynomial

h = F(f, g, (a, b), c)

with a special Hessian (see in Lemma 1) under the condition (7). Then h depends
continuously on the points of the domain Ω0.

Proof. We have to show that the computed linear factors k and l depend continu-
ously on the point c. We computed the coefficient vector k = (k1, k2, k3, l1, l2, l3),
such that it satisfies the linear system Ak = b in (6) and minimizes the l2-norm
of the vector k (see (7)). If (17) is true, then A has full rank in any point c ∈ Ω0.
For a full rank matrix the vector, which satisfies (6) and (7), can be computed
as

k = AT(AAT)−1︸ ︷︷ ︸
A†

b.
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The matrix A† is the so called Moore-Penrose generalized inverse of A (see
[20]). If f, g ∈ C2, then the matrix A and the vector b depend continuously
on the point c. Therefore the vector k also depends continuously on the point
c. The values of a �= 0 and b �= 0 are fixed real numbers. So all coefficients
a, b, ki, i = 1 . . . 3 and li, i = 1 . . . 3 depend continuously on c. Therefore also
kf + lg depends continuously on the point c. �

The next corollary follows from Corollary 1 and Lemma 3. If we modify the
Taylor expansion as described in Sect. 2, then we can establish a result concerning
the behavior of a sequence of the generated approximating circles.

Corollary 2. Suppose we have a nested sequence of sub-domains (Ωi)i=1,2,3...⊂
Ω0

Ωi+1 ⊂ Ωi,

which have decreasing diameters δi, such that

lim
i→∞

δi = 0,

and ci denotes the center point of Ωi. Consider a pair of functions f and g,
which defines an algebraic curve in Ω0 ⊂ IR3

K0 = C(f, g,Ω0) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω0}.

Suppose that there exists a point p, which satisfies f(p) = g(p) = 0 and p ∈ Ωi

for all i. We compute f̂i = F(f, g, (a, b), ci) and ĝi = F(f, g, (a′, b′), ci) for fixed
values of a, b, a′, b′ �= 0. We consider the circles Si defined by the zero set of the
quadratic Taylor expansions pi = T 2

ci
f̂i and qi = T 2

ci
ĝi. Then the sequence of

these circles converges to a limit circle, which is the osculating circle of K0 in
the point p.

The following corollary guarantees, that the local algebraic reformulation of the
polynomials asymptotically does not influence the shape of the algebraic curve
(no additional curve segment arises).

Corollary 3. We assume that the parameters a, b, a′ and b′ are all non-zero
and satisfy ab′ �= a′b and that c varies in the compact domain Ω0. There exists
a constant d > 0 such that if the diameter δΩ of Ω ⊂ Ω0 satisfies δΩ < d and
c ∈ Ω then

C(f, g,Ω) = C(f̂ , ĝ,Ω), (18)

where f̂ = F(f, g, (a, b), c) and ĝ = F(f, g, (a′, b′), c).

Proof. We write the algebraic reformulation as(
f̂
ĝ

)
=
(
k1 l1
k2 l2

)(
f
g

)
= Lc

(
f
g

)
.
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Algorithm 1. ArcLocal3d (f, g,Ω, ε)

Require: The curve is regular in Ω.
1: c ← center of Ω
2: f̂ = F(f, g, (a, b), c), ĝ = F(f, g, (a′, b′), c), a, b, a′, b′ ∈ IR \ {0}
3: S ← zero set of T 2

c f̂ and T 2
c ĝ {approximating circle}

4: if S �= ∅ then
5: G ← lower bound for ‖∇f̂‖ and ‖∇ĝ‖
6: K ← upper bound for |∇f̂ · ∇ĝ|
7: if 0 < G and 0 < G2 − K then
8: � ← upper bound of HDΩ(S ,C(f̂ , ĝ, Ω)) {see Sect. 4.2}
9: if � � ε then

10: return S ∩ Ω {approximating arc has been found}
11: end if
12: end if
13: end if
14: return ∅ {no approximating arc has been found}

If det(Lc(x)) �= 0 for all x ∈ Ω then (18) is satisfied. (Note that this is merely a
sufficient condition, but not a necessary one.) We know that

Lc(c) = ab′ − a′b �= 0.

According to Lemma 3 the linear polynomials k1,2 and l1,2 depend continuously
on c and x. Thus also ∇k1,2 and ∇l1,2 change continuously. Hence there exists
a global upper bound B for all x and c ∈ Ω0 such that

‖∇det(Lc(x))‖ < B.

Consequently, det(Lc(x)) �= 0 is satisfied for all domains Ω containing c whose
diameter does not exceed |ab′ − ba′|/(2B). �

One might introduce an additionally test certifying that det(Lc) does not vanish
in Ω. We omitted this test since we never experienced unwanted branches in our
numerical experiments.

4 Algorithm and Error Bounds

Based on the results of Sect. 2 we formulate Algorithm 1. It generates an ap-
proximation of regular algebraic curve segments by circular arcs and a bound of
the approximation error.

4.1 Local Algorithm

The local method is applied in such sub-domains of the original computational
domain, which contains regular curve segments. Later on we will describe a
global algorithm, which combines this local algorithm with subdivision method.
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(a) (b) (c)

Fig. 2. Examples for local approximating arc generation with the help of ArcLocal3d
for the parameter pairs (a, b) = (1, 2) and (a′, b′) = (2, 1)

Table 1. Arc approximation of three different curve segments (see Fig. 2) for four
different parameter choices

(a, b); (a′, b′) Curve (a) Curve (b) Curve (c)

(1, 2); (2, 1) 0.01526 0.01184 0.01771

(1, 5); (5, 1) 0.01528 0.01177 0.01774

(1, 100); (100, 1) 0.01561 0.01151 0.01827

(1, 1000); (1000, 1) 0.01566 0.01150 0.01829

Remark 3. The algorithm ArcLocal3d first reformulates the polynomials. There-
fore we have to fix the value of two parameter pairs (a, b) and (a′, b′). According
to Remark 2 if a, b, a′, b′ �= 0 and a/b �= a′/b′, then any choice of these parameter
pairs generate similar results, since the generated approximating arcs converge
to the same limit circle, the osculating circle. It is not possible to improve the
general behavior of the algorithm by the choice of these parameters.

Fig. 2 presents three curve segments approximated by arcs with the help of
the local algorithm for the parameter pairs (a, b) = (1, 2) and (a′, b′) = (2, 1).
We approximate the same curve segments by three other choice of the parameter
pairs in the unit cube. Table 1 compares the error bounds (see bounding method
in Sect. 4.2) of these approximations. In all remaining examples, which will be
presented in Section 5.2, we chose the parameters as (1, 2) and (2, 1).

The algorithm generates the approximating arc in algebraic form. Clearly, if
we would like to represent the output in a parametric form, it is also possible to
describe the circular arcs as rational quadratic curves.

The error estimation method (described in Sect. 4.2) is based on the convex
hull property of polynomials represented in Bernstein-Bézier form. This tech-
nique is used to bound the distance between the zero level set of each polyno-
mial and the associated quadratic Taylor expansion. Then an upper bound is
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generated for the one-sided Hausdorff distance of the approximating arc and the
algebraic curve.

The algorithm is successful, if the approximating arc is found and the error
bound is smaller then the prescribed tolerance ε. In this case the algorithm
returns a circular arc, which approximates the curve segment in the appropriate
sub-domain Ω. If the local algorithm fails then it returns the empty set.

4.2 Error Estimate

We describe a method here to estimate the distance of two algebraic space curves.
In order to get a distance bound we combine a distance bound of parametric and
algebraic curves and a distance estimation strategy between algebraic surfaces.

In order to bound the distance of algebraic and parametric curves we recall
a result from [21]. We assume that the parametric curve segment s(t) is defined
with the parameter domain t ∈ [0, 1] in Ω ⊂ IR3. The curve traces the point set

S = {s(t) : t ∈ [0, 1]}.

The algebraic curve K = C(f, g,Ω) is defined as the simultaneous zero set of
the polynomials f and g. The one-sided Hausdorff distance of S with respect to
K∗ = K ∪ ∂Ω is defined as

HDΩ(S,K) = sup
t∈[0,1]

inf
x∈K∗

‖x− s(t)‖. (19)

The boundary ∂Ω in (19) is needed for technical reasons, see [21].

Theorem 1 ([21]). Suppose that the polynomials f and g define the algebraic
curve K = C(f, g,Ω) in Ω ⊂ IR3. We assume that positive constants G and K
exist for all x ∈ Ω, such that

G ≤ ‖∇f(x)‖ and G ≤ ‖∇g(x)‖,

and
|∇f(x) · ∇g(x)| ≤ K.

If
G2 −K > 0,

and provided that there exist a positive constant M , such that

∀t ∈ [0, 1], f(s(t))2 + g(s(t))2 ≤M2,

the one-sided Hausdorff distance is bounded by

HDΩ(S,K) ≤ M√
G2 −K

. (20)
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Theorem 1 can be used for bounding the distance of implicitly defined algebraic
curves. The Bernstein-Bézier(BB) norm denoted as ‖.‖ΩBB, is the maximum ab-
solute value of the coefficients in the BB-form of the polynomial represented in
the domain Ω. With the help of this norm we can bound the distance of algebraic
surfaces over a certain computational domain Ω ⊂ IR3. The distance bound can
be defined between an arbitrary polynomial f and an approximating polynomial
p for all point in the domain

ε = ‖f − p‖ΩBB. (21)

Due to the convex hull property

|f(x)− p(x)| ≤ ε, ∀x ∈ Ω.

Therefore for all x ∈ Ω such that p(x) = 0

‖f(x)‖ ≤ ε. (22)

Suppose that an algebraic curve K is defined by the polynomials f and g

K = C(f, g,Ω) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω}.
An approximating space curve S is given by two approximating algebraic surfaces
p = 0 and q = 0

S = C(p, q,Ω) = {x : p(x) = 0 ∧ q(x) = 0 ∧ x ∈ Ω}.
In order to estimate the distance of algebraic space curves we measure first
the distance of the defining algebraic surfaces. Suppose that the polynomial p
approximates f , and q is an approximating polynomial of g. We estimate the
distance between the algebraic surfaces and the approximating surfaces pairwise

ε1 = ‖f − p‖ΩBB, ε2 = ‖g − q‖ΩBB.

According to (22) for all x ∈ S
|f(x)| ≤ ε1 and |g(x)| ≤ ε2,

thus √
f(x)2 + g(x)2 ≤

√
ε2
1 + ε2

2.

Therefore Theorem 1 can be applied to bound the distance of K and S with the
help of the constants G,K and

M =
√

ε2
1 + ε2

2.

In order to compute the constants G,K, ε1 and ε2, we represent the polynomials
in Bernstein-Bézier form and use the convex hull property of the representation
form.



Approximating Algebraic Space Curves by Circular Arcs 171

Remark 4. This error bound and the method for computing it can be extended
to the two-sided Hausdorff distance. The role of the polynomials f, g and p, q
can be exchanged in the bound (21). In this case, the values of the algebraic
distances (ε1 and ε2) do not change. The bounds on the gradients G and K will
change. However, both bounds converge to the same value when the domain Ω
shrinks to a point. This follows from the construction of p and q, which satisfy

∇f(c) = ∇p(c) and ∇g(c) = ∇q(c)
in the center c of the computational domain.

5 Global Subdivision Method

Subdivision is a frequently used technique and it is often combined with local
approximation methods. Such hybrid algorithms subdivide the computational
domain in order to separate regions where the topology of the curve can be
described easily. The local curve approximation techniques can be applied in the
sub-domains, where the topology of the curve has been successfully analyzed.
The regions with unknown curve behavior can be made smaller and smaller with
subdivision.

5.1 Global Algorithm

The algorithm GenerateArcs (see Algorithm 2) generates approximating arcs
for general algebraic space curves. It combines the arc generation for regular
curve segments ArcLocal3d (see Algorithm 1) with recursive subdivision.

First it analyzes the Bernstein–Bézier coefficients of the polynomials with
respect to the current sub-domain. If no sign changes are present for one or both
of the polynomials, then the current sub-domain does not contain any component
of the algebraic curve. Otherwise, if the curve is regular within the domain,
it tries to apply the local arc generation algorithm. If this is not successful,
then the algorithm either subdivides the current domain into eight sub-domains,
or returns the entire domain, if its diameter is already below the user-defined
threshold ε.

Note that the algorithm may return sub-domains that do not contain any
segments of the implicitly defined curve. However, it is guaranteed to return a
set of approximating primitives, such that each point of the implicitly defined
curve has at most the distance ε to one of the primitives.

The generated approximating arcs are generally disconnected. It follows from
the approximation technique described in the local algorithm ArcLocal3d. This
technique always considers information only about the algebraic curve segment,
which is located in the computational sub-domain. Due to the user-specified error
bound ε, the end points of two neighboring approximating arcs along the curve
cannot be farther away from each other than 2ε. However a post processing step
can be applied in the end of the global algorithm to connect the approximating
arcs, which represent the same segment of the curve. For instance based on the
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Algorithm 2. GenerateArcs(f, g,Ω, ε)

1: if the box is empty then
2: return ∅
3: end if
4: if the curve is regular in Ω then
5: A ← ArcLocal3d(f, g,Ω, ε) {arc generation}
6: if A �= ∅ then
7: return A {... has been successful}
8: end if
9: end if

10: if diameter of Ω > ε then
11: subdivide the box into 8 subboxes Ω1, . . . , Ω8 {subdivision}
12: return

⋃8
i=1GenerateArcs(f, Ωi, ε) {recursive call}

13: end if
14: return Ω {current box is small enough}

error bound, one can apply approximation techniques, which generate continuous
curves within tolerance bands [7].

5.2 Examples

Example 1. In this example we approximate the intersection curve of quadric
surfaces. We apply the algorithm GenerateArcs for three different intersections
of four different pairs of quadric surfaces. The outputs are represented in Fig. 3.
The number of used approximating primitives are given in Tab. 2 for each in-
tersection curve. If the curve has a singular point (here in 1.(b), 2.(c), 3.(b) and
4.(c)), then the algorithm returns not only arcs but also bounding boxes as ap-
proximating primitives. All the examples are represented in the unit cube [0, 1]3.
The intersection curves are approximated within the tolerance ε = 0.01.

According to the local approximation technique the global algorithm gener-
ates only bounding boxes around the singular points of the curve. If singular
points are present, then our method generates bounding boxes, but no arcs.
More sophisticated techniques are required for dealing with singular points, see
e.g. [26]. Our further aim is to develop such computational tests based on arc
approximation.

Example 2. In this example we approximate the intersection curve of non-
quadratic surface patches by two different methods. One is using the circular
arc generation technique combined with subdivision. The other technique gen-
erates only approximating line segments as local approximating primitives and
combines it with iterative subdivision. This second method also reformulates
the algebraic system locally. It generates two different linear combination of the
algebraic equations such that the new polynomials have perpendicular normal
vector in the center of the computational sub-domain. The approximating line
segment is defined then as the intersection curve of the linear Taylor expansions
of the reformulated polynomials.
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1.(a) 1.(b)-singular 1.(c)

2.(a) 2.(b) 2.(c)-singular

3.(a) 3.(b)-singular 3.(c)

4.(a) 4.(b) 4.(c)-singular

Fig. 3. Approximation of the intersection of quadric surfaces
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Table 2. Approximating intersection curve of quadric surfaces. The number of used
approximating primitives are given for the examples shown in Fig. 3.

Quadric Surfaces Position (see Fig. 3) Number of Arcs Number of Boxes

1. sphere + cylinder
(a) 80 0

(b)-singular 104 248
(c) 52 0

2. ellipsoid + hyperboloid
of one sheet

(a) 80 0
(b) 76 0

(c)-singular 96 76

3. rotational paraboloid +
hyperbolic paraboloid

(a) 60 0
(b)-singular 108 156

(c) 50 0

4. hyperboloid of two
sheets + elliptic cylinder

(a) 80 0
(b) 80 0

(c)-singular 88 612

Fig. 4. Approximation of a high-order algebraic space curve by circular arcs (69 seg-
ments) and line segments (278 segments), both with tolerance ε = 10−4. Only one
picture is shown, since there are no visual differences.

The example surfaces are defined as the zero level set of the polynomials

2x4 + y3 + z − 1.1 (23)
x3y2 + z − 0.6

in the unit cube. The curve is approximated within the tolerance ε = 10−4. The
line approximation uses 278 line segments while the arc generation method only
69 arcs to reach the same tolerance level (see Fig. 4).

Example 3. In this example we approximate the isophotes of surfaces for dif-
ferent light directions. Isophotes are curves on a surface, where all points are
exposed with equal light intensity from a given light source. An isophote of a
surfaces f = 0 for a fixed direction vector d and angle ϕ traces the point set

I(f,d, ϕ) = {p : f(p) = 0 ∧ 〈d,∇f(p)〉 = cos(ϕ)‖∇f(p)‖},
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Table 3. Number of used approximating primitives (in columns # Arcs) in the isophote
approximations (see examples in Fig.5 and Fig.6)

S1 : xy − z + 0.5 = 0 S2 : x3 + 1
2
y3 + z − 1

2
= 0

(0, 0,−1) (−1, 1,−4) (−2, 0,−3) (−1,−1,−1) (0,−1,−1)

cos ϕ # Arcs cos ϕ # Arcs cos ϕ # Arcs cos ϕ # Arcs cos ϕ # Arcs

0.8 66 0.7 19 0.5 15 0.6 28 0.3 16
0.85 44 0.8 25 0.65 18 0.7 32 0.4 32
0.9 48 0.88 56 0.8 28 0.75 58 0.5 44
0.95 32 0.95 54 0.9 22 0.8 107 0.7 70
0.99 28 0.99 26 0.97 31 0.85 120 0.99 79

Fig. 5. Approximation of isophotes for different light directions on the surface S1

if we suppose that the direction vector is a unit vector. In order to describe an
isophote for a given d and ϕ we used the algebraic equation system

f = 0,
(fxd

x + fyd
y + fzd

z)2 − cos2 ϕ
(
f2

x + f2
y + f2

z

)
= 0,

where d = (dx, dy, dz). These two equations allocates the points of the isophotes,
which belong to the direction d and the angles ϕ and (π−ϕ). We apply the arc
approximation algorithm to two different surfaces to compute isophotes. For the
first one we compute isophotes for three different light directions (see Fig. 5).
For the second surface we used two different light directions (see Fig. 6). In
Tab. 3 we show the number of used approximating arcs for each isophote for
both surfaces, along with the light directions and angles. We approximated the
isophotes in the domain [−1, 1]3 within the tolerance ε = 0.05.
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Fig. 6. Approximation of isophotes for different light directions on the surface S2

6 Conclusion

We presented a local technique which generates approximating circular arcs for
regular segments of algebraic space curves. This technique is based on a refor-
mulation of the problem. It combines the defining polynomials of the algebraic
curve, such that the new polynomials define the same algebraic curve but they
have special Hessian matrices at a certain point. This local technique can be
combined with subdivision method to approximate arbitrary algebraic curves
restricted to a domain.

A similar method can be applied also for planar algebraic curves. Moreover
it might be possible to use a similar arc generation technique in IRn to approx-
imate general algebraic curves. This result can be used also for finding roots of
polynomial systems [17]. Computing with quadratic approximating primitives
provides good convergence properties [22]. Thus it is promising to apply then
for curve approximation and for solving polynomial systems.
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Abstract. We provide the drawing of the output of dynamical system
(Σ), particularly when the output is rough or near instability points.
(Σ) being analytical in a neighborhood of the initial state q(0) and de-
scribed by its state equations, its output y(t) in a neighborhood of t = 0
is obtained by “evaluating” its generating series. Our algorithm consists
in juxtaposing local approximating outputs on successive time intervals
[ti, ti+1]0≤i≤n−1, to draw y(t) everywhere as far as possible. At every
point ti+1 we calculate at order k an approximated value of each com-
ponent qr of the state; on every interval [ti, ti+1]0≤i≤n−1 we calculate an
approximated output. These computings are obtained from the symbolic
expressions of the generating series of qr and y, truncated at order k,
specified for t = ti and “evaluated”. A Maple package is built, providing
a suitable result for oscillating outputs or near instability points when a
Runge-Kutta method is wrong.

Keywords: Curve drawing, dynamical system, symbolic algorithm,
generating series, oscillating output.

1 Introduction

The usual methods for drawing the output of dynamical systems consist in pro-
viding the drawing of a piecewise linear function or at best, a smooth sketch.
These methods are based on an iterative construction of isolated points (Runge-
Kutta).

The problem is that this drawing disregards or smooths the oscillations which
may be interesting in physics or biology. For instance, the detection of climate
cycles in climatology, the study of the synchronization of oscillations in biology
and particularly the pharmacodynamy describing the effect of a drug on the
organism, would be processed by the knowledge of an exact drawing of the
model. Our idea is to obtain a drawing which preserves the oscillations as far as
possible.

Rather than calculate numerous successive approximate points y(ti)i∈I , it can
be interesting to provide some few successive local curves {y(t)}t∈[ti,ti+1]0≤1≤n−1 .
In a previous paper [2], we provided a method for drawing the solution curve
of differential equation. We had to compute the new values of the output and

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 178–192, 2012.
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its derivatives at every initial point (ti)0≤1≤n−1. In the case when we consider
a dynamical system, we have to calculate, for every interval [ti, ti+1], the new
state q(ti) instead of computing the new output y(ti) and its derivatives.
And then, we introduce the computing of the generating series (Gqr ,t)1≤r≤N

associated with the rth component of the state q = (q1, · · · , qN ) instead of only
computing the generating series Gy,t associated with the output.

The computing of these local curves can be kept partly generic since a generic
expression of the generating series Gy,t, (Gqr ,t)1≤r≤N of the system can be pro-
vided in terms of (qr , t). The expression of the local curves {y(t)}t∈[ti,ti+1] is only
a specification for t = ti at order k of the formula given in Section 3.

2 Preliminaries

2.1 Affine System, Generating Series

We consider the nonlinear analytical system affine in the input:

(Σ)
{

q̇ = f0(q) +
∑m

j=1 fj(q)uj(t)
y(t) = g(q(t))

(1)

– (fj)0≤j≤m being some analytical vector fields in a neighborhood of q(0)
– g being the observation function analytical in a neighborhood of q(0).

Its initial state is q(0) at t = 0. The generating series Gy,0, in noncommutative
variables, is built on the alphabet Z = {z0, z1, · · · , zm}, z0 coding the drift
and zj coding the input uj(t). Generally Gy,0 is expressed as a formal sum
Gy,0 =

∑
w∈Z∗ 〈Gy,0|w〉w where 〈Gy,0|zj0 · · · zjl

〉 = fj0 · · · fjl
g(q)|q(0) depends

on q(0).

2.2 Fliess’s Formula and Iterated Integrals

The output y(t) is given by the Fliess’s equation ([4]):

y(t) =
∑

w∈Z∗
〈Gy,0|w〉

∫ t

0

δ(w), (2)

where Gy,0 is the generating series of (Σ) at t = 0:

Gy,0 =
∑

w∈Z∗ 〈Gy,0|w〉w
= g(q)|q(0)+∑

l≥0

∑m
ji=0 fj0 · · · fjl

g(q)|q(0)zj0 · · · zjl
,

(3)

and
∫ t

0 δ(w) is the iterated integral associated with the word w ∈ Z∗.
The iterated integral

∫ t

0
δ(w) of the word w for the input u is defined by⎧⎨⎩
∫ t

0 δ(ε) = 1∫ t

0 δ(vzi) =
∫ t

0

(∫ τ

0 δ(v)
)
ui(τ)dτ

∀zi ∈ Z ∀v ∈ Z∗,

(4)
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where ε is the empty word, u0 ≡ 1 is the drift and ui∈[1..m] is the ith input.
We define the Chen’s series as follows ([3]):

Cu(t) =
∑

w∈Z∗

∫ t

0

δ(w). (5)

We set

ξi,1(t) =
∫ t

0

ui(τ)dτ . (6)

From the previous definitions, we obtain the following expression:

y(t) =
∑

w∈Z∗
〈Gy,0|w〉〈Cu(t)|w〉. (7)

By applying the Fliess formula to every component qr(t)1≤r≤N of the state q(t)
instead of y(t), we obtain

qr(t) =
∑

w∈Z∗
〈Gqr ,0|w〉〈Cu(t)|w〉 (8)

by setting
Gqr ,0 =

∑
w∈Z∗ 〈Gqr ,0|w〉w

= projr(q)|q(0)+∑
l≥0

∑m
ji=0 fj0 · · · fjl

projr(q)|q(0)
zj0 · · · zjl

(9)

where projr(q) = qr.

3 Main Results

3.1 Approximate Values of the Output y(t) and of the State
(qr(t))1≤r≤N in a Neighborhood of t = 0

Fliess’s formula can be written as

y(t) = 〈Gy,0|ε〉+
∑

w∈Z∗−{ε}
〈Gy,0|w〉〈Cu(t)|w〉. (10)

An approximate function yk(t) of y(t) up to order k in a neighborhood of t = 0
is obtained by expanding this expression up to the same order k. Then we have

|y(t)− yk(t)| = O(tk+1). (11)

For instance, at order k = 1, y(t) has the following approximate expression for
a single input with drift

y1(t) = 〈Gy,0|ε〉+ 〈Gy,0|z0〉t + 〈Gy,0|z1〉ξ1(t), (12)

where ξk(t) denotes the kth primitive of u(t).
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This computation can be generalized ∀r ∈ [1 · · ·N ] components of the
state q.

qr(t) = 〈Gqr ,0|ε〉+
∑

w∈Z∗−{ε}
〈Gqr ,0|w〉〈Cu(t)|w〉 (13)

by expanding these expressions up to order k.

3.2 Generalization at Time t = ti

For a single input with drift, the system (Σ) can be written at t = ti:⎧⎨⎩
q̇(ti + h) = f0(q(ti + h))+

f1(q(ti + h))u(ti + h)
y(ti + h) = g(q(ti + h)).

(14)

By setting ⎧⎨⎩Ui(h) = u(ti + h)
Yi(h) = y(ti + h)
Qi(h) = q(ti + h),

(15)

we obtain the following system:

(Σi)
{
Q̇i(h) = f0(Qi(h)) + f1(Qi(h)Ui(h)
Yi(h) = g(Qi(h),

(16)

and Gy,ti , Gqr ,ti are the generating series of (Σi). By setting ψi,k(h) = ξk(ti +h),
then ψi,k(h) is the kth primitive of u(ti + h) or the kth primitive of Ui(h).

We have the equalities

ξ1(ti + h) =
∫ ti+h

ti

u(τ)dτ =
∫ h

0

Ui(t)dt = ψi,1(h), (17)

and then, we can prove recursively that the Chen’s integral
∫ ti+h

ti
δ(w) can be

computed as an integral
∫ t

0
δ(W ) by considering Ui(t) instead of u(ti + t).

4 Application: For Drawing the Output

We present an application to the drawing of the output of a dynamical system.
We consider the following dynamical system{

q̇(t) = f0(q(t)) + f1(q(t))u(t)
y(t) = g(q(t)), (18)

with initial conditions
q(0) = (q1(0), · · · , qN (0)).



182 F. Benmakrouha, C. Hespel, and E. Monnier

We propose a curve drawing of the output y(t) of this system in [0, T ] =⋃
[ti, ti+1]0≤i≤n−1 according to the following algorithm: Firstly, we compute a

generic approximated expression of the generating series Gy,t, (Gqr ,t)1≤r≤N :{
Gy,t =

∑
l≤k fj0 · · · fjl

g(q)|q(t)zj0 · · · zjl
=
∑

|w|≤k 〈Gy,t|w〉w
Gqr ,t =

∑
l≤k fj0 · · · fjl

projr(q)|q(t)zj0 · · · zjl
=
∑

|w|≤k 〈Gqr ,t|w〉w.

(19)
We compute a generic approximated expressions of the output y(t + h) and
qr(t + h): {

y(t + h) =
∑

|w|≤k 〈Gy,t|w〉
∫ t

0
δ(W )

qr(t + h) =
∑

|w|≤k 〈Gqr ,t|w〉
∫ t

0 δ(W )
(20)

– Initial point t0 = 0:
q1(0), · · · , qN (0) are given.
The vector fields f0, f1 evaluated in t0 provide 〈Gy,0|w〉, (〈Gqr ,0|w〉)1≤r≤N

for |w| ≤ k and y(0) = g(q(0)).

– Step i:
Knowing (qr(ti−1))1≤r≤N , y(ti−1) and (〈Gqr ,ti−1 |w〉)1≤r≤N , 〈Gy,ti−1 |w〉 for
|w| ≤ k, we compute⎧⎪⎪⎪⎨⎪⎪⎪⎩

y(ti) = y(ti−1 + h)
=
∑

|w|≤k 〈Gy,ti−1 |w〉
∫ h

0
δ(W )

qr(ti) = qr(ti−1 + h)
=
∑

|w|≤k 〈Gqr ,ti−1 |w〉
∫ h

0
δ(W ).

(21)

We present Gy,ti , (Gqr ,ti)1≤r≤N by evaluating their generic expressions at
q(ti). We draw the local curve of the function ti−1 + dt → y(ti−1 + dt) on
the interval [ti−1, ti].

– Final point t = T = tn: stop at i = n.

4.1 Genericity of the Method

The computing of the coefficients{ 〈Gy,ti |zj0 · · · zjl
〉 = fj0 · · · fjl

g(q)|q(ti)

〈Gqr ,ti |zj0 · · · zjl
〉 = fj0 · · · fjl

projr(q)|q(ti)
(22)

is generic. The computing of the expressions⎧⎪⎪⎨⎪⎪⎩
Yi(h) = y(ti + h) = y(ti)+∑

|w|≤k 〈Gy,ti |w〉〈CUi (h)|w〉
qr(ti + h) = qr(ti)+∑

|w|≤k 〈Gqr ,ti |w〉〈CUi (h)|w〉
(23)

is also generic.
We use the previous algorithm by specifying ti at every step in the previous

expressions.
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4.2 Example 1: Electric Differential Equation

Consider
y(1)(t) + k1y(t) + k2y

2(t) = u(t)
y(0) = y0,

(24)

which can be written as a first order differential system⎧⎨⎩ q(1)(t) = −k1q(t)− k2q
2(t) + u(t)

= a(q)(t) + u(t)
y(t) = q(t), q(0) = y0.

(25)

The vector fields are

f0(q) = −(k1q + k2q
2) d

dq = a(q) d
dq

f1(q) = d
dq .

1. Generic expression of Gy,ti = Gq,ti :
Let us remark that

〈Gy,ti |wz1〉 = 0 ∀w ∈ Z+.

For instance, for order k = 2

〈Gy,ti |ε〉 = q|q(ti)

〈Gy,ti |z0〉 = a(q)|q(ti)

〈Gy,ti |z1〉 = 1
〈Gy,ti |z2

0〉 = a(q) d
dqa(q)|q(ti)

〈Gy,ti |z1z0〉 = d
dqa(q)|q(ti).

(26)

2. Generic expression of Yi(h):
for order k = 2

Yi(h) = y(ti + h)
= y(ti)+
〈Gy,ti |z0〉h + 〈Gy,ti |z1〉ψi,1(h)+
〈Gy,ti |z2

0〉h2/2 + 〈Gy,ti |z1z0〉ψi,2(h).

(27)

3. We use the previous algorithm of Section 4 by specifying ti at every step. So
we obtain the drawing of y(t) (see the next section).

4.3 Example 2: Dynamical System with Polynomial Generating
Series [7]

Consider
q̇1 = q2 + q3u(t)
q̇2 = 1
q̇3 = u(t)
y(t) = q1(t)
y(0) = q1(0) = q1,0, q2(0) = q2,0, q3(0) = q3,0

(28)
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which can be written as a dynamical system

(Σ)
{

q̇ = f0(q) + f1(q)u(t)
y(t) = g(q(t)) (29)

for
f0 = q2

∂
∂q1

+ ∂
∂q2

f1 = q3
∂

∂q1
+ ∂

∂q3

y(t) = proj1(q(t)).

1. Generic expression of Gy,ti = Gq1,ti :
This series is polynomial:

Gq1,ti = q1(ti) + q2(ti)z0 + q3(ti)z1 + z2
0 + z2

1 . (30)

2. Generic expression of Gq2,ti :
This series is polynomial:

Gq2,ti = q2(ti) + z0. (31)

3. Generic expression of Gq3,ti :
This series is polynomial:

Gq3,ti = q3(ti) + z1. (32)

4. Generic expression of Yi(h) = q1(ti + h):

Yi(h) = y(ti + h)
= y(ti)+
〈Gy,ti |z0〉h + 〈Gy,ti |z1〉ψi,1(h)+
〈Gy,ti |z2

0〉h2/2+
〈Gy,ti |z2

1〉1/2(ψi,1(h))2.

(33)

5. Generic expression of q2(ti + h):

q2(ti + h) = q2(ti) + h (34)

6. Generic expression of q3(ti + h):

q3(ti + h) = q3(ti) + ψi,1(h). (35)

The drawing of y(t) is exact for order ≥ 2 since the 3 generating series are
polynomials of degree ≤ 2.
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4.4 Example 3: Dynamical System [1]

Consider
q̇1 = sin(q2)
q̇2 = sin(q3)
q̇3 = q3

4 + u(t)
q̇4 = −q3

4 − q10
1

y(t) = q2(t)
y(0) = q2(0) = q2,0, q1(0) = q1,0,

q3(0) = q3,0, q4(0) = q4,0

(36)

which can be written as a dynamical system

(Σ)
{

q̇ = f0(q) + f1(q)u(t)
y(t) = g(q(t)) (37)

for
f0 = sin(q2) ∂

∂q1
+ sin(q3) ∂

∂q2
+

q3
4

∂
∂q3

+ (−q3
4 − q10

1 ) ∂
∂q4

f1 = ∂
∂q3

y(t) = proj2(q(t)).

1. Generic expression of Gy,ti = Gq2,ti up to order k = 2:

Gq2,ti = q2(ti) + sin(q3(ti))z0+
(q4(ti))3cos(q3(ti))z2

0+
cos(q3(ti))z1z0.

(38)

2. Generic expression of Gq1,ti up to order k = 2:

Gq1,ti = q1(ti) + sin(q2(ti))z0+
sin(q3(ti))cos(q2(ti))z2

0 .
(39)

3. Generic expression of Gq3,ti up to k = 2:

Gq3,ti = q3(ti) + (q4(ti))3z0 + z1+
3(−(q4(ti))3 − (q1(ti))10)(q4(ti))2z2

0 .
(40)

4. Generic expression of Gq4,ti up to k = 2:

Gq4,ti = q4(ti) + (−(q4(ti)3 − (q1(ti))10)z0+
(3((q4(ti))3 + (q1(ti)10))(q4(ti))2

−10(q1(ti))9sin(q2(ti)))z2
0 .

(41)

5. Generic expression of Yi(h) = q2(ti + h) up to k = 2:

Yi(h) = y(ti + h)
= y(ti) + 〈Gy,ti |z0〉h+
〈Gy,ti |z2

0〉h2/2 + 〈Gy,ti |z1z0〉(ψi,2(h)).
(42)
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6. Generic expression of q1(ti + h) up to k = 2:

q1(ti + h) = q1(ti) + 〈Gq1,ti |z0〉h+
〈Gq1,ti |z2

0〉h2/2. (43)

7. Generic expression of q3(ti + h) up to k = 2:

q3(ti + h) = q3(ti) + 〈Gq3,ti |z0〉h+
〈Gq3,ti |z1〉(ψi,1(h))+
〈Gq3,ti |z2

0〉h2/2.
(44)

8. Generic expression of q4(ti + h) up to k = 2:

q4(ti + h) = q4(ti) + 〈Gq4,ti |z0〉h+
〈Gq4,ti |z2

0〉h2/2. (45)

4.5 Maple Package: Some Demonstrations

In this section, we produce a demonstration in the following cases:

– For stable system (electric equation with positive parameters) for oscillat-
ing input u(t) = sin(100t), step=0.01 (Runge-Kutta vs our method). The
drawings are similar by both methods. See Fig. 1

Fig. 1. Stable system, oscillating input, small step, by Runge-Kutta or our method
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Fig. 2. Stable system, oscillating input, large step, by Runge-Kutta (without oscilla-
tion) and our method

– For stable system (electric equation, linear equation) with oscillating output
(Runge-Kutta vs our method vs Exact Solution)

1. Electric equation with positive parameters for oscillating input u(t) =
sin(100t) , step= 0.5 (Runge-Kutta vs our method). The oscillations of
the output are not described by Runge-Kutta method when our method
diplays a lot of oscillations. See Fig. 2.

2. Linear equation for oscillating input u(t) = t2sin(100t), step= 0.05
(Runge-Kutta vs our method vs Exact Solution). The drawing of the
exact solution is similar to the drawing of our method. See Figs. 3,4,5.

3. Dynamical system (Example 2) for oscillating input u(t) = t2sin(10t),
step= 0.5 ( Our method at order 2 vs Exact Solution). The drawing
of the exact solution is exactly the drawing of our method at order 2
(identical curves). See Fig. 6.

– For unstable system (electric equation with negative parameters), u(t) =
sin(100t), step = 0.01., Runge-Kutta method notifies an error when our
method displays a suitable curve. The Runge-Kutta method does not apply
to this case when the drawing of our method displays an infinite branch. See
Fig. 7.
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Fig. 3. Linear equation, oscillating input, small step by Runge-Kutta

Fig. 4. Linear equation, oscillating input, small step by our method
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Fig. 5. Linear equation, oscillating input, small step by exact method

Fig. 6. Dynamical system, oscillating input, by exact method and our method
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Fig. 7. Unstable system, oscillating input, small step, by our method

5 Some Practical Applications

In biology, a lot of phenomenons are oscillating and sometimes cyclic. For in-
stance, the oscillations of the hormonal secretions present some periodic activi-
ties. In the cellular cycle, the synchronization of the oscillations is basic.
An interesting application of our method in pharmacodynamy consists in mod-
eling the effect of a drug on the organism in terms of time, in predicting the
behaviour of the organism and in regulating the parameters of the organism by
distributing suitably the drug in terms of time. This work is based on the asso-
ciated drawings (in term of time) of the values of the drug and of the values of
the studied parameter.

In diabetology, by infusing insulin to diabetic patients, and by measuring the
corresponding glycaemia, we obtain two associated curves (insulin delivery and
glycaemia rate in the blood, in terms of time). With a sufficient set of these pairs,
we can provide a modeling in the form of a dynamical system [11]. And then
the prediction, regulation [8] can be processed by the knowledge of an accurate
drawing of the model.

The detection of climate cycles in climatology is studied and several models
are provided. The prediction of these cycles would be perhaps processed by the
knowledge of an accurate drawing of a suitable model.



Drawing the Output of Dynamical Systems 191

6 Conclusion

We develop a method for drawing the output of a dynamical system, based on
the symbolic computing.

The symbolic computing allows us to profit from the genericity: We propose
that one uses the formal expression of the generating series Gy,t, Gqr ,t, of the
output y(t) and the components of the state (qr)1≤r≤N . Then we replace these
expressions by their values at every step.

The symbolic computing allows us to profit from the precision: We can choose
any order k for approximating the output. The error is on the order of k + 1.

And then an interest of this method consists in choosing the precision, not
only by the size of the time interval h but by the order of the approximation.
The quality of any approximation depends on the order, the size of the interval
but also depends on the roughness of the curve and the stability of the system.
From a lot of examples, we express the following conclusions:

For stable systems with smooth outputs, our method and a Runge-Kutta
method provide similar results.

For unstable systems, our methods allows us to obtain a suitable result near
the instability points, when the Runge-Kutta methods give an error message.
For stable systems with rough or oscillating outputs, our method provides a suit-
able result when a Runge-Kutta method is wrong. Many applications in physics
or biology are then available. The detection of climate cycles in climatology, the
study of the synchronization of oscillations in biology, some problems of phar-
macodynamy (modeling, prediction, regulation) would be partly processed by
the knowledge of an accurate drawing of the model.

Acknowledgments. The authors are grateful to Michel Petitot for giving us
some ideas for dealing with dynamical systems instead of differential equations.
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Abstract. Solving mixed-integer problems, i.e., optimization problems
where some of the unknowns are continuous while others are discrete,
is NP-hard. Unfortunately, real-world problems like e.g., quadrangular
remeshing usually have a large number of unknowns such that exact
methods become unfeasible. In this article we present a greedy strat-
egy to rapidly approximate the solution of large quadratic mixed-integer
problems within a practically sufficient accuracy. The algorithm, which
is freely available as an open source library implemented in C++, de-
termines the values of the discrete variables by successively solving re-
laxed problems. Additionally the specification of arbitrary linear equality
constraints which typically arise as side conditions of the optimization
problem is possible. The performance of the base algorithm is strongly
improved by two novel extensions which are (1) simultaneously estimat-
ing sets of discrete variables which do not interfere and (2) a fill-in re-
ducing reordering of the constraints. Exemplarily the solver is applied
to the problem of quadrilateral surface remeshing, enabling a great flex-
ibility by supporting different types of user guidance within a real-time
modeling framework for input surfaces of moderate complexity.

Keywords: Mixed-Integer Optimization, Constrained Optimization.

1 Introduction

The problem of optimizing objective functions E(x) where one part of the un-
knowns is real valued xi∈R ∈ R and the other unknowns are required to be
integers xj∈I ∈ Z is referred to as Mixed-Integer Problem (MIP). Typically such
problems arise whenever a continuous optimization depends on some discrete
decisions. One example from structural engineering is the optimization of a sup-
porting structure, where two points of this structure can either be connected by
a beam or not while in contrast to this discrete decision the geometric positions
of the connected points can be varied continuously.

Mixed-Integer Problems are generally NP-hard to solve [1,2], which make com-
mon approaches (e.g., Branch and Bound [3,4,2] or Cutting-Plane approaches
[5,2]) unfeasible for many real-world problem instances.

In this article we present an algorithm for efficiently and accurately
approximating quadratic MIPs represented by quadratic energy functions

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 193–206, 2012.

c© Springer-Verlag Berlin Heidelberg 2012

http://graphics.rwth-aachen.de


194 D. Bommes, H. Zimmer, and L. Kobbelt

E(x) =
1
2
xtAx− xtb→ min, x ∈ Rn (1)

with A symmetric and positive definite, subject to nI integer constraints

xi∈I ∈ Z, I ⊆ {1, . . . , n}. (2)

Additionally the feasibility of the solution x is restricted by nC linear equality
constraints of the form

Ci · x = di with Ci ∈ Rn, di ∈ R (3)

which can be assembled into a single matrix Cx = d with dimension C ∈ RnC×n.
Here n, nI and nC denote the number of variables, integer constraints and linear
constraints respectively. Note also that the above formulation differs slightly from
the most general setting of mixed-integer problems where additionally in-equality
constraints are given. In the presence of in-equality constraints even finding any
random feasible solution can get very hard, see e.g., [2].

Our algorithm successively determines the values of the discrete variables
xi∈I ∈ Z in a greedy fashion. Fixing the value of a discrete variable is equivalent
to adding one explicit linear constraint xi = k with k ∈ Z to our optimization
problem. Therefore our algorithm successively transforms integer constraints into
explicit linear constraints until all of them are fulfilled. More precisely we start
by neglecting the nI integer constraints and compute the minimizer of this so
called relaxed problem by setting the partial derivatives ∂E

∂xi
= 0 and solving the

resulting linear system
Ax0 = b. (4)

Here we assumed nC = 0 for clarity reasons. The values of the solution vector
x0 can be seen as continuous estimates of the desired discrete integer variables.
However, we found that estimating all integer constraints at once, i.e., requiring
∀i ∈ I : x1

i = round(x0
i ) , leads to poor results since the individual esti-

mates cannot influence each other. Motivated by this observation we instead
successively determine single integer constraints xk+1

j = round(xk
j ) which are

henceforth used to solve subsequent relaxed problems until a feasible solution of
our initial optimization problem is found, meaning that all xi∈I are integers.

By greedily choosing the continuous estimate which has the smallest devi-
ation |round(xk

j ) − xk
j | from an integer in each step these subsequent relaxed

problems can be solved very efficiently by a carefully designed three-level solver
as presented in Section 3.2. The performance can further be improved by iden-
tifying sets of relaxed variables which do not interfere too much and hence can
be estimated simultaneously.

In order to facilitate an efficient handling of arbitrary linear constraints Ci

we propose to eliminate one variable for each constraint (Section 2) and support
this approach by a fill-in reducing constraint reordering (Section 2.2) which in
practice significantly reduces the runtime.

In Section 4 the capabilities of the presented solver are illustrated exemplary
by applying it to the surface quadrangulation problem. A large variety of possible
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user guidance like e.g., prescribing some singularities or preserving feature curves
of the input geometry in the generated quadrangulation is achieved by simply
adding additional linear constraints. Therefore the presented algorithm enables
a powerful quadrangulation algorithm which is very flexible and allows for a wide
range of different application scenarios ranging from a fully automatic setting up
to a complete manual meshing. Finally we illustrate the immense performance
benefit due to the novel extensions of the original algorithm used in [6], i.e., the
rounding of sets of variables and the fill-in reducing reordering of constraints.

1.1 Previous Work

To the best of our knowledge the idea of approximating MIPs by a series of
real-valued problems started with [13], set in the field of Structural Engineering.
Ringertz’ idea of rounding variables iteratively and re-solving the problem has
been cited several times and depending on the problem setting small variations
appear in the proposed solutions. While some researchers argue for the use of
post-processing methods as, depending on the problem and the type of variables,
always rounding up (or down) might not be meaningful [16], others suggest
rounding both up and down and keeping the solution with lower cost [17].

Regardless of the rounding strategy, what these approaches all have in com-
mon is that the full-sized system of linear equations needs to be re-solved in
each iteration, making the iterative strategy unfeasible for many practical ap-
plications.

In the field of Geometry Processing the idea of approximating quadratic MIPs
by rounding variables of a real-valued linear system has been successfully adapted
by several authors (see e.g.,[9][11]). Here direct-rounding strategies were used,
where the system had to be solved only twice, once initially and once after all
integer constraints have been estimated (all at once). This approach is usually
only applicable for MIPs with a small number of integer variables that do not
interfere too much and otherwise leads to a poor approximation of the optimal
solution.

The article is structured as follows: Section 2 describes the proper handling
of linear constraints within the optimization of a quadratic energy, which is
central also for the integer constraints discussed in Section 3. In Section 3.2
we describe an efficient update strategy which enables the iterative addition of
integer constraints. Finally in Section 4 we discuss some experiments performed
within the context of quadrilateral surface remeshing.

2 Linear Constraints

The ability to properly handle constraints is vital for the wide applicability of
an optimization method. For a problem to be solvable usually some boundary
constraints are needed to limit the solution space, or often additional user-defined
design constraints might be incorporated to shape the resulting solution. In our
setting we also have to deal with integer constraints which translate into simple
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linear conditions as soon as the specific integer is known. A common way to
handle linear constraints are Lagrangian Multipliers as discussed next.

2.1 Lagrangian Multipliers

The method of Lagrangian Multipliers turns a constrained problem into a un-
constrained one by adding one additional term per constraint to the energy.
Updating energy (1) with the constraints (3) we end up with the following en-
ergy formulation:

EL(x) = E(x) +
nC∑
i=1

λi(Ci · x− di) (5)

where the solution is given by the following system of linear equations

∂EL

∂x
= 0 �

[
A CT

C 0

] [
x
λ

]
=
[
b
d

]
(6)

describing the stationary point of the adapted energy. Note that the approach
of Lagrangian Multipliers is not restricted to quadratic energies nor linear con-
straints but can be applied to non-linear problems as well, for more details
see e.g., [10]. Unfortunately the approach of Lagrangian Multipliers comes with
certain disadvantages making them impractical for our purpose. Instead of de-
creasing the number of degrees of freedom as more constraints are added the
opposite is the case since for each constraint a Lagrangian Multiplier λi is in-
troduced. Furthermore the symmetric positive definiteness (s.p.d.), inherent in
linear systems arising from convex quadratic energies is destroyed by the di-
agonal block of zeros 0 effectively disabling the use of highly efficient solvers
such as CHOLMOD (see [7]) and necessitating the use of slower more general
solvers such as SuperLU (see [8]). As will be seen in Section 3 the s.p.d. prop-
erty is crucial for the efficient local updates of the adaptive three-level solver in
Section 3.2. Therefore next we describe a proper handling of linear constraints
which maintains the s.p.d. property.

2.2 Elimination Approach

Assume we want to minimize a quadratic energy E(x) with x ∈ Rn subject to a
single linear constraint DT x − d = 0. Geometrically this means restricting the
solution space to a n − 1 dimensional hyperplane. Consequently it is possible
to convert the above problem into a new unconstrained one with n− 1 degrees
of freedom. Assume w.l.o.g. that Dn �= 0 such that we can solve the linear
constraint for xn expressing it as a function of (x1, . . . , xn−1)

xn(x1, . . . , xn−1︸ ︷︷ ︸
x̃

) = (d/Dn)−
n−1∑
j=1

(Dj/Dn)xj =: f − FT x (7)
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and transforming the above constrained problem into the desired unconstrained
form

Ẽ(x̃) := E

(
x̃

xn(x̃)

)
︸ ︷︷ ︸

y

(8)

with equivalent minima where xn can be computed from x̃ by equation (7).
To compute the minimizer x̃ we now have to solve a (n−1) dimensional system

of linear equations Ãx̃ = b̃ which can be derived by partitioning the matrix A
of equation (1) into four blocks (with A ∈ R(n−1)×(n−1), v ∈ Rn−1 and w ∈ R)
and re-factorizing the result:

Ẽ(x̃) =
1
2
yTAy − yT b =

1
2
yT

(
A v
vT w

)
y − yT

(
b
bn

)
(9)

=
1
2
x̃T

(
A− vFT − FvT + FFT

)︸ ︷︷ ︸
Ã ∈ R(n−1)×(n−1)

x̃− x̃T
(
b + F(fw + bn)− vf

)︸ ︷︷ ︸
b̃ ∈ Rn−1

+const

Note that since A is s.p.d. Ã is also s.p.d. enabling highly efficient solution meth-
ods used in our three-level solver described in Section 3.2. Of course instead of
eliminating the last variable each other variable can be chosen by re-indexing.

Multiple Constraints: In general we want to handle an arbitrary number of
linear constraints which can be achieved by iteratively eliminating one variable
for each constraint from {C1, . . . , CnC}. One very important aspect of multiple
constraints is that in each step it is necessary to eliminate the chosen variable
from all subsequent constraints since obviously once a variable is constrained
and eliminated from the optimization problem it should not be reintroduced by
a following constraint. More precisely, after constraining a variable xk through a
constraint Cj we have to do Gaussian elimination in the constraint matrix C in
order to bring all Ci,k with i > j to zero. Clearly the constraints in the updated
matrix are equivalent to the original problem.

Choosing elimination variables: For each linear constraint we have to pick a
variable which is subsequently constrained by the induced linear function and
eliminated from the problem. All non-zero coefficients of the linear constraint
induce a valid possibility. To increase numerical stability we select the variable
whose coefficient has the largest absolute value. However, there is one impor-
tant aspect to consider whenever a variable xk with k ∈ I, i.e., which has to
satisfy an integer constraint, is selected for elimination. In general it can get
very problematic to guarantee that the values of the induced linear function are
chosen in such a way that xk becomes an integer. Consequently for the elimina-
tion we always prefer non-integer variables with k /∈ I. For constraints where all
non-zero coefficients belong to integer variables we currently support only those
cases where all coefficients are integer and their greatest common divisor (gdc)
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is one of these coefficients. In such a case we can safely divide all coefficients by
their gdc and eliminate a variable with coefficient ±1 since a linear combination
of integers multiplied by integers is always an integer and consequently the in-
teger constraint is fulfilled by construction. For many practical problems (like
quadrilateral surface remeshing) the above assumptions are always fulfilled and
therefore we leave the more complicated general case for future work. Whenever
the above assumption is violated it may happen that in the result some of the
integer constraints are not fulfilled.

Linear dependent or conflicting constraints: Since we iteratively process the indi-
vidual constraints it is easy to identify linear dependent or conflicting constraints.
This is a big advantage compared to the method of Lagrangian Multipliers which
would construct an underdetermined system of linear equations not suitable for
efficient standard solvers. In our implementation linear dependent or conflicting
constraints are simply neglected. This behavior is very convenient since the user
does not have to spend additional effort identifying the subset of linear inde-
pendent constraints e.g., in the case of user provided side conditions. Due to
numerical inaccuracies of floating point numbers linear dependency is checked
against a tolerance which has a default value of 10−6.

Fill-in reducing constraint reordering: Although mathematically equivalent the
linear system belonging to the unconstrained optimization problem after process-
ing all constraints can take many different patterns, strongly depending on the
processing sequence of the constraints. In spirit of sparse Cholesky methods like
[7] we are interested in finding an ordering of the constraints which minimizes
the fill-in (nonzero elements) and hence increases performance. Unfortunately
there is no known algorithm to achieve the best ordering apart from the naive
one which explicitly checks all orderings. Obviously such an approach is far too
slow such that a good compromise in form of a cheap heuristic is more desirable.
Our experiments show that processing the constraints sorted by their number of
non-zero coefficients leads to much higher performance than just using a random
ordering (see Section 4 for timings). Please note that this ordering is dynamic
since while processing the constraints the number of non-zero coefficients is al-
tered by the Gaussian elimination steps.

After eliminating one variable per linear constraint we obtain a new equivalent
optimization problem, i.e., a quadratic energy minimization subject to a set of
integer constraints. We describe next how a good approximate solution can be
found efficiently.

3 Integer Constraints

The integer constraints of our initial problem dictate that for each feasible solu-
tion a subset of the variables have to be integers, i.e., xi∈I ∈ Z. Finding a feasible
solution is simple in this formulation, since there are no dependencies between
the individual variables. Therefore just setting up a set of additional linear con-
straints which fix the xi∈I variables to arbitrary integers like e.g., xi∈I = 0 and
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Fig. 1. (left) a continuous optimization problem where each point in the plane R × R
is a feasible solution, i.e., a point which fulfills all constraints of the problem. (right)
a mixed-integer problem where the set of feasible solutions is R × Z. For minimizing
such problems typically all discrete possibilities have to be tested explicitly.

enforcing them with the method from the previous section would indeed result
in a feasible solution. However the problem of finding the best one of all these
possible assignments, i.e., the one which minimizes the energy, is very hard. In
contrast to continuous convex optimization it is not sufficient to simply walk into
the direction of the negative gradient (see Figure 1). In general to find the opti-
mum it would be necessary to derive lower and upper bounds for each discrete
variable and then explicitly test all discrete combinations. Please notice that for
problems with a large number of discrete variables even for narrow bounds like
e.g., a binary problem where xi∈I ∈ {0, 1} such an approach is very expensive
and would already require the solution of 2|I| full-sized problems.

3.1 Direct Rounding

Instead of achieving optimality for practical problems we aim at finding an ap-
proximate solution which is close enough to the optimum but can be computed in
a fraction of time. The most efficient way to determine adequate assignments for
the integer variables is to estimate them from a relaxed solution, i.e., computing
the minimizer xc where all variables are allowed to be continuous leading to the
estimates xi∈I = round(xc

i ). Following (9) the elimination approach results in a
very simple update for such explicit constraints:

Ã = A and b̃ = b− v · round(xc
i ) (10)



200 D. Bommes, H. Zimmer, and L. Kobbelt

Estimating all integer assignments at once which is called direct rounding is very
efficient since it requires the solution of only two linear systems. However the
drawback is that the interrelation between the discrete variables is completely
ignored which often leads to poor results (see e.g., the comparison in [6]). This
suggests to successively add one integer constraint at a time and immediately
compute the altered relaxed problem to update the estimates of the yet uncon-
strained discrete variables. This strategy is denoted iterative rounding and is
discussed in more detail next.

3.2 Iterative Greedy Rounding

The key to an efficient implementation of the iterative rounding is the obser-
vation that, for problems with sparse variable dependencies (few non-zeros per
row), changing the value of one variable usually has little influence on “far-away”
variables. This is a property inherent in many Geometry Processing problems
formulated over, e.g., simplicial complexes or spline bases with local support.

The problem inherent to iterative rounding is that it requires the solution of
|I|+1 many linear systems which can get very slow when implemented in a näıve
way. Fortunately in many steps of this iterative process the solution changes only
slightly which can be exploited by carefully designed iterative solvers.

Suppose that we have computed the solution of the relaxed problem Ax = b
and that we want to add a single integer constraint. Following (10) the residual
e = Ãx̃ − b̃ after adding the new constraint has the same nonzero pattern as
v. And consequently for a sparse v the relaxed solution from the previous step
x̃ violates only a few equations of the linear system. Due to this observation
we first try to iteratively update the solution only where it is necessary, i.e.,
for all variables x̃i with |ei| > ε. This so called Local Gauss-Seidel method
executes single Gauss-Seidel updates for variables with a local residual above the
allowed tolerance. All these candidates are stored in a queue and convergence
is reached when the queue gets empty meaning that all residuals are below the
prescribed tolerance. Notice that due to the elimination approach the system
matrix remains s.p.d. guaranteeing convergence of the Gauss-Seidel method.
The complete algorithm is depicted below:

Algorithm: Local Gauss-Seidel
Input: Linear system Ax = b (which is not fulfilled)

Index set of variables with non-zero residual N ,
End conditions ε and maxitersGS

Output: Updated x with residuals |ek| < ε or NOT converged.
01: push N onto queue
02: iter = 0
03: while queue not empty and iter < maxitersGS

04: iter = iter +1
05: xk = pop( queue )
06: ek = bk −

∑n
j=1 Akjxj

07: if |ek| > ε then
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08: xk ← xk + ek/Akk

09: push nonzero(Ak∗) onto queue
07: end if
10: end while

The parameters ε and maxitersGS can be chosen by the user. In cases
where the above method does not converge within the prescribed number of
iterations, a more global conjugate gradient method is used and in rare cases
where this is still not sufficient after a few iterations a sparse Cholesky method
is executed. This adaptive solution strategy is very fast if the previous solution
is close to the new one and only spends more time if a novel integer constraint
has global impact. In our implementation the conjugate gradient solver is taken
from the GMM++ library [12] and the Sparse Cholesky solver is the CHOLMOD
solver [7].

In this iterative rounding strategy we can choose |I|! many different or-
ders in which the integers are estimated. A natural greedy choice is the yet
unconstrained integer variable whose estimate has the smallest deviation |xi −
round(xi)| from an integer since it is most likely to be correct. A nice side ef-
fect of this strategy is that it increases the efficiency of the above hierarchical
solution strategy. The reason is that for small deviations from an integer also
the non-zero residuals usually get small. The complete iterative greedy rounding
algorithm is shown below:

Algorithm: Iterative Greedy Rounding

Input: Linear system of relaxed problem Axc = b with xc, b ∈ Rn and A ∈ Rn×n

index set of integer variables I ⊂ {1, . . . , n}
Output: Approximation of mixed-integer solution x ∈ Rn satisfying xi∈I ∈ Z
01: x = xc

02: while I �= ∅
03: // greedy selection
04: j = arg min

i∈I
(|xi − round(xi)|)

05: I ← I \ j
06: // add new constraint and get nonzero residuals N
07: N = eliminateConstraint( xj = round(xj) , A , x , b )
08: // update solution
09: converged = localGaussSeidel( A, x, b, N) // level 1
10: if not converged then
11: converged = conjugateGradient( A, x, b) // level 2
14: if not converged then
15: sparseCholesky( A, x, b) // level 3
16: end if
17: end if
18: end while

To avoid the necessary re-indexing of the variables in the above algorithm the
update rule (10) was slightly modified by keeping an identity row and column
for each eliminated variable xk, i.e., Ãkj = Ãjk = δkj ∀j.
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In our implementation the user is able to control the behavior of the adaptive
three level solver with several parameters. First of all the tolerance ε for checking
convergence of the iterative methods (level 1 and 2) and a maximum number
of iterations maxitersGS and maxitersCG can be adjusted. Furthermore it is
possible to disable complete levels. The reason is that for mixed-integer problems
where it is known that the rounding of a discrete variable always has global
impact it is e.g., not reasonable to execute the Local Gauss-Seidel step since
it would almost never converge. Therefore it is very important to experiment a
little bit with these parameters in order to optimize the performance for a specific
class of problems. In Section 4 we will provide two different useful settings for
the quadrangulation problem.

Simultaneous Rounding: The motivation for the iterative rounding strategy
was mainly the observation that the estimates of individual integer variables
should influence each other to achieve satisfactory accuracy. It would be pos-
sible to achieve the same accuracy in fewer computation steps if some prior
knowledge about the rate of influence between variables is available. Clearly
variables which do not influence each other could be rounded simultaneously in
one step without introducing an error. Unfortunately computing the influence
between variables corresponds to the solution of a full-sized linear system which
would be too expensive. What we need instead is a cheap apriori estimate which
never underestimates the interdependency. A very simple apriori estimate which
holds for many problems is the following one: If one variable is changed by a
value of Δx due to a constraint all other variables are changed by a value smaller
or equal than Δx. Consequently in each step several variables can be rounded
as long as their estimated maximal deviation

∑
i Δxi does not influence any

of the rounding decisions. Obviously this apriori estimate does not hold for all
problems. However we included the possibility to use it into our implementation
since it is useful for many practical applications and can speed up the com-
putation significantly. Finding a cheap way for estimating sharper bounds for
the interdependency between discrete variables is an interesting question for
future work.

3.3 Open Source CoMISo Library

On the web page http://www.graphics.rwth-aachen.de/comiso the source-
code of the solver explained above as well as example programs can be found.
Note that even though this solver was created for sparse problems as they usually
occur e.g., in areas of Finite Elements or Geometry Processing, it can also be
applied to dense problems without any modifications. However, in some cases
it might be advantageous to replace sparse-specific parts such as the sparse
Cholesky solver by dense-optimized counterparts.

4 Experiments

We evaluate our algorithm by applying it to the surface quadrangulation prob-
lem as formulated in [6]. In this method two mixed-integer problems have to be
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Fig. 2. (left) the smoothed cube model with low geometric complexity. (right) the
pinion model with many sharp features.

solved where the first one is the computation of a smooth orientation field while
the second one is a seamless parametrization mapping singularities and feature
edges to integer grid points and lines respectively. For more details about the
quadrangulation method we refer the reader to [6]. With the help of several ex-
periments we derived two different parameters for the two diverse problems. For
the computation of the orientation field we used ε = 10−3, maxitersGS = 100000
and maxitersCG = 50 while for the parametrization we chose maxitersGS = 0,
maxitersCG = 20 and the use of sparse cholesky was disabled completely. The
reason for those different parameter settings is that both problems have very
diverse characteristics. While the orientation field exhibits a large number of
integers with local influence, the parametrization problem requires only few in-
tegers but with rather global influence. With the above settings we were able
to compute visually equivalent results compared to the original algorithm of [6]
within a fraction of time. The performance benefit is a result of the tuned param-
eters as well as the novel extension which are the fill-in reducing reordering, the
simultaneously rounding and some changes within the internal data structures.
All examples were computed on a single CPU of an intel i7 quadcore 2.80GHz
with 8GB of RAM.

Performance: To give one representative example the orientation field computa-
tion on the lever model of [6] took 3.3s compared to0.22swhile the parametriza-
tion timing decreases from 19.9s to 2.8s. However, further experiments showed
that the runtime strongly depends on the geometric complexity of the object.
In Table 1 we compare the timing of the orientation field computation of the
armadillo model (Figure 3) and a simple smoothed cube (Figure 2). For
the same number of triangles the geometric more complex armadillo (121
singularities) model needs more computation time than the smoothed cube (4
singularities). In the case of constant geometric complexity the runtime depends
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Table 1. Orientation Field Timings in s

model 10k 50k 200k 800k

armadillo 0.3 1.2 6.3 33.9

cube 0.11 0.5 2.8 18.5

Table 2. Parametrization Field Timings

model 10k 50k 200k 800k

armadillo 1.3 5.3 21.4 100.3

cube 0.15 0.9 6.7 55.1

Fig. 3. (left) a quadrangulation of the armadillo designed in an interactive session.
(right) close up of the right hand where valence two singularities at the finger tips were
created manually.

almost linearly on the number of triangles, enabling very large inputs. A simi-
lar behavior can be observed for the parametrization problem in Table 2. The
algorithm behaves sensible to the geometric input complexity and nicely adapts
to situations of different difficulty which is due to the simultaneous rounding
approach.

To underline the importance of the fill-in reducing reordering we did a sepa-
rate experiment where the pinion model (Figure 2) with many sharp features
was parametrized, leading to a huge set of dependent integer constraints. By ap-
plying the reordering the computation took 1.3s and the system matrix had 418k
nonzero entries compared to a much slower runtime of 7.4s and 581k nonzero
entries without the reordering.

Besides the performance our algorithm offers a nice flexibility due to the con-
venient and robust handling of linear constraints as underlined by the following
experiment.

Flexibility: Often designers are not satisfied with the result of fully automatic
quadrangulation algorithms because they want additional symmetries or
structures alleviating animation. Therefore we extended the method of [6] by
an interactive manipulation mode where additional (linear) constraints can be
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iteratively provided by the user. After the fully automatic computation the user
is able to (1) change (move, add, remove) singularities, (2) connect singularities
by a parametric line to improve the high-level structure of the quadrangulation
like used in [15] or (3) add element orientation or alignment constraints. It turned
out that such an interaction could be provided easily due to the available robust
handling of linear constraints. In the extreme case of specifying all singularities
within the orientation field our method is equivalent to [11] and [14]. However
in contrast to them our approach is flexible enough to compute solutions for an
arbitrary number of known singularities perfectly supporting an interactive de-
sign approach. Figure 3 shows the result of an interactive session where the user
provided a few orientations. Furthermore some singularities (of the automatic
solution) at the hand of the armadillo were merged into valence 2 singular-
ities to capture the spiky shape of the fingers without requiring a very small
edge length.

5 Conclusion

In this article we presented the technical details of our mixed-integer approxi-
mation algorithm for linearly constrained quadratic mixed-integer problems. By
identifying suitable algorithm settings for a given class of optimization problems
high efficiency combined with sufficient accuracy is achieved as illustrated by the
quadrangulation example. In the future we would like to apply our algorithm
to more mixed-integer problems from Geometry Processing and explore further
strategies which extend and generalize the idea of simultaneous rounding.

Acknowledgments. This work has been supported by the UMIC Research
Centre, RWTH Aachen University.
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Abstract. In this talk we show a construction for characterising
developable surfaces in the form of Bézier triangular patches. It is shown
that constructions used for rectangular patches are not useful, since they
provide degenerate triangular patches. Explicit constructions of non-
degenerate developable triangular patches are provided.

Keywords: Developable surfaces, triangular patches.

1 Introduction

It is well known that developable surfaces play an important role in design
in several branches of industry, such as naval and textile. Even architectural
structures have been designed using developable surfaces. In these industries
surfaces are designed which mimic properties of the materials that are used in
production, which are intended to be deformed from plane sheets of metal or
cloth just by folding, cutting or rolling, but not stretching. This sort of industrial
procedures are less expensive or do not alter the properties of the material and
therefore developable surfaces are favoured.

In spite of their importance, developable surfaces are not easy to design within
the standard framework of NURBS surfaces. The null gaussian curvature condi-
tion is a cubic expression in the parametrization of the surface and can be solved
analitically just for low degrees.

This does not mean that NURBS developable surfaces have not been used
in design. On the contrary, pieces of plane, cylinders and cones have been used
extensively. However, the general case of developable surfaces [1,2], tangent sur-
faces, has not received the same attention, though it is by large the most impor-
tant case of developable surfaces.

Since the seminal papers by Mancewicz and Frey [3], Frey and Bindschadler [4]
at General Motors, several approaches have been used to cope with developable
surfaces:

– Solving null curvature equations for low degrees: papers by Aumann [5],
Lang and Röschel, [6], Chalfant and Maekawa [7].

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 207–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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– Projective geometry methods: planes and points are exchanged using duality:
Bodduluri and Ravani [8], Pottmann and Farin [9], Pottmann and Wallner
[10].

– Based on the de Casteljau algorithm: Chu and Séquin [11], Aumann [12],
[13] and Fernández-Jambrina [14].

This last approach has been profitable for obtaining results with tensor product
patches of developable surfaces and in this paper we would like to derive an
extension to triangular patches.

The paper is organised as follows. Section 2 is devoted to ruled triangular
patches. Section 3 provides a quick overview of differential geometry of devel-
opable surfaces. Section 4 reviews construction of tensor product developable
surfaces. This approach is extended to triangular patches in Section 5. Finally,
cylindrical and conical triangular patches are described in Section 6.

2 Ruled Triangular Bézier Patches

Triangular Bézier patches are an alternative to tensor product patches for de-
signing polynomial surfaces. Instead of dealing with parametrizations of degree
n1 in a variable and degree n2 in the other one, triangles are parametrizations
of overall degree n.

Triangular Bézier patches of degree n (cfr. for instance [15] for a review) are
surfaces parametrised by

b(u, v, w) =
∑

i+j+k=n

n!
i!j!k!

uivjwkbijk, u + v + w = 1, 0 ≤ u, v, w ≤ 1 ,

for a control net {bijk : i + j + k = n, 0 ≤ i, j, k ≤ n} of (n+2)(n+1)/2 vertices.

c002

c200c101

c011

c020

c110

u=0

v=0

w=0

Fig. 1. Bézier triangle of degree two

The surface patch is bounded by three curves of degree n (see Fig. 1) located
at u = 0, v = 0, w = 0 and their respective control polygons are given by
{b0jn−j : j = 0, . . . , n}, {bi0n−i : i = 0, . . . , n}, {bin−i0 : i = 0, . . . , n}.
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We are interested in triangular patches of ruled surfaces interpolating linearly
between two curves of degree n parametrised by c(u) and d(v), u, v ∈ [0, 1],
intersecting at c(0) = d(0), with control polygons {c0, . . . , cn} and {d0, . . . , dn},
so that

b(u, 0, 1− u) = c(u), b(0, v, 1− v) = d(v) .

The boundary of the patch is formed then by both curves and a straight segment
at w = 0 linking the ending points of the curves, cn and dn. Obviously they have
to share the other end, c0 = d0.

Hence we already know the outer lines of the control net,

bi0n−i = ci, i = 0, . . . , n, b0jn−j = dj , j = 0, . . . , n ,

and by the linear precision property,

bin−i0 =
i

n
cn +

n− i

n
dn, i = 0, . . . , n ,

so that b(1 − v, v, 0) = (1 − v) cn + v dn traces a straight segment. Hence, we
have to prescribe just the inner vertices of the control net.

Since the surface is ruled we require that constant w = W lines on the surface
must be straight lines. In order to simplify the analysis, we extend the patch
from u + v + w = 1 to u + v = 1, so that these lines are parametrised as

rW (u) = b(u, 1− u,W ) =
n∑

k=0

(
n
k

)
W krk(u) ,

rk(u) :=
Nk∑
i=0

(
Nk

i

)
ui(1 − u)Nk−ibijk ,

denoting Nk := n− k
Since {1,W, · · · ,Wn} are linearly independent polynomials, if rW (u) is to be

the affine parametrization of a straight segment for all values of W , every rk(u)
must be the affine parametrization of a straight segment. We consider just the
case of general values of the vertices bijk. It is clear that, as it happens for tensor
product patches [16], for special positions of the vertices other solutions could
be feasible. But we are interested just in the general case.

Hence, by the linear precision property, for eack k, the vertices

{dn−k = b0n−kk, b1n−k−1k, · · · , bn−k−11k, bn−k0k = cn−k}

must be equally spaced in order to have linear parametrizations of segments,

bin−k−ik =
i

n− k
cn−k +

n− k − i

n− k
dn−k, i = 0, . . . , n− k ,

as we checked already for k = 0.
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Proposition 1. A Bézier triangular patch of degree n parametrised as b(u, v, w)
and bounded by two curves c(u), d(v) of degree n intersecting at c(0) = d(0), with
control polygons {c0, . . . , cn} and {d0, . . . , dn}, so that b(u, 0, 1− u) = c(u) and
b(0, v, 1− v) = d(v) is a ruled surface if its control net is given by

bijk =
ici+j + jdi+j

i + j
, i + j + k = n, b00n = c0 = d0 .

That is, the diagonal lines of the control net are formed by points which are
equally spaced between vertices of the curves with the same index. An example
may be seen in Fig. 2.

b1,1,0

b0,1,1

b1,0,1

b2,0,0

b0,0,2
b0,2,0

u=0

w=0
v=0

Fig. 2. Ruled Bézier triangle of degree two

For instance, for a triangle of degree four we get a control net

c0 = d0 d1 d2 d3 d4

c1
c2+d2

2
c3+2d3

3
c4+3d4

4

c2
2c3+d3

3
c4+d4

2

c3
3c4+d4

4
c4

.

As a counterexample, let us consider a Bézier triangle of degree two, bounded by
two curves, which provide every vertex of the control net but b110. If we choose
this point aligned with c2 and d2, but not in the middle of the segment, it is
easy to check that constant w lines are not straight.

Triangular ruled patches may be related to usual explicit ruled parametriza-
tions of surfaces,

B(U, V ) = (1 − V ) c(U) + V d(V ) , U, V ∈ [0, 1] ,

by a change of coordinates,

u = U(1− V )
v = UV
w = 1− U

⎫⎬⎭⇒
{
U = 1− w = u + v

V =
v

1− w
=

v

u + v
,
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which allow us to write down the parametrization of the ruled triangular patch
in terms of the parametrizations of the curves,

b(u, v, 1− u− v) =
u c(u + v) + v d(u + v)

u + v
.

3 Developable Surfaces

Developable surfaces are ruled surfaces with null gaussian curvature [1,2]. Gaus-
sian curvature, K, of a surface parametrised by b(u, v) with unitary normal
vector ν = bu× bv/‖bu× bv‖ is defined as the quotient of the determinants of its
second, B, and first, G, fundamental forms,

G =
(
bu · bu bu · bv

bv · bu bv · bv

)
, B =

(
ν · buu ν · buv

ν · bvu ν · bvv

)
, K(u, v) =

detB(u, v)
detG(u, v)

,

but Gauss’ Theorema Egregium states that K may be written in terms of the
first fundamental form and its derivatives. Since the first fundamental form de-
termines angles, lengths and areas on the surface, gaussian curvature is invariant
under transformations, isometries, which preserve such features.

Starting with the usual parametrization of a ruled surface bounded by two
curves c(u), d(u),

b(u, v) = (1− v)c(u) + vd(u) , u, v ∈ [0, 1] , (1)

since the second derivative bvv(u, v) is null, the determinant of the second fun-
damental form is negative and hence the gaussian curvature is negative or null
at every point of a ruled surface. The determinant of the first fundamental form
is positive, since this form is just the inner product of R3 restricted to tangent
vectors to the surface.

Hence, developable surfaces are characterised by vanishing ν · buv at every
point, that is,

0 = (d′(u)− c′(u)) · ((1− v)c′(u) + vd′(u))× (d(u)− c(u))
= d′(u) · c′(u)× (d(u)− c(u)) .

This provides a useful and geometrical characterization of developable surfaces:

Proposition 2. A ruled surface parametrised as (1) is developable if and only
if the vector v(u) = d(u)− c(u), linking the points d(u), c(u), and the velocities
of the curves at these points are coplanary for every value of u.

Or put in another way, the tangent plane is the same for all points along the
straight line (generatrix or ruling of the surface) linking d(u) with c(u).

This means that we may write one of those velocities as a linear combination
of the other two vectors,

c′(u) = λ(u)v(u) + μ(u)v′(u) . (2)

This is useful for classifying developable surfaces:



212 A. Cantón and L. Fernández-Jambrina

1. Planar surfaces: Pieces of planes are the trivial case of surfaces of null cur-
vature.

2. Cylindrical surfaces: Ruled surfaces in which all straight lines (rulings) are
parallel. For them v(u) is parallel to v′(u).

3. Conical surfaces: Ruled surfaces in which all rulings meet at a point named
vertex.

4. Tangent surfaces: Ruled surfaces formed by all tangent lines to a given curve.

The latter is the most general case, since every non-cylindrical surface may be
shown to be either a tangent surface to a curve or, fulfilling additional conditions,
a conical surface:

Let us perform a change of base curve from c(u) by gliding it along the rulings
to c̃(u) = c(u)− μ(u)v(u),

c̃′(u) = c′(u)− μ′(u)v(u) − μ(u)v′(u) = (λ(u)− μ′(u))v(u) .

In the general case, the velocity c̃′(u) is parallel to the rulings of vector v(u),
that is, the surface is a tangent surface to the curve c̃(u). Only in the restrictive
case for which λ(u) = μ′(u), c̃′(u) ≡ 0, the new base curve reduces to a point,
the vertex of a cone.

4 Tensor Product Developable Patches

In order to describe Bézier developable surfaces we start by considering a ruled
surface interpolated between two polynomial curves of degree n, c(u), d(u), de-
fined by their respective control polygons, {c0, . . . , cn}, {d0, . . . , dn},

c(u) =
n∑

i=0

ciB
n
i (u), d(u) =

n∑
i=0

diB
n
i (u) ,

in terms of the Bernstein polynomials of degree n, or the de Casteljau
algorithm [17],

c
1)
i (u) = (1− u)ci(u) + uci+1(u), i = 0, . . . , n− 1 ,

c
r)
i (u) = (1− u)cr−1)

i (u) + uc
r−1)
i+1 (u) i = 0, . . . , n− r ,

c(u) := c
n)
0 (u) = (1− u)cn−1)

0 (u) + uc
n−1)
1 (u) . (3)

The derivative of the curves,

c′(u) = n
(
c
n−1)
1 (u)− c

n−1)
0 (u)

)
, d′(u) = n

(
d

n−1)
1 (u)− d

n−1)
0 (u)

)
,

may be written as a difference between the two last-but-one points in the de
Casteljau algorithm.

Hence the vectors c′(u), d′(u), d(u)−c(u) are barycentric combinations of the
points c

n−1)
0 (u), cn−1)

1 (u), dn−1)
0 (u), dn−1)

1 (u). Since we have already seen that
the ruled surface is developable if and only if these vectors are coplanary, the
developability condition for a Bézier ruled surface may be restated in terms of
these:
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Proposition 3. The ruled surface interpolating between two Bézier curves of
degree n, defined by their respective control polygons, {c0, . . . , cn}, {d0, . . . , dn}
is developable if and only if the points c

n−1)
0 (u), cn−1)

1 (u), dn−1)
0 (u), dn−1)

1 (u) are
coplanary.

That is, there exist coefficients Λ(u), M(u), such that

(1− Λ(u)) cn−1)
0 (u) + Λ(u)cn−1)

1 (u) = (1−M(u)) dn−1)
0 (u) + M(u)dn−1)

1 (u) .
(4)

This way of writing the linear combination excludes the conical case. However,
it does not hinder our goal of coping with the generic case.

We may gain insight into this result by rewriting it in terms of blossoms,

c
1)
i [u1] := c

1)
i (u1) = (1− u1)ci + u1ci+1, i = 0, . . . , n− 1 ,

c
r)
i [u1, . . . , ur] := (1− ur)c

r−1)
i [u1, . . . , ur−1] + urc

r−1)
i+1 [u1, . . . , ur−1] ,

c[u1, . . . , un] := c
n)
0 [u1, . . . , un] , i = 0, . . . , n− r, r = 1, . . . , n , (5)

since the linear combinations of the points,

c
n−1)
0 (u) = c[u<n−1>, 0] , c

n−1)
1 (u) = c[u<n−1>, 1] ,

can be written in a rather compact form, taking into account that blossoms are
multi-affine,

c[u<n−1>, Λ(u)] = d[u<n−1>,M(u)] . (6)

We have therefore characterised developability of a rational ruled surface in
terms of blossoms:

Theorem 1. Two Bézier curves c(u), d(u) with control polygons {c0, . . . , cn},
{d0, . . . , dn} define a generic developable surface if and only if their respective
blossoms are related by

c[u<n−1>, Λ(u)] = d[u<n−1>,M(u)]

The simplest case which can be analysed is the one of constant coefficients Λ,
M ,

c[u<n−1>, Λ] = d[u<n−1>,M ] ,

which is the family of developable surfaces found by Aumann [12], though in that
paper the key issue was the use of an affine transformation between adjacent cells
of the control net of the surface.

This expression states the equality of two (n− 1)-atic forms, which is equiv-
alent to the equality of the respective symmetric (n− 1)-affine forms, since the
correspondence between blossoms and parametrizations is one-to-one,

c[u1, . . . , un−1, Λ] = d[u1, . . . , un−1,M ] . (7)
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We may draw information about the control net applying it to sequences of zeros
and ones, taking into account that the vertices are recovered as

cj = c[0<n−j>, 1<j>] ,

(1− Λ)cj + Λcj+1 = (1−M)dj + Mdj+1 , j = 0, . . . , n− 1 ,

stating that the cells of the control net of the surface are planar and share the
same linear combination between vertices.

These conditions may be solved recursively,

dn =
(
M − 1
M

)n

d0+
1− Λ

M

(
M − 1
M

)n−1

c0+
M − Λ

M2

n−1∑
i=1

(
M − 1
M

)n−i−1

ci+
Λ

M
cn ,

in order to relate the first and last rulings of the patch with the vertices of the
control polygon of the curve c(u),

dn − cn =
M − Λ

M

((
M − 1
M

)n−1

c0 +
1
M

n−1∑
i=1

(
M − 1
M

)n−i−1

ci − cn

)

+
(
M − 1
M

)n

(d0 − c0) , (8)

or even its sides,

dn − cn =
(
M − 1
M

)n

(d0 − c0) +
Λ −M

M

n−1∑
i=0

(
M − 1
M

)n−i−1

Δci , (9)

denoting Δci = ci+1 − ci.
This construction of developable Bézier surfaces can be used to solve an in-

terpolation problem [12]:
“Given a Bézier curve c(u) of degree n and two straight lines l0 and l1 passing

through the endpoints of c(u), find a developable surface b(u, v) through c(u)
(b(u, 0) = c(u)) with l0 and l1 as first and last ruling (l0 : c(0, v), l1 : c(1, v)).”

Depending on the position of the rulings l0, l1 we have three possible solutions
to this problem:

– If l0, l1 are parallel, we may construct a cylinder through the curve c(u) with
rulings parallel to l0 and l1.

– If l0, l1 meet at one point V , we may construct a cone through c(u) and
vertex at V .

– If l0, l1 are neither parallel nor meeting at one point, we may resort to
Aumann’s construction (8),

dn − cn =
Λ−M

M

(
cn − a(M)

)
+
(
M − 1
M

)n

(d0 − c0) ,

a(M) :=
(
M − 1
M

)n−1

c0 +
1
M

n−1∑
i=1

(
M − 1
M

)n−i−1

ci , (10)
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relating a vector on l0, d0 − c0 = σv, and a vector on l1, dn − cn = τw with a
vector which is a barycentric combination of the vertices of the control polygon
of the curve c(u), cn − a(M).

This imposes a restriction on the value of M through an equation of degree
n− 1,

det(d0 − c0, dn − cn, a(M)− cn) = 0 .

If M0 is a solution of this equation, we may reckon the coefficients of the linear
combination,

a(M0) = cn + α0v + β0w ,

solving the linear system using Cramer’s rule,

α0 =
det(a(M0)− cn,w,N)

det(v,w,N)
, β0 =

det(v, a(M0)− cn,N)
det(v,w,N)

,

where N = v ×w is a vector that completes a linear basis {v,w,N}.
Hence, equation (10) is written as

τ0w =
M0 − Λ

M0
(α0v + β0w) +

(
M0 − 1
M0

)n

σ0v ,

from which we may read the coefficients σ0 and τ0 that determine the ends of
the rulings,

σ0 =
Λ−M0

M0 − 1

(
M0

M0 − 1

)n−1

α0 , τ0 =
M0 − Λ

M0
β0 . (11)

The coefficient Λ remains a free parameter and may be fixed by choosing either
d0 along l0 or cn along l1, but not both. This problem may be avoided by
elevating the degree of the surface, stretching the surface patch along the rulings
d(u)− c(u) [13].

If we have already made use of Λ for fixing dn, this may be accomplished by
multiplying this vector by a linear factor (1−A)u + A, so that the new surface
patch

b̃(u, v) = c(u) + v (d(u)− c(u))
(
(1 −A)u + A

)
,

is bounded by the curves c(u) and d̃(u) = c(u) +
(
(1 − A)u + A

)
(d(u)− c(u))

and we may use the coefficient A for choosing the end of the other ruling,

d̃0 = d̃(0) = c0 + A (d0 − c0) .

As we see in the next section, this construction is useful for designing developable
triangular patches.

5 Triangular Developable Patches

We may try to use Aumann’s family of developable surfaces to construct triangu-
lar developable surfaces limited by two curves of degree n and control polygons
{c0, . . . , cn}, {d0, . . . , dn}. The first cell of the control net is restricted by
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(1 − Λ)c0 + Λc1 = (1−M)d0 + Md1 ,

but since the curves intersect at c0 = d0, the three points must be aligned,

d1 =
(

1− Λ

M

)
c0 +

Λ

M
c1 .

This is a severe restriction, since it implies that the initial velocities of the curves
must be parallel with this construction. An example may be seen in Fig. 3.

c0

c2

c3

c1
d0

d1

d2

d3

Fig. 3. Degenerate triangular developable patch

Therefore, Aumann’s family of developable surfaces does not seem to be a
good starting point for designing triangular patches. However, we may use them
as an auxiliary patch for constructing them.

Though we do not know the direction of the ruling at the initial vertex of
the triangular patch, we may use Aumann’s construction to design a tensor
product developable patch through a curve c(u) of degree n and control polygon
{c0, . . . , cn} and fixing the last ruling by the choice of dn,

b(u, v) = c(u) + v v(u) , v(u) = d(u)− c(u) .

We fix the unknown vertex d0 by shortening the patch along the rulings of
direction v(u),

b̃(u, v) = c(u) + v uv(u) ,

so that the new bounding curve d̃(u) = b̃(u, 1) meets c(u) at c0.
The velocity of the v = const. curves is given by

∂b̃(u, v)
∂u

= c′(u) + v v(u) + v uv′(u) .

In particular, at the beginning of the curve d̃(u),

d̃′(0) = c′(0) + v(0) = n(c1 − c0) + (d0 − c0) ,
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we learn that we may fix the auxiliary initial ruling by prescribing the initial
velocity of the bounding curve d̃(u),

d0 = (n + 1)c0 − nc1 + d̃′(0) .

Hence, by this procedure it is possible to find triangular developable patches
with boundary on c(u) and the ruling dncn fixing the value of d′(0) and making
use of Aumann’s construction.

d0

d1

d2

c2

c1

c0

d'(0)

r0

c(u)

~

Fig. 4. Stretching a tensor product patch to a triangular patch

6 Cylindrical and Conical Triangular Patches

Triangular patches of cylinders and cones are easier to construct than tangent
surfaces.

Cylinders bounded by a curve c(u) of degree n and rulings parallel to a con-
stant vector v are parametrised as

b(u, v) = c(u) + vf(u)v ,

where f(u) is a polynomial vanishing at u = 0. The other bounding curve is
d(u) = b(u, 1). An example is shown in Fig. 5.

Hence, the only requirement for building a cylindrical triangular patch is
that the vertices of the control polygons of the bounding curves, {c0, . . . , cn},
{d0, . . . , dn} must lie on parallel lines,

−−→
c1d1 ‖ · · · ‖ −−→cndn ,

except for the first pair which coalesce to a single point, c0 = d0.
Cones through a curve c(u) and with vertex on a point a may be parametrised

as
b(u, v) = c(u) + v v(u) , v(u) = c(u)− a .

Hence, if c(u) is a curve of degree n, a curve d(u) at v = const. is also of the
same degree. Since such curves are scaled copies of c(u), their control polygons
must have sides proportional to the ones of the original curve,

−−−−→
didi−1 = α−−−→cici−1 , i = 1, . . . , n ,
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c0

d0

c1

d1
d2

c2

Fig. 5. Cylindrical triangular patch

being {d0, . . . , dn} the control polygon of the second curve.
We may proceed as we did for tangent surfaces in order to get triangular

conical patches of degree n + 1. We shorten the patch linearly along the ruling
so that the first generatrix is reduced to a single point,

b̃(u, v) = c(u) + vuv(u) .

The degree of the bounding curve d̃(u) = b̃(u, 1) is n+1. An example is shown
in Fig. 6.

c0

d0

c1

d1
d2d3

c2
c3

Fig. 6. Conical triangular patch

7 Conclusions

In this paper control nets for ruled triangular Bézier patches bounded by two
curves and a straight line have been constructed. It has been shown that Au-
mann’s construction, which has been useful for designing general developable
surfaces with tensor product patches, renders degenerate triangular patches. A
construction grounded on degree elevation has been devised for bypassing this
problem and producing nondegenerate triangular Bézier developable surfaces.
This construction has been used for providing solutions to the problem of inter-
polating a triangular developable surface based on a curve and the last ruling of
the surface, knowing the initial velocity of the other bounding curve.
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Design 9(4), 291–298 (1992)

7. Chalfant, J., Maekawa, T.: Design for manufacturing using b-spline developable
surfaces. J. Ship Research 42(3), 207–215 (1998)

8. Bodduluri, R., Ravani, B.: Design of developable surfaces using duality between
plane and point geometries. Computer Aided Design 25(10), 621–632 (1993)

9. Pottmann, H., Farin, G.: Developable rational Bézier and B-spline surfaces. Com-
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Abstract. We develop stable splitting of the minimal determining sets
for the spaces of bivariate C1 splines on triangulations, including a
modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral
macro-element spaces. This leads to the stable splitting of the corre-
sponding bases as required in Böhmer’s method for solving fully nonlin-
ear elliptic PDEs on polygonal domains.

Keywords: Fully nonlinear PDE, Monge-Ampère equation, multivari-
ate splines, Bernstein-Bézier techniques.

1 Introduction

Numerical solution of fully nonlinear elliptic partial differential equations is a
topic of intensive research and great practical interest, see [2,4]. Since no weak
form formulation is available for the equations of this type in general, the stan-
dard Galerkin finite element method cannot be applied directly.

Recently, Böhmer [1,2] introduced a general approach that solves the Dirichlet
problem for fully nonlinear elliptic equations numerically with the help of a
sequence of linear elliptic equations used within an appropriate Newton scheme.
These linear elliptic equations can be solved by the finite element method, but
the discretisation has to be done by appropriate spaces of C1 finite elements
(splines) that admit a stable splitting into a subspace satisfying zero boundary
conditions, and its complement. Such a stable splitting has been developed in
[6] for a modified space of the Argyris finite element.

In this paper we systematically study the problem of stable splitting for the
spaces of bivariate C1 splines on triangulations of low degree using the Bernstein-
Bézier methods. It turns out that stable splitting can be easily formulated as
splitting of the minimal determining sets (MDS). We revisit the modified Argyris
space studied in [6] by a different technique, and show that its modification is
necessary at least if the convenient MDS splitting approach is used. We also show
that Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces admit
the stable splitting and therefore can also be used in the Böhmer’s numerical
method.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 220–235, 2012.
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The paper is organised as follows. Section 2 is devoted to an outline of
Böhmer’s method, whereas Section 3 introduces necessary definitions from the
theory of Bernstein-Bézier methods [8], and defines the stable splitting of an
MDS. In Section 4 we discuss the stable splitting for the Argyris space and its
modification, and Section 5 is devoted to the C1 macro-element spaces.

2 Böhmer’s Method for Fully Nonlinear Elliptic PDEs

2.1 Fully Nonlinear Elliptic Operators

Let Ω be a bounded domain in Rn and let G : Hγ(Ω) → L2(Ω), γ ≥ 2, be a
second order differential operator of the form

G(u) = G̃(·, u,∇u,∇2u),

where G̃ is a real valued function defined on a domain Ω̃ × Γ such that

Ω ⊂ Ω̃ ⊂ Rn and Γ ⊂ R× Rn × Rn×n,

and ∇u,∇2u denote the gradient and the Hessian of u, respectively. The points
in Ω̃ × Γ are denoted by w = (x, z, p, r), with x ∈ Ω̃, z ∈ R, p = [pi]ni=1 ∈ Rn,
r = [rij ]ni,j=1 ∈ Rn×n, to indicate the product structure of this set.

The operator G is said to be elliptic in a subset Γ̃ ⊂ Ω̃ × Γ if the matrix
[ ∂G̃
∂rij

(w)]ni,j=1 is well defined and positive definite for all w ∈ Γ̃ [2,7]. If G̃ is a
linear function of (z, p, r) for each fixed x, then G is a linear differential operator.
Under suitable restrictions on G̃, classes of quasilinear and semilinear differential
operators are obtained [2, p. 80], but in general G may be fully nonlinear.

In the neighborhood of a fixed function û ∈ Hγ(Ω) the linear elliptic operator
G′(û) is defined by

G′(û)u =
∂G̃

∂z
(ŵ)u +

n∑
i=1

∂G̃

∂pi
(ŵ)∂iu +

n∑
i,j=1

∂G̃

∂rij
(ŵ)∂i∂ju,

where ŵ = (x, û(x),∇û(x),∇2û(x)) is a function of x ∈ Ω, and ∂i denotes the
partial derivative with respect to the i-th variable. If G : Hγ(Ω) → L2(Ω) is
Fréchet differentiable at û, then G′(û) : Hγ(Ω)→ L2(Ω) is its Fréchet derivative.
If G′(û) depends continuously on û with respect to the linear operator norm,
then G is said to be continuously differentiable at û.

Many nonlinear elliptic operators and corresponding equations G(u) = 0 are
important for applications, for example the Monge-Ampère equation for Ω ⊂ R2,
given by

GMA(u) := det(∇2u)− f(x) = 0, f(x) > 0 for x ∈ Ω.

The operator GMA is fully nonlinear and GMA(u) ∈ L2(Ω) if u belongs to the
Sobolev space H5/2(Ω) and f ∈ L2(Ω). Moreover, GMA : Hγ(Ω) → L2(Ω) is
continuously differentiable if γ ≥ 5/2.



222 O. Davydov and A. Saeed

We consider the Dirichlet problem for the operator G: Find u such that

G(u) = 0, x ∈ Ω, (1)
u = φ, x ∈ ∂Ω, (2)

where φ is a continuous function defined on ∂Ω. Under certain assumptions
(including the exterior sphere condition for ∂Ω and sufficient smoothness of G̃,
satisfied in particular in the above mentioned examples if f ∈ C2(Ω)), this
problem has a unique solution u ∈ C2(Ω)∩C(Ω) [7, Theorem 17.17]. Note that
the Monge-Ampère operator GMA is elliptic in subsets Γ̃ satisfying

Γ̃ ⊂ Ω̃ × R× Rn × {r ∈ Rn×n : r is positive definite}.

Therefore there exists a unique convex solution of GMA(u) = 0, whereas it
is known that the Monge-Ampère equation has another, concave solution [3,
Chapter 4].

2.2 Spline Spaces and Stable Splitting

As usual in the finite element method, the discretisation of the Dirichlet problem
is done with the help of spaces of piecewise polynomial functions (splines). Let
! be a triangulation of a polyhedral domain Ω ⊂ Rn, that is a partition of Ω
into simplices such that the intersection of every pair of simplices is either empty
or a common face. The space of multivariate splines of degree d and smoothness
r is defined by

Sr
d(!) = {s ∈ Cr(Ω) : s|T ∈ Pd for all simplices T in !} , (3)

where d > r ≥ 0 and Pd is the space of polynomials of total degree d in n
variables. Recall that the star of a vertex v of !, denoted by star(v) = star1(v),
is the union of all triangles T ∈ ! attached to v. We define starj(v), j ≥ 2,
inductively as the union of the stars of all vertices of ! contained in starj−1(v).

Let {!h}h∈H be a family of triangulations of Ω, where h is the maximum
edge length in !h. The triangulations in the family are said to be quasi-uniform
if there is an absolute constant c > 0 such that ρT ≥ ch for all T ∈ !h, where
ρT denotes the radius of the inscribed sphere of the simplex T .

Let Sh ⊂ Sr
d(!h) be a linear subspace with basis s1, . . . , sN and dual func-

tionals λ1, . . . , λN such that λisj = δij . This basis is stable and local if there
are three constants m ∈ N and C1, C2 > 0 independent of h such that (a)
supp sk is contained in starm(v) for some vertex v of !h, (b) ‖sk‖L∞(Ω) ≤ C1,
k = 1, . . . , N , and (c) |λks| ≤ C2‖s‖L∞(supp sk), k = 1, . . . , N , for all s ∈ Sh, see
[5,6] and [2, Section 4.2.6].

To handle the Dirichlet boundary conditions, the following subspace of Sh is
important:

Sh
0 :=

{
s ∈ Sh : s|∂Ω = 0

}
.
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Moreover, the method of solving (1)–(2) proposed in [1,2] requires a stable split-
ting of Sh into a direct sum

Sh = Sh
0 + Sh

b ,

such that a stable local basis {s1, . . . , sN} for Sh can be split into two parts

{s1, . . . , sN} = {s1, . . . , sN0} ∪ {sN0+1, . . . , sN},

where {s1, . . . , sN0} and {sN0+1, . . . , sN} are bases for Sh
0 and Sh

b , respectively.
Note that the space Sh

b is not uniquely defined by the pair Sh, Sh
0 . It was shown

in [6] (see also [2, Section 4.2.6]) how the stable splitting can be achieved for a
modified space of Argyris finite element.

2.3 Böhmer’s Method

Let u = û be the solution of (1)–(2). According to [1], its approximation ûh ≈ û
is sought as a solution of the following problem: Find ûh ∈ Sh such that

(G(ûh), vh)L2(Ω) = 0 ∀vh ∈ Sh
0 , and (4)

(ûh, vh
b )L2(∂Ω) = (φ, vh

b )L2(∂Ω) ∀vh
b ∈ Sh

b , (5)

where (·, ·) denotes the inner products in the respective Hilbert spaces. Since Sh
0

and Sh
b are finite dimensional linear spaces, the problem (4)–(5) is equivalent to

a system of nonlinear equations with respect to the coefficients of ûh in a basis
of Sh.

Theorem 1 ([1, Theorem 8.7] and [2, Theorem 5.2]). Let Ω be a bounded
convex polyhedral domain, and let G : D(G) → L2(Ω), with D(G) ⊂ H2(Ω),
satisfy Condition H of [2, Section 5.2.3]. Assume that G is continuously dif-
ferentiable in the neighbourhood of an isolated solution û of (1)–(2), such that
û ∈ H�(Ω), � > 2, and G′(û) : D(G) ∩ H1

0 (Ω) → L2(Ω) is boundedly invert-
ible. Furthermore, assume that the spline spaces Sh ⊂ S1

d(!h), d ≥ � − 1, on
quasi-uniform triangulations !h possess stable local bases and stable splitting
Sh = Sh

0 + Sh
b , and include polynomials of degree �− 1. Then the problem (4)–

(5) has a unique solution ûh ∈ Sh as soon as the maximum edge length h is
sufficiently small. Moreover,

‖û− ûh‖H2(Ω) ≤ Ch�−2‖û‖H�(Ω).

In particular, Condition H is satisfied by the Monge-Ampère operators on
bounded convex polygonal domains in R2.

The nonlinear problem (4)–(5) can be solved iteratively by a Newton method
[1], where the initial guess uh

0 ∈ Sh satisfies the boundary condition

(uh
0 , v

h
b )L2(∂Ω) = (φ, vh

b )L2(∂Ω) ∀vh
b ∈ Sh

b ,
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and the sequence of approximations {uh
k}k∈N of ûh is generated by

uh
k+1 = uh

k − wh, k = 0, 1, . . . ,

with wh ∈ Sh
0 being the solution of the linear elliptic problem:

Find wh ∈ Sh
0 such that (G′(uh

k)wh, vh)L2(Ω) = (G(uh
k), vh)L2(Ω) ∀vh ∈ Sh

0 .

Clearly, wh can be found by using the standard finite element method. Under
some additional assumptions on G, it is proved in [1, Theorem 9.1] that uh

i con-
verges to û quadratically. Note that in the case when G(u) is only conditionally
elliptic (e.g. elliptic only for a convex u for Monge-Ampère equation) the ellip-
ticity of the above linear problem is only guaranteed for uh

k sufficiently close to
the exact solution û.

3 Bernstein-Bézier Techniques

Certain spaces of bivariate C1 splines with stable local bases and stable splitting
required in Böhmer’s method have been investigated by nodal techniques in
[6]. However, Bernstein-Bézier methods are often preferable. Let us recall some
related key concepts here, see [8] for more details.

From now on we only consider the bivariate case. In particular, Ω is a polyg-
onal domain in R2 and ! is a triangulation of Ω.

Given d ≥ 1, let Dd,� :=
⋃

T∈� Dd,T be the set of domain points, where

Dd,T :=
{
ξijk =

iv1 + jv2 + kv3

d

}
i+j+k=d

for each triangle T := 〈v1, v2, v3〉 in !. Also note that every v ∈ R2 can be
uniquely represented in the form

v =
3∑

i=1

bivi,
3∑

i=1

bi = 1.

The triplet (b1, b2, b3) is called the barycentric coordinates of v relative to the
triangle T := 〈v1, v2, v3〉, and

Bd
ijk(v) :=

d!
i!j!k!

bi
1b

j
2b

k
3 , i + j + k = d,

are the Bernstein-Bézier basis polynomials of degree d associated with triangle
T . Every polynomial p of total degree d can be written uniquely as

p =
∑

i+j+k=d

cijkB
d
ijk,

where cijk are the Bézier coefficients of p. For each s ∈ Sr
d(!) and ξ = ξijk ∈

Dd,� we denote by cξ the coefficient cijk of the restriction of s to any triangle
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T ∈ ! containing ξ. (Because of the continuity of s the coefficient cξ does not
depend on the particular choice of such triangle.)

We now introduce two additional notations. We refer to the set

Rn(v1) := {ξijk ∈ Dd,� : i = d− n} , 0 ≤ n ≤ d,

of domain points as the ring of radius n arround the vertex v1 and refer to the
set

Dn(v1) :=
n⋃

m=0

Rm(v1)

as the disk of radius n arround the vertex v1.
A key concept for dealing with spline spaces is that of a minimal determining

set. Recall that the set M ⊂ Dd,� is a determining set for a linear space S ⊂
Sr

d(!) if
s ∈ S and cξ = 0 ∀ξ ∈M ⇒ s = 0,

and M is a minimal determining set (MDS) for the space S if there is no smaller
determining set. Then dimS equals the cardinality #{M} of M . Let

Γη := {ξ ∈M : cη depends on cξ} ,
where we say that cη depends on cξ, ξ ∈ M , if the value of cη is changed when
we change the value of cξ. A minimal determining set M for a space S is said to
be local if there exists an absolute integer constant � not depending on ! such
that

Γη ⊂ star�(Tη) ∀η ∈ Dd,�\M,

where Tη is a triangle containing η. And M is called stable if there exists a
constant K which may depend only on d, � and the smallest angle θ� in the
triangulation ! such that

|cη| ≤ K max
ξ∈Γη

|cξ| ∀η ∈ Dd,�\M.

Given a stable local minimal determining set M for S ⊂ Sr
d(!), a stable local

basis {sξ}ξ∈M for S can be defined by requiring that the Bézier coefficients cη,
η ∈ M , of sξ satisfy cξ = 1 and cη = 0 for all η ∈ M \ {ξ}, see [8, Section 5.8].
Clearly, a stable splitting of this basis is achieved by an appropriate splitting of
the MDS, which leads to the following definition.

Definition 1. Assume that the space S ⊂ Sr
d(!) has a stable local MDS M and

let
S0 := {s ∈ S : s|∂Ω = 0} . (6)

The MDS M is said to admit a stable splitting if M is the disjoint union of two
subsets M0,Mb ⊂M such that

S0 = {s ∈ S : cξ = 0 ∀ξ ∈Mb} (7)

and M0 and Mb are stable local MDS for the spaces S0 and Sb, respectively,
where

Sb := {s ∈ S : cξ = 0 ∀ξ ∈M0} . (8)



226 O. Davydov and A. Saeed

Note that if M is a stable local MDS, and M = M0 ∪Mb is a disjoint union,
then it is a stable splitting as soon as (7) holds. Indeed, assume (7) is correct.
If s ∈ S0, then its coefficients related to Mb are zero, and similarly if s ∈ Sb

then its coefficient related to M0 are zero. Hence computing s from coefficient
corresponding to points in M0 (respectively, Mb) is equivalent to computing from
M , and so M0 and Mb are determining sets for S0 and Sb, respectively. They are
minimal determining sets because otherwise M would not be minimal. Clearly,
stability and locality properties of M0 and Mb are also inherited from M .

If M admits a stable splitting, then S = S0 + Sb and it is easy to see that

{sξ}ξ∈M = {sξ}ξ∈M0 ∪ {sξ}ξ∈Mb

is a stable splitting of the stable local basis {sξ}ξ∈M .

4 Stable Splitting for Argyris Finite Element

Recall that the superspline subspaces Sr,ρ
d (!), r ≤ ρ ≤ d, of Sr

d(!) are defined
as

Sr,ρ
d (!) = { s ∈ Sr

d(!) : s ∈ Cρ(v) ∀v ∈ V } , (9)

where V is the set of all vertices of !.
Consider the Argyris finite element space obtained with d = 5, r = 1 and

ρ = 2 in (9). Now for each v ∈ V , let Tv be any one of the triangles sharing the
vertex v and let Mv := D2(v) ∩ Tv. For each edge e of the triangulation !, let
Te := 〈v1, v2, v3〉 be one of the triangles sharing the edge e := 〈v2, v3〉 and let
Me :=

{
ξTe
122

}
. Then from [8, Theorem 6.1] we have

Theorem 2. dimS1,2
5 (!) = 6#{V }+ #{E} and

M =
⋃

v∈V

Mv ∪
⋃
e∈E

Me (10)

is a stable local minimal determining set for S1,2
5 (!).

An example is given in Figure 1 (left).

4.1 Modified Argyris Space

We now modify the Argyris space to achieve the stable splitting. This con-
struction is discussed in term of nodal basis functions in [6]. We will explain in
Section 4.3 why this modification is required. Let us denote the modified Argyris
space by S̃, where

S̃ :=
{
s ∈ S1

5(!) : s ∈ C2(v), for all interior vertices v of !} . (11)

Let us now differentiate between boundary vertices and interior vertices by using
VI and VB for the sets of interior and boundary vertices respectively. And let EI

and EB denote interior and boundary edges respectively, such that

V = VI ∪ VB , E = EI ∪ EB .
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Fig. 1. Minimal determining sets for the Argyris space (left) and for the modified
modified Argyris space (right). The points in the sets Mv, M̃v are marked by black
dots, and those in Me by black squares.

We describe a minimal determining set M̃ for this modified space S̃. Since
we have modified the space only at the boundary vertices, so the points in M
related to interior vertices and related to all edges, will belong to M̃ . That is,( ⋃

v∈VI

Mv ∪
⋃
e∈E

Me

)
⊂ M̃.

However, we will have to modify the sets corresponding to the boundary vertices
v ∈ VB. First of all, we require that each Tv, v ∈ VB, is a triangle sharing an
edge with the boundary of Ω (we call it a boundary triangle). Furthermore, we
add some more points to Mv, v ∈ VB , as follows. Let us denote all edges of !
emanating from a vertex v ∈ VB , in counterclockwise order, by

Ev = {e1, e2, · · · , en} .
Then clearly e1, en ∈ EB , and the triangle Tv is formed by either e1, e2 or
en−1, en. For each ei, let ξi be the (unique) domain point in R2(v) ∩ ei, i =
1, . . . , n. We set

M̃v := Mv ∪ {ξ1, ξ2, · · · , ξn}.
Theorem 3. dim S̃ = 6#{VI}+ #{E}+

∑
v∈VB

(4 + #Ev) and

M̃ :=
⋃

v∈VI

Mv ∪
⋃
e∈E

Me ∪
⋃

v∈VB

M̃v. (12)

is stable local MDS for modified Argyris space S̃.

Proof. We set the coefficients {cξ}ξ∈M̃ for any spline s ∈ S̃ to arbitrary values
and show that all other coefficients, i.e. {cξ}ξ∈D5,�\M̃ , of s can be determined
consistently.

Now first note that for each v ∈ VI and for each e ∈ E the points in Mv

and Me are the same as for Argyris space. So we only need to prove that for
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each v ∈ VB the set M̃v is an MDS on D2(v). To this end, for each v ∈ VB ,
we set the coefficients of s corresponding to points in M̃v and see that, in view
of C1 smoothness conditions, all coefficients corresponding to domain points in
D2(v) can be determined consistently. Thus by [8, Theorem 5.15] M̃ is minimal
determining set for the space S̃. Observe that M̃ is a stable MDS. Indeed, for
each v ∈ VI and all edges e ∈ E the stability follows from [8, Lemma 2.29]. And
for each v ∈ VB the set M̃v is a stable MDS for S1

5 on D2(v) by [8, Theorem
11.7]. Standard arguments show that M̃ is local. ��

The minimal determining sets for Argyris space and for modified Argyris space
over a small triangulation with nine triangles are illustrated in Figure 1.

4.2 Stable Splitting

Now we show how to determine a stable splitting M̃ = M̃0 ∪ M̃b of the MDS M̃
for modified Argyris space S̃.

It is already understood that all those points of M̃ which are on the boundary
will be in M̃b and those points lying in Mv, v ∈ VI , and Me along with the points
in R2(v), v ∈ VB , but not on either e1 or en, will be in M̃0. Consider, for each
v ∈ VB, the remaining point which lies in R1(v), v ∈ VB, but not on the boundary
edges. We denote this point by ξv. Whether ξv belongs to M̃0 or M̃b = M̃ \ M̃0

depends on the geometry of the boundary edges e1 and en, as follows.

– If e1 and en are non-collinear, then ξv ∈ M̃b.
– If e1 and en are collinear, then ξv ∈ M̃0.

Indeed, in the non-collinear case the coefficient corresponding to ξv is zero for all
s ∈ S̃0, wheras in the collinear case it can be chosen freely. Figures 2 and 3 show
points in M̃0 and M̃b for the boundary vertex with collinear and non-collinear
edges respectively.

Theorem 4. M̃ = M̃0 ∪ M̃b is stable splitting of MDS M̃ .

Proof. If s ∈ S̃0, then all its Bézier coefficient on the boundary are zero since
s|∂Ω = 0. For those v ∈ VB where the boundary edges are non-collinear, the C1

smoothness implies that the gradient at v is also zero, and hence the coefficient of
s at ξv is also zero. This shows that S̃0 ⊂ {s ∈ S̃ : cξ = 0 ∀ξ ∈ M̃b}. Conversely,
assume s ∈ S̃ and cξ = 0 for all ξ ∈ M̃b. Let v ∈ VB and Ev = {e1, e2, · · · , en} as
before. Without loss of generality assume that D2(v)∩e1 ⊂ M̃v and R2(v)∩en ⊂
M̃v. Therefore cξ = 0 at all these points. However, due to the C1 smoothness
cξ = 0 also for the domain point in R1(v) ∩ en, both in the collinear and non-
collinear case. This shows that cξ = 0 for all domain points on the boundary of
Ω and hence s|∂Ω = 0. Thus, S̃0 = {s ∈ S̃ : cξ = 0 ∀ξ ∈ M̃b}, which completes
the proof, see the discussion following Definition 1. ��
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Fig. 2. Splitting of points in M̃v, v ∈ VB for modified Argyris space with collinear
boundary edges. Left : M̃v ∩ M̃b, right : M̃v ∩ M̃0.

Fig. 3. Splitting of points in M̃v, v ∈ VB for modified Argyris space with noncollinear
boundary edges. Left : M̃v ∩ M̃b, right : M̃v ∩ M̃0.

4.3 Why Modification in Argyris Space Is Required

We now prove that modification is needed in Argyris space at the boundary
vertices to achieve a stable splitting.

We first consider the Argyris space S1,2
5 (!) with M in Theorem 2 being its

MDS, and show that no splitting M = M0 ∪Mb is possible in this case if there
is a boundary vertex v with two triangles attached, and the boundary edges
are non-collinear. On contrary, assume that such a splitting has been found.
Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be two triangles in ! with v3 as
boundary vertex and assume that the edges 〈v3, v4〉 and 〈v3, v1〉 are boundary
edges. Consider the set

Mv3 := D2(v3) ∩ T = {ξ005, ξ014, ξ023, ξ104, ξ113, ξ203} ⊂M,
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see the Figure 4, and let

s|T =
∑

i+j+k=5

cijkB
5
ijk, s|T̃ =

∑
i+j+k=5

c̃ijkB̃
5
ijk,

where B5
ijk and B̃5

ijk are Bernstein basis polynomials associated with T and T̃
respectively. In the case that the edges 〈v3, v4〉 and 〈v3, v1〉 are non-collinear, the
points {ξ005, ξ014, ξ104, ξ203} must be in Mb, because s ∈ S has zero coefficients
at these points. We show that {ξ113, ξ023} �⊂ M0. Let (b1, b2, b3) be barycentric
coordinates of v4 relative to T . Then by a C2 smoothness condition, see [8,
Theorem 2.28], across the edge e := 〈v3, v2〉 we can write

c̃230 = b21c203 + 2b1b2c113 + 2b2b3c014 + b22c023 + 2b1b3c104 + b23c005,

and because c̃230 = c203 = c014 = c104 = c005 = 0,

0 = 2b1c113 + b2c023,

which shows that c113 and c023 are linearly dependent so that ξ113, ξ023 cannot
be both in M0. Moreover, we cannot shift one of these points to Mb because
there is a spline s ∈ S0 such that

c113, c023 �= 0,

e.g. s with c113 = b2 and c023 = −2b1. Note that b2 �= 0 if the boundary edges
are non-collinear.

Moreover, we prove that no other MDS admits a stable splitting, either.

Theorem 5. No MDS for the Argyris space can be stably split on arbitrary
triangulations.

Proof. Assume that the triangulation ! is such that there is a boundary vertex
v with two triangles T and T̃ attached, and the boundary edges are non-collinear
at v, as in the above proof. Let M be some MDS for Argyris space.

From the dimension argument we know that there must be exactly six points
in M ∩ D2(v). For the non-collinear boundary edges, no points on boundary
edges or in R1(v) can be in M0 because, all the corresponding coefficients of
splines in S0 are zero. So the only candidates for M0 are the points in R2(v)
not on boundary edges. Now we discuss the relation between the coefficients
c̃131, c113, c023 of s ∈ S0 at these points. By using C1 and C2 condition across
the common edge of T and T̃ we get

c̃131 = b1c113 + b2c023

0 = 2b1c113 + b2c023

By subtracting these equations we can write

c̃131 = −b1c113
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Fig. 4. The black dots are MDS points in Mv3 , v3 ∈ VB , for Argyris space. The two
domain points marked by black squares are involved in the smoothness conditions
discussed in the proof of Theorem 5.

Hence the three coefficients cannot be set arbitrarily. Only one of them can be
chosen freely, which cannot be either c̃131 or c113. Indeed, let us choose e.g. c113
arbitrarily, then from the above equations we obtain

c023 =
−2b1c113

b2

and hence c023 →∞ for b2 → 0 as the boundary edges get collinear. This would
be unstable as the minimum angles in T, T̃ do not degenerate.

Thus ξ023 is the only point to be in M0. It is easy to see that Mb must
contain ξ203, ξ̃230 and three points in D1(v). Consider the basis spline s in Sb

corresponding to ξ̃230. Then its coefficient satisfy

c̃230 = 1, c203 = c023 = 0, cξ = 0, ξ ∈ D1(v)

Now again using C1 and C2 conditions we find

c̃230 = 2b1b2c113 or c113 =
1

2b1b2
,

which is unbounded for b2 → 0 as the boundary gets flat. ��
Remark 1. If a boundary vertex v has exactly two triangles attached and the
boundary edges are not collinear at v, then stable splitting of an MDS is im-
possible for any spline space S where each spline is C2 continuous at v. Indeed,
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this follows by the arguments in the proof of Theorem 5. In fact, it is easy to
see that the set D2(v) ∩ T as MDS for S on D2(v) cannot be split stably for a
boundary vertex with any number of triangles attached.

5 C1 Macro-Element Spaces

Now we discuss the possibility of stable splitting of minimal determining sets of
some of the C1 macro-element spaces.

5.1 Stable Splitting of Clough-Tocher Macro-Element Space

Given a triangulation ! of a domain Ω, let !CT be corresponding Clough-
Tocher refinement of !, where each triangle is split into three subtriangles, see
Figure 5.

Fig. 5. A typical Clough-Tocher refinement of one triangle with points in Mv marked
as black dots and points in Me marked as black triangles

Consider the stable local MDS M given in [8, Theorem 6.5] for C1 Clough-
Tocher Macro-element space S1

3(!CT ) as

M =
⋃

v∈V

Mv ∪
⋃
e∈E

Me, (13)

where Mv := D1(v)∩Tv and Me :=
{
ξTe
111

}
, and Tv and Te are triangles in !CT .

Denote by V and E the sets of vertices and edges in !, respectively. Let

S0 :=
{
s ∈ S1

3(!CT ) : s|∂Ω = 0
}
.
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Let VI and VB be the sets of interior and boundary vertices of !, respectively.
We assume that Tv is a boundary triangle for each Mv, v ∈ VB. Then stable
splitting for M is possible as follows. Clearly,( ⋃

v∈VI

Mv ∪
⋃
e∈E

Me

)
⊂M0. (14)

However, M0 may contain some more points from Mv, v ∈ VB. Note that, for
boundary vertices v, two points in Mv are always on the boundary and one is
not. These two boundary points are in Mb but the point in Mv, which is not
on the boundary, belongs to either M0 or Mb depending on the geometry of
boundary edges attached to v in the same way as the point ξv in Section 4.2.
This point will be in M0 for those boundary vertices where boundary edges are
collinear. Otherwise it will be in Mb. Stability and locality follows as M is a
stable local MDS for S1

3(!CT ).

5.2 Powell-Sabin Macro-Element Space

Now let for a given triangulation ! of a domain Ω, !PS be the corresponding
Powell-Sabin refinement [8, Definition 4.18], see the Figure 6. For each v ∈ V ,
let Tv be some triangle of !PS attached to v, and Mv := D1(v) ∩ Tv. Then

M =
⋃

v∈V

Mv (15)

is a stable local minimal determining set for Powell-Sabin space S1
2(!PS) [8,

Theorem 6.9]. Now similarly if

S0 :=
{
s ∈ S1

2(!PS) : s|∂Ω = 0
}

and if we take Tv to be a boundary triangle for Mv, v ∈ VB , then M given in
(15) for S1

2(!PS) can be split stably in the same way as discussed above for the
Clough-Tocher macro-element space.

5.3 Powell-Sabin-12 Macro-Element Space

Let !PS12 be the Powell-Sabin-12 refinement [8, Definition 4.21] of a given
triangulation ! of a domain Ω, see Figure 7. For each e of !, let ue be the
midpoint of e and let vT be the incenter of a triangle T in ! attached to e. Let
ξe := vT +ue

2 and Me := {ξe}. For each vertex v ∈ V , let Tv be a triangle of
!PS12 attached to v, and let Mv := D1(v) ∩ Tv. Then the set

M =
⋃

v∈V

Mv ∪
⋃
e∈E

Me (16)

is a stable local MDS for the space S1
2(!PS12) [8, Theorem 6.13]. Now let

S0 :=
{
s ∈ S1

2(!PS12) : s|∂Ω = 0
}
.

Again, assuming that Tv is a boundary triangle of!PS12 for any bondary vertex
v, we can split M into M0 and Mb by the same method as for the Clough-Tocher
elements. Then M = M0 ∪Mb is a stable splitting for S1

2(!PS12).
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Fig. 6. Powell-Sabin refinement of one triangle with points in Mv marked as black dots

Fig. 7. A Powell-Sabin-12 refinement of one triangle with points in Mv marked as black
dots and points in Me marked as black triangles

5.4 Quadrilateral Macro-Element Space

Let ♦ be a strictly convex quadrangulation of a polygonal domain Ω and let !Q

be triangulation obtained by drawing in the diagonals of each quadriletral of ♦.
Let V and E be the sets of vertices and edges of ♦. Here we will discuss the
cubic spline space S1

3(!Q). Again let Mv := D1(v) ∩ Tv, for each v ∈ V , where
Tv is a triangle in !Q attached to v, and Tv is a boundary triangle in case of a
boundary vertex v. For each e ∈ E, let Te be some triangle in !Q containing e

and let Me :=
{
ξTe
111

}
. Then

M =
⋃

v∈V

Mv ∪
⋃
e∈E

Me (17)
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is a stable local MDS for the space S1
3(!Q) [8, Theorem 6.17]. Again the stable

splitting of M for S1
3(!Q) is possible by the argument discussed above for other

C1 macro-elements.
Note that in [8, Section 6.5] the above triangle Tv is chosen such that it has the

largest shape ratio diam(T )/ρ(T ) among all triangles attached to v. This allows
stable MDS even in the presence of small angles in !Q if the smallest angle in ♦
is separated from zero. However, this choice of Tv might be unsuitable for stable
splitting if v is a boundary vertex because we need Tv to be a boundary triangle
whereas the shape ratio might be larger for some interior triangle attached to
v. Therefore, our construction of stable splitting is valid only if !Q satisfies the
minimum angle condition.
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Abstract. High precision laser scanners deliver virtual surfaces of in-
dustrial objects whose accuracy must be evaluated. But this requires
the automatic detection of reliable components such as facets, cylindric
and spherical parts, etc. The method described here finds automatically
parts in the surface to which geometric primitives can be fitted. Knowing
certain properties of the input object, this primitive fitting helps quan-
tifying the precision of an acquisition process and of the scanned mires.
The method combines mesh segmentation with model fitting. The mesh
segmentation method is based on the level set tree of a scalar function
defined on the mesh. The method is applied with the simplest available
intrinsic scalar function on the mesh, the mean curvature. In a first stage
a fast algorithm extracts the level sets of the scalar function. Adapting to
meshes a well known method for extracting Maximally Stable Extremal
Regions from the level set tree on digital images, the method segments
automatically the mesh into smooth parts separated by high curvature
regions (the edges). This segmentation is followed by a model selection on
each part permitting to fit planes, cylinders and spheres and to quantify
the overall accuracy of the acquisition process.

Keywords: Mesh segmentation, model fitting, mire accuracy.

1 Introduction

Laser scanners acquire object surfaces with growing accuracy. The question arises
of evaluating quickly and reliably this accuracy. This paper proposes an approach
to perform this evaluation automatically, based on mesh segmentation and model
fitting, without the use of calibrated mires.

The raw output of a laser scanner is a set of samples on the acquired surface.
Building a mesh from this set of points can be done (e.g.) by the classic methods
in [18], [8], [14], [3]. The evaluation of the precision of the acquisition pipeline
must be based on parts of scanned objects that have homogeneous curvatures,
which requires a mesh segmentation into high and low curvature parts. The low
curvature parts are easier to parameterize by polynomial models such as planes,
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cylinders, spheres, etc. and permit to perform a model selection. The goal is not
necessarily to find a global model of the shape (which is often impossible), but to
find models that significantly fit some parts of the data. The global evaluation of
the accuracy must be based on these parts. In particular one goal of the analysis
proposed here is to evaluate sharp edges positions for mires of mechanical pieces.

The remainder of this paper is divided as follows. Section 2 reviews the current
state of the art for mesh segmentation and model regression. Section 3 explains
the segmentation method used in this paper, section 4 presents the model fitting
and model selection choices and finally section 5 presents numerical results.

2 Previous Work

Mesh segmentation has been widely studied and there are extensive segmentation
technique reviews, [4], [26] and [1].

Segmentation methods can be divided into two categories: semantic segmen-
tation methods and geometric segmentation methods. Semantic segmentation
methods try to segment the mesh into meaningful parts. Those methods include
[28], where the clusters have to exhibit symmetries, and [17], where the mesh
is segmented into core components and protrusions. [29] finds the skeleton of a
shape, identifies junction areas and uses them to get a semantic oriented seg-
mentation. Its goal can be to perform shape morphing ([27]). On the contrary,
geometric segmentation methods aim at dividing the mesh into clusters that have
similar geometric properties (constant curvature, for example). These methods
are the ones we are interested in. Indeed, segmenting the mesh into homogeneous
curvature parts is the only way to fit models to the clusters.

Mesh clustering techniques have made intensive use of the k-means algorithm,
trying to group facets in clusters with it. For example, [33] clusters the mesh by
performing a k-means on the normals to the mesh. Region merging and region
growing are then used to get the final classification. The k-means algorithm is
also used in [35] where vertices are clustered according to their curvatures. [19]
extends work on feature sensitive remeshing techniques to generate a mesh that
is suited for hierarchical mesh clustering and then uses the k-means algorithm to
segment the triangles. It assigns triangles to clusters according to the distances
from an iteratively updated representative triangle. In [20], the segmentation is
based on curvature tensor field analysis. The patches exhibit a nearly constant
curvature. The k-means classification is used to classify vertices according to
their principal curvatures. A region growing extracts triangle regions from ver-
tex curvature information by taking sharp edges into account. Regions are then
merged and boundaries are finally rectified by removing discontinuities. The seg-
mentation between homogeneous Gaussian curvature parts was also considered
in [32] for building a better surface parmeterization.

In [16], another type of segmentation is performed: it is based on the mesh
dual graph. This dual graph is simply built by considering each triangle as a
dual node and linking the dual nodes if the corresponding faces are adjacent on
the surface. In this dual graph contracting an edge means grouping two faces
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into a single cluster. Therefore, by defining an adequate edge contraction cost,
the mesh segmentation is obtained by minimizing the edge contraction cost to
find the best k clusters (k being a user-specified parameter).

Based on this method, a mesh segmentation interleaved with a model regres-
sion has been introduced in [5]. Simple primitives are considered for model fitting
(plane, sphere and cylinder primitives). The method described in [16] is modified
by changing the edge contraction cost: the cost of contracting the edge is the
error to the model best fitting the set of points included in both clusters. Our
proposed segmentation method is completely different from this last method,
but we also chose to study only planes, cylinders and spheres, simply because
these are very simple primitives that are widely used for mechanical objects.
They seem to be realistically the only ones for which a reliable model decision
can be made.

An interesting method was proposed in [22]: the watershed segmentation,
coming directly from the 2D image processing field was adapted to the mesh
segmentation problem. The watershed segmentation was also studied in [36].
The idea of adapting the techniques of 2D image processing was also used in [13]
with a completely different method: the image level set selection tools and the
Maximally Stable Extremal Region method ([6], [23]). In this paper, we will use
this method to segment the meshes (see section 3).

The idea of selecting level sets for segmenting a mesh was proposed also in [34]
in a completely different context. The shape is decomposed into a smooth base
and a height function defined over the mesh. Then a level of the height function
is selected and the corresponding level set is extracted. The main difference of
the method proposed here lies in the definition of the height function and the
fact that only one level was selected in this method while here the threshold is
automatic and adaptive.

Model regression for mesh parts has also generated a considerable literature,
mostly for fitting quadrics ([24], [2], [9], [31], [11]) or NURBS ([21], [25]). Much
less work has been done for fitting primitives to point sets. [30] and [10] are
notable exceptions.

The next section describes a mesh segmentation method.

3 Mesh Segmentation

The mesh segmentation tool used in this paper was introduced in [13]. It is based
on ideas coming from 2D image processing. An image is entirely represented by
its level set tree (see Fig. 1). This tree is built by considering upper level sets of
the gray values, the sets uλ = {x ∈ Ω|u(x) ≥ λ} where u is an image defined
over Ω, a bounded subset of R2. Then, one has uλ′ ⊂ uλ as soon as λ′ ≥ λ
and, if we consider a connected component Cλ′

of the level set uλ′
, then there

is a connected component Cλ of the level set uλ such that Cλ′ ⊂ Cλ. For a
quantified image, the tree is built by adding a node per level set connected
component and adding a parent-child relationship between nodes A and B when
the corresponding connected components satisfy A ⊂ B. The root of this tree is
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Fig. 1. A gray color image (left) and its level set tree (right)

the level set with smallest quantization value (usually 0 for gray-scale images).
Notice that the defined level set tree uses upper level sets. A similar construction
can be done for lower level sets.

This tree is then used to select meaningful level sets. In [23], selected level
set connected components correspond, in a nutshell, to those that least move
when perturbing slightly the level. More precisely, for each level set connected
component, the area change rate q(Cλ) is

q(Cλ) =
A(Cλ+δ)−A(Cλ−δ)

A(Cλ)

where Cλ±δ is the connected component with level λ±δ containing (or contained
in) Cλ, and A(Cλ) is the area of Cλ. Maximally Stable Extremal Regions (MSER)
are local minima in the level set tree of the area change rate. Computing and
comparing the area change rates is very easy using the level set tree structure. In
[13] this parameterless segmentation method was adapted to functions defined
over meshes.

3.1 Defining the Level Set Tree on Manifold Meshes

Going from the pixel image to a function defined on a mesh is simple: triangles
play the role of pixels and two triangles will be said adjacent if and only if
they share an edge. If the function is defined on triangles (i.e., the function is
constant over each triangle), then no additional work is needed. On the contrary
if the functions is defined only on the vertices then a value should be deduced
for each triangle. To do that one can either take the barycentric, minimum or
the maximum value depending on the purpose of the tree.
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Fig. 2. Rendering of a digital elevation model

All the definitions then follow naturally from the 2D case. The only condition
for the method to work on meshes is that each edge should be adjacent to at
most 2 triangles. A fast algorithm was proposed in [13] for building the level set
tree while storing the areas of each node. Once the tree is built, computing the
area change rate for each node is obvious (simply go up or down in the tree until
reaching nodes with levels λ± δ) and this yields a MSER algorithm for meshes.

As explained in [13], the function should be quantized. In fact the whole
method relies on two parameters once the function is chosen: the quantization
step, and the derivative step δ. In the experiments of this paper we always chose
those steps to be equal. The number of quantization steps is a value between 20
and 50.

3.2 Choosing the Adequate Scalar Function on a Mesh

At this point, given a function defined on a mesh, there is a method to segment
the mesh into regions that are homogeneous for this function. But we need a
suitable function for primitive fitting. The function choice is very dependent on
the goal of the segmentation or the type of mesh. For example, on Fig. 2, a
digital elevation model is rendered. If one wants to segment this model then the
obvious function to use is the height of the vertices. But then we get closer to the
image segmentation problem since there are two ways of considering the data:
either as a gray-valued image using 2D-MSER, or as a set of grid points with
height values giving a set of 3D coordinates with a mesh structure. A height
value for each triangle can be deduced from the height values of all triangle
vertices: here, the minimum of the vertices values was used. With this choice
the mesh process ends up using a much finer information, since it adds precise
triangle areas (which depend on the height) instead of adding a constant 1 area
to compute the node areas. Fig. 3 compares applying 2D-MSER to the gray-level
image or using Mesh-MSER on the corresponding mesh. Notice that the river is
much better detected by Mesh-MSER than by the classic 2D MSER.
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Fig. 3. 2D-MSER on the gray-level image (left) and Mesh-MSER applied to the cor-
responding mesh (right)

Following this idea of a height function defined on a plane, we shall define
the height function as the distance between a vertex initial position and the
vertex position after an intrinsic mesh smoothing. This way the mesh can be
described as a smooth base with its normals, together with a scalar elevation
function defined over the smooth base (Fig 4). The smoothing is done by applying
the intrinsic heat equation (mean curvature motion) and the height function is
nothing but the mean curvature.

Computing the mean curvature motion for surfaces is a very hard problem,
especially when we are dealing with non smooth data (raw data coming directly
from the laser scanner). In [14], it was proven that this motion can be approxi-
mated by projecting each point onto is local regression plane. We use this simple
formulation here to build the height function.

Fig. 4. “base+height” function

This idea is close to the method described in [34]. Fig. 5 compares the cluster-
ing obtained on a simple object using the same height function. But [34] selects
globally one single level, and risks therefore creating unstable cluster boundaries.
On the other hand Mesh-MSER tends to over-segment the edges, but extracts
nicely the large homogeneous parts.
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(a) A pump carter (b) Border of the clusters ex-
tracted by [13]

(c) Border of the clusters ex-
tracted by [34]

Fig. 5. Comparison between the borders of the levels extracted by Mesh-MSER [13]
and [34]

Naturally, the mean curvature is not the only possible function choice: de-
pending on the goal of the segmentation one could use another function. If the
goal is a geometric segmentation, then the function should contain geometric
information. This explains why the mean curvature is an obvious choice: it is
the simplest and lowest local isotropic derivative on the manifold. The Gaussian
curvature or the principal curvatures are obvious alternatives.

The proposed mesh segmentation method works for non geometric surfaces
(see [13] for examples of non geometric models segmentation or the experiment
of fig. 2). Yet in this paper our goal is to extract geometric primitives to validate
the accuracy with which the shape was built (or alternatively the accuracy of
the scanner, given an accurate 3D pattern.) Thus that the experiments will only
consider mechanical or geometric shapes.

4 Model Regression

This section proposes simple methods to estimate models (planes, cylinders and
spheres) from a set of points. Those methods are robust to partial shapes. In
other terms they work with half spheres or cylinder parts as well. The results
of the direct method were compared with those obtained when the method is
complemented by RANSAC ([15]). No substantial accuracy gain was noticed
using RANSAC, so that the final numerical examples do not use it.

Fitting a plane model to a set of samples is easy by computing the point set
barycenter and centered covariance matrix. The principal component analysis
(PCA) of the matrix yields the normal to the fitted plane: it is the eigenvector
corresponding to the least eigenvalue. Cylinder and sphere fitting is a little more
complex. In the remainder of this section (pi)i=1···N will be a set of N points on
which models will be tested. The normals ni are calculated for all points pi by
local planar regression.
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4.1 Cylinder Extraction

Fitting a cylinder to point sets has been studied in [5], [10] and [30]. The approach
proposed here is slightly different. If the samples covered the full radial range,
then a simple barycenter computation would yield a point on the principal axis.
Yet this estimation does not work when the samples cover only a part of the
cylinder, or when, as usual with raw data, the cylinder is not uniformly sampled.
Given a set of points, one can find the degree 2 fitting polynomial and deduce
the principal curvatures k1 and k2 for each point pi. If the points were actually
sampled on a cylinder with radius r then one of their principal curvatures would
be 0 and the other would be ± 1

r (the sign depending on the surface orientation).
Denote by ki the principal curvature of pi with largest absolute value, then
point qi = pi − 1

ki
· ni must lie on the cylinder axis. In practice for a cylinder

this procedure gives an elongated cluster of points. Computing the barycenter
and first principal direction of those points yields the axis direction. Knowing
the axis position and direction, the cylinder radius is estimated as the mean
distance between the points and the axis. With this updated radius r positions
of the qi can be also updated:

qi =

{
pi − r · ni if ki > 0
pi + r · ni if ki ≤ 0.

Notice that for cylinders all ki have the same sign as soon as the normals are
precise enough. The updated points qi allow for the update of the axis position
and directions and the process can be iterated. For clarity, the process is summed
up in Algorithm 1.

Algorithm 1. Fitting a cylinder to a set of points
Data: An input set of points pi with oriented normals ni, a number of

iterations K
Result: A point O and a direction v defining the cylinder axis and the radius r
Compute the principal curvatures by local polynomial regression ;1
Compute ki = argmax(|k1|, |k2|) for all pi;2
for i = 1 · · ·K do3

Compute qi = pi − 1
ki

· ni;4

Compute the barycenter O and the principal direction v of the set qi by5
PCA;
Compute r = 1

N

∑
i=1···N dist(pi, (O, v));6

Update ki ← sign(ki)
1
r
;7

4.2 Sphere Extraction

The sphere case is very similar to the cylinder case. The parameters to estimate
are simply the center and the radius of the sphere. As before, because points
can cover only a small part of the sphere, the barycenter of the points is not
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an estimate for the center position. But points lying on a sphere have principal
curvatures k1 = k2 = ± 1

r . Denote by ki the estimated mean curvature k1+k2
2 .

Then points qi = pi− 1
ki
·ni would ideally be all located at the exact sphere center.

In practice, they form a cluster of points around the sphere center. Computing
the barycenter of this cluster yields an estimated sphere center O. Knowing the
sphere center, the new sphere radius r can be estimated as the mean of the
distances |Opi|. Using this new radius, the qi can be updated:

qi =

{
pi − r · ni if ki > 0
pi + r · ni if ki ≤ 0

The sign of ki is the same on the whole point set for real sphere surfaces. The
updated points qi allow for the updating of the center position and the process
can be iterated. For clarity, the process is summed up in Algorithm 2.

Algorithm 2. Fitting a sphere to a set of points
Data: An input set of points pi with oriented normals ni, a number of

iterations K
Result: The center O of the sphere and its radius r
Compute the principal curvatures and normal by polynomial regression ;1
Compute ki = (k1 + k2)/2 for all pi;2
for i = 1 · · ·K do3

Compute qi = pi − 1
ki

· ni;4

Compute the barycenter O of the set qi by PCA;5
Compute r = 1

N

∑
i=1···N dist(pi, O);6

Update ki ← sign(ki)
1
r
;7

4.3 Model Selection

Using the above described techniques, one can estimate model parameters from
point sets. Yet, one has to select the model that actually best fits the data
and also of course discard regions which are neither plane, nor cylindrical or
spherical. Here we shall use an apparently naive approach, but which turns out
to be the correct one. For each vertices cluster, all three models are fitted and
the root mean square error of the model fitting is computed. Only the model
corresponding to the least root mean square error is considered as a potential
model. To see if this model really fits the data the error standard deviation will be
compared to the noise standard variation, which therefore has to be estimated.

Following the scale space strategy developed in [14], we assume that the noise
is represented by the motion amplitude created by applying the projection filter
(projecting the point onto its local regression plane). This estimation could in-
troduce a small bias, since it was proven that this filter is tangent to the mean
curvature motion. But on the large regions of the mesh the surface curvature is
actually very small with respect to the noise curvature, thus this bias is negligible
(of the order of 1%).The estimated standard deviation σb of the estimated noise
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Fig. 6. Histograms for the estimated noise (left) and the model fitting error (right) on
the diamond shape

Fig. 7. Histograms for the estimated noise (left) and the model fitting error (right) on
the first mire

yields a threshold for a potential model acceptance. If the fitting error for the
best model (among the three models considered here) is less than λσb, the model
is accepted, otherwise the cluster is said to have no model. The parameter λ is
necessarily empirical and has to be chosen by the user, because it corresponds
to the deformation of the ideal model caused by the scanner (or present in the
object itself). In all our experiments with a high precision scanner (20μ nominal
precision) and assumedly very accurate industrial mires, we chose λ = 4, thus
allowing for a bias proportional to the noise.

Figs 6 and 7 show the histograms of the estimated noise and fitting error.
The fitting error is not Gaussian for multiple reasons: first, multiple scans cover
each of the clusters and each of these scans is acquired using a different laser
orientation. Each acquisition orientation generates a Gaussian noise, which may
not have the same characteristics than for another orientation, yielding a mixture
of gaussians for the global noise. Second, a powder had to be added to the
metallic mires before the scanning process. This additional rugosity is a kind of
noise which is not necessarily Gaussian.
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The above strategy is very simple, and one might wonder why no better model
selection tool was used. For example one could have used the Minimum Descrip-
tion Length (MDL) theory [7] or the Number of False Alarms (NFA) theory [12].
For one thing, in our case we considered only models with a very small number of
parameters. Thus the huge number of samples in the raw data (several millions)
causes the standard variation alone to decide the model selection result given by
either MDL or NFA. In a case with a simple model and an overwhelming num-
ber of samples, both methods come down to the comparison of the root mean
square error for each model. Indeed, both the MDL length and the logNFA
have the order of magnitude N log σM , where N is the number of samples and
σM the observed root mean square error for the model M . The other terms are
negligible. Thus the best MDL and the lowest NFA are given by comparing σM

for the different choices of M . In both frameworks, the number of bytes used to
describe the model will always be negligible compared to the number of bytes
used to encode the offsets (proportional to the root mean square error). This
justifies the “naive” approach.

5 Numerical Results

In this section we present segmentation and model regression results on two
different kinds of industrial mires. We start with synthetic CAD meshes (Figs 8,
9 and 10). In such a setting the segmentation results are of course very clean,
and can easily be compared to state of the art segmentation methods (see the
results obtained for the fandisk, compared to other methods). The method was
tested on several industrial mires scanned by a triangulation laser scanner with
multiple scans (Figs 11,12, 13, 14 and 15). There is a serious acquisition noise as
can be seen on the mesh renderings, due to the fact that an additional powder
had to be spread on the metallic objects before the acquisition to make the
scanner work.

5.1 Finding a Global Model

Since the points are clustered, and a model is found whenever possible on the
data, a global model can be found for the whole object as soon as every (non-
edge) class has a corresponding model. Consider for example the diamond shape
used in this paper. It is composed of only planar parts, with the exception of
the edge class. The equations of the planes are also known by plane fitting.
By finding the intersections of planes corresponding to neighboring connected
components one can recover the set of vertices defining the shape entirely. Those
vertices are found as the intersections of either 3 or 4 planes (in the 4 planes case,
the intersection is found as the point minimizing the distance to all 4 planes).
Vertices are then linked, yielding the result of figure 16. It gives an evaluation
of the whole acquisition process. Indeed, the diamond shape is supposed to be
a perfect geometric object: for example, edges of the upper octogon must have
same length. To quantify this, we sorted edges into classes (upper octogon, mid-
dle octogon, lower octogon) and computed the mean length of each class, the
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(a) Fandisk model (b) Clusters found by mesh
segmentation

(c) Classification

Fig. 8. Fandisk model. Fig. 8(b) shows the clusters plotted in random colors. The
classification 8(c) shows plane clusters in cyan, cylinder clusters in red and spheres in
yellow, classes without models are drawn in red. The fandisk model is provided courtesy
of MPII by the AIM@SHAPE Shape Repository.

(a) Mesh (b) Clusters found by mesh
segmentation

(c) Classification

Fig. 9. A synthetic mesh (left); clusters (middle); models (right). Fig 9(b) plots clusters
in random colors. Fig 9(c) shows plane clusters in cyan, cylinder clusters in red and
spheres in yellow, classes without models are drawn in dark blue.

standard deviation of the length (measured in millimeter) compared to the class
mean length is 0.0958. The error is therefore close to 100μm. It can have three
distinct explanations: default of the mire (unlikely), variable thickness due to the
additional powder spread on the object before scanning, and calibration default,
which is the most likely explanation.
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(a) Mesh (b) Classification

Fig. 10. A synthetic mesh (left); found models (right). Fig 10(b) shows plane clusters
in cyan, cylinder clusters in red and spheres in yellow, classes without models are drawn
in dark blue.

(a) Acquired shape mesh (b) Clusters found by mesh
segmentation

(c) Classification

Fig. 11. A simple shape formed only by planes. The classification 11(c) shows plane
clusters in blue and edge classes in red.

(a) Mesh of Mire 1 (b) Clusters found for the first mire

Fig. 12. Clusters found on the first mire. Clusters are given a random color.
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Fig. 13. Model selection (dark blue: no model; cyan: plane; yellow: sphere; red:
cylinder)

(a) Mesh of Mire 2 (b) Clusters found for the second mire

Fig. 14. Clusters found on the second mire. Clusters are given a random color.

Fig. 15. Model selection (dark blue: no model; cyan: plane; yellow: sphere; red:
cylinder)
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Fig. 16. Edges found by plane intersections on the diamond shape

6 Conclusion and Future Work

In this paper, we demonstrated that the framework defined by the level set
tree yielded a mesh segmentation that made the model fitting step possible.
Thanks to the model fitting, models can be estimated and compared to the
theoretical properties of the shape. This can lead to a fair evaluation of the
whole design-engineering-acquisition loop. Future work will focus on developing
a cross-validation technique to distinguish between the three sources of errors
mentioned, using multiple scans of the same mire under varying orientation.

Fig. 17. The scanned shape (left) containing 200k vertices and the obtained model
(right) containing only 25 vertices
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Abstract. An intuitive approach to designing spatial C2 Pythagorean–
hodograph (PH) quintic spline curves, based on given control polygons,
is presented. Although PH curves can always be represented in Bézier or
B–spline form, changes to their control polygons will usually compromise
their PH nature. To circumvent this problem, an approach similar to that
developed in [13] for the planar case is adopted. Namely, the “ordinary”
C2 cubic B–spline curve determined by the given control polygon is first
computed, and the C2 PH spline associated with that control polygon is
defined so as to interpolate the nodal points of the cubic B–spline, with
analogous end conditions. The construction of spatial PH spline curves
is more challenging than the planar case, because of the residual degrees
of freedom it entails. Two strategies for fixing these free parameters are
presented, based on optimizing shape measures for the PH spline curves.

Keywords: Spatial Pythagorean–hodograph curves; control polygons;
cubic B–spline curves; Hermite interpolation; Hopf map; quaternions.

1 Introduction

The construction of free–form curves and surfaces in computer–aided geometric
design typically follows one of two paradigms. If precise geometrical constraints
must be observed, interpolation schemes are most appropriate. If one desires an
intuitive means of manipulating the curve/surface shape for aesthetic purposes,
on the other hand, the use of a control point (e.g., Bézier/B–spline) scheme is
recommended. We present an intuitive method for the construction of spatial
C2 Pythagorean–hodograph (PH) quintic spline curves from control polygons.

PH curves [4] incorporate special algebraic structures in their hodographs
(derivatives), that offer many useful computational advantages over “ordinary”
polynomial parametric curves. For example, their arc lengths are amenable to
exact computation; they possess rational offset curves; and they are well–suited
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to formulating real–time CNC interpolator algorithms, used to drive computer–
controlled machines along curved paths with a prescribed speed variation.

Existing methods to construct planar or spatial PH curves are typically based
on the interpolation of discrete point/tangent data [5,6,7,8,9,11,12,14]. The de-
sign of PH curves using Bézier/B–spline control polygons is more challenging,
since they comprise a proper subset of the Bézier/B–spline curves — the control
points of PH curves must satisfy certain non–linear constraints. To circumvent
this difficulty, a control–polygon approach has been proposed [13] for the case
of planar PH splines, in which the control polygon is employed to formulate a
“latent” spline interpolation problem. The goal of the present study is to extend
this control–polygon design scheme to spatial PH splines. This is non–trivial
because the standard (quaternion and Hopf map) representations of spatial PH
curves incur one residual degree of freedom per spline segment, and strategies
for “optimal” utilization of these residual freedoms must be developed.

A preliminary investigation of the C2 spatial PH quintic spline interpolation
problem was presented in [8]. This employed the quaternion representation, and
ad hoc algebraic constraints on the coefficients of the quaternion pre–image curve
to fix the residual degrees of freedom. The present study differs from [8] in the
following key aspects — (1) it is motivated by the desire to formulate an intuitive
control–polygon PH spline design scheme, the underlying PH spline interpolation
problem remaining hidden from the user; (2) the PH spline interpolation problem
is formulated using the Hopf map form, facilitating a simpler implementation
in terms of complex coefficients with a clearer geometrical significance; (3) the
method exactly reproduces PH cubics when the given data are compatible with
such curves; and (4) residual freedoms are used to optimize shape measures of
the spline curve associated with the given control polygon, yielding appreciably
better curvature and torsion profiles than those produced by the method in [8],
as evident in the computed examples presented in Section 5.

In the proposed approach, the C2 spatial PH quintic spline associated with
a given control polygon and knot sequence is defined so as to interpolate the
nodal points of the “ordinary” C2 cubic spline [3] with the same B–spline control
points, knot sequence, and end conditions. Further constraints are imposed to fix
the additional freedoms associated with spatial PH curves. A key requirement in
the proposed scheme is a means of identifying “good” starting approximations
— analogous to those used in [6] — to facilitate efficient and robust solution of
the optimization problem characterizing the spatial PH quintic spline.

The method permits efficient construction of both open and closed spatial PH
splines, that typically agree very closely with the corresponding cubic B–spline
curves. The relationship between the PH spline curve and its control polygon is
invariant under similarity transformations, and multiple knots may be inserted
to reduce the order of continuity to C1 or C0 at prescribed points. Also, by using
double knots, the PH splines offer a linear precision and local shape modification
capability. Although the non–linear nature of PH splines precludes proofs for
certain features of cubic B–splines (e.g., convex–hull confinement) this is of little
practical concern in view of the close agreement of the two curves in most cases.
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This paper is organized as follows. After briefly reviewing the quaternion and
Hopf map representations of spatial PH curves in Section 2, the computation of
spatial C2 PH quintic splines that interpolate given point data under given end
conditions is discussed in Section 3, together with the imposition of additional
constraints for shape optimization and choice of initial approximations. Section 4
describes how data for the interpolation/optimization scheme is obtained from a
given spline control polygon and knot sequence. Finally, Section 5 presents some
computed examples, and Section 6 makes some concluding remarks.

2 Spatial PH Quintic Curves

The distinctive feature of a spatial PH curve r(t) = (x(t), y(t), z(t)) is that its
hodograph r′(t) = (x′(t), y′(t), z′(t)) satisfies

x′2(t) + y′2(t) + z′2(t) = σ2(t)

for some polynomial σ(t). This is equivalent [2] to the requirement that the
hodograph r′(t) should be expressible as a quaternion product of the form

r′(t) = A(t) iA∗(t) , (1)

where A(t) = u(t) + v(t) i + p(t) j + q(t)k is a quaternion polynomial of degree
m for a PH curve of degree n = 2m+1, and A∗(t) := u(t)−v(t) i−p(t) j−q(t)k
is its conjugate. For PH quintics, in particular, we take

A(t) := A0 (1− t)2 +A1 2(1− t)t +A2 t
2 . (2)

An alternative (equivalent) representation is defined in terms of two complex
polynomials α(t), β(t) by the Hopf map form

r′(t) = (|α(t)|2 − |β(t)|2, 2 Re(α(t)β(t)), 2 Im(α(t)β(t))) . (3)

For spatial PH quintics, we use

α(t) := α0 (1− t)2 + α1 2(1− t)t + α2t
2 ,

β(t) := β0 (1− t)2 + β1 2(1− t)t + β2 t
2 .

(4)

The equivalence of these two forms can be verified by setting

A(t) = α(t) + kβ(t) , (5)

where we identify the quaternion basis element i with the imaginary unit i. For
spatial PH quintics, in particular, we have Ar = αr + kβr for r = 0, 1, 2.

Once the quaternions Ar in (2) — or the complex values αr,βr in (4) — are
known, the control points qi defining the Bézier form

r(t) =
5∑

i=0

qi

(
5
i

)
(1 − t)5−iti

of the spatial PH quintic are given [4] by
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q1 = q0 +
1
5
A0 iA∗

0 ,

q2 = q1 +
1
10

(A0 iA∗
1 +A1 iA∗

0) ,

q3 = q2 +
1
30

(A0 iA∗
2 + 4A1 iA∗

1 +A2 iA∗
0) , (6)

q4 = q3 +
1
10

(A1 iA∗
2 +A2 iA∗

1) ,

q5 = q4 +
1
5
A2 iA∗

2 .

Although the quaternion form has thus far seen more widespread use, we find it
more convenient here to work primarily with the Hopf map form since it yields
a clearer geometric interpretation of the problem formulation (see Section 3.3).
Moreover, the Hopf map form is based on standard complex–number arithmetic,
which has been profitably employed [7,13] in the planar case, and significantly
simplifies implementation of the numerical methods described below.

3 C2 Spatial PH Quintic Spline Interpolation

We associate a C2 spatial PH quintic spline with a specified control polygon and
knot sequence by requiring it to interpolate the nodal points of the “ordinary”C2

cubic spline defined by the prescribed control polygon and knots (see Section 4).
Therefore, we must first formulate methods to interpolate point sequences in IR3

corresponding to given parameter values and end conditions. A preliminary study
of this problem was presented in [8], but the method employed here incorporates
several key improvements that are briefly discussed in the appropriate contexts
below. We limit ourselves here to emphasizing that the methods employed below
benefit significantly from the results on C1 Hermite interpolation by spatial PH
quintics recently presented in [6].

3.1 C2 Spatial PH Quintic Spline Equations

Consider the construction of a C2 spatial PH quintic spline that interpolates a set
of points p0, . . . ,pN in IR3 for given knots t0, . . . , tN . For simplicity, we assume
uniform (integer) knots here, but the method can easily be generalized to non–
uniform knots. We express the hodograph of the spline segment rk(t), between
pk−1 and pk, in the Hopf map form (3) using the quadratic complex polynomials
(4), written in terms of complex values uk−1,uk,uk+1 and vk−1,vk,vk+1 as

αk(t) := 1
2 (uk−1 + uk) (1− t)2 + uk 2(1− t)t + 1

2 (uk + uk+1) t2 ,

βk(t) := 1
2 (vk−1 + vk) (1− t)2 + vk 2(1− t)t + 1

2 (vk + vk+1) t2 .
(7)
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The derivatives of these polynomials are

α′
k(t) = (uk − uk−1) (1− t) + (uk+1 − uk) t ,

β′
k(t) = (vk − vk−1) (1 − t) + (vk+1 − vk) t .

Continuity of the first and second derivatives of consecutive segments rk(t) and
rk+1(t) at their juncture rk(1) = rk+1(0) = pk is then automatically achieved,
since from (3) and (7) we have

r′
k(1) = r′

k+1(0) = (1
4 (|uk +uk+1|2−|vk +vk+1|2), 1

2 (uk +uk+1)(vk +vk+1)) ,

r′′
k(1) = r′′

k+1(0) = (|uk+1|2 − |uk|2 + |vk+1|2 − |vk|2, 2(uk+1vk+1 − ukvk)) .

It remains to ensure that each segment rk(t) satisfies the end–point interpolation
conditions rk(0) = pk−1 and rk(1) = pk, i.e., that∫ 1

0

r′
k(t) dt = Δpk := pk − pk−1 ,

or, setting Δpk =: (Δxk, Δyk, Δzk) and using (3),∫ 1

0

|αk(t)|2 − |βk(t)|2 dt = Δxk ,

∫ 1

0

2 αk(t)βk(t) dt = Δyk + iΔzk .

Substituting (7) and evaluating the integrals, we obtain

|uk−1 + uk|2 − |vk−1 + vk|2
+ (uk−1 + uk)uk + (uk−1 + uk)uk − (vk−1 + vk)vk − (vk−1 + vk)vk

+ 1
6 (16|uk|2 + (uk−1 + uk)(uk + uk+1) + (uk−1 + uk)(uk + uk+1))

− 1
6 (16|vk|2 + (vk−1 + vk)(vk + vk+1) + (vk−1 + vk)(vk + vk+1))

+ uk(uk + uk+1) + uk(uk + uk+1)− vk(vk + vk+1)− vk(vk + vk+1)
+ |uk + uk+1|2 − |vk + vk+1|2 = 20Δxk ,

(uk−1 + uk)(vk−1 + vk)
+ (uk−1 + uk)vk + uk(vk−1 + vk)
+ 1

6 ((uk−1 + uk)(vk + vk+1) + 16ukvk + (uk + uk+1)(vk−1 + vk))
+ uk(vk + vk+1) + (uk + uk+1)vk

+ (uk + uk+1)(vk + vk+1) = 10(Δyk + iΔzk) .

These equations can be reduced to

6 |uk−1|2 + 54 |uk|2 + 6 |uk+1|2 − 6 |vk−1|2 − 54 |vk|2 − 6 |vk+1|2
+ 13 (uk−1uk + uk−1uk + ukuk+1 + ukuk+1)
− 13 (vk−1vk + vk−1vk + vkvk+1 + vkvk+1)
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+ uk−1uk+1 + uk−1uk+1 − vk−1vk+1 − vk−1vk+1 = 120Δxk , (8)

6 uk−1vk−1 + 54 ukvk + 6 uk+1vk+1

+ 13 (uk−1 + uk+1)vk + 13 uk(vk−1 + vk+1)
+ uk−1vk+1 + uk+1vk−1 = 60 (Δyk + iΔzk) . (9)

Conditions (8) and (9) for k = 1, . . . , N specify N real and N complex equations
in the 2N complex variables u1, . . . ,uN and v1, . . . ,vN .

3.2 End Conditions

End conditions must also be imposed on the system (8)–(9), in order to account
for the undefined quantities u0,v0 and uN+1,vN+1 in the cases k = 1, N . For
open curves, cubic end spans are appropriate. They correspond to the case where
the k = 1, N instances of (7) are degree–elevated linear polynomials, defined by
the conditions

(u0,v0) = (2u1 − u2, 2v1 − v2) ,

(uN+1,vN+1) = (2uN − uN−1, 2vN − vN−1) ,
(10)

rather than true quadratics. Alternatively, end derivatives can be imposed, i.e.,
for given vectors d0, dN we set

(u0,v0) = (2ũ0 − u1, 2ṽ0 − v1) ,

(uN+1,vN+1) = (2ũN − uN , 2ṽN − vN ) ,
(11)

where ũ0, ṽ0 and ũN+1, ṽN+1 are complex numbers such that1

r′
0(0) = d0 , r′

N (1) = dN . (12)

For smooth closed C2 curves, periodic end conditions must be used: u0, . . . ,uN+1

and v0, . . . ,vN+1 are regarded as cyclical lists, with

(u0,v0) = (uN ,vN ) , (uN+1,vN+1) = (u1,v1) , (13)

in order to ensure that

r′
N (1) = r′

1(0) , r′′
N (1) = r′′

1(0) .

1 Since each of these conditions imposes three scalar constraints on four variables, there
is a one–parameter family of possible values for ũ0, ṽ0 and ũN+1, ṽN+1. Invoking the
Hermite interpolation procedures presented in [6], a simple and efficient selection of
ũ0, ṽ0 and ũN+1, ṽN+1 can be achieved (see Section 3.4) in a manner that reproduces
PH cubics. Note that the case of specified end derivatives was not treated in [8].
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3.3 Additional Constraints

Equations (8)–(9), amended by the end conditions, specify 3N scalar conditions
on the 4N degrees of freedom embodied in the 2N complex unknowns u1, . . . ,uN

and v1, . . . ,vN . Hence, there are N residual degrees of freedom, and a means of
fixing them must be specified to uniquely define the PH spline curve.

A preliminary study of interpolation by spatial C2 PH quintic splines was
presented in [8], using Newton–Raphson–like iterations based on the quaternion
representation. The residual freedoms were fixed by imposing a purely algebraic
condition (without an intuitive geometric meaning) on the quaternion coefficients
— see Section 4 of [8]. In the present context, we wish to ensure that the method
will reproduce a cubic PH curve, whenever the given data are compatible with
such a curve (a property that the method in [8] does not possess).

Our preference here is thus to adopt additional constraints that have a clearer
geometrical interpretation, based on the Hopf map representation. Two possible
approaches are proposed to determine a C2 PH spline curve that interpolates
the data p0, . . . ,pN . The first involves minimizing a global shape measure for
the interpolant, subject to the interpolation constraints, while the second entails
imposing one additional scalar constraint per spline segment.

The first approach seeks to minimize the “distance” of the PH quintic spline
from a (single) PH cubic. With this approach, when the data points are sampled
from a PH cubic, the method exactly reproduces that PH cubic. Subject to the
interpolation constraints (8)–(9) with appropriate end conditions, the expression
minimized in this approach is

F1(u1,v1, . . . ,uN ,vN ) :=
N−1∑
k=2

|uk−1 − 2uk + uk+1|2 + |vk−1 − 2vk + vk+1|2 . (14)

This form is motivated by the observation that, when

uk = 1
2 (uk−1 + uk+1) and vk = 1

2 (vk−1 + vk+1) , (15)

expressions (7) define degree–elevated linear polynomials rather than quadratics,
so each segment rk(t) is a degree–elevated PH cubic rather than a PH quintic.

The second approach employs one additional (scalar) constraint per segment,
based on the distance between successive pairs of complex values (uk,vk) in C2.
Namely, we require that

|uk − uk−1|2 + |vk − vk−1|2 = |uk+1 − uk|2 + |vk+1 − vk|2 (16)

for k = 1, . . . , N . In conjunction with equations (8)–(9), under appropriate end
conditions, the constraints (16) define a system of 4N quadratic equations in 4N
real unknowns. One can easily verify that, when conditions (15) hold, conditions
(16) are satisfied. Hence, this approach also reproduces PH cubics.

It should be noted that, even when additional constraints are introduced to fix
the residual degrees of freedom, the nonlinear structure of equations (8), (9), and
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(16) usually implies a lack of solution uniqueness. Further criteria to choose the
“best” interpolant among all possible solutions are usually necessary [8,13]. Note
also that equations (8)–(9) and (16) depend on the complex variables u1, . . . ,uN

and v1, . . . ,vN and their conjugates. Since the conjugate of a complex variable
is not an analytic function of that variable, numerical methods that make use of
derivatives (such as the Newton–Raphson iteration) are not directly applicable.2

Instead of solving the system using a Newton–like method, we prefer to determine
the C2 PH quintic spline interpolant to given data by a suitable minimization
procedure in the second approach, as well as the first. Actually, we minimize the
constant function

F2(u1,v1, . . . ,uN ,vN ) : = 1 , (17)

under the constraints (8)–(9), under suitable boundary conditions, and (16).

3.4 Starting Approximation

For both methods, a good starting approximation is critical for convergence to
the “good” PH spline interpolant. To obtain such a starting approximation, the
“ordinary” C2 cubic spline interpolating the points p0, . . . ,pN at uniform knots,
under appropriate end conditions, is used as a reference curve.

In the planar case, the starting approximation is obtained by equating mid-
point derivatives for each ordinary cubic and PH quintic spline segment. These
conditions incur a quadratic system, but it is possible to obtain the solution by
solving just a linear system [7,13]. In the spatial case, however, it is not possible
to compute the starting approximation by an analogous approach because of the
residual degrees of freedom associated with the quaternion and Hopf map forms.
Specifically, equating mid–point derivatives yields equations of the form

A iA∗ = d ,

for a given vector d, which admit [5] a one–parameter family of solutions for the
quaternionA. In view of this, we adopt a different strategy. First, we compute C1

PH quintic Hermite segments interpolating the data points and derivatives of the
cubic spline. Each PH segment is constructed using the CC strategy described
in [6]. This procedure is easy to implement, and reproduces PH cubics when the
data are compatible with them. Now if r′

k(t) = Ak(t) iA∗
k(t) is the hodograph

of the spline segment rk(t), where

Ak(t) = Ak,0(1− t)2 + Ak,12(1− t)t + Ak,2t
2 ,

it remains unchanged upon replacing Ak,j by Ak,jRk for j = 0, 1, 2 where

Rk = cosφk + i sinφk .

Thus, following [8], for open curves we determine suitable angles φk so that

Ak+1,0Rk+1 = Ak,2Rk for k = 1, . . . , N − 1 .
2 An alternative is to write (8)–(9) and (16) explicitly as real equations, in terms of

the real and imaginary parts of u1, . . . , uN and v1, . . . , vN .
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A similar strategy is used for closed curves, see [8] for details. After selecting the
angles φk, in accordance with (5) we set

Ak,1Rk =: uk + kvk for k = 1, . . . , N

as starting values of (uk,vk). In the case of specified end derivatives for open
curves, the values ũ0, ṽ0 and ũN , ṽN in (11) are fixed by setting

A1,0R1 =: ũ0 + kṽ0 , AN,2RN =: ũN + kṽN . (18)

4 Control Polygons for C2 PH Quintic Splines

Based on the interpolation scheme described above, we can formulate a control–
polygon approach to the design of C2 spatial PH quintic spline curves that closely
parallels the methods used [13] for the planar case. For completeness, we briefly
summarize the means of obtaining the data for the interpolation problem.

For open curves, let

t0 = t1 = t2 = t3 < · · · < tM+1 = tM+2 = tM+3 = tM+4, (19)

with t3+k := k for k = 0, . . . ,M − 2 be a uniform knot sequence with four–fold
end knots, and let the control points

P 0, . . . ,P M (20)

define the associated control polygon. Consider the C2 cubic B-spline curve c(t)
specified [1] by the given control points and knots, with nodal points

pk := c(t3+k) for k = 0, . . . ,M − 2 (21)

and end derivatives

d0 := c′(t3) , dN := c′(tM+1) . (22)

The open C2 PH quintic spline curve associated with the knots (19) and control
points (20) is then defined as the interpolant to the M −1 =: N +1 nodal points
(21), with end derivatives defined by (11), (18), and (22).

A similar approach can be used to construct closed PH splines by specifying
periodic knot sequences, control polygons, and invoking the end conditions (13).
Multiple knots can be inserted, to reduce the order of continuity in a controlled
manner (from C2 to C1 or C0) at the nodal parameter values, exactly as in the
planar case — see [13] for details, and a discussion of the linear precision and
local shape modification properties of the PH quintic splines.

For simplicity, our focus here has been on the case of uniform knots, but the
generalization to non–uniform knots is not difficult (see [8] for the formulation
using the quaternion representation). However, as noted in [13], the nodal points
of a cubic B–spline curve tend to be more uniformly distributed when the control
points are unevenly spaced, since they are weighted averages of the latter. Thus,
shape improvements obtained with non–uniform knots, as compared to uniform
knots, are rather modest for curves with reasonable control polygons.
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5 Computed Examples

The examples presented here were computed through pilot implementations of
the two methods in MATLAB. General–purpose implementations in a high–level
programming language will require more detailed attention to the efficiency of
the numerical solution procedure, in order to ensure interactive control–polygon
manipulation of the spatial C2 PH quintic spline curves.

Although the cost functions (14) and (17) are just quadratic and constant,
respectively, the optimization problems require special attention to the specified
constraints. A common efficient paradigm for solving this kind of problem is to
transform it into an easier sub–problem that can be readily solved, and used as
the basis of an iterative process. The MATLAB implementation employed here uses
an iterative quadratic programming scheme, in which the quadratic sub–problem
at each iteration is solved through an active set strategy [10].

The method is very efficient and requires, for the examples presented below,
∼ 2 seconds cpu time on a typical lap–top computer when minimization of F1

is used, minimization of F2 is about five times faster3. Unless otherwise stated,
the first approach (i.e., minimization of F1) is used in the following examples.
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Fig. 1. Example 1. Left: control polygon and corresponding C2 PH quintic spline curve
(solid) and C2 cubic B–spline (dotted) for point data sampled from a circular helix —
the two curves are virtually indistinguishable. Right: projection of the control polygon
and the two curves onto the (x, y) plane.

3 The method in [8] is about ten times faster but, as is evident in the examples below,
it produces curves of lower quality.



Spatial C2 Pythagorean–Hodograph Spline Curves by Control Polygons 263

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Example 1. Planar projections of the curvature “porcupine” plots for the curves
in Example 1. Left: the PH quintic spline curve. Right: the cubic B–spline curve.

Example 1. In this example, we use the control polygon for a C2 cubic B–spline
curve that interpolates points uniformly sampled from a circular helix, as follows:

pi = (sin(ti), cos(ti), ti) , ti =
i

N
4π, i = 0, . . . , N, N = 12.

Fig. 1 shows the resulting C2 PH quintic spline, together with the control poly-
gon and corresponding cubic B–spline. The two curves appear almost identical.
However, a closer inspection (Figs. 2–4) shows that the resulting PH spline ex-
hibits better curvature and torsion profiles than the “ordinary” cubic B–spline.
Minimization of F2 rather than F1 gives somewhat improved results,4 as evident
from the torsion profiles in Fig. 4. In Fig. 5 we compare curvature and torsion
profiles for the PH splines generated by the present method and by the method
of [8], which indicate that the former produces a much better approximation of
the helix.

Including a double knot in the knot sequence results in a point of tangency of
the curve with the control polygon, the order of continuity at this point being
reduced to C1. A close–up shows that the PH spline still remains very close to
the cubic B–spline — see Fig. 6. In Fig. 7 we compare a PH quintic spline and
cubic B–spline, with one double knot and one triple knot — a comparison of the
curvature and torsion profiles is shown in Fig. 8.

Example 2. The second example involves a C2 closed curve interpolating:
p0 = (5,−1, 5

2 ), p1 = (5, 1, 5
2 ), p2 = (2, 3

2 ,
2
5 ),

p3 = (−2, 3
2 , 1), p4 = (−5, 1, 5

2 ), p5 = (−5,−1, 5
2 ),

p6 = (−2,− 3
2 ,

2
5 ), p7 = (2,− 3

2 , 1), p8 = (5,−1, 5
2 );

under periodic end conditions, as shown in Fig. 9. Figs. 10 and 11 show the
curvature and torsion plots obtained with the two approaches for this case.
4 For an exact circular helix, the curvature and torsion are both precisely constant.
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Fig. 3. Example 1. Curvature profiles for the PH quintic spline curve (solid) and cubic
B–spline curve (dotted). Left: the first method, based on minimizing (14). Right: the
second method, based on minimizing (17) under the constraints (16).
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Fig. 4. Example 1. Torsion profiles for the PH quintic spline curve (solid) and cubic
B–spline curve (dotted). Left: the first method, based on minimizing (14). Right: the
second method, based on minimizing (17) under the constraints (16).
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Fig. 5. Example 1. Comparison of curvature (left) and torsion (right) profiles obtained
(thin lines) by the interpolation method described in [8], and (thick lines) by the method
based on minimization of (17) under the constraints (16). The substantial improvement
afforded by the latter method is evident in both the curvature and torsion. In particular,
the poor behavior at both ends incurred by the end conditions used in [8] — as already
noted in Section 6 of [8] — is completely absent with the new approach.
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Fig. 6. Example 1. PH quintic spline curve (solid) and cubic B–spline curve (dotted)
defined by the knot sequence {0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 11, 11} with a
double knot. Right: a close–up, showing the point of tangency to the control polygon.
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Fig. 7. Example 1. PH quintic spline (solid) and cubic B–spline (dotted) for the knot
vector {0, 0, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 8, 9, 9, 9, 9} with interior double and triple knots.
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Fig. 8. Example 1. Comparison of the curvature (left) and torsion (right) profiles for
the PH quintic spline curve and cubic B–spline curve shown in Fig. 7.
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Fig. 9. Example 2. Control polygon and corresponding PH quintic spline (solid) and
cubic B–spline (dotted), for periodic end conditions. Right: curvature “porcupine” plot.

The first approach, based on minimizing (14), gives somewhat better results (as
seen in the torsion plot). Fig. 12 compares curvature and torsion profiles for
the present method and the approach presented in [8]. Fig. 13 compares a PH
quintic spline and cubic B–spline for a knot sequence with one double and one
triple knot, and a comparison of the curvature and torsion profiles is shown in
Fig. 14.

Example 3. The third example compares the performance of the present method
with the method previously described in [8], in particular with respect to the
exact reproduction of a PH cubic curve when the given data is compatible with
such a curve. We consider the cubic curve interpolating the Hermite data

p0 = (0, 0, 0), d0 = (1, 0, 0), p1 = ( 33
100 ,

7
10 ,

4
15 ), d1 = (− 1

100 , 2,− 1
5 )

on t ∈ [ 0, 1 ]. This cubic is actually a PH curve, and we sample it at three and four
evenly spaced points (see Fig. 15). The present method exactly reproduces the
PH cubic, while the method of [8] fails to do so. This is particularly unfortunate
in the context of the present paper, i.e., designing PH curves based on control
polygons. Indeed the shape of the PH quintic spline obtained by the method of
[8] does not correlate well with the associated control polygon.

6 Closure

Methods for the design of spatial C2 PH quintic spline curves by specification
of control polygons and corresponding knot sequences have been presented. The
approach is based on interpolating the nodal points of the “ordinary” C2 cubic
B–spline curve defined by the given control points and knots. The distinctive
feature of the spatial PH curve design scheme, as compared to planar PH curve
constructions, is the need to account for the residual degrees of freedoms in the
interpolation problem, so as to obtain curves with desirable shape properties.
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Fig. 10. Example 2. Curvature plots for the PH quintic spline (solid) and cubic B–
spline (dotted) in Fig. 9. Left: based on minimizing (14). Right: using conditions (16).
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Fig. 11. Example 2. Torsion plots for the PH quintic spline (solid) and cubic B–spline
(dotted) in Fig. 9. Left: based on minimization of (14). Right: based on conditions (16).
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Fig. 12. Example 2. Comparison of curvature (left) and torsion (right) obtained (thin
lines) by the method described in [8] and (thick lines) the method based on minimizing
(14). The present method yields a significant improvement over that of [8], by producing
smoother variations of the curvature and torsion.
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Fig. 13. Example 2. Cubic B–spline (dotted) and PH quintic spline (solid) for a knot
sequence {−1,−1,−1, 0, 1, 1, 2, 3, 4, 4, 4, 5, 6, 6, 7} with interior double and triple knots.
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Fig. 14. Example 2. Comparison of curvature (left) and torsion (right) profiles for the
PH quintic and cubic B–spline curves with double and triple knots, shown in Fig. 13.
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Fig. 15. Example 3. Comparison of PH quintic spline produced (thick lines) by the
present method and (thin lines) by the method in [8]. The present method exactly
reproduces the PH cubic. The PH quintic splines obtained (for different samplings)
by the earlier method exhibit odd behavior, that does not agree well with the control
polygon (the discrepancy diminishes upon increasing the number of sample points).
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Two alternative methods to fix these residual freedoms were proposed herein,
that both reproduce PH cubics when the given data is compatible with a single
PH cubic. The computed examples show that they generate spatial PH quintic
spline curves of shape quality comparable to, or better than, the corresponding
“ordinary” cubic B–spline curves. The underlying PH quintic spline interpolation
scheme incorporates several improvements over the method previously described
in [8], including use of only complex–number arithmetic; exact reproduction of
PH cubics; exploiting the residual freedoms for shape optimization; and refined
starting approximations. The present study is preliminary in nature, and further
research on enhancing the efficiency of the proposed schemes may be needed to
provide practical interactive design tools.

Acknowledgements. The authors thank the referees for their comments and
suggestions.
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11. Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree

seven. Math. Comp. 70, 1089–1111 (2001)
12. Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH

quintic Hermite interpolants. Comput. Aided Geom. Design 18, 93–115 (2001)
13. Pelosi, F., Sampoli, M.L., Farouki, R.T., Manni, C.: A control polygon scheme for

design of planar C2 PH quintic spline curves. Comput. Aided Geom. Design 24,
28–52 (2007)
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Shape Curvatures of Planar Rational Spirals
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115 Universitetska Str. 9712 Shumen, Bulgaria

Abstract. We discuss geometric conditions for a planar rational curve
to be a spiral. The main used tool for characterizing a spiral is the
so-called shape curvature which is a differential-geometric invariant of
planar curves with respect to the group of orientation-preserving simi-
larities. Different formulas for computation of shape curvature are given.
Rational curves representing spirals and circular arcs possess a natural
description in terms of the shape curvature. This description is applied
to a complete classification of quadratic Bézier spirals.

Keywords: shape curvature, affine transformations, direct similarities,
planar rational spirals.

1 Introduction

Polynomial and rational planar spirals have many modeling applications. Vari-
ous investigations of such spirals are connected with two points interpolations.
The characterizing property of planar spirals, the monotony of the signed curva-
ture, is always expressed in terms of the first derivative of the signed curvature.
Both the signed curvature and its first derivative are invariant under Euclidean
motions of the plane. But there is a larger group of transformations preserving
the class of spirals. These transformations are direct similarities, which are affine
transformations leaving invariant the orientation and the angles. The shape cur-
vature is a differential-geometric invariant of planar curves with respect to the
group of direct similarities. The purpose of this paper is to give an alternative de-
scription of planar spirals in terms of their shape curvatures. As an application,
a complete classification of quadratic Bézier spirals is presented.

The paper is organized as follows. In the next section some preliminaries about
affine transformations and signed curvature are given. After that the definition
of the shape curvature and different formulas for its computation are stated.
Section 4 is devoted to the characterization of spiral and circular arcs in terms
of the shape curvature. In Section 5, the classification of quadratic Bézier spirals
is examined by the use of the shape curvature. The paper concludes with some
final remarks.
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2 Affine Transformations and Signed Curvature

We start with basic facts concerning affine transformations of the plane and
planar smooth curves. Matrix notations are a useful tool for investigations of
affine images of planar curves.

2.1 Affine Transformations of the Plane

We assume that any point p in the Euclidean plane R2 is presented by its Carte-

sian coordinates x and y written as a column vector p =
(
x
y

)
. In other words we

identify the point p ∈ R2 with its position vector p. Every orientation-preserving
affine transformation A : R2 −→ R2 is given by

−
p= Ap + b , (1)

where
−
p=

(−
x
−
y

)
is the position vector of the point

−
p= A(p), A =

(
a11 a12

a21 a22

)
is

a real square matrix with det(A) > 0, and b =
(
b1
b2

)
is a translation vector.

These transformations form a group which is denoted by Aff+(R2)
If A is an orthogonal matrix with det(A) = 1, then the affine transformation

A is either a rotation or a translation. The rotations and translations of R2

form the well-known Euclidean motions group E+(R2) which is a subgroup of
Aff+(R2). Consider the counterclockwise rotation J : R2 −→ R2 given by

−
p= Jp , J =

(
0 −1
1 0

)
.

This rotation is called a complex structure of R2 because J2p = JJp = −p for
any p. Moreover, the equality

AT JA = det(A)J

holds for any matrix A ∈ R2×2 with det(A) �= 0.
If A = λAo, where λ is a positive real number and Ao is an orthogonal

matrix with det(Ao) = 1, then ‖Av‖ = λ‖v‖ for any vector v =
(
v1

v2

)
. In

this case the affine transformation A given by (1) is an orientation-preserving
similarity transformation. Any such transformation is called a direct similarity
with a similarity ratio λ. All direct similarities of the plane form a subgroup
Sim+(R2) of the group Aff+(R2) and this subgroup is the smallest extension
of the Euclidean motions group E+(R2) .



272 G.H. Georgiev

2.2 Signed Curvature

Let C : I −→ R2 be a three times differentiable regular curve defined on certain
interval I ⊆ R, and let

c(t) =
(
x(t), y(t)

)T
, t ∈ I (2)

be a parametric representation of C. Such a curve also is called a smooth planar
curve of class C3. This means that the three derivatives

.
c (t) = d

dt

(
x(t), y(t)

)T =( .
x (t),

.
y (t)

)T ,
..
c (t) = d2

dt2

(
x(t), y(t)

)T =
( ..

x (t),
..
y (t)

)T and
...
c (t) =

d3

dt3

(
x(t), y(t)

)T =
( ...
x (t),

...
y (t)

)T exist and
.
c (t) �== (0, 0)T for any t ∈ I.

The signed curvature of the curve c is the real-valued function given by

Kc(t) =
〈..c (t) , J

.
c (t)〉

〈 .c (t) ,
.
c (t)〉3/2

=
.
x (t)

..
y (t)− .

y (t)
..
x (t)(( .

x (t)
)2 +

( .
y (t)

)2)3/2
, t ∈ I (3)

where 〈. , .〉 denotes the scalar product of two vectors. On the other hand, the

scalar product of the vectors v =
(
v1

v2

)
and w =

(
w1

w2

)
can be written in

the form 〈v , w〉 = vT · w = (v1, v2) ·
(
w1

w2

)
, where the symbol ” · ” denotes

the usual matrix multiplication of a vector-row and a vector-column. Then, the
signed curvature can be evaluated by the alternative formula

KC =
..
c T · J .

c( .
c T · .

c
)3/2

, (4)

in which the parameter t is omitted for brevity. The first derivative of K(t) is
used in many investigations connected to spirals. From formulas (3) and (4) it
follows that

d

dt
Kc =

〈 ...
c , J

.
c
〉 〈 .

c ,
.
c
〉− 3

〈 ..
c , J

.
c
〉 〈 ..

c ,
.
c
〉〈 .

c ,
.
c
〉5/2

=

( ...
c T · J .

c
)( .

c T · .
c
)− 3

( ..
c T · J .

c
)(..

c T · .
c
)( .

c T · .
c
)5/2

.

(5)

Let A : R2 −→ R2 be an affine transformation given by (1). Then the image
−
C= A(C) is a regular curve with a parametrization

−
c (t) = Ac(t) + b , t ∈ I . (6)

Consequently, the derivatives of
−
c (t) are

.
c (t) = A

.
c (t),

..
c (t) = A

..
c (t) and

...
c (t) = A

...
c (t). From here, it follows that the signed curvature of

−
C is

K−
C

=
..
c T · det(A)J

.
c( .

c T · AT A
.
c
)3/2

. (7)
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If A : R2 −→ R2 is a Euclidean motion then the equalities K−
C
(t) = KC(t) and

d
dtK−

C
(t) = d

dtKC(t) hold for any t ∈ I. If A : R2 −→ R2 is a a direct similarity

with a similarity ratio λ > 0, then by (7) the equalities K−
C
(t) = 1

λ KC(t) and
d
dtK−

C
(t) = 1

λ
d
dtKC(t) are fulfilled for any t ∈ I.

3 Shape Curvature and Its Computation

As in the previous section we consider a three times differentiable curve with a
parametrization (2).

Definition 1. Let C : I −→ R2 be a curve of class C3 with nonzero signed
curvature KC(t). A shape curvature of C is a real-valued function K̃C(t) defined
by

K̃C(t) =
1

‖ .
c (t)‖

d

dt

( 1
KC(t)

)
= − 1√

〈 .c (t) ,
.
c (t)〉 (KC(t))2

d

dt
KC(t). (8)

Using (3), (4) and (5) we obtain

K̃C(t) =
3
〈 ..
c , J

.
c
〉 〈 ..

c ,
.
c
〉− 〈 ...

c , J
.
c
〉 〈 .

c ,
.
c
〉〈 ..

c , J
.
c
〉2 , (9)

or equivalently in matrix notations,

K̃C(t) =
3
( ..
c T · J .

c
)(..

c T · .
c
)− ( ...

c T · J .
c
)( .

c T · .
c
)(..

c T · J .
c
)2 . (10)

Example 1. If the curve is a circle, then by (8) its shape curvature is identically
zero.

Example 2. The logarithmic spiral given by c(t) =
(
et cos(t) , et sin(t)

)T has a
shape curvature which is equal to 1 for any t.

Now, we will study the relations between the affine transformations and the
shape curvature.

Proposition 1. Any direct similarity leaves invariant the shape curvatures of
the planar curves.

Proof. Let A : R2 −→ R2 be a direct similarity with a similarity ratio λ > 0.
Suppose that C : I −→ R2 is a curve of class C3 with nonzero curvature KC(t)

for any t ∈ I. Then, the affine image
−
C= A(C) is a three times differentiable

curve with the shape curvature

K̃−
C
(t) =

1

‖ .
c (t)‖

d

dt

( 1
K−

C
(t)

)
=

1
λ‖ .

c (t)‖
d

dt

( λ

KC(t)

)
= K̃C(t) . �
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Locally, a planar curve of class C3 is determined uniquely by its shape curvature
up to a direct similarity. The proof of this assertion can be found in [4] and [5].
For the unit-speed curve C with arc-length parameter s we have

K̃C(s) =
d

ds

( 1
KC(s)

)
= − 1

(KC(s))2
d

ds
KC(s).

In other words, the ratio
d
dsKC(s)

(KC(s))2
also is a differential geometric invariant with

respect to the group Sim+(R2) . This invariant is considered in [1].
Now we may obtain a common formula for the shape curvature of an affine

image of a planar curve.

Theorem 1. Let A : R2 −→ R2 be an affine transformation given by (1).

Consider a curve C with parametrization (2) and its affine image
−
C= A(C)

with a parametrization (6). Then, the shape curvature of
−
C is

K̃−
C
(t) =

3
( ..
c T · J .

c
)(..

c T · AT A
.
c
)− ( ...

c T · J .
c
)( .

c T · AT A
.
c
)

det(A)
(..
c T · J .

c
)2 . (11)

Proof. As in previous section, the derivatives of
−
c (t) are

di

dti
−
c (t) = A

di

dti
c(t), i = 1, 2, 3 .

For any two vectors v =
(
v1

v2

)
and w =

(
w1

w2

)
and for any matrix A ∈ R2×2

with det(A) �= 0, the equalities(
Av

)T · Aw = vT · AT Aw and
(
Av

)T · JAw = vT · det(A)Jw

hold. Applying these equations and the matrix formula (10) we can express the
required shape curvature as

K̃−
C
(t) =

3
( ..
c T · det(A)J

.
c
)(..

c T · AT A
.
c
)( ..

c T · det(A)J
.
c
)2

−
( ...

c T · det(A)J
.
c
)( .

c T · AT A
.
c
)( ..

c T · det(A)J
.
c
)2 .

Finally, eliminating the common factor det(A) in the numerator and the denom-
inator we get the formula (11). �

4 Characterizing the Rational Spirals by Their Shape
Curvatures

Planar rational curves are widely used in Computer Aided Geometric Design.
One topic in this area is the investigation and applications of rational spirals
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(see e.g. [2], [3], [7], [9], [10] and [13]). Recently, planar rational cubics represent-
ing circular arcs have been introduced for geometric Hermite interpolation (see
[6] and [14]). Both rational spirals and rational curves representing circular arcs
have a natural description in terms of their shape curvatures.

In this section we consider a rational curve C : [0, 1] −→ R2 which is given by
a parametrization (2), i.e. we assume that the coordinate functions x(t) and y(t)
are rational. Such a curve with monotone curvature is called a planar rational
spiral. Moreover, for planar rational curves we introduce the following functions

Q1(t) = 〈 .c (t) ,
.
c (t)〉 =

( .
c T · .

c
)
,

Q2(t) = 〈..c (t) ,
.
c (t)〉 =

(..
c T · .

c
)
,

Q3(t) = 〈..c (t) , J
.
c (t)〉 =

( ..
c T · J .

c
)
,

Q4(t) = 〈...c (t) , J
.
c (t)〉 =

( ...
c T · J .

c
)
.

Theorem 2. Let C : [0, 1] −→ R2 be a three times differentiable curve with
nonzero curvature. Then the following four statements are equivalent:

(a) The rational function f(t) = 3Q2(t)Q3(t)−Q1(t)Q4(t) does not change its
sign in the interval [0,1].

(b) The shape curvature of C does not change its sign in the interval [0,1].
(c) The first derivative of the curvature of C does not change its sign in the

interval [0,1].
(d) The curve C is a rational spiral.

Proof. The equivalence (a)⇔(b) follows from the formula (9). According to Def-
inition 1., the shape curvature and the derivative of the signed curvature have
opposite signs. This implies immediately (b)⇔(c). The equivalence (c)⇔(d) is
obvious. �

In the same way we can describe rational curves representing circular arcs.

Corollary 1. For a three times differentiable rational curve C : [0, 1] −→ R2

with nonzero curvature, the following four statements are equivalent:

(a) The rational function f(t) = 3Q2(t)Q3(t)−Q1(t)Q4(t) is identically zero in
the interval [0,1].

(b) The shape curvature of C vanishes everywhere.
(c) The curvature function of C is constant .
(d) The curve C is a circular arc.

Now, combining Theorem 1 and Theorem 2 we can formulate the main result of
the paper.

Corollary 2. The largest subgroup of the affine group Aff+(R2) whose trans-
formations preserves the class of rational spirals is the group of direct similarities
Sim+(R2).
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We observe that the functions f(t) and d
dtKC(t) are not invariant under direct

similarities different from Euclidean motions. Hence, the statement (b) in The-
orem 2 is the determining property for rational spirals. Note that the rational
function f(t) can be used for a fast detection of rational spirals and circular arcs
without computing the shape curvature or the signed curvature. Other properties
of spirals are considered in [11].

5 A Classification of Quadratic Bézier Spirals

Quadratic Bézier spirals are studied in [7] and [12] by the use of the first deriva-
tive of the signed curvature. Our approach based on the shape curvature gives
more clear and accurate description of these spirals.

Let B : [0, 1] −→ R2 be a quadratic Bézier curve defined by

b(t) = (1− t)2p0 + 2(1− t)tp1 + t2 p2 , t ∈ [0, 1], (12)

where the control points p0, p1 and p2 are non-collinear. In a previous author’s
paper [8] it is shown that the shape curvature function of the curve B given by
(12) is the following non-constant linear function

K̃B(t) = 3

〈
Δ2p0 , Δ

1p0

〉〈
Δ2p0 , JΔ1p0

〉 + 3

〈
Δ2p0 , Δ

2p0

〉〈
Δ2p0 , JΔ1p0

〉 t , t ∈ [0, 1], (13)

where Δ1p0 = p1−p0 and Δ2p0 = p0−2p1+p2. This implies that all quadratic
Bézier spirals can be classified according to the values of the shape curvature at
the end points.

Theorem 3. Let a and b �= 0 be real numbers and let B : [0, 1] −→ R2 be

a quadratic Bézier curve with control points p0 =
(−1

0

)
, p1 =

(
a
b

)
and

p2 =
(

1
0

)
. Assume that the shape curvature function of B is denoted by K̃B(t)

and σ0 = K̃B(0), σ2 = K̃B(1). Then the considered curve B is a spiral if and
only if just one of the following four conditions is fulfilled:

(i) 0 ≤ σ0 < σ2, or equivalently, a < 0, b > 0 and (a + 1
2 )2 + b2 < 1

4 .
(ii) 0 ≤ σ2 < σ0, or equivalently, a > 0, b < 0 and (a− 1

2 )2 + b2 < 1
4 .

(iii) σ0 < σ2 ≤ 0 , or equivalently, a > 0, b > 0 and (a− 1
2 )2 + b2 < 1

4 .
(iv) σ2 < σ0 ≤ 0 , or equivalently, a < 0, b < 0 and (a + 1

2 )2 + b2 < 1
4 .

Proof. We can express the relations between the pairs a , b and σ0 , σ2 in an
explicit form. First, suppose that the numbers a and b �= 0 are given. Then,

Δ2p0 =
(−2a
−2b

)
, Δ1p0 =

(
a + 1
b

)
, and by (13) the shape curvature is

K̃B(t) = 3
a2 + b2 − a

b
− 3

2a2 + 2b2

b
t , t ∈ [0, 1]. (14)
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From here it follows that

K̃B(0) = σ0 =
3a2 + 3b2 − 3a

b
, K̃B(1) = σ2 =

−3a2 − 3b2 − 3a
b

. (15)

Secondly, suppose that the shape curvatures σ0 and σ2 at the endpoints are
given. Then the equalities (15) may be written as∣∣∣∣ 3a2 + 3b2 − 3a = bσ0

−3a2 − 3b2 − 3a = bσ2 .

Solving the last system with respect to a and b provide the coordinates of the
control point p1

a =
σ2

0 − σ2
2

(σ0 + σ2)2 + 36
, b =

6(σ2 − σ0)
(σ0 + σ2)2 + 36

. (16)

Now, using Theorem 2 we can describe the four cases in which the quadratic
Bézier curve will be a spiral.
Case (i). The shape curvature function (14) is positive and increasing, i.e.
0 ≤ σ0 < σ2. By (16) we have a < 0 and b > 0. Applying (15) we obtain

a2 + b2 − a ≥ 0 and − a2 − b2 − a > 0,

or (
a− 1

2

)2

+ b2 ≥ 1
4

and
(
a +

1
2

)2

+ b2 <
1
4
.

This means that the point p1 =
(
a
b

)
belongs to the open semi-disk

D+
1 =

{
a < 0, b > 0,

(
a +

1
2

)2

+ b2 <
1
4

}
.

Conversely, if p1 ∈ D+
1 , then from (15) it follows that 0 ≤ σ0 and 0 < σ2. By

(16) and b > 0 we have σ0 < σ2. Hence, 0 ≤ σ0 < σ2 ⇔ p1 ∈ D+
1 .

In a similar way we obtain the remaining three cases:
Case (ii). The shape curvature function (14) is non-negative and decreasing
⇔ 0 ≤ σ2 < σ0 ⇔ the point p1 belongs to the open semi-disk

D−
2 =

{
a > 0, b < 0,

(
a− 1

2

)2

+ b2 <
1
4

}
.

Case (iii). The shape curvature function (14) is non-positive and increasing ⇔
σ0 < σ2 ≤ 0 ⇔ the point p1 belongs to the open semi-disk

D+
2 =

{
a > 0, b > 0,

(
a− 1

2

)2

+ b2 <
1
4

}
.
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Case (iv). The shape curvature function (14) is non-positive and decreasing
⇔ σ2 < σ0 ≤ 0⇔ the point p1 belongs to the open semi-disk

D−
1 =

{
a < 0, b < 0,

(
a +

1
2

)2

+ b2 <
1
4

}
. �

Corollary 3. Let q0 =
(
x0

y0

)
and q2 =

(
x2

y2

)
be two different points in the

Euclidean plane. Suppose that two different real numbers σ0, σ2 are given and
they are with the same sign or one of them is zero. Then, there exists a unique
quadratic Bézier spiral with end points q0 and q2 such that the values of its
shape curvature function at q0 and q2 are σ0 and σ2, respectively.

Proof. First, we assume that q0 = p0 =
(−1

0

)
and q2 = p2 =

(
1
0

)
. According

to the proof of Theorem 3 there exists a unique point

p1 =

⎛⎜⎜⎝
σ2

0 − σ2
2

(σ0 + σ2)2 + 36
6(σ2 − σ0)

(σ0 + σ2)2 + 36

⎞⎟⎟⎠
such that the quadratic Bézier curve B with control points p0, p1 and p2 have
the required properties.

Second, we consider the general case. Then, there is a unique direct similarity
A : R2 −→ R2 which transforms the ordered pair p0, p2 into the ordered pair
q0, q2. This similarity can be written in matrix form as

(
x
y

)
=

⎛⎜⎝ 1
2
(x2 − x0) − 1

2
(y2 − y0)

1
2
(y2 − y0)

1
2
(x2 − x0)

⎞⎟⎠(
x
y

)
+

⎛⎜⎝ 1
2
(x0 + x2)

1
2
(y0 + y2)

⎞⎟⎠ .

If the same transformation A maps the point p1 to a point q1 ∈ R2, then the

image
−
B= A(B) is a quadratic Bézier curve with control points q0, q1 and q2.

Since both curves
−
B and B have the same shape curvature function, the curve

−
B

is a spiral with shape curvatures σ0 and σ2 at the end points. �

6 Conclusion

In this paper we show that the planar rational spirals are closely related to
direct similarities of the plane. First, curvature monotony conditions is expressed
in terms of shape curvature. Then, any direct similarity preserves the class of
the rational spirals and its subclass of rational curves representing circular arcs.
Finally, all quadratic Bézier spirals are completely described by the use of the
shape curvature.
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Volumetric Geometry Reconstruction

of Turbine Blades for Aircraft Engines

David Großmann1 and Bert Jüttler2

1 MTU Aero Engines GmbH, Munich, Germany
2 Johannes Kepler University, Institute of Applied Geometry, Linz, Austria

Abstract. We present a framework for generating a trivariate B-spline
parametrization of turbine blades from measurement data generated by
optical scanners. This new representation replaces the standard patch-
based representation of industrial blade designs. In a first step, the blade
surface is represented by a smoothly varying family of B-spline curves. In
a second step, the blade is parametrized by a trivariate B-spline volume.
The resulting model is suitable for numerical simulation via isogeometric
analysis, as well as for a fully automatic structured mesh generation
with standard finite elements. We focus on the industrial applicability of
the framework, by using standard turbine blade features throughout the
process.

Keywords: volumetric geometry reconstruction, turbine blades,
trivariate B-Splines, numerical simulation, isogeometric analysis.

1 Introduction

The commercial activities of MTU Aero Engines focus on developing, manu-
facturing and repairing turbine engines for aircrafts. The volumetric B-spline
parametrization – which is discussed in the present paper – enables us to explore
new approaches to the challenging tasks of high-quality and efficient numerical
simulations of turbine blades.

First, the new numerical simulation approach of isogeometric analysis (IGA),
introduced by Hughes et al. [10], uses geometry mappings represented by volu-
metric NURBS parametrizations, and the finite-dimensional spaces needed for
the Galerkin projection are defined with the help of these parametrizations. As
a major advantage, only one representation of the blade geometry is required,
which is used throughout the entire process of design, simulation, and manufac-
turing. Consequently, the geometrical errors introduced by approximating the
blade geometry by finite element meshes are eliminated and the number of un-
knowns at the coarsest discretization level is significantly decreased. This new
approach seems to be particularly well suited for blade geometries, since they
are less complex than general CAD models.

Second, the volumetric description can be used for automatically partition-
ing the blade into several volumetric patches. Consequently, a fully automatic
structured mesh generation for standard finite elements becomes possible.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 280–295, 2012.
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B-spline volumes have been discussed in the classical literature in Computer
Aided Design, e.g see [9]. The existing literature on volume parametrizations by
B-splines concentrates mostly on applications to object modeling via free-from
deformations. More recently, the construction of B-spline volume parametriza-
tions for isogeometric analysis was discussed. The paper [2] designs B-spline vol-
umes by sweeping and uses them for isogeometric analysis. In [14], the authors
use harmonic functions to generate a spline parametrization of general cylinder-
type objects. The regularization of B-spline volumes is addressed in [18].

With the focus on the industrial applicability, we present a process that gen-
erates a volumetric B-spline parametrization of a turbine blade. Our approach
is fully compatible with the natural process flow in turbine blade engineering.
Furthermore we can cover the industrial standards and requirements of a ge-
ometric blade model, and the intermediate results and methods are useful for
performing standard CAD and CAE operations.

After presenting an outline of our approach, the paper describes the steps
needed for the volumetric model generation. We conclude with some final re-
marks.

2 Problem Specification and Outline

We assume a triangular mesh of a turbine blade, generated by an optical mea-
surement system or by sampling a standard (surface) CAD description of the
blade. Therefore, our framework is usable for the integration of physical objects
and geometric models.

Based on the mesh representation of the blade, we generate a volumetric
tensor-product B-spline model of the blade by an almost automatic geome-
try reconstruction process, which requires only very little interaction with the
user. The surface parametrization of the resulting model is suitable for a new
parametrization of the blade surface which replaces the traditional blade
parametrization with multiple trimmed surface patches. The volume parametriza-
tion of the model is suitable for high-quality numerical simulations using the
isogeometric analysis or by a fully automatic structured mesh generation with
standard finite elements.

Fig. 1 shows a disk with blades in a modern turbine, the standard position of
a single blade and the typical shape of a blade. For the sake of brevity we shall
denote both turbine blades and compressor blades as turbine blades or blades
only.

The remainder of this section summarizes the proposed modeling framework.
Starting with a triangular meshM of a blade as input, we generate a volumetric
tensor-product B-spline model in the following steps:

1. The user defines the number of slicing surfaces and the desired number of
degrees of freedom for the tensor-product B-spline volume.

2. We generate two families of slicing surfaces Fα and Fβ which intersect the
blade in well-behaved slices Cω between the blade boundary and the tip.



282 D. Großmann and B. Jüttler

Fig. 1. From left to right: A disk with blades of a modern turbine engine. For our
framework we assume the standard position of a disk, where the x-axis equals the
turbine axis in the direction of the current. Considering a single blade, the z-axis equals
the radial direction and the y-axis completes the right-handed orthonormal system. The
shape of a blade consists of several parts, the endwall (red), the fillet (green), the airfoil
with side parts (magenta) and edge parts (orange), and the tip (light blue).

3. We segment the slices Cω into edge and side parts, preparing them for the
generation of a volumetric tensor-product B-spline model and considering
the blade topology. For the airfoil part, the transitions between the four
parts are called wedge points.

4. We fit the slices Cω by B-spline curves cω(u) with identical degrees d and knot
vectors U . We use an iterative process to optimize the parametrization. The
parameters associated with the wedge points (which we call wedge knots),
however, are kept fixed.

5. We split the closed B-spline curves cω(u) at the wedge knots into four bound-
ary curves and generate surfaces sω(u, v) by extending the boundary curves
bilinearly to the inner part of the blade using Coons patches.

6. We interpolate the surfaces sω(u, v) in sweeping direction w for a volumetric
tensor-product B-spline model v(u, v, w) of the blade. An additional B-spline
block at the bottom completes the model.

3 Slicing Surfaces

We represent the slicing surfaces Fα and Fβ as implicitly defined algebraic sur-
faces. This allows us to use their advantages compared to parametric surfaces,
e.g. no data parametrization is needed for fitting processes and relatively simple
algorithms for computing intersections with meshes and for blends are available.

An algebraic spline surface F is defined as the zero level set of a tensor-product
spline function of (tri-) degree d (d ≥ 2),

f(x, y, z) =
∑

(i,j,k)∈J
ci,j,k Ni,d(x) Nj,d(y) Nk,d(z) (1)
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Fig. 2. From left to right: The blade boundary and the tip. The tensor-product splines
are defined by three uniform knot sequences (top view). Several level sets Fα of the
scalar field.

with the real coefficients (control points) ci,j,k, where J is the appropriate
index set. The basis functions (Ni,d(x)i=1,...,ni), (Nj,d(y)j=1,...,nj ) and
(Nk,d(z)k=1,...,nk

) are B-splines of degree d with respect to uniform knot se-
quences X = (βi)i=1,...,ni+1, Y = (ηj)j=1,...,nj+1 and Z = (ζk)k=1,...,nk+1 for the
three coordinate directions x, y and z. These knot sequences partition a bounding
box Ω (domain of the tensor-product spline functions) into axis-aligned boxes.
By using B-splines as basis functions we can use their advantageous properties
such as local support and the increased flexibility compared to polynomials.

3.1 Slicing Surfaces for the Airfoil Part

We construct a family of slicing surfaces Fα between the endwall (α = 0) and
the tip (α = 1) of the blade, so that they generate well-behaved intersections
(single connected components) for the airfoil part of the blade. The surfaces are
designed in three steps, which are visualized in Fig. 2:

1. The tip T is represented by all tip points of the mesh, automatically detected
by an adapted region-growing algorithm, while the endwall is represented by
the blade boundary CB.

2. We fit these two data sets simultaneously using the techniques described in
[12] (by minimizing the squared algebraic distances of a function fα, con-
strained by some additional normal- and tension-terms) and by generalizing
the term of minimizing the squared algebraic distances to∑

v∈CB

[f(v)]2 +
∑
v∈T

[f(v)− 1]2 . (2)

The B-spline basis functions are defined on the bounding box with uniform
knot sequences for all three dimensions.

3. Finally, a finite subset of the set of level sets of the scalar field f defines the
airfoil slicing surfaces

Fα = {(x, y, z) ∈ Ω | fα(x, y, z) = α} for α ∈ [ᾱ, 1] , (3)
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Fig. 3. The intersections of the slicing surfaces and the mesh have to be well-behaved
and uniformly distributed in sweeping direction. To meet these conditions, we bend
them up from horizontal to vertical positions.

where the value ᾱ is chosen such that Fᾱ (0 < ᾱ < 1) is the lowest surface
intersecting the airfoil part.

3.2 Slicing Surfaces for the Base Part

The family of (airfoil) slicing surfaces Fα cannot be used for the base part
because their intersections with the blade base are not well-behaved, see Fig. 3.
Hence we define a second family of slicing surfaces Fβ for the base part which we
have to bend up from a horizontal position at the airfoil transition to a vertical
position at the blade boundary.

In general, the transition curves between endwall and fillet are not useful to
slice the base part, because there exists no clear segmentation between them in
modern turbine blade geometries. Usually the fillet (and the endwall) is trun-
cated at the front and rear of the endwall to save space and the endwall is
designed with streamlined elements transitioned into the fillet, e.g. with a non-
axisymmetric endwall contouring [8]. To address this problem we reconstruct the
fillet curve CF as a clear and significant feature for the base part of the blade.

The fillet curve CF is the intersection of the airfoil and the endwall before the
fillet has been generated. As a consequence, this curve CF is a valuable indicator
for the natural flow of the blade and for the transition between the endwall and
the airfoil. Fig. 4 illustrates the reconstruction of the fillet curve.

Now, with the help of the fillet curve, we can define a family of ruled surfaces
obtained by auxiliary slices and directions vectors. We define the auxiliary slices
in four steps, see Fig. 5:

1. An algebraic spline surface is fitted to the airfoil data. The intersections of
this surface with a family of airfoil slicing surfaces Fα for 0 < α < ᾱ defines
the auxiliary airfoil slices.

2. The blade boundary curve CB and the fillet curve CF are projected on a cone
whose axis equals the turbine axis.

3. A scalar field f is fitted to the curves CB and CF forced to f = 0 for CB and
f = 1 for CF . We use the same techniques as for the scalar field of the airfoil
slicing surfaces.
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Fig. 4. To reconstruct the fillet curve CF , we fit an algebraic spline surface to all airfoil
data points above the curve CA and intersect this surface with the endwall surface
Fα=0. CA denotes the intersection of the lowest airfoil slicing surface Fα=ᾱ with the
blade.

Fig. 5. The endwall surface and the (extended) airfoil surface are associated with fitted
scalar fields. There level sets defines the auxiliary slices.

4. The level sets of the scalar field f defines the auxiliary endwall slices which
we finally project back on the endwall surface Fα=0.

The corresponding slicing directions are defined in five steps, see Fig. 6:

1. The auxiliary endwall slices are divided into an inner and an outer part.
The transition between them is called transition slice and their position is
defined by the user.

2. A transition surface is defined as a ruled surface which is produced by the
transition slice and directions which originate in the center of the turbine
axis.

3. The intersection of this transition surface and the airfoil slicing surface Fα=ᾱ

is called the bending curve.
4. The points on the outer auxiliary endwall slices are associated with vertical

direction vectors that originate in the center of the turbine axis.
5. The points on the inner auxiliary endwall slices and on the auxiliary airfoil

slices are associated with direction vectors that point to the closest points
on the bending curve.
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Fig. 6. Left: The slice directions are generated with the help of a bending curve C.
Right: A slicing surface.

Each of the auxiliary slices, along with the associated direction vectors, defines a
ruled surface. We approximate these ruled surfaces by algebraic spline surfaces.
This gives us the second family of slicing surfaces Fβ , see Fig. 6.

Remark. In our framework, the intersection curve of the two algebraic surfaces
in step 3 is traced by a predictor-corrector method with curvature-based stepsize
control, cf. [3,7]. This method generates a piecewise linear approximation of the
bending curve.

4 Segmentation of the Slices

The (closed) piecewise linear slices Cω are generated by intersecting the mesh
with the slicing surfaces Fα and Fβ. In addition we have to consider two special
cases: The lower blade boundary CB can be taken directly from the mesh. For the
uppermost slice, we intersect the slicing surface Fα=1 with an algebraic spline
surface approximating the airfoil data. We cannot use the original mesh data
here, since the mesh is slightly topped of and noisy on the transition between
the tip and airfoil, due to errors introduced be the optical measurement process.
Fig. 7 shows the resulting slices.

The slices Cω are now subdivided into four segments. This prepares them for
the generation of the tensor-product spline volume. In addition, it complies with
the standard turbine blade geometry, specially the classification of the airfoil
into the edge and side parts.

4.1 Airfoil Part

In the airfoil part, the slices are called profiles (referring to the blade design
process) and can be segmented by the wedge points into the two edge parts
(trailing and leading edge) and the two side parts, see Fig. 8.
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Fig. 7. Piecewise linear slices with (right) and without (left) the underlying mesh

Edge Points. In each profile, the two points where the extrapolated medial axis
intersects the profile are called the edge points. We need to locate them, in order
to perform a robust approximation of the (symmetric) wedge points later. Con-
sidering only one profile, the following heuristic method constructs an extended
medial axis in the edge part of the profile and generates the corresponding edge
point:

1. As an initial edge point pi=0 we take the point of the profile with the minimal
(respectively maximal) x-coordinate. In general, these points are situated
between their associated wedge points.

2. Starting from the edge point pi, we generate four auxiliary points on each
side of the profile. Each pair of auxiliary points has a fixed distance d, . . . , 4d
to the edge point, where d is a certain fraction of the profile length in x-
direction.

3. These four points are used to estimate the
4. medial axis of the blade in this slice.
5. An new edge point pi+1 is found by collecting the point of the profile with

the minimal distance to the extrapolated medial axis.
6. We continue with step 2 until the edge point has converged to a stable

position.

Fig. 8 shows two steps of the edge point iteration.

Wedge Points. For a robust approximation of the wedge points, we have to
consider the following requirements, which are due to the needs of our industrial
application.

1. In general, the curvature is not a distinctive feature for a wedge point of a
profile; less for the leading edge than for the trailing edge and less for turbine
blades than for compressor blades.
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Fig. 8. From left to right: Some design parameters for the airfoil profiles. Three different
types of profiles (two turbine blade profiles and one compressor blade profile at the
bottom) with their wedge points for the leading edge and their trailing edge point for
the trailing edge. Two steps of the edge point iteration process p0 → p1 → . . . where
a Bézier curve is generated by the center of four pairs of auxiliary points, giving a new
approximation of the edge point.

2. The optical measurement process generates some remarkable data noise in
regions of high curvature, e.g. in the trailing and leading edge. This leads to
low data quality in the wedge point regions.

3. The consistency of the wedge points for all profiles is considerably more
important than the exact detection of the wedge points for one profile.

As a consequence, we assume symmetric wedge points (in relation to the edge
points) and approximate the edge parts of the profiles with spheres. More pre-
cisely, we start with the edge point, consider one neighboring curve point on each
side of the profile and generate a sphere through these points, where we force
the center of the sphere to be located in the plane spanned by the points. Then,
we increase the number of (symmetric) neighboring profile points by a adding
neighboring points on both ends and create fitting spheres (using the method
described in [16]) with centers located in the plane of regression defined by them.
This process of adding points is stopped when the approximation error starts
to increase linearly with the number of points, i.e., when the profile segment
starts to deviate substantially from a spherical curve. At this point, the sphere
detaches itself from the edge part of the profile. This point defines the wedge
points. In order to increase the consistency of the wedge points over all profiles
we use standard data smoothing techniques. See Fig. 9 for some results.
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Fig. 9. Wedge points for all profiles. The plot on the right-hand side visualizes the
smoothing process.

Fig. 10. Based on the tangential and a normal direction of the airfoil wedge curves and
the bisector of the endwall surface at the corners, an auxiliary Bézier curve of degree
four is defined. The slice points with minimal distances to this curve defines the wedge
points for the base part.

4.2 Base Part

There exists no precise definition of edge points or wedge points for the slices of
the base part. Therefore we extend the wedge points of the airfoil part smoothly
into the base part, see Fig. 10.

5 Curve Fitting

In order to generate a volumetric tensor-product B-spline model, we have to
represent the closed piecewise linear slices Cω by closed B-spline curves cω(u)
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with identical degree and knot vector. We first generate initial B-spline curves
and optimize them using an iterative fitting process.

5.1 Initial B-Spline Curves

For each slice C ∈ Cω, the initial B-spline curve c(u),

c(u) =
n∑

i=0

Ni,d(u) di, (4)

with B-spline basis functions Ni,d of degree d with respect to a periodic knot
sequence U and control points di ∈ R3, is generated in four steps:

1. We develop the piecewise linear slice C to U = [0, 1] and relate the four wedge
points to their parameters on U , called wedge knots.

2. The remaining knots are distributed in the resulting four segments of U ,
as specified by the wedge knots, by taking into account two requirements:
First, the knots have to be distributed uniformly on each segment. Second,
the length of the knot spans are identical for the edge parts and for the side
parts.

3. We insert d − 2 additional wedge knots to relax the built-in smoothness to
C1 because the transitions between edges and sides of a profile are designed
to be C1 only.

4. Finally, we calculate the Greville abscissas of the knot sequence U and use the
related points on the slice C as the initial positions of the control points di.

Considering the whole blade, all initial B-spline curves cω(u) have to be based on
identical knot sequences, in order to be able to extend them to a tensor-product
B-spline volume. Therefore we perform the first three steps for only one slice
(representing the average geometry of the profiles) and use the obtained knot
vector for all slices.

5.2 Fitting Process

We consider a slice C ∈ Cω, which is described by the points pj ∈ R3 obtained by
intersecting the initial triangulated data with one of the slicing surfaces. In addi-
tion, we have an initial B-spline curve c(u). The four wedge knots û0, û1, û2, û3

are linked to the four wedge points p̂0, p̂1, p̂2, p̂3.
In order to obtain a better approximation, we minimize the objective function

∑
k

‖pk − c(uk)‖2 +
4∑

j=1

‖p̂j − c(ûj)‖2 → min
di,uk

. (5)

This problem is solved numerically by a Gauss-Newton-type method, which can
be interpreted geometrically as an evolution process, as described in [1,13,15].
An overview about some standard B-spline fitting techniques are given in [6,17].
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Fig. 11. Top left: One fitting step and the final B-spline curve of the evolution process.
The red lines indicate the relation to the point data points with fixed parameters
(wedge points, and possibly some additional points), and the green are associated with
data points possessing floating parameters. Bottom left: A mesh obtained by piecewise
linear interpolation of the B-splines curves. Right: The final set of B-spline curves that
represent the blade surface.

In each iteration step, the data points pj (with free parameters) are related
to their closest points on the curve c(uj) in a least-square sense. The wedge
knots ûj are kept fixed. We use regularization terms (Tikhonov regularization
combined with constraints on the tangential movement) in order to obtain a
unique solution and a well-distributed parametric speed along the curve. Fig. 11
shows the resulting B-spline curves.

The profile curves are fitted independently, except for using identical degrees,
knot sequences and wedge knots. This can lead to some unacceptable distortions
of the curve parametrizations between the wedge knots by comparing neighbor-
ing curves. We suggest two approaches to overcome this problem. First, one may
use more (uniformly distributed) points with fixed parameters between the wedge
knots. Alternatively, one may apply a smoothing step (simultaneously across all
profile curves) to the parametrization of the closest points of the data points
after every iteration step. Fig. 11 shows the optimized curve parametrizations
for the base part.

The used fitting framework is applicable to all manifolds of curves which
are controlled by a certain system of shape parameters. Thus it is a highly
valuable tool for turbine blade engineering. For example, in the aerodynamic
optimization process the airfoil is designed by (lofted) streamlines represented
as four C1-connected Bézier curves of a fixed degree d, and the method can easily
be adapted to this situation.
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Fig. 12. Three possible parametrizations of a circular patch: A single-patch represen-
tation with a highly singular point in the center (left), a single-patch quadrilateral
parametrization with four singular points on the boundary (center), and a regular
five-patch representation (right)

6 Surface Generation

In this section we describe how to generate a B-spline surface for each slice. In
the next section, we collect these slices to form a volume parametrization of the
entire blade.

Any slice of the blade is topologically equivalent to a circle. A circular surface
patch can be parametrized using different patch layouts, see Fig. 12 for three of
them. In consideration of the blade proportions and the partition of the airfoil
profiles by the wedge points, we use the quadrilateral representation with four
singular points on the boundary which we relate to the wedge points. In the fu-
ture, we plan to use the regular five-patch representation to generate a collection
of tensor-product spline volumes (’multiple-patch volume’) respecting the wedge
point segmentation. Also, we plan to construct parametrizations that respect
the interior structure of the blade, where cooling channels may be present.

The B-spline surfaces sω(u, v) are generated by extending the B-spline curves
cω(u) in three steps, as follows:

1. The closed B-spline curve c(u) is subdivided at the wedge points by inserting
one more knot on each wedge knot. This results in four B-spline curves of
degree d and with one of the two different knot sequences U and V .

2. The control points of the four curves are extended to the inner by a bilinearly
blended discrete Coons patch di,j , see [5].

3. For the base part, we move the inner control points smoothly in direction to
the turbine axis to ensure a well-behaved (non-intersecting) parametrization
there.

Finally, for each slice, we obtain a tensor-product B-spline surface

s(u, v) =
n∑

i=0

m∑
j=0

Ni,du(u) Nj,dv(v) di,j , (6)

with degrees du = dv = d, knot sequences U ,V and control points di,j . Fig. 13
shows several of the generated B-splines surfaces sω(u, v).



Volumetric Geometry Reconstruction of Turbine Blades 293

Fig. 13. Several B-spline surfaces representing the slices of the blade are shown. Two
of them (left) are shown in detail. The highlighted surface points are the singularities
of the patches, which correspond to the profile’s wedge points.

7 Volume Generation

All B-spline surfaces sω(u, v) have identical degrees and knot sequences. Thus
we can generate a tensor-product B-spline volume v(u, v, w),

v(u, v, w) =
n∑

i=0

m∑
j=0

l∑
k=0

Ni,du(u) Nj,dv(v) Nk,dw(w) di,j,k, (7)

by interpolating the surfaces in three steps:

1. The user defines a degree dw.
2. A knot sequenceW is defined by averaging the chord length parametrization

of the surface points sω(0.5, 0.5).
3. The control points di,j,k are generated by interpolating the control points of

all surfaces with B-spline curves of degree dw and knot sequence W .

In order to cover the entire blade geometry, we add an appropriate trivariate B-
spline block to the base part of the blade. Fig. 14 shows the final tensor-product
B-spline volume.

8 Conclusions

The paper proposed a framework to model a single trivariate B-spline of a turbine
blade from input triangle meshes of the blade. In order to be compatible with



294 D. Großmann and B. Jüttler

Fig. 14. The final trivariate B-spline model. The figure shows several parametric curves
and surfaces.

the industrial process for blade design, we considered all standard blade features,
such as wedge points, fillet curve and the natural flow of the blade at the fillet,
when generating the parametrization.

The surface of the blade is represented by one surface patch with a smooth and
well-behaved bivariate B-spline parametrization between the endwall boundary
and the tip. It is ready for the (standard) commercial CAD and CAE applica-
tions. The volume is represented by a single trivariate B-spline parametrization
and therefore usable both for isogeometric simulations and for a fully automatic
structured mesh generation with standard finite elements.

To increase the quality of the model in the future, we want to investigate in
the quality of the inner parametrization of the base part and in the generation
of a multi-patch volumetric representation, respecting the blade features. Fur-
thermore, local refinement techniques should be useful to avoid the restrictive
tensor-product property of the B-splines geometries which may lead to distor-
tions in the blade parametrization.

The framework is implemented in Common LISP and generates a volumet-
ric blade model in a fully-automatic process using the user-defined degrees of
freedom for the resulting model. For a triangle mesh with around 300.000 data
points as input, the total computation time is around 20min, based on an Intel
Core 2 duo processor with 3.0GHz and 8GByte memory. Nevertheless all steps
of the process can be used separately in an object-oriented framework for blade
modeling.
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Abstract. In this paper we introduce a family of globally well-posed and
convergent normal multi-scale transforms with high-order detail decay
rate for smooth curves, based on adaptivity. For one of the members in
the family, we propose a concrete algorithm what the adaptive criteria
should be, and provide numerical evidence for the implementation. We
compare the performance of our algorithm with other normal multi-scale
transforms.

Keywords: Nonlinear multi-scale transforms, curve representation,
linear subdivision, global convergence, well-posedness, stability, detail
decay.

1 Introduction

Normal multi-scale transforms (MTs) for curves and surfaces were introduced
in [6], and have been used for multi-scale representation and compression of
geometric objects [9,10,5], for adaptive approximation of level curves [2], in image
analysis [1], and recently for interface tracking [14]. They allow for the efficient
computational processing of densily sampled (or analytically given) geometric
objects of co-dimension one. E.g., given a curve C in R2, an initial sequence of
vertices v0 ⊂ C (creating a polygonal line interpolating C), and a univariate
subdivision operator T , a normal MT produces denser vertex sets vj ⊂ C and
polygonal lines associated with them according to

vj = Tvj−1 + djnj , j ∈ N, (1)

where (djnj)i = dj
in

j
i , i ∈ Z. In addition to the linear prediction Tvj−1 (a

set of points in R2 not necessarily on C), the recursion entails the prediction
of a set of unit ”normals” nj (typically unit normal vectors with respect to
the edges of the polygonal line associated with vj−1), and storing sequences of
scalar ”details” dj which is enough for the reconstruction of vj from vj−1. In the
analysis step, a new point vj = Tvj−1 + djnj resp. detail coefficient dj

i requires
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the determination of intersection points of the ”normal lines” Tvj−1
i + tnj

i with
C. Virtually the same approach, now with a bivariate subdivision operator T ,
works for surfaces in R3.

Due to the different nature of data and details, and the obvious nonlinearity
of the normal MT

C ←→ {v0, d1, d2, . . .},
given by (1), the mathematical analysis of normal MTs is nontrivial. Normal
MTs for smooth curves in R2 have been investigated in [3,13,8] in quite some
detail, while a first step towards a theory of normal MTs for smooth surfaces in
R3 has been made only very recently in [12]. Most of the results in these papers
are of asymptotic nature, i.e., they guarantee well-posedness, convergence, fast
detail decay, etc. of normal MTs only for dense enough, regularly spaced initial
point sets v0. In contrast, global well-posedness and convergence of normal MTs
for any initial v0 ⊂ C can be expected only for schemes with very local T , such
as the linear spline subdivision operator S1 [3,13] or the Chaikin subdivision
operator S2 [8], which however comes at the price of undesirably slow detail
decay for smooth curves. A natural remedy is the introduction of normal MTs
based on the combination of a globally convergent scheme (used for small j)
with schemes that guarantee better asymptotic detail decay.

The main goal of this paper is to propose and test a globally convergent adap-
tive scheme based on this idea. We consider a combination of normal MTs based
on the Chaikin subdivision operator S2 and the 4-point subdivision operator
(also known as interpolating cubic Deslauriers-Dubuc scheme), in the following
denoted by T . In Section 2 we introduce S2, and recall basic properties of the
associated normal MT established in [8]. In addition, we provide a stability re-
sult for this normal MT following [3,13]. In Section 3 we consider a new normal
MT based on combining S2 and T , and propose a concrete, locally adaptive al-
gorithm. In Section 4, we apply this adaptive normal MT to simple test curves,
and compare it to other normal MTs. Finally, we also compare our adaptive pro-
cedure with the one proposed in [3] based on the family of 4-point subdivision
operators Tω = (1− ω)S1 + ωT .

2 Chaikin Normal MT

Throughout this paper, we follow the usual simplifying assumption that univari-
ate subdivision operators and schemes are defined on sequences indexed over Z.
Boldfaced letters are used for vector-valued quantities (points in R2, sequences
of such points, or R2-valued functions). We work only with �∞ norms, i.e.,

‖v‖ = sup
i∈Z

|vi|,

hence we will not explicitly indicate it. The notation | · | is used both for the
absolute value in R and the Euclidean norm in R2 which should be clear from the
context. We denote by Δ the difference operator (Δv)i = vi+1 − vi, i ∈ Z. We
assume that the initial curve C is closed, non-self-intersecting, and always given
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by its arc-length parameterization v(s) : [0, L]→ R2, where L is the length of C.
To each point vj

i ∈ C we associate sj
i ∈ [0, L) such that vj

i = v(sj
i ). Whenever

we write C ∈ Ck,α we mean that v(s) ∈ Ck,α, i.e., v(s) ∈ Ck and the k-th
derivative v(k)(s) is Hölder continuous with exponent α.

The Chaikin subdivision operator S2 is defined via

(S2v)2i =
3vi + vi+1

4
, (S2v)2i+1 =

vi + 3vi+1

4
, i ∈ Z. (2)

S2 yields a linear approximating subdivision scheme, also known in the literature
as the corner-cutting or the quadratic B-spline scheme. Its Hölder smoothness
exponent is s∞(S2) = 2, meaning that S2 generates C1,1 functions as limit.

With the natural choice of normal directions

nj
2i = nj

2i+1 ⊥ Δvj−1
i , i ∈ Z, j ≥ 1, (3)

and of points of intersection vj
2i = infs>sj−1

i
{v(s) : v(s) ∈ Li,0} and vj

2i+1 =
sups<sj−1

i+1
{v(s) : v(s) ∈ Li,1} we obtain the S2 normal MT studied in [8]. Here

Li,�(t) = (S2vj−1)2i+� + tnj
2i+�, � = 0, 1. Since we are only interested in the size

of the details, the orientation of nj
2i does not matter.

Theorem 1. Let C be a closed, non-self-intersecting C1,α curve, 0 < α ≤ 1. For
any (ordered) initial point sequence v0 ⊂ C the S2 normal MT that satisfies (3)
is well-defined. It produces point sequences vj ⊂ C and scalar detail sequences
dj = (dj

i )i∈Z such that

‖Δvj‖ ≤ C0‖Δv0‖2−j, ‖Δ2vj‖ ≤ C1‖Δv0‖2−j(1+α′), j ≥ 1, (4)

0 < α′ < α, and

‖dj‖ ≤ C2‖Δvj−1‖1+α ≤ C3(‖Δv0‖2−j)(1+α), j ≥ 1, (5)

hold. The finite constants C0, C1, C2, C3 depend solely on the curve C. Moreover,
if {ṽ0, d̃1, d̃2, . . . , d̃J} with arbitrary J ∈ N is a perturbed representation of the
actual multi-scale data, i.e.,

‖v0 − ṽ0‖ ≤ ε0, ‖dj − d̃j‖ ≤ εd2−jν , 1 ≤ j ≤ J, ν > 0

then there exists a constant C4, depending on C,v0, ε0 and εd, but not on J , s.t.,

‖vj − ṽj‖ ≤ C4(ε0 + εd), ∀j ≤ J. (6)

The first part of Theorem 1 is exactly [8, Theorem 4.1]. The stability result (6)
follows straightforwardly from (4), (5) and the proof of [13, Theorem 4], which
for the sake of completeness we will repeat here. For any j ∈ N, any i ∈ Z, and
l ∈ {0, 1}

|vj
2i+l − ṽj

2i+l| ≤ |S2(vj−1 − ṽj−1)2i+l|+ |dj
2i+ln

j
2i+l − d̃j

2i+lñ
j
2i+l|

≤ ‖vj−1 − ṽj−1‖+ ‖dj − d̃j‖+ |dj
2i+l||nj

2i+l − ñj
2i+l|.
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Now the main trick is to estimate the last term such that the perturbed data
plays as less a role as possible, namely to verify

|nj
2i+l − ñj

2i+l| ≤
4‖vj−1 − ṽj−1‖
|Δvj−1

i | . (7)

Indeed, (3) gives rise to nj
2i+l = (Δvj−1

i )⊥/|Δvj−1
i |, ñj

2i+l = (Δṽj−1
i )⊥/|Δṽj−1

i |,
for both l = 0, 1. First, assume that |Δṽj−1

i | > 0 and the R2 scalar product
〈Δvj−1

i , Δṽj−1
i 〉 ≥ 0. Then |nj

2i+l − ñj
2i+l| ≤ 2

√
2‖vj−1 − ṽj−1‖/|Δvj−1

i | holds.
If 〈Δvj−1

i , Δṽj−1
i 〉 < 0, then 2‖vj−1 − ṽj−1‖ > |Δvj−1

i | and (7) is fulfilled.
Finally, unless some additional restrictions on ε0, εd and ν are imposed, |Δṽj−1

i |
can be zero and, thus, ñj

2i+l may not be defined. In this case take arbitrary
unit vectors ñj

2i, ñ
j
2i+1 and let ṽj

2i+l = ṽj−1
i + d̃j

2i+lñ
j
2i+l, l = 0, 1. From triangle

inequality we have 2‖vj−1 − ṽj−1‖ ≥ |Δvj−1
i |, so (7) remains true.

Once (7) is established, we use the local version of (5) (see [8, Section 4.1] or
[13, Theorem 2]). Namely, for a C1,α curve C there exists a global constant C
independent on j, i such that

|dj
2i+l| ≤ C|Δvj−1

i |1+α, l = 0, 1.

Using this, together with the first part of (4), we conclude that

‖vj − ṽj‖ ≤ (1 + 22−αCCα
0 ‖Δv0‖α︸ ︷︷ ︸
C

2−jα)‖vj−1 − ṽj−1‖+ εd2−jν .

The latter gives rise to (6) (see [13] for more details).
Some remarks are in order: Even though (6) measures the L∞ distance be-

tween the actual curve C and the perturbed limit C̃, both given analytically by
their normal re-parameterizations, the same bound is valid for the Hausdorff dis-
tance distH(C, C̃) between the geometric curves. Indeed, at each level j ∈ N the
Hausdorff distance between the piecewise linear interpolants of vj and ṽj does
not exceed ‖vj − ṽj‖∞, since the Hausdorff distance between two line segments
is less or equal to the maximum of the distances between the corresponding
end points of the segments. Under the assumptions of Theorem 1, (6) uniformly
bounds the point-wise distance between the original data and the perturbed one
(confirming that compression is a numerically stable procedure [13, Remark 1])
but none of the nice properties of C and vj are automatically inherited by C̃ and
ṽj . Indeed, ṽj may not be even well-defined (e.g., two neighboring vertices may
coincide) or when it is well-defined, inequalities such as (4) do not necessarily
hold. Furthermore, C̃ may have an arbitrary number of self-intersection-points
and is only continuous in general. However, it seems that small/controlled per-
turbations may still preserve the additional structure of the data, but to prove
this, different approaches than the one presented in this section should be used
(for example the one proposed in [7, Section 4.1]).
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3 Globally Convergent Normal MTs Based on Adaptivity

3.1 Theoretical Approach

Comparing the S2 normal MT with another non-adaptive globally convergent
normal MT - the one based on the mid-point interpolating scheme S1

(S1v)2i = vi, (S1v)2i+1 =
vi + vi+1

2
, i ∈ Z,

studied in [3,13], one sees that the detail decay rate is the same. The aim of
this section is to show that S2 normal MT has the property to “uniformize” the
fine-scale data vj . Hence, it is suitable for adaptive procedures together with
any high-regular subdivision scheme T . In other words, using S2 for prediction
on finitely many coarse levels (the exact number depends on the initial data
v0, the initial curve C, and the choice of T ) guarantees that if we switch to T
afterwards, the normal MT will be well-defined and the detail decay rate will be
as high as the smoothness of C and the regularity of T allow. Thus, storing more
data in the beginning (S2 is an approximating scheme, so the S2 normal MT
produces twice as many details as the S1 normal MT) may potentially lead to
a better compression later. This does not hold for S1 normal MT. For example,
let C be just a line segment and

|Δv0
−1| = 9|Δv0

0| = 9|Δv0
1|.

Let T be the 4-point (also known as Dubuc-Deslauriers) subdivision scheme

(Tv)2i = vi, (Tv)2i+1 =
−vi−1 + 9vi + 9vi+1 − vi+2

16
, i ∈ Z. (8)

Then T is not well-defined on v0 since (Tv0)1 = v0
1 = (Tv0)2. Moreover, for

each j ≥ 1
|(ΔSj

1v
0)−1| = 9|(ΔSj

1v
0)0| = 9|(ΔSj

1v
0)1|,

so one can never switch to T around v0
0.

Theorem 2.5 in [8] states that if C ∈ Ck,α, δ ∈ (0, α), and a (convergent)
subdivision scheme T with s∞(T ) = m + β are given, there exist C, h > 0 such
that for any initial data v0, satisfying

‖Δ2v0‖ ≤ C‖Δv0‖1+δ ≤ Ch1+δ, (9)

the T normal MT is well-defined. The detail decay rate is

‖dj‖∞ = O(‖Δv0‖2−jμ), μ < min{k + α,m + β + 1, Pe}, j ≥ 1,

where Pe is the order of exact polynomial reproduction for T , introduced in [8].
C and h depend on C, T and δ, so to show that S2 always works in adaptive
algorithms, we need the following
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Proposition 1. Let C be a closed non-self-intersecting Ck,α curve. Then, for
any δ ∈ (0, α) and any initial set v0 ⊂ C

‖Δ2vj‖
‖Δvj‖1+δ

→ 0, j →∞, (10)

where vj is the multi-scale data at level j, obtained from v0 via S2 normal MT.

Proof. From (2) it follows that for any given sequence vj−1 ⊂ C,

(Δ2S2vj−1)2i = (Δ2S2vj−1)2i+1 =
Δ2vj−1

i

4
, ∀i ∈ Z.

Therefore, ‖Δ2S2vj−1‖ = ‖Δ2vj−1‖/4. (3) implies that vj
2i and vj

2i+1 lie on par-
allel lines, orthogonal to Δvi. Hence, |Δvj

2i| cannot be smaller than the distance
|(ΔS2vj−1)2i| = |Δvj−1

i |/2 between the lines. This gives rise to

‖Δvj‖ ≥ ‖Δvj−1‖
2

.

Now, denote by rj := ‖Δ2vj‖/‖Δvj‖1+δ. Using (4), (5), and the above we derive

rj ≤ ‖Δ
2vj−1‖/4 + 4‖dj‖

(‖Δvj−1‖/2)1+δ
≤ 2δ−1rj−1 + C2−(j−1)(α−δ) ≤ qrj−1 + Cqj−1,

where the constant C depends on C0, C2, and ‖Δv0‖, while q := 2(δ−α) < 1.
Thus,

rj ≤ qjr0 + Cjqj−1 → 0, j →∞.

Proposition 1 implies that, for any given closed non-self-intersecting Ck,α curve
C with k + α > 1, any choice of a linear subdivision scheme T , and any choice
of (at least two) initial points v0 ⊂ C, there exists j ∈ N (that depends on all
C, T and v0), such that the T normal MT for C with initial data vj , obtained
from v0 after j refinement steps based on the S2 normal MT, is well-defined,
converges and possesses the detail decay rate as predicted in [3, Theorem 6.3]
and [8, Theorem 2.5].

3.2 Adaptive Algorithm

The direct implementation of the adaptive normal MT, introduced in Section 3.1
is wasteful, as we did not take into account the locality of the prediction oper-
ators. A reduction of the number of segments, where S2 is used is desirable for
faster detail decay and less data storage. The adaptive algorithm we propose
here allows different prediction operators to be used for different neighborhoods
within the same scale. From now on, unless something else is specified, T will
denote the Dubuc-Deslauriers operator (8). Suppose a closed curve C with initial
v0 ⊂ C is given, a constant RB > 0 has been (manually) chosen, and the normal
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MT v1,v2, . . . ,vj−1 up to level j − 1 has been carried over. Any vertex vj−1
i is

marked by an extra bit, which is zero if it is an S vertex, i.e., predicted by S2

or S1, and one if it is a T vertex, i.e., predicted by T . Initially, in v0 all vertices
are declared S vertices. Note that we work only with finite initial data v0, so
vj−1 is finite, as well. Let its cardinality be N . The algorithm consists of the
following steps

– Enlarge vj−1 in a cyclic way by adding two elements vj−1
−1 = vj−1

N−1,v
j−1
0 =

vj−1
N to the left and three elements vj−1

N+1 = vj−1
1 ,vj−1

N+2 = vj−1
2 ,vj−1

N+3 =
vj−1

3 to the right.
– Create an empty set V j and whenever a vertex is marked, add it to V j .
– For each i ∈ [1, N ]:
• If one of the vertices vj−1

i and vj−1
i+1 is an S vertex, while the other

is a T vertex, use S1 to predict a new node between vj−1
i and vj−1

i+1 .
Compute the new vertex v̂i. In case of multiple intersection points, take
an arbitrary one among them. Store the corresponding detail, and mark
v̂i as an S vertex. Do not mark vj−1

i or vj−1
i+1 .

• Else, i.e., when vj−1
i and vj−1

i+1 are both either S or T vertices, determine
the local neighborhood v̄ = {v̄i−1, v̄i, v̄i+1, v̄i+2}. v̄ may differ from
vj−1

∣∣
[i−1,i+2]

and its exact derivation will be explained later. If

|Δ2v̄i−1| ≤ RBmin{|Δv̄i−1|, |Δv̄i|}, |Δ2v̄i| ≤ RBmin{|Δv̄i|, |Δv̄i+1|},
(11)

holds and the normal line through T v̄ intersects the corresponding arc
̂vj−1

i vj−1
i+1 = {v(s) : sj−1

i < s < sj−1
i+1} at least once, use T as predic-

tion operator. Store the detail for the new vertex v̂i (in case of multiple
intersection points, take an arbitrary one among them) and mark all
{vj−1

i , v̂i,v
j−1
i+1 } as T vertices. Else, use S2 as prediction operator, com-

pute two new vertices, mark them as S vertices and store the details. Do
not mark vj−1

i or vj−1
i+1 .

– Go one more time through V j , store a single copy for each of the vertices
in it (those from vj−1 may have two copies at the beginning) and delete all
the S vertices, surrounded by both T neighbors. What remains is vj .

Let us explain first how to construct v̄. T is a primal scheme, i.e., node-oriented
(averages the values in the nodes of the grid), while S2 is a dual one, i.e., interval-
oriented (averages the mean values of the function between adjacent nodes of the
grid). Hence, taking v̄ = vj−1

i+1 is not always appropriate, because the transition
from one to the other leads to highly irregular data on the next level. We create
v̄ of a pure S or pure T type via v̄i = vj−1

i , v̄i+1 = vj−1
i+1 ,

v̄i−1 =

{
vj−1

i−1 , if vj−1
i−1 and vj−1

i−2 are of the same type,
vj−1

i−2+vj−1
i−1

2 , otherwise,

and analogously for v̄i+2. Note that our algorithm guarantees that vj−1
i−1 and

vj−1
i−2 are of the same type whenever vj−1

i−1 and vj−1
i are not, so we never average
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vertices of different nature! Taking equally spaced points on a line and applying
the above procedure, randomly choosing for each i whether T or S2 normal MT
should be used, gives rise to neighborhoods v̄ that consist of equidistant points,
again. On the other hand, the experimental results indicate that our algorithm
quickly improves the regularity of an initially irregular data set.

Let us now explain the rationale behind (11) in more detail. In order to use
as few S2 and S1 steps as possible, we need a very local criteria, such as (11),
for the choice of the prediction operator. Note that (11) implies (9) with δ = 0.
There are several reasons why we chose to work with δ = 0. First of all, the size
of δ does not play any role for the detail decay rate, which can be seen from the
proofs in [3,8]. Secondly, by relaxing the restriction (9) we favor the T normal
MT, and, thus, avoid the S2 normal MT as much as possible (of course, we do
not have theoretical guarantee that the T normal MT is well-defined and we
need to check it every time we want to use it). Finally, (11) allows us to relate
our work to [3], since the quantity we bound is asymptotically the same as their
non-uniformity measure

N (s) := sup
i
N (si) = sup

i
max{Δsi+1/Δsi, Δsi/Δsi+1}. (12)

Indeed, since v(s) ∈ C1,α, there exists a constant C <∞ such that

|v′(s)− v′(s′)| ≤ C|s− s′|α, ∀s, s′ ∈ [0, L).

Hence, by Taylor formula∣∣∣∣∣ |Δ2vj
i−1|

|Δvj
i |
− |Δ

2sj
i−1|

Δsj
i

∣∣∣∣∣ ≤
∣∣∣Δsj

i |Δvj
i −Δvj

i−1| − |Δvj
i ||Δsj

i −Δsj
i−1|

∣∣∣
(Δsj

i )2 − C(Δsj
i )2+α

.

For the expression |A| in the numerator we derive

A ≤ C(Δsj
i )

2+α

(
1+

(
Δsj

i−1

Δsj
i

)1+α

+
∣∣∣∣Δsj

i−1

Δsj
i

− 1
∣∣∣∣
)

;

−A ≤ Δsj
i (|Δsj

i −Δsj
i−1| − |Δvj

i −Δvj
i−1|)︸ ︷︷ ︸

B

.

To continue the estimations in the second line, we need to consider two cases.

1) |Δsj
i −Δsj

i−1| ≥ C((Δsj
i−1)

1+α + (Δsj
i )

1+α) =⇒
|Δvj

i −Δvj
i−1| ≥ |Δsj

i −Δsj
i−1| − C((Δsj

i−1)
1+α + (Δsj

i )
1+α) =⇒

B ≤ C(Δsj
i )

1+α

(
1+

(
Δsj

i−1

Δsj
i

)1+α
)

;

2) |Δsj
i −Δsj

i−1| ≤ C((Δsj
i−1)

1+α + (Δsj
i )

1+α) =⇒

B ≤ |Δsj
i −Δsj

i−1| ≤ C(Δsj
i )

1+α

(
1+

(
Δsj

i−1

Δsj
i

)1+α
)
.
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Combining the above inequalities with the analogous ones for Δvj
i−1 resp. Δsj

i−1,
instead of Δvj

i resp. Δsj
i , and using |x− 1| ≤ |x|1+α + 1 we get∣∣∣∣∣ |Δ2vj

i−1|
min{|Δvj

i−1|, |Δvj
i |}
− |Δ2sj

i−1|
min{Δsj

i−1, Δsj
i}

∣∣∣∣∣
≤ 2C max{Δsj

i−1, Δsj
i}α(1 +N (sj

i−1)
1+α)

1− C max{Δsj
i−1, Δsj

i}α
.

But |Δ2sj
i−1|/min{Δsj

i−1, Δsj
i} = N (sj

i−1)− 1, so

sup
i

∣∣∣∣∣ |Δ2vj
i−1|

min{|Δvj
i−1|, |Δvj

i |}
− (N (sj

i−1)− 1)

∣∣∣∣∣ ≤ 2C‖Δsj‖α(1 +N (sj)1+α)
1− C‖Δsj‖α . (13)

What we see from (13) is that, whenever ‖Δsj‖ → 0 and N (sj)→ 1, we have

sup
i

|Δ2vj
i−1|

min{|Δvj
i−1|, |Δvj

i |}
→ 0, j →∞. (14)

Vice versa, due to

|s− s′| ≥ |v(s) − v(s′)| ≥ q|s− s′|, ∀s, s′ ∈ [0, L), (15)

which holds for non-self-intersecting closed C1 curves (see [13]), we have

∀j ∈ N sup
i

∣∣∣∣∣ |Δ2vj
i−1|

min{|Δvj
i−1|, |Δvj

i |}
− (N (sj

i−1)− 1)

∣∣∣∣∣
≤ 2Cqα‖Δvj‖α(1 + q1+αN (vj)1+α)

1− Cqα‖Δvj‖α ,

and, thus, ‖Δvj‖ → 0 together with (14) implies N (sj)→ 1, when j →∞.
Some remarks are in order. According to the Appendix A in [3], T is weakly

contractive with bound R = 3 + 2
√

2, i.e., for any strictly increasing u ∈ �∞(Z)
such thatN (u) ≤ 3+2

√
2, Tu is also strictly increasing andN (Tu) ≤ N (u). The

bound is sharp and, together with (13), suggests the restriction RB < 2 + 2
√

2,
because otherwise we allow applications of T normal MT even when N (sj) > R
which could even worsen the regularity of our data! Secondly, our algorithm can
be generalized for smoother both interpolating schemes T and approximating
schemes S. However, the transition between S and T vertices should always
be smooth, i.e., only S2 and the 4-point scheme can be applied to neighboring
intervals. Then in each of the directions one can upgrade the prediction operator
with a smoother one of the same type. For example, in order to work with
the central interpolating scheme of degree 9, we intermediately have to use the
central interpolating schemes of degree 3, 5 and 7, as well.
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Fig. 1. Our test data

4 Experimental Results

For the two data sets illustrated in Fig. 1, we compare the behavior of the normal
MTs based on S1, S2, T , S1/T , and S2/T (we use the notation S2/T normal
MT for the adaptive algorithm, presented in the previous section, and S1/T
normal MT for its exact counterpart, when S2 predictions are replaced by S1

predictions). In the first example, we consider a small, irregularly spaced initial
vertex set v0 (indicated by circles) on a C∞ curve, namely the unit circle. In
the second example we consider well-spaced initial points v0 on a curve with
four isolated singularities, which we will refer to as twisted circle, since it is
obtained by dividing the unit circle into four arcs of equal length, and flipping
three of them around their corresponding edges. Although close, none of the
points in v0 coincides with any of the singularity points of the twisted circle.
The twisted circle is only C0,1. Hence the crucial inequality (15), needed for
the well-posedness of the S2 normal MT (see [8, (4.4)]), does not automatically
hold. However, direct computations show that if P,Q lie on neighboring arcs of
the twisted circle, then |PQ| ≥ |P̂Q|/(π√2), which for the given choice of v0 is
enough. As we will see, for both examples the T normal MT fails at some level.

In Fig. 2 we show experimental data for the first example. The non-uniformity
measures N (vj) is computed in the same fashion as (12) by just replacing Δsi

by |Δvi|. We prefer to work with this measure, because at each level j it can be
directly computed from vj−1, while for N (sj−1) one needs to take into account
the underlying curve C. In the second and third columns, by setting RB = 0, we
simply apply pure S2 resp. S1 normal MT. The second row compares the detail
decay, combining the details from all levels j ≤ 5, while the last one compares
the details only from the finest scale.

T normal MT fails after 6 iteration steps, and this can be observed by the
rapidly increasing values of its non-uniformity measure. Since S2, resp. S1, nor-
mal MT is always well-defined, the adaptive transforms never fail and this is
confirmed by the graphs of the associated non-uniformity measures. From these
plots, we see the potential problem of working with large RB-values. Indeed,
when we set RB = 5 (which is slightly larger than the theoretical bound 2+2

√
2

for T , as discussed in Section 3.2), we allow T normal MT steps, that even
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Fig. 2. Comparison among T normal MT (left), S2/T normal MT (middle) and S1/T
normal MT (right), when performed on the circle setup from Fig 1. The upper row
plots N (vj−1) for j = 1, 2, . . . , 7. The middle row plots the corresponding log2-values
of |dj | for levels j ≤ 5 in descending order. The lower row plots log2(|d5|).

increase the irregularity of the initial data. While the S2/T normal MT is able
to “recover” and after five more iterations decreases the non-uniformity measure
to the level of the pure S2 normal MT, this is not the case with the S1/T normal
MT. Indeed, applied to the circle example, S1 prediction never improves N (v),
since at vertices of the initial set v0 the local non-uniformity measure does not
decrease for any j ≥ 1. When RB = 1, the adaptive S2/T , resp S1/T normal MT
applies S2, resp. S1, in all regions of highly non-uniform spacing. This explains
the almost identical plots for S2/T and S2, resp. S1/T and S1, normal MTs
for small j. As discussed before, RB = 1 corresponds to N (v) ≈ 2 and, thus,
the corresponding plots for S2 and S2/T normal MTs start to slightly differ
only when the data is already close to regular. Moreover, once N (vj) < 2 is
achieved, the S2/T normal MT with RB = 1 turns into pure T normal MT.
This is confirmed by the log2 |d5| plots which contain half as many data points
for S2/T as compared with S2 normal MT. On the other hand, because of the
inability of S1 to improve the non-uniformity measure, for every level j ∈ N
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in the S1/T normal MT there will be points (in our particular case it is one
point when RB = 5 and two points when RB = 1), predicted via mid-point
interpolation, which leads to the same �∞ norm for the details as in the case of
pure S1 normal MT. Hence the worst-case detail decay rate of the S1/T adaptive
scheme will be only 2, instead of 3.

Fig. 3. Numerical results for twisted circle. Plots position is analogous to Fig. 2.

In the second example (twisted circle), we performed the same experiments.
However, since the T normal MT brakes down only after 9 iterations, we take
into account more steps and compare the details after 8 iterations, instead of
5. The results are summarized in Fig. 3. Since the twisted circle is composed of
circle arcs, some of the phenomena observed on the first example appear here,
too, but due to the low smoothness of C, there are also additional effects. First
of all, as we start with almost equally spaced points v0, the non-uniformity
measure for T and S1 normal MT stays low for small j, until the singularities
of the initial curve are “detected”. This happens only at level j = 8 because the
initial points were chosen very close to the singularities. Then the non-uniformity
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Fig. 4. The adaptive schemes detect singularities

measure N (vj) corresponding to the T normal MT jumps from 3 to 13, and the
transform fails at the next level. Therefore, as can be seen from the graphs, for
levels j ≤ 9 both S2/T and S1/T normal MT with RB = 5 coincide with the
pure T normal MT. After that S2/T manages to improve the non-uniformity
measure, while S1/T just keeps it as it is.

On the other hand, as shown on Fig. 4, the S2 normal MT detects the presence
of singularities from the very beginning, although it cannot localize them as well
as an interpolating normal MT would do. On a smooth curve with a single
singularity point, we start with a v0 consisting of 4 irregularly spaced points,
and show the locations where S2/T normal MT still uses S2, i.e., where the local
non-uniformity measure exceeds RB. On the left plot, we see that at level j = 5
the irregularity of the initial data is essentially removed, and the only places,
where S2 prediction is used, is near the singularity. In the middle plot, we show
how the localization of the singularity by the S2/T normal MT improves after
three more iterations. On the right plot, we see that even for very small values
of RB (in the particular case RB = 0.1) this still works, even though only
after slightly more iterations. The isolated S2 interval away from the singularity
disappears for j = 10. This cannot be achieved with the S1/T normal MT, since
it can never fully recover from the irregularity of the initial data and will use S1

predictions near vertices in v0 for any j.
We conclude our experiments with a comparison between our S2/T normal

MT and the Tω normal MT proposed in [3]. To the best of our knowledge, the
latter is the only other normal MT that is well-defined, converges and (in case of
smooth initial curve) after finitely many iterations turns into a pure T normal
MT. The family Tω is defined via

Tω = (1− ω)S1 + ωT, 0 < ω ≤ 1,

and Tω is proven to be weakly contractive (see [3] for details) with bound

R(ω) =
4
ω

(
1 +

√
1− ω

2
− 1

)
(16)

for each specific 0 ≤ ω ≤ 1. Combined with Theorem 5.7 from [3], this implies the
existence of an increasing sequence 0 < ω1 < ω2 < . . . < ωJ < 1 = ωJ+1 = . . .
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Fig. 5. Comparison between our adaptive scheme and the family Tω proposed in [3]

such that (1) with T replaced by Tωj leads to a well-defined transform called
Tω normal MT (the ωj as well as the level J after which the Tω normal MT
coincides with the T normal MT, depend on C and v0). All one has to do is to
choose ωj such that N (vj−1) ≤ R(ωj) (concrete rules for picking the ωj resp.
a locally adaptive version of the Tω normal MT have not been elaborated on in
[3]).

Fig. 5 displays the decay of the non-uniformity measure N (vj) for j ≤ 8 asso-
ciated with S2, Tω, and T3ω/4 normal MT. Since the decay of the non-uniformity
measure for smooth C is basically a property of the underlying subdivision oper-
ator, for this test we let C be a straight line, and v0 consist of randomly chosen
points on it with large N (v0) value. For the Tω normal MT, we always work
with the largest possible value ωj = 8N (vj−1)/(N (vj−1) + 1)2 satisfying (16),
while for the T3ω/4 normal MT we use T3ωj/4 as prediction operator. In Fig. 5
we have plotted two examples. We observe that S2 improves the non-uniformity
measure faster (actually, for S2 it can be straightforwardly verified that on a
straight line N (vj) < (N (vj−1) + 1)/2, j ∈ N), and allows us to switch to T at
an earlier level. In the first example we can do this after three iterations, while
we need four iterations if using T3ω/4 or seven iterations if using Tω, and in the
second example we can do this after five iterations, while we need six iterations
if using T3ω/4 or more than eight if using Tω). The other observation is that for
both examples T3ω/4 normal MT performs better than Tω normal MT, which
indicates that, in order to minimize the fine-scale non-uniformity measure, the
ωj should be chosen carefully.

In this paper we followed the classical approach to normal MTs and worked
with linear univariate subdivision schemes T as prediction operators. Another
possible way to obtain globally well-posed and convergent normal MTs with
higher detail decay rates for smooth curves is to consider geometry-based
subdivision schemes T , e.g., those introduced in [4,11,15], as prediction
operators.
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Abstract. This paper deals with the Helmholtz-Hodge decomposition
of a vector field in bounded domain. We present a practical algorithm to
compute this decomposition in the context of divergence-free and curl-free
wavelets satisfying suitable boundary conditions. The method requires the
inversion of divergence-free and curl-free wavelet Gram matrices. We pro-
pose an optimal preconditioning which allows to solve the systems with a
small number of iterations. Finally, numerical examples prove the accu-
racy and the efficiency of the method.

Keywords: Divergence-free and curl-free wavelets, Helmholtz-Hodge
decomposition.

1 Introduction

Vector field analysis is ubiquitous in engineering, physics or applied mathematics.
Most of the solutions of problems arising from these domains are vector fields and
they have some compatibility properties related to the nature of the problem.
This is the case in the numerical simulation of incompressible fluid flows where
the velocity field is divergence-free or in electromagnetism where the electric field
contained in the electromagnetic field is curl-free.

The Helmholtz-Hodge decomposition, under certain smoothness assumptions,
allows to separate any vector field into the sum of three uniquely defined compo-
nents: divergence-free, curl-free and gradient of a harmonic function. Thus, the
Helmholtz-Hodge decomposition provides a powerful tool for several applications
such as the resolution of partial differential equations [14], aerodynamic design
[25], detection of flow features [22] or computer graphics [21]. Therefore, it is im-
portant to have at hand an efficient algorithm to deal with such decomposition
numerically.

In case of periodic boundary conditions, Fourier domain offers an ideal setting
to compute the Helmholtz-Hodge decomposition, thanks to the Leray projector
which writes explicitly [11]. For more general (physical) boundary conditions,
this decomposition is usually achieved by solving a Poisson equation relative
to each field component: this is the case when using finite element or finite
difference methods [14]. The well known drawback of these methods is their
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cost, for example in particle-based physical simulations. Then, one resorts to
mesh-less method [21] or methods leading to variational equations [22].

In the wavelet setting the Helmholtz-Hodge decomposition will not use the res-
olution of a Poisson equation, since one knows explicit bases for the divergence-
free and curl-free function spaces [12,13,19,26]. In this context, Urban [27], and
latter Deriaz and Perrier [11] introduced methods to compute the orthogonal pro-
jections onto divergence-free and curl-free wavelet bases. These wavelet methods
provide accuracy for a small number of degrees of freedom, due to the good
nonlinear approximation property provided by wavelet bases [7]. However, the
works of [11,27] were limited to periodic boundary conditions for lack of suitable
bases.

The main objective of this paper is to extend the works of [11,27] to more
general physical boundary conditions. We first recall the principles of the tensor-
product divergence-free and curl-free wavelet construction on the cube, that was
detailed in [18] for the 2D case (see also [17]). Similar constructions, leading to
different bases, were proposed by Stevenson in general dimension [23,24]. Then
we propose an effective method for the Helmholtz-Hodge decomposition based
on the computation and inversion of corresponding Gram matrices. The tensor
structure of the bases is fully exploited to reduce the computational complexity.
Moreover the system is solved with a low complexity, thanks to an optimal
preconditioning.

The layout of this paper is as follows. In Section 2, we recall the theoretical def-
inition and mathematical background of the Helmholtz-Hodge decomposition on
a bounded domain of Rd. In Section 3 we explicit the construction of divergence-
free and curl-free wavelets on [0, 1]d with desired boundary conditions. Section 4
is devoted to the description of the numerical method for the Helmholtz-Hodge
decomposition, and numerical examples will illustrate its performance.

2 Helmholtz-Hodge Decomposition

We recall in this section some definitions related to the Helmholtz-Hodge de-
composition on a bounded Lipschitz domain Ω of Rd [14]. We assume that the
domain Ω and its boundary Γ have sufficient regularities (see [1,14]).

2.1 Definitions

The Helmholtz-Hodge decomposition theorem [6,14] states that any vector field
u ∈ (L2(Ω))d can be uniquely decomposed into the sum of its divergence-free,
curl-free and gradient of harmonic function components:

u = udiv + ucurl + uhar (1)

with
∇ · udiv = 0 and ∇× ucurl = 0. (2)

The last component uhar is both divergence-free and irrotational:

∇ · uhar = 0 and ∇× uhar = 0. (3)
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Following [1,14], this decomposition may alternatively be written using scalar
potentials. There exist a scalar potential q ∈ H1

0 (Ω) and a harmonic potential
h ∈ H1(Ω) such as

ucurl = ∇q and uhar = ∇h.
Moreover, the scalars q and h are uniquely defined.

In terms of spaces, the decomposition (1) corresponds to an orthogonal split-
ting of (L2(Ω))d:

(L2(Ω))d = Hdiv(Ω)⊕Hcurl(Ω)⊕Hhar(Ω) (4)

where Hdiv(Ω) is the space of divergence-free vector functions of (L2(Ω))d with
vanishing normal boundary condition:

Hdiv(Ω) = {u ∈ (L2(Ω))d : div(u) = 0, u · n|Γ = 0}. (5)

For d = 2, 3, the space Hdiv(Ω) coincides with the curl of potential space (see
[1,2,14]):

Hdiv(Ω) = {u = curl(Ψ) : Ψ ∈ (H1
0 (Ω))d}, (Ψ ∈ H1

0 (Ω) if d = 2) (6)

In this case, the component udiv of (1) reads udiv = curl(Ψ).
On the other hand, the space Hcurl corresponds to the gradient of H1(Ω)-

potentials which vanish on Γ :

Hcurl(Ω) = {u = ∇q : q ∈ H1
0 (Ω)}. (7)

Finally, Hhar corresponds to the gradient of H1(Ω)-harmonic potentials:

Hhar(Ω) = {u = ∇h : h ∈ H1(Ω), Δh = 0}. (8)

Other splittings exist, for example in (H1
0 (Ω))d to incorporate homogeneous

boundary conditions [14].
In the whole space Rd or with periodic boundary conditions, the decompo-

sition (1) is explicit in Fourier domain and the third term vanishes: uhar = 0
(one obtains the Helmholtz decomposition in this case [11,27]). In the wavelet
context, an iterative procedure was proposed by Deriaz and Perrier [11]. The
purpose here is to extend such method with boundary conditions for the spaces
Hdiv(Ω), Hcurl(Ω) and Hhar(Ω) introduced in (5, 7, 8).

3 Divergence-Free and Curl-Free Wavelets on [0, 1]d

This section introduces the principles of the construction and main properties
of divergence-free and curl-free wavelets on the hypercube [0, 1]d. The two di-
mensional case d = 2 has been detailed in [18], with explicit examples (spline,
Daubechies wavelets), and practical tools for the implementation (filters, fast
wavelet transform, ..). We develop below the extension to more general dimen-
sions d ≥ 3. Recently, Stevenson proposed a first construction [23,24], which led
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to alternative wavelet bases. A first advantage of our construction is that it fits
perfectly with the classical multiresolution analysis construction on the interval
[0, 1].

The construction is based on 1D multiresolution analysis generators (ϕ1, ϕ̃1)
and (ϕ0, ϕ̃0) linked by differentiation / integration, and introduced by Lemarié-
Rieusset and collaborators in original works [16,19]. It follows two steps, de-
scribed in the two forthcoming sections:

(i) Construction of two biorthogonal MRAs of L2(0, 1) linked by differentia-
tion / integration.

(ii) Construction of MRAs and wavelet bases of Hdiv(Ω) and Hcurl(Ω).

3.1 Multiresolution Analyses of L2(0, 1) Linked by Differentiation /
Integration

The construction of regular biorthogonal multiresolution analyses (BMRA) on
the interval [0, 1] is now classical (see [5,9,15,20]). It begins with a pair of
biorthogonal compactly supported scaling functions (ϕ1, ϕ̃1) [8] of L2(R), with
some r polynomial reproduction:

x� =
∑
k∈Z

〈x�, ϕ̃1(x− k)〉 ϕ1(x − k) for 0 ≤ � ≤ r − 1, (9)

and similarly for ϕ̃1, with r̃ polynomial reproduction.
Following classical constructions, one defines finite dimensional biorthogonal

multiresolution spaces

V 1
j = span{ϕ1

j,k ; 0 ≤ k ≤ Nj−1} and Ṽ 1
j = span{ϕ̃1

j,k ; 0 ≤ k ≤ Nj−1} (10)

whose dimension Nj & 2j depends on some free integer parameters (δ0, δ1). The
scaling functions ϕ1

j,k satisfy ϕ1
j,k = 2j/2ϕ1(2jx − k) ”inside” the interval [0, 1],

but this is no more true near the boundaries 0 and 1 (idem for ϕ̃1
j,k). In practice,

the scale index j must be great than some index jmin, to avoid boundary effects.
The biorthogonality between bases is < ϕ1

j,k/ϕ̃
1
j,k′ >= δk,k′ .

The approximation order provided by such MRA (V 1
j ) in L2(0, 1) is r:

∀ f ∈ Hs(0, 1), inf
fj∈V 1

j

‖f − fj‖L2(0,1) ≤ C2−js, 0 ≤ s ≤ r (11)

whereas (Ṽ 1
j ) has approximation order r̃.

Homogeneous Dirichlet boundary conditions can be simply imposed on (V 1
j )

by removing one scaling function at each boundary 0 and 1:

V D
j = V 1

j ∩H1
0 (0, 1) = span{ϕ1

j,k ; 1 ≤ k ≤ Nj − 2}. (12)

A possibility to adjust the dimension of the two biorthogonal spaces (V D
j , Ṽ D

j )
is to impose Ṽ D

j = Ṽ 1
j ∩H1

0 (0, 1), and Ṽ D
j becomes (keeping the same notation

for the basis functions, which have changed after biorthogonalization):
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Ṽ D
j = span{ϕ̃1

j,k ; 1 ≤ k ≤ Nj − 2}. (13)

As usual, biorthogonal wavelet spaces (W 1
j , W̃

1
j ) are defined by

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥ W̃ 1

j = Ṽ 1
j+1 ∩ (V 1

j )⊥ (14)

and generated by finite dimensional wavelet bases on the interval [15,20]:

W 1
j = span{ψ1

j,k ; 0 ≤ k ≤ 2j−1} and W̃ 1
j = span{ψ̃1

j,k ; 0 ≤ k ≤ 2j−1}. (15)

The difficulty now is to derive a new biorthogonal MRA (V 0
j , Ṽ

0
j ) of L2(0, 1)

such that
d

dx
V 1

j = V 0
j

The existence of such biorthogonal MRA was already proved by Jouini and
Lemarié-Rieusset [16] and it should be based on generators (ϕ0, ϕ̃0) introduced
in [19] satisfying

(ϕ1(x))′ = ϕ0(x) − ϕ0(x−1) and (ϕ̃0(x))′ = ϕ̃1(x+1) − ϕ̃1(x). (16)

Let us introduce the primitive space for Ṽ 1
j :∫ x

0

Ṽ 1
j = {g : ∃ f ∈ Ṽ 1

j such that g(x) =
∫ x

0

f(t)dt}.

In [18], we proposed a practical construction of spaces (V 0
j , Ṽ

0
j ):

V 0
j = span{ϕ0

j,k ; 0 ≤ k ≤ Nj−2} and Ṽ 0
j = span{ϕ̃0

j,k ; 0 ≤ k ≤ Nj−2} (17)

different from the underlying spaces of [24], but satisfying the following propo-
sition.

Proposition 1. The two BMRAs (V ε
j , Ṽ

ε
j )ε=0,1 of L2(0, 1) constructed in [18]

from biorthogonal generators (ϕε, ϕ̃ε)ε=0,1satisfying relation (16), verify

(i)
d

dx
V 1

j = V 0
j and

d

dx
◦ P1

j f = P0
j ◦

d

dx
f, ∀ f ∈ H1(0, 1)

(ii) Ṽ 0
j = H1

0 (0, 1) ∩
∫ x

0

Ṽ 1
j and

d

dx
◦ P̃0

j f = P̃1
j ◦

d

dx
f, ∀ f ∈ H1

0 (0, 1),

where (Pε
j , P̃ε

j ) are the biorthogonal projectors on (V ε
j , Ṽ

ε
j ).

Wavelet bases of the biorthogonal MRA (V 0
j , Ṽ 0

j )j≥jmin are simply defined by
respectively differentiating and integrating the wavelets of (V 1

j , Ṽ 1
j )j≥jmin , as

stated by the following proposition [16,18].
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Proposition 2. [16,18] Let {ψ1
j,k} and {ψ̃1

j,k} be biorthogonal wavelet bases of
respectively W 1

j and W̃ 1
j . Then, the wavelets defined by

ψ0
j,k = 2−j(ψ1

j,k)′ and ψ̃0
j,k = −2j

∫ x

0

ψ̃1
j,k (18)

are respectively biorthogonal wavelet bases of W 0
j and W̃ 0

j :

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j )⊥. (19)

Remark 1. The wavelets ψ0
j,k and ψ̃0

j,k defined by (18) differ from the standard
wavelet construction [5,9,20] in BMRA (V 0

j , Ṽ
0
j ): indeed, the usual wavelets on

the interval do not lead to the differentiation/integration relation (18), except
for interior wavelets.

3.2 Divergence-Free Scaling Functions and Wavelets on [0, 1]d

Le Ω be the hypercube Ω = [0, 1]d. The objective in this section is to de-
rive wavelet bases of the space Hdiv(Ω), with vanishing outward normal at the
boundary Γ = ∂Ω. Following (5),Hdiv(Ω) is the curl of the space H1

0 (Ω) (d = 2)
or (H1

0 (Ω))d (d = 3) of scalar (vector for d = 3) stream functions [1]. We begin
with the description of basis functions in the 2D case (already detailed in [18]),
then we propose a generalization of the construction for d ≥ 3.

Two-Dimensional Case: We start with the 2D MRA (V D
j ⊗ V D

j )j≥jmin of
H1

0 (Ω), where (V D
j )j≥jmin is the 1D MRA of H1

0 (0, 1) defined in Section 3.1 (12).
For each scale index j ≥ jmin, divergence-free scaling functions on Ω = [0, 1]2

are constructed by taking the curl of scaling functions of V D
j ⊗ V D

j :

Φdiv
j,k := curl[ϕD

j,k1
⊗ ϕD

j,k2
] =

∣∣∣∣∣∣
ϕD

j,k1
⊗ (ϕD

j,k2
)′

−(ϕD
j,k1

)′ ⊗ ϕD
j,k2

, 1 ≤ k1, k2 ≤ Nj − 2. (20)

The choice of space V D
j ensures that the divergence-free scaling functions satisfy

the boundary condition Φdiv
j,k · n = 0 by construction. Let Vdiv

j be the space
spanned by these divergence-free scaling functions:

Vdiv
j = span{Φdiv

j,k}, 1 ≤ k1, k2 ≤ Nj − 2. (21)

By construction, the spaces Vdiv
j form a multiresolution analysis of Hdiv(Ω),

since it can be proven from Proposition 1 that we have [18]:

Vdiv
j = (V D

j ⊗ V 0
j )× (V 0

j ⊗ V D
j ) ∩Hdiv(Ω). (22)

In the same manner, the corresponding anisotropic divergence-free wavelets on
Ω are defined by taking the curl of the three types of scalar anisotropic wavelets
associated to V D

j ⊗ V D
j : for j = (j1, j2), with j1, j2 > jmin,
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Ψdiv,1

j,k := curl[ϕD
jmin,k ⊗ ψD

j2,k2
], 1 ≤ k ≤ Njmin − 2, 0 ≤ k2 ≤ 2j2 − 1

Ψdiv,2

j,k := curl[ψD
j1,k1

⊗ ϕD
jmin,k], 0 ≤ k1 ≤ 2j1 − 1, 1 ≤ k ≤ Njmin − 2

Ψdiv,3

j,k := curl[ψD
j1,k1

⊗ ψD
j2,k2

], 0 ≤ k1 ≤ 2j1 − 1, 0 ≤ k2 ≤ 2j2 − 1,

(ψD
j,k) being the wavelet basis of WD

j = V D
j+1 ∩ (Ṽ D

j )⊥.

Three-Dimensional Case: Divergence-free scaling functions and wavelets on
Ω = [0, 1]3 are constructed by taking the curl of suitable scaling functions and
wavelets of (H1(Ω))3 [1,14]. We will focus on the scaling function construction,
since the same technique is used for wavelets. The divergence-free scaling func-
tions are defined by

Φdiv
1,j,k := curl

∣∣∣∣∣∣
0
0
ϕD

j,k1
⊗ ϕD

j,k2
⊗ ϕ0

j,k3

=

∣∣∣∣∣∣
ϕD

j,k1
⊗ (ϕD

j,k2
)′ ⊗ ϕ0

j,k3

−(ϕD
j,k1

)′ ⊗ ϕD
j,k2
⊗ ϕ0

j,k3

0
(23)

Φdiv
2,j,k := curl

∣∣∣∣∣∣
ϕ0

j,k1
⊗ ϕD

j,k2
⊗ ϕD

j,k3

0
0

=

∣∣∣∣∣∣
0
ϕ0

j,k1
⊗ ϕD

j,k2
⊗ (ϕD

j,k3
)′

−ϕ0
j,k1
⊗ (ϕD

j,k2
)′ ⊗ ϕD

j,k3

(24)

Φdiv
3,j,k := curl

∣∣∣∣∣∣
0
ϕD

j,k1
⊗ ϕ0

j,k2
⊗ ϕD

j,k3

0
=

∣∣∣∣∣∣
−ϕD

j,k1
⊗ ϕ0

j,k2
⊗ (ϕD

j,k3
)′

0
(ϕD

j,k1
)′ ⊗ ϕ0

j,k2
⊗ ϕD

j,k3

(25)

These functions are contained in Hdiv(Ω) by construction. Let Vdiv
j be the space

spanned by this family: Vdiv
j = span{Φdiv

1,j,k, Φ
div
2,j,k, Φ

div
3,j,k}.

Since Hdiv(Ω) = curl(H1
0 (Ω))3, Vdiv

j is no more than the intersection of the
following standard BMRA of (L2(Ω))3:

Vj =
(
V 1

j ⊗ V 0
j ⊗ V 0

j

)× (
V 0

j ⊗ V 1
j ⊗ V 0

j

)× (
V 0

j ⊗ V 0
j ⊗ V 1

j

)
(26)

with Hdiv(Ω).
To each scaling function, we can associate 7 types of anisotropic divergence-

free generating wavelets by taking respectively the curl of wavelets of {0}×{0}×
(V D

j ⊗V D
j ⊗V 0

j ), (V 0
j ⊗V D

j ⊗V D
j )×{0}×{0} and {0}× (V D

j ⊗V 0
j ⊗V D

j )×{0},
among which we can extract a wavelet basis.

The construction may extend to larger dimensions d ≥ 3 in the same way. As
in the isotropic construction of Lemarié-Rieusset [19], we obtain in this case d
types of divergence-free scaling functions For 1 ≤ i ≤ d, the general formula of
these scaling functions is given by
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Φdiv
i,j,k :=

0
...
0

row i → ϕ0
j,k1
⊗ · · · ⊗ ϕ0

j,ki−1
⊗ ϕD

j,ki
⊗ (ϕD

j,ki+1
)′ ⊗ · · · ⊗ ϕ0

j,kd

row i + 1→ −ϕ0
j,k1
⊗ · · · ⊗ (ϕD

j,ki
)′ ⊗ ϕD

j,ki+1
⊗ ϕ0

j,ki+2
⊗ · · · ⊗ ϕ0

j,kd

0
...
0

(27)
(for i = d, replace row i+ 1 by row d). These scaling functions Φdiv

i,j,k satisfy the

boundary condition : Φdiv
i,j,k ·n = 0, by construction. The space Vdiv

j spanned by
this family is included into the following vector-valued multiresolution analysis
of (L2(Ω))d:

Vj = V
(1)
j × · · · × V

(d)
j with V

(i)
j = V

δ1,i

j ⊗ · · · ⊗ V
δd,i

j , 1 ≤ i ≤ d (28)

where δj,i denotes the Kronecker symbol. The corresponding wavelet family,
generated by the d(2d− 1) types of corresponding divergence-free wavelets, con-
stitutes an alternative family to the basis built in Stevenson’s work [24].

3.3 Curl-Free Scaling Functions and Wavelets on [0, 1]d

The construction of irrotational scaling functions and wavelets is easier than in
the case of divergence-free functions, since it does not depend on the dimension d.
According to the definition (7) of Hcurl(Ω), basis functions will be constructed
by taking the gradient of scaling functions and wavelets of a multiresolution
analysis of H1

0 (Ω).
The starting point is again a regular multiresolution analysis of H1

0 (Ω) given
by d tensor-product of V D

j :

Vj = V D
j ⊗ · · · ⊗ V D

j . (29)

Then, the curl-free scaling functions of Hcurl(Ω) are defined by

Φ∇
j,k = ∇[ϕD

j,k1
⊗ · · · ⊗ ϕD

j,kd
] and V∇

j = span{Φ∇
j,k}, (30)

where 1 ≤ ki ≤ Nj − 2 for 1 ≤ i ≤ d. By construction we have

V∇
j = ∇[V D

j ⊗ · · · ⊗ V D
j ].

The multiresolution decomposition of the space V∇
j leads to:

V∇
j = ∇

⎡⎣V D
jmin
⊗ · · · ⊗ V D

jmin

⊕
jmin≤ji≤j−1

⎛⎝ ∑
ω∈Ω∗

d

Wω
j

⎞⎠⎤⎦ , 1 ≤ i ≤ d (31)
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with

Ω∗
d = {0, 1}d \ (0, · · · , 0) and Wω

j = Wω1
j1
⊗ · · · ⊗Wωd

jd
,

where the spaces Wωi

ji
correspond to

Wωi

ji
= WD

ji
if ωi = 1, Wωi

ji
= V D

jmin
if ωi = 0.

Denoting by Ψω
j,k the wavelets of Wω

j , we define the curl-free wavelets and spaces
by

Ψω,∇
j,k = ∇ [Ψω

j,k] and Wω,∇
j = span{Ψω,∇

j,k } (32)

where ji ≥ jmin and 0 ≤ ki ≤ 2j − 1, for 1 ≤ i ≤ d.
From Proposition 1, the spaces spanned by these curl-free functions are con-

tained in the following BMRA of (L2(Ω))d:

V+
j = V1

j × · · · ×Vd
j with Vi

j = V
1−δ1,i

j ⊗ · · · ⊗ V
1−δd,i

j , 1 ≤ i ≤ d

δi,j denotes the Kronecker symbol. This property allows fast coefficient compu-
tations on irrotational bases.

Since the spaces Vj defined in (29) constitute a multiresolution analysis of
H1

0 (Ω), we get

H1
0 (Ω) = Vjmin

⊕
ji≥jmin

⎛⎝ ∑
ω∈Ω∗

d

Wω
j

⎞⎠ , 1 ≤ i ≤ d. (33)

Taking the gradient of relation (33) and using again Proposition 1, we obtain

Hcurl(Ω) = V∇
jmin

⊕
ji≥jmin

⎛⎝ ∑
ω∈Ω∗

d

Wω,∇
j

⎞⎠ , 1 ≤ i ≤ d. (34)

This relation (34) was proved in [18] in the case of 2D construction.

4 Wavelet Helmholtz-Hodge Decomposition

4.1 Description of the Method

The Helmholtz-Hodge decomposition, introduced in Section 2, provides the or-
thogonal splitting of any vector field u ∈ (L2(Ω))d into a divergence-free part, a
curl-free part, and a gradient of a harmonic function:

u = udiv + ucurl + uhar, (35)
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where

∇ · udiv = 0 and udiv · n = 0

∇× ucurl = 0 and ucurl · τ = 0

∇× uhar = 0 and ∇ · uhar = 0.

n and τ are respectively the unit outward normal and tangent to the boundary
∂Ω.

Our aim in this section is to describe a practical way to compute the compo-
nents udiv and ucurl when Ω = [0, 1]3. The most natural way, already followed in
[23] for the Helmholtz decomposition, is to use the divergence-free and curl-free
scaling functions and wavelet bases constructed in the previous section. Since
Hdiv(Ω) = span{Ψdiv

j,k} and Hcurl(Ω) = span{Ψ∇
j,k} (we adopt a unified notation

for the wavelet bases), the components udiv and ucurl are searched under the
form of their wavelet series:

udiv =
∑
j,k

ddiv
j,k Ψdiv

j,k and ucurl =
∑
j,k

d∇j,k Ψ∇
j,k. (36)

By orthogonality of the decomposition (35) in (L2(Ω))d, we obtain

〈u, Ψdiv
j,k〉 = 〈udiv, Ψ

div
j,k〉 and 〈u, Ψ∇

j,k〉 = 〈ucurl, Ψ
∇
j,k〉. (37)

Accordingly the computation of coefficients (ddiv
j,k) and (d∇j,k) is reduced to the

resolution of two linear systems

Mdiv(ddiv
j,k) = (〈u, Ψdiv

j,k〉) and Mcurl(d∇j,k) = (〈u, Ψ∇
j,k〉), (38)

where Mdiv and Mcurl are respectively the Gram matrices of the bases {Ψdiv
j,k}

and {Ψ∇
j,k}.

The above method is nothing but orthogonal projections from (L2(Ω))d to
Hdiv(Ω) and Hcurl(Ω) respectively. In practice, udiv is searched as uj

div ∈ Vdiv
j

for some j, and ucurl as uj
curl ∈ Vcurl

j . Then we recover from the usual Jackson-
type estimations:

∀ u ∈ Hdiv(Ω) ∩ (Hs(Ω))d, ‖u− uj
div‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1,

and

∀ u ∈ Hcurl(Ω) ∩ (Hs(Ω))d, ‖u− uj
curl‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1,

where r denotes the approximation order provided by the generator ϕ1.
The last component uhar of the decomposition (35) is computed by subtracting

udiv and ucurl from u:
uhar = u− udiv − ucurl. (39)
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4.2 Divergence-Free and Curl-Free Gram Matrices Computation

In this section we present a practical computation of matrices Mdiv and Mcurl.
For easy reading, we focus on the matrix Mcurl in the 2D case. The extension to
larger dimensions d > 2 follows readily from this two-dimensional case.

The key idea is to use the tensor structure of Mcurl to reduce the computation.
Let Mj and Rj denote respectively the Gram and stiffness matrices of the 1D
basis {ψD

j,k}:

[Mj ]k,k′ = 〈ψD
j,k, ψ

D
j,k′〉 and [Rj ]k,k′ = 〈(ψD

j,k)′, (ψD
j,k′ )′〉 (40)

The tensor structure of the basis {Ψ∇
j,k} allows to express the inner product

〈Ψ∇
j,k, Ψ

∇
j′,k′〉 in terms of matrix elements (40). By definition of the basis functions

we get

〈Ψ∇
j,k, Ψ∇

j′,k′〉 = 〈(ψD
j1,k1)

′⊗ψD
j2,k2 , (ψD

j′1,k′
1
)′⊗ψD

j′2,k′
2
〉+〈ψD

j1,k1⊗(ψD
j2,k2)′, ψD

j′1,k′
1
⊗(ψD

j′2,k′
2
)′〉

which becomes

〈Ψ∇
j,k, Ψ

∇
j′,k′〉 = [Mj ]k1,k′

1
· [Rj ]k2,k′

2
+ [Rj]k1,k′

1
· [Mj]k2,k′

2
. (41)

Then Mcurl can be decomposed as

Mcurl = Mj ⊗Rj + Rj ⊗Mj (42)

The tensorial decomposition (42) has for main interest to reduce a 2D matrix-
vector product with Mcurl to matrix-matrix products with Mj and Rj . More
precisely, if (d∇j,k) denotes the vector of curl-free wavelet coefficients of ucurl,

defined in (36), equation (42) leads to

[Mcurl(d∇j,k)] = Mj [d∇j,k]Rj + Rj[d∇j,k]Mj , (43)

where [d∇j,k] denotes the matrix of elements d∇j,k. In practice the matrices only
needed to compute and to store are the 1D matrices Mj and Rj .

Finally, the matrix Mcurl has a sparse structure, due to the compact support
of basis functions. Figure 1 shows the shape of Mcurl, for j = 6, in the case of
Daubechies generators with r = 3 vanishing moments. We remark that in 2D
Mdiv = Mcurl (which is also the stiffness matrix of the Laplacian onto the wavelet
basis {ψD

j1,k1
⊗ ψD

j2,k2
}), since we have

∀ u,v ∈ H1
0 (Ω);

∫
Ω

curl(u) · curl(v) dx =
∫

Ω

∇u · ∇v dx. (44)
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Fig. 1. Gram matrices of divergence-free scaling functions (left) and wavelets (right)
built from Daubechies generators with r = 3, jmin = 4, j = 6

4.3 Right-Hand Side Computations

To solve system (38), we need to compute efficiently inner products 〈u, Ψdiv
j,k〉

and 〈u, Ψ∇
j,k〉. This is achieved by using the decomposition of u in the wavelet

bases in the suitable multiresolution analyses of (L2(Ω))d that contain alterna-
tively the divergence-free or curl-free functions. To illustrate, we will explain the
computation of 〈u, Ψ∇

j,k〉 in the two dimensional case.

Let (d1
j,k) and (d2

j,k) denote respectively the coefficients of the decomposition

of u = (u1,u2) on the wavelet basis of (V 0
j ⊗ V D

j )× (V D
j ⊗ V 0

j ):

u1 =
∑
j,k

d1
j,k ψ0

j1,k1
⊗ ψD

j2,k2
u2 =

∑
j,k

d2
j,k ψD

j1,k1
⊗ ψ0

j2,k2
.

The computation of inner product 〈u, Ψ∇
j′,k′〉 is

〈u, Ψ∇
j′,k′〉 =

∑
j,k

d1
j,k 〈ψ0

j1,k1
⊗ ψD

j2,k2
, (ψD

j′1,k′
1
)′ ⊗ ψD

j′2,k′
2
〉

+
∑
j,k

d2
j,k 〈ψD

j1,k1
⊗ ψ0

j2,k2
, ψD

j′1,k′
1
⊗ (ψD

j′2,k′
2
)′〉.

In terms of coefficient matrices [d1
j,k] and [d1

j,k], it becomes

[〈u, Ψ∇
j′,k′〉] = C0

j [d1
j,k] Mj + Mj [d2

j,k] (C0
j )

t,

where C0
j is the stiffness matrix of elements: 〈ψ0

j,k, (ψ
D
j′,k′)′〉. The computation

of the Gram and stiffness matrices Mj , C0
j is classical [4] (see also [17,20]).
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Fig. 2. Preconditioned conjugate gradient residual versus iteration number, for differ-
ent values of the dimension index j: periodic case (left) and non periodic case (right).
Daubechies generators ψ1 with r = 3 vanishing moments, jmin = 3 in non periodic
(2D case).

4.4 Divergence-Free and Curl-Free Gram Matrices Preconditioning

The tensorial decomposition (42) of Mcurl is used to deduce a preconditioner
from those of matrices Mj ⊗Rj and Rj ⊗Mj . Let Ij be the identity matrix of
dimension (Nj − 2) and IR be the diagonal matrix of Rj :

[Ij ]k,k′ = δk,k′ and [IR]k,k′ = [Rj ]k,k′δk,k′ , 1 ≤ k, k′ ≤ Nj − 2.

On one hand, as an optimal (and diagonal) preconditioner of Rj is given by the
inverse of IR (see [7,10]), readily we deduce optimal diagonal preconditioners of
matrices Mj ⊗Rj and Rj ⊗Mj by respectively the inverse of matrices Ij ⊗ IR
and IR ⊗ Ij .

On the other hand, since Mcurl is the 2D stiffness matrix of a scalar Laplacian
on the basis {ψD

j1,k1
⊗ ψD

j2,k2
}, an optimal preconditioner is given by the inverse

of its diagonal matrix [7,10]. Then, the inverse of the diagonal matrix Dj defined
by

Dj = Ij ⊗ IR + IR ⊗ Ij

is an optimal diagonal preconditioner for Mcurl.
However, the matrix Dj has the same size as Mcurl. To reduce the complex-

ity, we replace the 2D matrix-vector product Dj(d∇j,k) by the following matrix-
matrix products:

[Dj(d∇j,k)] = [d∇j,k]IR + IR[d∇j,k]. (45)

Because of the diagonal structure of IR, equation (45) is then reduced to term
by term matrix product:

[Dj(d∇j,k)]k,k′ = [d∇j,k]k,k′ · [I∗R]k,k′ where [I∗R]k,k′ = [IR]k,k + [IR]k′,k′ . (46)
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From equation (46), multiplying (d∇j,k) by the matrix D−1
j is therefore equivalent

to divide term by term the matrix [d∇j,k] by I∗R.
The preconditioner I∗R is also valid for the matrix Mdiv in dimension two

(d = 2) since Mdiv = Mcurl.
The performance of the above preconditioner for Mcurl was tested in two and

three dimensions, using a preconditioned conjugate gradient method to solve
system (43), with a random right hand side. Then we study the number of
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Fig. 3. Preconditioned conjugate gradient residuals versus iteration number, for dif-
ferent values of the approximation order r: periodic case (left) and non periodic case
(right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 10 in two dimension (d = 2).
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(right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 7 in three dimension (d = 3).
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iterations needed to reach a given residual, first with respect to the dimension
index j, second with respect to the regularity (approximation order r) of the
basis functions. Figure 2 shows that the number of iterations does not increase
significantly with the dimension index j, in the periodic and non periodic cases,
which indicates that our preconditioner is quasi-optimal.

Figure 3 (two-dimensional case) and Figure 4 (three-dimensional case) high-
light that the approximation order r speed up the convergence of the resolution.
The behaviour of the slopes are less regular in the non periodic case, because of
the influence of the smallest scale jmin > 0 (see [10] for similar conclusions).

4.5 Examples of Helmholtz-Hodge and Helmholtz Decomposition

In this section, we carry out some experiments to illustrate and study the con-
vergence rate of the Helmholtz-Hodge decomposition. First we show in dimen-
sion two, the Helmholtz decomposition of a vector field u (Figure 5), and its
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Fig. 5. Example of Helmholtz decomposition
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Fig. 6. Example of Helmholtz-Hodge decomposition

Helmholtz-Hodge decomposition (Figure 6). The vector field u was constructed
analytically:

u2D = udiv + ucurl + uhar,

where

udiv =
∣∣∣∣ sin(2πx)2 sin(4πy)
− sin(4πx) sin(2πy)2 , ucurl =

∣∣∣∣ sin(4πx) sin(2πy)2

sin(2πx)2 sin(4πy) , uhar = (1/2,−1/4)

The terms of the decompositions are computed using the method described pre-
viously.

Then we investigate the convergence rate of the projection error onto the
divergence-free vector space Vdiv

j , in two and three dimensions. The tests have
been performed on analytic fields, which we know the exact solutions. We used
u2D in two dimensions and u3D in three dimensions:
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Fig. 7. �2-projection error onto Vdiv
j versus j. Two-dimensional case (left) and three-

dimensional case (right). The generators (ϕ1, ϕ̃1) correspond to biorthogonal splines
with r = r̃ = 3.

u3D =

∣∣∣∣∣∣
sin(2πx)2 sin(4πy) sin(4πz) + sin(4πx) sin(2πy)2 sin(2πz)2

sin(4πx) sin(2πy)2 sin(4πz) + sin(2πx)2 sin(4πy) sin(2πz)2

−2 sin(4πx) sin(4πy) sin(2πz)2 + sin(2πx)2 sin(2πy)2 sin(4πz)
(47)

The solutions verify homogeneous Dirichlet boundary conditions by construction.
Figure 7 plots the �2-projection errors in terms of the dimension index j with
generators of approximation order r = 3. For both experiments (2D and 3D),
the convergence rate follows the theoretical law of −2 predicted in (11).

5 Conclusion

In this paper, we have presented a practical algorithm to compute the Helmholtz-
Hodge decomposition of a vector field in the hypercube. Our method is based on
the existence of divergence-free and irrotational wavelet bases satisfying bound-
ary conditions. After presenting the principles of their construction in any di-
mension, we have detailed the computation of each term of the decomposition,
which requires the inversion of divergence-free and curl-free wavelet Gram ma-
trices. We have used the tensorial structure of the bases to propose an optimal
and diagonal preconditioning, to invert the system using a preconditioned con-
jugate gradient. Numerical tests on 2D and 3D analytical vector fields illustrate
the potential of the approach, in terms of complexity and storage.

Since the Helmholtz-Hodge decomposition is a key ingredient for the analysis
and simulation of incompressible flows, future works will present its application
in numerical schemes for the Stokes and Navier-Stokes equations [17].
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19. Lemarié-Rieusset, P.G.: Analyses multi-résolutions non orthogonales, commutation
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Weighted and Isogeometric Methods
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Germany

Abstract. Weighted and isogeometric methods use b-splines to con-
struct bases for FEM. They combine the computational efficiency of
regular grids with the geometric flexibility of CAD representations. We
give a brief description of the key ideas of the two approaches, present-
ing them in a unified framework. In particular, we use b-spline nodes,
to visualize the free parameters. Moreover, we explain how to combine
features of both techniques by introducing weighted isogeometric finite
elements. An error estimate for the resulting mixed method is given, and
the performance of weighted approximations is illustrated by numerical
examples.

Keywords: b-spline, finite element method, weight function, isogeomet-
ric approximation.

1 Introduction

B-splines play an important role in many areas of applied mathematics and
engineering. With weighted1 and isogeometric2 methods, the advantages of the
b-spline calculus are made available also to finite element techniques. Moreover,
the new concepts provide a natural link from numerical simulation to geometric
modeling where b-splines have long become a standard tool.

The two approaches are described in detail in the books Finite Element Meth-
ods with B-Splines [10] and Isogeometric Analysis [7], respectively. We also refer
to [8,3,1,4] for a small sample of recent developments. In this paper, we give a
brief introduction to some key ideas of both techniques, illustrating their basic
features in the simplest possible setting. Moreover, we explain when a com-
bination of both methods might be useful. We propose weighted isogeometric
approximations which can, in particular, handle trim curves and surfaces effi-
ciently. Of course, we would like to stimulate the interest of the reader to learn
about all aspects of b-spline based finite elements, to implement algorithms for
further applications, and to participate in the future development of the theory.
1 Weighted extended b-splines (web-splines) were introduced by U. Reif, J. Wipper

and the first author [12], cf. also http://www.web-spline.de
2 Isogeometric Analysis was founded by T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs

[14] .

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 330–350, 2012.
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We begin by reviewing basic facts about finite elements and b-splines (cf., e.g.,
[20,21,5,18]). In particular, we describe the concept of b-spline nodes, which is
convenient for visualizing the degrees of freedom of numerical approximations.
Then, weighted b-spline bases, isogeometric elements, and a new mixed method
are discussed in turn. Moreover, we show that weighted isogeometric (mixed)
elements approximate with optimal order. Finally, examples are presented which
illustrate the performance of b-spline based simulations.

2 Finite Element Approximation

Many physical or engineering problems admit a variational formulation. This
means that the function

x �→ u(x) ∈ R

describing a phenomenon or process on a domain D ⊂ Rd minimizes an energy
functional

u �→ Q(u) =
∫

D

F (x, u,∇u, . . .) dx

over a suitable Hilbert space H , which incorporates boundary conditions if nec-
essary.

A finite element approximation

uh =
∑

k

ckBk

minimizes Q over a finite dimensional subspace Vh = spankBk of H :

Q(uh) = min
vh∈Vh

Q(vh) ,

where the discretization parameter h usually denotes a grid width. Clearly, the
choice of Vh as well as of the basis functions or finite elements Bk is crucial for
the accuracy and the efficiency of the resulting method. An enormous number
of different possibilities is available – we will add several further choices in the
next sections!

As a basic example, we consider Poisson’s problem corresponding to

F =
1
2
|∇u|2 − f(x)u ,

with a given function f . If no boundary condition is imposed, the normal deriva-
tive of a solution u vanishes on the boundary ∂D. This so-called natural bound-
ary condition does not have to be incorporated into the finite element subspace.
A typical essential boundary condition is

u(x) = 0, x ∈ ∂D . (1)

It must be satisfied (at least approximately) by all elements of Vh, in particular
by the basis functions Bk.
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Fig. 1. Quadratic Lagrange elements on a triangulation

The standard classical finite element approximation of Poisson’s problem on
a two-dimensional domain D employs Lagrange elements on triangles. As is
depicted in Figure 1, the degrees of freedom can be visualized by nodes at the
positions of the interpolated values. To each node xk corresponds a basis function
Bk with Bk(xk) = 1 and Bk(x�) = 0 for � �= k. The supports of two such finite
elements are highlighted in the figure. The boundary condition (1) is imposed
simply by assigning the value 0 to the boundary nodes (circles), leaving merely
the values at the interior nodes (dots) as free parameters.

3 B-Splines

A (standard) d-variate b-spline bk is a positive, bell-shaped, piecewise polynomial
function of coordinate degree n. As is illustrated in Figure 2, smoothness and
support are determined by the knots. The left figure visualizes the values of the
b-spline by coloring the support on the grid. This style of graphic representation
will be frequently used in the following. As shown on the right figure, cross
sections of the graph coincide with scaled univariate b-splines.

It is convenient to associate a node xk equal to the Greville abscissa with a
b-spline bk, i.e., xk

ν is the average of the interior knots in the ν-th coordinate
direction (ν = 1, . . . , d), counting multiplicities. The index k = (k1, ..., kd) cor-
responds to the position of bk on the grid separating the polynomial segments.
Intuitively, the location of the node coincides with the point of strongest influ-
ence of the b-spline. The nodes will be used later on to visualize the degrees of
freedom for spline approximations.

A spline is a linear combination of b-splines which have support on a grid-
conforming hyper-rectangle R:

p =
∑
k∼R

ckbk ,
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xk

�
h

�

Fig. 2. Bi-quadratic b-spline with grid and node

where k ∼ R ⇔ kν = 1, . . . ,mν with mν + n + 1 the number of knots in the
ν-th coordinate direction. We can associate the free parameters or coefficients
ck with the b-spline nodes. Figure 3 shows two standard situations. Uniform
splines (left) are spanned by translates of a single b-spline with obvious compu-
tational advantages. In particular, the node pattern is completely regular. For a
boundary-conforming spline space (right), the boundary grid hyperplanes coin-
cide with the boundary of the hyper-rectangle and have multiplicity n+ 1. This
implies that the values of p along any of the hyper-rectangle boundaries are de-
termined by the coefficients corresponding to the boundary nodes. For example,
if all of these coefficients are 0, then p vanishes along the entire boundary of R.

Fig. 3. Uniform and boundary-conforming bi-quadratic spline spaces

If the coefficients of a spline Φ are points Ck ∈ Rd, then

ξ �→ x = Φ(ξ) =
∑
k∼R

Ckbk(ξ), ξ ∈ R ,

describes a transformation of the parameter hyper-rectangle R. The control
net formed by the array of points Ck provides a qualitative description of the
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Φ
−→

Fig. 4. Bi-quadratic b-spline parametrization with control net and grid

deformation caused by Φ, as does the isoparametric grid (image of the partition
of the spline space under Φ).

Usually, boundary-conforming spline spaces are used for modeling parameter
transformations as is the case for the example in Figure 4. The advantage is that
the boundary of the image is determined entirely by the points Ck corresponding
to the boundary nodes.

4 Weighted B-Splines

In order to approximate a function u on a domain D we can simply use splines
defined on a hyper-rectangle R containing D:

u ≈ uh =
∑
k∼R

ckbk .

To emphasize that only those b-splines with some support in D are relevant, we
set irrelevant coefficients to 0. In the example of Figure 5, uniform bi-quadratic
b-splines are used; the solid relevant nodes correspond to the free parameters ck,
k ∼ D.

Perhaps somewhat surprisingly, the simple procedure works well for uncon-
strained variational problems. Just restricting the b-splines to the simulation
region D, provides very accurate finite element approximations uh for problems
with natural boundary conditions.

To incorporate essential boundary conditions, we resort to an idea already
proposed by Kantorovich and Krylov [15]. We represent the domain D in implicit
form via a weight function w,

D : w > 0 ,

as illustrated on the left of Figure 5. Multiplying the b-splines bk by w, we obtain
a suitable finite element basis for constrained problems:

Bk = wbk, k ∼ D . (2)

By construction, any of the weighted elements satisfy w(x)bk(x) = 0, x ∈ ∂D.
The precise adaptation to the boundary is apparent from the sample elements
highlighted on the right of the figure.
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Fig. 5. Weight function and weighted bi-quadratic b-splines with grid and nodes

Weight functions can be constructed in various ways. For example, the smooth-
ed distance to the boundary provides a general purpose solution. An elegant
procedure is Rvachev’s R-function method [17]. It combines elementary weight
functions according to Boolean operations and is thus particularly well suited for
simulations in conjunction with constructive solid geometry. The weight function
on the left of Figure 5 was constructed in this fashion.

The weighted basis functions wbk share all properties of standard finite ele-
ments, except for stability. For b-splines bj, which do not have at least one of the
grid cells of their support in D, the norm of wbj is very small. For moderate grid
widths this does not present any problems. In fact, the weighted basis (2) usually
provides adequate approximations. However, for certain algorithms stability can
be crucial, as h → 0. To obtain stable finite elements, we combine neighboring
b-splines with support near the boundary, forming so-called weighted extended
b-splines (web-splines), introduced by U. Reif, J. Wipper, and the first author
in [12]:

Bi =
∑

k

ei,k(wbk), i ∈ I .

The set I comprises all indices of inner b-splines, i.e., those bi with at least one
grid cell of their support in D.

The mathematics leading to the proper choice of the extension coefficients ei,k

is somewhat subtle. However, the basis change wbk → Bi can be implemented
efficiently. In effect, the work amount is comparable to a sparse precondition-
ing procedure, since the (generalized) matrix (ei,k)i∈I,k∼D has few off-diagonal
entries.

In two variables, this construction is not even necessary. B. Mößner and U.
Reif have made the surprising discovery that b-splines can be stabilized simply
by scaling [16]. This is in agreement with many of our numerical experiments
which indicated that stabilization can often be omitted. The scaling, proposed by
B. Mößner and U. Reif, is inherent to most preconditioners for iterative solvers.

We reviewed in this section just the basic idea of the web-method, providing
the prerequisites for the new mixed method, described in Section 6. A more
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detailed introduction can be found on the web-site www.web-spline.de which
also provides examples and further references.

5 Isogeometric Elements

Often it is possible to decompose a domain into simple patches which can be
described as images of hyper-rectangles:

D =
⋃
α

Φα(Rα) .

In fact, CAD descriptions in solid geometry provide spline parametrizations of
the form described in Section 3. A generalization of the classical isoparametric
concept suggests itself. Isogeometric analysis, founded by T.J.R. Hughes, J.A.
Cottrell, and Y. Bazilevs, provides a natural link from CAD models to FEM
simulations. We briefly scetch the main idea of this powerful technique in a very
simple setting, just providing sufficient detail to introduce a possible combination
with weighted methods in the following section. For a comprehensive description
of isogeometric analysis, we refer to [7].

As is illustrated in Figure 6, we can transform boundary-conforming b-splines
defined on each of the hyper-rectangles Rα, with the aid of the mappings Φα. In
other words, we use the basis functions

D ( x �→ Bk,α(x) = bk,α(ξ), ξ = Φ−1
α (x) ,

the so-called isogeometric b-splines. Clearly, to ensure continuity, consistency
at patch boundaries is crucial. This means that the restrictions of b-splines to
a common patch boundary must coincide (nodes connected by red lines in the
figure) and share the same coefficient.

We visualize the degrees of freedom by transforming the nodes associated with
the b-splines to D,

ξk,α �→ xk,α = Φα(ξk,α) ,

as is illustrated in Figure 6. In particular, in view of consistency, nodes xk,α on a
common patch boundary are shared by the b-splines of the neighboring patches.
Moreover, if essential boundary conditions are imposed as in the example in the
figure, coefficients associated with nodes on outer boundaries (marked by circles)
are set to 0.

It is convenient to also use boundary-conforming b-splines to represent the
parametrizations Φα. Typically, the grid for the isogeometric elements then is
a refinement of the grid for the parametrization. The degrees do not have to
match. In the example in Figure 6, bi-quadratic b-splines are used throughout,
which is, of course, a slight computational advantage. The basis functions Bk,α

are slight perturbations of standard b-splines adapting to the grid determined
by the mappings Φα.
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Φ1

−→

Φ2

−→

Fig. 6. Domain parametrization and bi-quadratic isogeometric b-splines with grid and
nodes

Despite the nonlinear transformations involved, isogeometric methods can be
implemented efficiently. Finite element integrals of the form∫

D

F (x,B(x),∇B(x), . . .) dx, B(x) = b(ξ), ξ = Φ−1(x) ,

are computed over the relevant parameter hyper-rectangle R. By the chain rule
and the formula for changing integration variables, the integral equals∫

R

F (Φ(ξ), b(ξ),∇b(ξ)(JΦ(ξ))−1 , . . .) |detJΦ(ξ)| dξ , (3)

where JΦ denotes the Jacobi matrix of the transformation. Hence, matrix as-
sembly does not require inverting the transformations of the parameter hyper-
rectangles, a key feature familiar from classical isoparametric methods.

6 Weighted Isogeometric Approximation

Some commonly used CAD representations employ patches parametrized over
trimmed parameter hyper-rectangles. A simple example is shown in Figure 7.
To apply the standard isogeometric method, the image domain would have to
be partitioned into deformed hyper-rectangles. As is already apparent from the
elementary shape in the figure, it is not always easy to find a natural partition,
in particular with few, only moderately distorted patches.

A possible remedy is a combination of the weighted and isogeometric ap-
proaches described, for the sake of simplicity, only for a single patch. We use
weight functions to represent the trim curves or surfaces. The constraints can be
specified either in the parameter hyper-rectangle R or the physical domain D.
If both variants are used as in the example of Figure 7, the active portion Ra of
the parameter domain consists of the points ξ = Φ−1(x) with

wR(ξ) > 0 , wD(x) > 0
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Φ
−→

Fig. 7. Trimmed parameter rectangle and domain with bi-quadratic weighted isogeo-
metric b-splines

(Γ1 : wR = 0, C2 : wD = 0) . Forming products with the boundary-conforming
b-splines, we obtain the weighted isogeometric b-splines

x �→ Bk(x) = wR(ξ)wD(x)bk(ξ), x = Φ(ξ) .

These basis functions are suited for problems with essential boundary conditions
on the image of the trim curves or surfaces. If essential boundary conditions are
also prescribed on the outer boundary of D, then the coefficients associated
with the boundary nodes are set to 0. In Figure 7, the degrees of freedom are
visualized in the usual way. The nodes ξk ∈ R are transformed to the physical
domain via Φ : xk = Φ(ξk).

Several weighted isogeometric b-splines Bk are highlighted on the right of
Figure 7. As in the previous examples, degree 2 was used for the parametrization
of the domain as well as for the b-spline basis. The weight functions coincide
with the standard implicit representations of a circle and a parabola.

Trimming will usually lead to weighted isogeometric b-splines with small sup-
port within the domain D. To avoid the resulting instabilities, the stabilization
measures, which were briefly mentioned at the end of Section 4, can be applied:
simple scaling in two and extension in three variables [16,12]. This yields a sta-
ble basis if Φ and Φ−1 are smooth. It seems, however, that stabilization can be
omitted in many cases. We have found (cf. the example at the end of the next
section and the remark in connection with the first example in Section 8) that
the accuracy of approximations is affected by instability only for extremely small
grid widths.

Any weighted approximation requires special integration routines for bound-
ary cells. This is straightforward in two dimensions (cf. [10], Section 8.4) for any
degree and in three dimensions for degree 1, where an interesting preprocess-
ing technique can be used (cf. [13]). Routines for three dimensional integration
over cell intersections with general NURBS-domains have been developed (cf. the
MIND project: www.imng.uni-stuttgart.de/LstNumGeoMod/Hoerner/mind/ ),
and perform sufficiently well for smooth boundary portions. For complicated in-
tersection patterns, as produced by curved edges and corners, integration can
be time consuming. Fortunately, asymptotically (for small grid width), the per-
centage of these cases becomes small.
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7 Error Estimate

We show in this section that weighted isogeometric approximations have, in
general, the optimal approximation order for standard elliptic problems with
smooth solutions. As a typical case, we consider Poisson’s equation

−Δu = f

with mixed boundary conditions on a bounded domain D ⊂ Rd of the form shown
in Figure 8 for d = 2. On the inner boundary C or trim surface, which encloses
a simply connected subdomain, homogeneous Dirichlet boundary conditions are
prescribed (u|C = 0) and, on the outer boundary ∂D\C, the solution satisfies
the Neumann condition ∂⊥u = 0 (vanishing normal derivative).

Γ

Ω
1

Ω
2

···

Φ
−→

C

Fig. 8. Regularly parametrized domain D = Φ(Ω), Ω ⊂ R, with a smooth inner
boundary C = Φ(Γ )

We assume that the untrimmed domain is the image of a hyper-rectangle R
under an (n + 1) times continuously differentiable bijective transformation Φ
with nonsingular Jacobian and denote by Ω = Φ−1(D) the trimmed parameter
domain. Moreover, the trim surface C should be smooth, i.e., representable in
implicit form via a smooth weight function wD (or via wR = wD ◦ Φ on the
parameter hyper-rectangle R) with wD = 0 ∧ gradwD �= 0 on C and wD > 0
in D and on the outer boundary. Under these hypotheses, the following error
estimate holds.

Theorem (Error of Weighted Isogeometric Finite Elements). The weighted iso-
geometric Ritz-Galerkin approximation uh of degree ≤ n to a solution u ∈
Hn+1(D) of the mixed Poisson problem described above satisfies

‖u− uh‖1,D ≤ const(D,wD, Φ, n)hn ‖u‖n+1,D ,

where ‖ ‖�,D denotes the norm for the Sobolev space H�(D) of functions with
square integrable �-th order partial derivatives.
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Proof. To simplify notation we use the symbols ),* for inequalities with generic
constants in one and both directions, which may depend on D, wD, Φ, and n
but neither on u nor on h. Moreover, we use a tilde for functions defined on the
trimmed parameter hyper-rectangle Ω = Φ−1(D):

u(x) = ũ(ξ), uh(x) = ũh(ξ), . . . , x = Φ(ξ), ξ ∈ Ω ⊂ R ,

etc.
The proof relies on results and techniques from isogeometric analysis [2,7]

and the theory of weighted approximations [12,10]; after all, the theorem per-
tains to a combination of key features of the two approaches. Moreover, the (by
now!) standard error estimates for splines (c.f. the classical books by C. de Boor
and L.L. Schumaker [5,18]) are crucial for our arguments. We refer also to [9],
where a weaker version of the theorem was obtained, for some of the preliminary
arguments.

We begin by noting that the composition with Φ or Φ−1 and multiplication
by a smooth weight function w are bounded operations with respect to Sobolev
norms:

‖p‖�,D ) ‖p̃‖�,Ω ) ‖p‖�,D, ‖wp‖�,D ) ‖p‖�,D . (S)

This elementary observation follows from the chain rule, the formula for trans-
formation of multiple integrals, Leibniz’ rule, and the fact that Φ,Φ−1, and w
are sufficiently smooth.

Now we observe that, by Cea’s Lemma, the error of uh can be bounded, up to
a constant factor, by the error of the best approximation from the finite element
subspace. Hence, it suffices to construct a linear combination

wDvh =
∑

k

ck wD(bk ◦ Φ−1)

of weighted isogeometric finite elements Bk = wD(bk ◦Φ−1), which approximates
u ∈ Hn+1(D) with the desired order:

‖u− uh‖1,D ) ‖u− wDvh‖1,D ,

as just noted in the preceeding sentence.
By the first inequalities in (S), the change of variables induced by the

parametrization Φ is bounded with respect to Sobolev norms. In particular,

‖u− wDvh‖1,D )(S) ‖ũ− wRṽh‖1,Ω, ‖ũ‖n+1,Ω )(S) ‖u‖n+1,D .

Hence, we may construct the approximation on the parameter hyper-rectangle
R.

An appropriate linear combination of weighted b-splines

wRṽh =
∑

k

ck wRbk ≈ ũ
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(wRṽh = (wDvh) ◦ Φ, wRbk = Bk ◦ Φ) is simply obtained by choosing for ṽh =∑
k ckbk a quasi-interpolant of

ṽ = ũ/wR .

Here, we use an extension of ṽ to all of Rd (also denoted by ṽ) to avoid technical
difficulties in the construction of quasi-interpolant functionals near the bound-
aries of Ω. The existence of bounded extensions with respect to Sobolev norms,

‖ṽ‖�,Rd ) ‖ṽ‖�,Ω , (E)

was established by Calderon and Stein [6,19].
Summarizing, after these preliminaries, to prove the theorem we have to show

that
‖wRṽ − wRṽh‖1,Ω ) hn‖ũ‖n+1,Ω, wRṽ = ũ . (A)

It seems as if we are done (cf. also the remark after the proof) since multiplication
by wR is a bounded operation and the quasi-interpolant ṽh ≈ ṽ approximates
smooth functions in the H1-norm with order O(hn). This is indeed the case
for pure one-patch isogeometric approximations (no weighting, wR ≡ 1, ṽ = ũ)
in a very special setting. The main difficulty we are facing in the presence of
essential boundary conditions on a trim surface is that ũ ∈ Hn+1(Ω) does not
imply ṽ ∈ Hn+1(Ω), i.e., ṽ is not sufficiently regular to yield the maximal quasi-
interpolation order. The division by wR in the definition of ṽ causes the loss of
roughly one order of differentiation as is already apparent from univariate exam-
ples. This problem is overcome with techniques developed in [12] (cf. also [10],
Section 5.5), in particular with two fundamental inequalities, which we restate
for convenience of the reader in a form appropriate for the mixed boundary value
problem under consideration.

For any subdomain U ⊂ Ω with distance δ > 0 to the inner boundary Γ =
Φ−1(C), the functions ṽ and ũ = wRṽ satisfy

‖ṽ‖n+1,U ) δ−1 (‖ũ‖n+1,U + ‖ṽ‖n,U ) . (R1)

Moreover,
‖ṽ‖n,Ω ) ‖ũ‖n+1,Ω . (R2)

In the references cited, the estimates were given for a smooth weight function
which vanishes to first order on the entire boundary (no Neumann part). They
also apply in the present context since, in a neighborhood Ω′ of the Neumann
boundary ∂R, the weight function wR is bounded from below by a positive
constant. This implies that ‖ṽ‖n+1,Ω′ )(S) ‖ũ‖n+1,Ω′ , i.e., near the Neumann
boundary both estimates, which essentially pertain to boundary behavior, are
trivial.

Proceeding with the estimate of the error of the quasi-interpolant ṽh ≈ ṽ
(assertion (A)), we have to take the two different types of boundary conditions,
Dirichlet and Neumann, into account; the inner and outer boundary have to be
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treated in a slightly different fashion. To this end, we split the function ṽ to be
approximated with the aid of a partition of unity into two parts:

ṽ = ṽD + ṽN .

As is indicated by the superscripts, the support ΩD of ṽD contains a neighbor-
hood of the Dirichlet boundary Γ and the Neumann boundary ∂R is covered by
supp ṽN = ΩN . More precisely, we choose ΩD ⊂ R with positive distance from
∂R and ΩN ⊂ (Ω ∪ cR) with positive distance from Γ (cf. Figure 8). Moreover,
the Sobolev norms of ṽD and ṽN are bounded in terms of the corresponding
Sobolev norms of ṽ. To accomplish this splitting, we choose two smooth non-
negtive functions (e.g., linear combinations of b-splines!) χD and χN with the
appropriate supports and

χD(ξ) + χN(ξ) = 1, ξ ∈ Rd .

Then we set ṽD = χDṽ, ṽN = χN ṽ. Clearly, by linearity, we have the same
decomposition for the quasi-interpolants, i.e., ṽh = ṽD

h + ṽN
h (ṽ∗h is a quasi-

interpolant of χ∗ṽ).
As a final preparation for the main argument, we recall a standard estimate

for quasi-interpolants p̃h with uniform b-splines bk of functions p̃, defined on Rd:

‖p̃− p̃h‖m,U ) hn+ν−m‖p̃‖n+ν,Uh
, 0 ≤ m ≤ n, ν = 0, 1 , (Q)

where Uh denotes the union of all b-spline supports overlapping the set U (ac-
tually, ν = m − n, . . . ,−1 is possible; but not needed here). There exist many
constructions for quasi-interpolants p̃h; any of them which has the above ap-
proximation property is adequate for our purposes.

Referring to assertion (A), we now estimate each part (Neumann and Dirich-
let) of the error

wRṽ − wRṽh = (wRṽ
N − wRṽ

N
h ) + (wRṽ

D − wRṽ
D
h )

(wRṽ = ũ) in turn.
The estimate of the error for the Neumann part is straightforward:

‖wRṽ
N − wRṽ

N
h ‖1,Ω )(S) ‖ṽN − ṽN

h ‖1,ΩN
h
)(Q) h

n ‖ṽN‖n+1,ΩN

)(E) hn ‖ṽN‖n+1,Ω )(S) h
n ‖ũ‖n+1,Ω ;

(N)

the first inequality because supp(ṽN − ṽN
h ) ⊆ ΩN

h , the second inequality because
supp ṽN ⊆ ΩN , the last inequality because ṽN = χN ṽ = χN ũ/wR, χN is smooth,
and wR ≥ c > 0 on Ω ∩ ΩN = Ω ∩ suppχN , noting that this set has a positive
distance from Γ .

For analyzing the Dirichlet part in the decomposition of the error wRṽ−wRṽh,
we introduce the abbreviation

wRṽ
D − wRṽ

D
h = wRẽh ,
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i.e., ẽh is the error of the quasi-interpolant of ṽD. To estimate the H1-norm of
wRẽh, we have to take the weight function more explicitly into account. We use
the inequality

‖wRẽh‖1,U ) sup
ξ∈U
|wR(ξ)| ‖ẽh‖1,U + ‖ẽh‖0,U (I)

which follows directly from the definition of the H1- and L2-norm and is valid
for any subset U of Ω. Indeed, with ‖ ‖0 denoting the L2-norm and by ∂ν the
partial derivative with respect to the ν-th variable,

‖we‖21,U = ‖we‖20,U +
∑

ν

‖∂ν(we)‖20,U

)(S) { ‖e‖20,U +
∑

ν

sup
U
|∂νw|2 ‖e‖20,U }+

∑
ν

sup
U
|w|2 ‖∂νe‖20,U ,

where {. . .} )(S) ‖e‖20,U and the last term is ≤ supU |w|2 ‖e‖21,U .
To capture the interplay between the smallness of w and the lack of regularity

of ṽ near Γ , we cover Ω ∩ ΩD
h (recall that ΩD contains Γ and has a positive

distance from the Neumann boundary ∂R) by strips Ω1, Ω2, . . . with widths
proportional to h and at least twice as large as the diameter of a b-spline support
(cf. Figure 8). Using the inequality (I), we estimate wRẽh on each of these strips
in turn. To this end the two terms on the right of the inequality are bounded
with the aid of (Q), taking also the size of the supremum into account.

strip Ω1: Since wR is smooth and vanishes on Γ , we have wR(ξ) ) h on Ω1.
This implies

‖wRẽh‖1,Ω1 )(I,Q) hhn−1‖ṽD‖n,Ω1
h

+ hn‖ṽD‖n,Ω1
h)(E,S) h

n‖ṽ‖n,Ω )(R2) h
n‖ũ‖n+1,Ω .

(D1)

Here, (Q) was used with m = 1, ν = 0 (first term) and m = 0, ν = 0 (second
term). We see that the inferior order for the H1-norm of the error ẽh = ṽD− ṽD

h

of the quasi-interpolant (first term) is compensated by the fact that wR is small
near the inner boundary Γ .

strips Ω�, � > 1: By construction,

δ = dist(Γ,Ω�
h) * dist(Γ,Ω�) * �h .

To this end we note that the width of Ω1 is at least twice as large as a b-spline
support, so that this assertion is valid in particular for Ω2

h; the enlarged set does
not touch Γ . Moreover, by our assumptions on the weight function, wR ) �h on
Ω�

h. Hence, since δ−1 ) (�h)−1,

‖wRẽh‖1,Ω� )(I,Q) (�h)hn‖ṽD‖n+1,Ω�
h

+ hn+1‖ṽD‖n+1,Ω�
h

)(S) �hn+1‖ṽ‖n+1,Ω�
h
)(R1) h

n
(
‖ũ‖n+1,Ω�

h
+ ‖ṽ‖n,Ω�

h

)
.
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Here, (Q) was used with m = 1, ν = 1 (first term) and m = 0, ν = 1 (second
term). The fact that, for � > 1, Ω� and Ω�

h have a positive distance from Γ is
crucial. This is the reason why the case � = 1 has to be treated differently.

Squaring the inequality, noting that (α + β)2 ) α2 + β2, and summing over
� > 1, we obtain the error bound also on the remaining part of the support ΩD

h

of ẽh within Ω:

‖wRẽh‖21,∪�>1Ω� ) h2n
(‖ũ‖2n+1,Ω + ‖ṽ‖2n,Ω

) )(R2) h
2n ‖ũ‖2n+1,Ω , (D2)

noting that Ω�
h ⊂ Ω for small enough h and these enlarged strips overlap at

most twice; Ω�
h ∩Ω�′

h = ∅ for |�− �′| > 1. Since

Ω ∩ supp ẽh = Ω ∩ΩD
h ⊂ ∪�≥1Ω

� ,

combining the estimates (D1,D2) yields the desired bound also for the Dirichlet
part of the error. Together with the estimate (N) this proves (A) and thereby
the theorem. �

The arguments have been somewhat technical. This reflects the complexity of
the approximation process which involves b-splines of arbitrary degree, curved
boundaries, parametrizations, and weight functions. However, we note that a
substantially simpler argumentation is possible if one is content with an error
estimate of the form

‖u− uh‖1,D = O(hn) ,

which does not show the precise dependence on the regularity of u. A result
of this type neither requires the splitting of the error nor the regularity results
(E), (R1), and (R2). With the aid of (Q) a relatively short proof is possible if
one assumes, e.g., that u has continuous partial derivatives up to order n + 2.
While we think that the above estimate is adequate for many purposes, usually,
in finite element analysis, bounds with optimal regularity are preferred. They
are essential for certain applications, e.g., the convergence analysis for multigrid
algorithms, and certainly more appealing from an aesthetic point of view.

It is clear, that we can obtain analogous estimates for any standard elliptic
second order problem with smooth solutions and smooth Dirichlet boundaries.
More delicate (not done also for pure weighted approximations) is the analysis
for problems with singularities due to reentrant corners or discontinuities and
incompatible boundary conditions. As is well known, solutions are generally not
smooth in these cases, unless the data satisfy appropriate conditions. Also not
covered are singular parametrizations as well as non-smooth weight functions.
The latter arise when applying Rvachev’s technique for domains with corners (at
least if the simplest R-function system is used). In this case one is confronted
with lack of regularity of solutions as well and should note that using high de-
gree b-splines (isogeometric or weighted) will not pay off for non-smooth prob-
lems (corners, discontinuities, singularities, etc.) unless suitable enhancements
are used (e.g., additional special basis functions or adaptive refinement).

We have considered a single parametrization Φ since this is the case which is
most relevant for the weighted isogeometric method. With our handling of trim
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surfaces one can often avoid partitioning the domain. When several parametriza-
tions are used (cf. Figure 6), the quasi-interpolation error has to be estimated sep-
arately for each deformed hyper-rectangle. Since, in general, parametrizations will
merely join continuously, composition with Φ orΦ−1 is no longer globally bounded
with respect to Sobolev norms. Hence, the arguments become much more elabo-
rate, already without a weight function (see [2] for a comprehensive error analysis
as well as a number of open questions mentioned in the introduction).
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Fig. 9. Logarithmic plots of H1-errors (left) and condition numbers (right) of weighted
isogeometric Ritz-Galerkin approximations for the mixed Poisson problem with f = 1

We confirm the asserted convergence rates experimentally. The left diagram of
Figure 9 shows the expected increase in accuracy with the degree. The logarith-
mic errors log ‖u− uh‖1,D are plotted as functions of logh; the labels show the
decimal exponents. From the slopes we obtain estimates for the average rate, e.g.,
the rate approaches 5 for quintic approximations (degree 5). The computations
were performed without extension, i.e., with the simple weighted isogeometric
basis. We note that the instability has virtually no effect on the accuracy, despite
huge condition numbers, as shown in the right diagram (solid lines). For exam-
ple, the condition, estimated with the MATLAB condest command, exceeds
1070 for degree 6. This limited relevance of stability has been noticed in other
examples. The phenomenon is probably due to the fact that preconditioning is
inherent in many iterative solvers like the pcg-ssor routine used for this example.
A theoretical explanation is given by B. Mößner and U. Reif [16], who showed
that bivariate b-splines can be stabilized simply by scaling. Hence, at least in
two variables, the extension procedure described at the end of Section 4 is, also
from a theoretical point of view, not necessary.

The right diagram also shows the condition numbers for stabilized weighted
extended isogeometric bases for degrees 1 to 6 (dashed lines at the bottom of
the diagram). As expected the values are drastically smaller, reflecting the pre-
dicted order O(h−2) for the condition of the Ritz-Galerkin system. In all cases,
the condition numbers for the extended bases are ≤ 1020. Perhaps somewhat
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surprisingly, not only the errors but also the number of pcg-ssor iterations are
roughly identical for the stable and unstable case in this example; another indi-
cation of inherent preconditioning.

8 Applications

The true measure for comparing finite element software are complicated three-
dimensional problems. We give examples for the weighted and weighted isoge-
ometric b-spline techniques. For the pure isogeometric method we refer to the
literature (cf., e.g., [7] and the references cited therein) since we have at this
point only the simple one-patch discretization implemented which cannot han-
dle complex geometrical structures.

Figure 10 shows a domain D with many holes, which is defined implicitly by
a randomly generated piecewise trilinear weight function

D : wh =
∑

k

wkbk > 0 .

Clearly, only the weighted method will handle the complicated boundary pattern
efficiently. As a test case, we solve the Poisson problem with essential homoge-
neous boundary conditions and

Q(u) =
1
2

∫
D

|gradu|2 − 2u .

Due to the irregular boundary, the regularity of the solution is poor. Hence,
linear b-splines provide an adequate approximation:

uh = whph, ph =
∑

k

ukbk .

Using the same representation for the weight function wh as well as for the
spline ph, leads to an appealing data structure. On each grid cell (cube with edge
length h), the approximation uh is determined by 2 × 23 values at the corners
which coincide with the b-spline coefficients in this case. As a consequence, as is
described in [13], a very efficient solution procedure is possible. For example, on
a grid of 5773 = 192, 100, 033 unknowns, a dynamic vectorized multigrid solver
on a NEC SX8 with 8 CPUs on one node reaches a relative residual less than
1E − 8 in < 50 seconds of real time. Perhaps even more striking is that the
time for assembling the discrete finite element system (usually the bottle neck in
simulations) is comparable to the time required by the solver. This demonstrates
the excellent performance of assembly algorithms for b-spline based methods.

It is interesting to note that the multigrid iteration has been programmed
without stabilization via extension. While stability of the basis is (to date!)
essential for the convergence theory, our solver does not seem to require it; a
simple diagonal preconditioning suffices, at least for this particular application
(cf. also the remarks at the end of Section 7 and [16]).
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Solve

Matrix

Other

Fig. 10. Randomly generated domain for Poisson’s problem and relative computing
time of program components

In our second example, we consider the deformation of an elastic solid occu-
pying a volume D ⊂ R3 under gravity. The displacement

(u1(x), u2(x), u3(x)), x ∈ D ,

satisfies the Navier-Lamé system and minimizes the energy functional

Q(u) =
1
2

∫
D

σ(u) : ε(u)− fu ,

where σ is the stress and ε the strain tensor.
We choose a geometric form which is neither ideally suited for weighted nor

for isogeometric b-spline approximations. The curved bridge shown in Figure
12 has a relatively simple shape. Nevertheless both, the weighted and the iso-
geometric method, do not provide good discretizations as is illustrated in Fig-
ure 11. A straightforward description of the domain with a global weight function
leads to unnecessary many boundary cells. On the other hand, while the princi-
pal shape is an absolutely elementary example of a deformed cuboid (a Bézier
parametrization of coordinate degree (1, 1, 2) suffices), the trim surfaces prevent
the representation with a simple parametrization. Instead, a partition into de-
formed cubes is required (cf. [7], Figure 2.29 for a similar example), which does
not reflect the simplicity of the geometry. As a consequence, one loses some of the
computational efficiency; a vectorizable assembly routine is no longer applicable
in a straightforward fashion.

The mixed method described in Section 6 suggests itself. We use a single
polynomial parametrization Φ in Bézier form on a rectangle R and model the
trim surfaces by a product of three elementary weight functions. In other words,
we use finite elements of the form

eν

(
3∏

α=1

wα(ξ)

)
bk(ξ), ν = 1, 2, 3, k ∼ R ,

where the multiplication by the unit vectors eν takes the vector-valued form of
the approximation uh into account. As a consequence, we obtain fairly accurate
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Fig. 11. Weighted (left, top view) and isogeometric (right, side view) discretization of
a curved bridge

Φ
−→

Fig. 12. Deformation of an elastic solid

numerical results with relatively few parameters. Figure 12 visualizes the mag-
nified deformation for concrete (Young’s modulus: E = 50kN/mm2, Poisson’s
ratio: 0.2). It was computed with 3 · 50 · 5 · 9 triquadratic finite elements (3 · 90
of them are outside the trimmed domain). Only a section of the grid in the xz-
plane is shown. Using a pcg solver, the system was solved to a relative accuracy
of < 1E − 10 in less than 600 iterations.

The efficiency of b-spline algorithms, demonstrated by the above examples, is
also reflected in the simplicity of finite element codes. The beauty of b-spline pro-
gramming is particularly evident for multigrid techniques [11], where subdivision
serves as canonical grid transfer.

9 Conclusion

Comparing Figures 5, 6, and 7, the various basis functions are qualitatively very
similar. Perhaps this is not too surprising; after all, each of the slightly different
concepts is based on b-splines. As a consequence, the finite elements share many
advantages:

– free choice of smoothness and order of accuracy
– efficient recurrences for basic operations
– flexible geometry representation
– vectorized algorithms and multilevel techniques
– simple data structure with one node per grid point
– natural adaptive refinement via hierarchical bases
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With many common favorable features, weighted and isogeometric methods both
perform well for a broad range of applications. However, there are some pros and
cons which we would like to point out below.

If a natural weight function is available, like for constructive solid geometry
models or for many problems in linear elasticity, weighted approximations sug-
gest themselves. Another ideal application are free boundary problems, where
the unknown boundary can be implicitly represented by a spline serving as a
weight function which changes with time.

On the negative side, the numerical construction of weight functions from
boundary representations can be difficult, particularly in three dimensions. Gen-
eral purpose schemes have to rely on efficient algorithms for computing the dis-
tance function in a neighborhood of the domain boundary.

Isogeometric techniques are the method of choice if a CAD description of the
domain D as solid model without trimming is available. This means that D is
already partitioned into moderately deformed rectangles and cubes, respectively.
If this is not the case, depending on the topological structure of D, the domain
decomposition can be nontrivial. There is some similarity to the generation of
coarse hexahedral meshes. Of course, we could also allow triangles and tetrahedra
as additional parameter domains. But then, the isogeometric method loses some
of its computational efficiency.

Numerical integration is crucial for both techniques. Isogeometric methods re-
quire only integration over grid cells, an ideal situation. However, the evaluation
of integrands of the form (3) is time consuming. Hence, minimal node formulas
are especially important. Weighted methods have simpler integrands. Yet, the
integration over boundary cells is nontrivial. To preserve the high accuracy of
the b-spline approximations, cells which are intersected by the domain bound-
ary must be partitioned into smooth images of standard domains. Fortunately,
topologically difficult intersection patterns are less frequent so that they do not
have a significant impact on the overall computing time.

The mixed method introduced in this paper eliminates some of the difficulties
mentioned above. Figure 7 serves as a typical example. Boundary integration is
necessary only for grid cells with relatively simple intersection patterns. Moreover,
despite the nontrivial shape of the domain, computations use a parametrization
over a single rectangle.

As is apparent from the above remarks, there are numerous topics for future
research. With a joint effort, continued progress will be made, and we believe that
b-splines have the potential to become a standard in finite element analysis, too.
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Abstract. In this paper we construct an edge based, or 1-form, sub-
division scheme consistent with

√
3 subdivision. It produces smooth

differential 1-forms in the limit. These can be identified with tangent
vector fields, or viewed as edge elements in the sense of finite elements. In
this construction, primal (0-form) and dual (2-form) subdivision schemes
for surfaces are related through the exterior derivative with an edge
(1-form) based subdivision scheme, amounting to a generalization of the
well known formulé de commutation.

Starting with the classic
√

3 subdivision scheme as a 0-form subdi-
vision scheme, we derive conditions for appropriate 1- and 2-form sub-
division schemes without fixing the dual (2-form) subdivision scheme a
priori. The resulting degrees of freedom are resolved through spectrum
considerations and a conservation condition analogous to the usual mo-
ment condition for primal subdivision schemes.

Keywords: Discrete exterior calculus,
√

3-subdivision, 1- and 2-form
subdivision, tangent vector field generation.

1 Introduction

Subdivision algorithms for the construction of smooth free form surfaces are now
well established [1,2,3] and have found applications well beyond geometric model-
ing [4,5]. Most of the schemes proposed so far are based on meshes with the data
living at either vertices, e.g., positions, or faces, e.g., colors [6,7,8,9,10,11]. Such
primal and dual schemes respectively come in many flavors distinguished by their
topological split rules, e.g., based on triangles or quadrilaterals, and the geomet-
ric smoothing rules, e.g., piecewise linear or higher order. Less well studied are
subdivision schemes based on data living on edges [12]. In this setting scalar coef-
ficients associated with directed edges in the coarser mesh are linearly combined
to give the new scalar coefficients on edges in the refined mesh. Using a suitable
interpolation method for these coefficients one can construct a sequence of every-
where defined differential 1-forms which, under suitable conditions, converge to a
limit. Hence such edge based subdivision schemes are a natural fit for the construc-
tion of differential 1-forms. These in turn may be identified with tangent vector

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 351–368, 2012.
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fields [12]. They can also be seen as giving rise to edge elements in the sense of fi-
nite elements, which can be essential in the numerical resolution of certain partial
differential equations [14,15]. In this way edge based subdivision schemes provide
new construction methods for hierarchically refinable edge elements, for example.√

3-subdivision [10] was the first triangle-based subdivision scheme with a non-
traditional topological refinement step. Instead of quadrisecting triangles, i.e.,
inserting a new vertex for each edge, it inserts a new vertex for each triangle and
then connects these with the old vertices. One of its distinguishing features is
the slower growth rate of triangles from the coarser to the finer mesh (factor of
3 rather than 4).

√
3-subdivision as proposed by Kobbelt generates C2surfaces

everywhere, but at the irrgular vertices (where it is only C1), while using only
a small stencil. Notably, it allows for a smoother mesh gradation when adaptive
refinement is used.

The first construction of a 1-form subdivision scheme was given for Loop sub-
division [9] (a similar construction also applies to Catmull-Clark subdivision).
There the stencil for the edge-based subdivision is derived by enforcing commu-
tative relations

d0S0 = S1d
0

These state that taking the (discrete) exterior derivative after subdivision should
yield the same result as taking it before and then using the associated subdivision
scheme. Fixing Loop as the 0-form (function) subdivision scheme and (general-
ized) half-box splines as the dual (face based) subdivision scheme uniquely fixes
a smooth 1-form subdivision scheme on edges.

In this paper, we study the construction of a 1-form scheme for
√

3 refinement
fixing only the primal subdivision scheme a priori to be the one of Kobbelt [10].
No 2-form subdivision is specified in advance. In this case the commutative
relations do not uniquely fix the scheme and we use spectrum and moment
considerations to fix the scheme.

2 Mathematical Setup

We will be working with orientable 2-manifold triangle meshes of arbitrary topol-
ogy. Such meshes are given as {V,E, T }, where V = {vi} represents all vertices
(always oriented positively by convention), E = {eij} all directed edges (eij

goes from vertex i to vertex j) and T = {tijk} all oriented facets (tijk has bor-
der orientation i, j, k). Furthermore we have point positions P = {pi}, pi ∈ R3

for each vertex which determine the embedding of the mesh through piecewise
linear interpolation.

We also need the discrete analog of exterior calculus (DEC) [13] on a mesh.
In DEC, smooth differential k-forms have their analog in k-cochains, i.e., scalar
coefficients associated with the k-simplices of the mesh (here k = 0, 1, 2 denotes
the dimension of the underlying simplex). These coefficients represent the inte-
gral of the corresponding k-form over the underlying k-simplex (with integration
over vertices interpreted as point evaluation):
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0-form: ci = ω0(vi), 1-form: cij =
∫

eij

ω1, 2-form: cijk =
∫

tijk

ω2. (1)

Note that cij = −cji and similarly cijk = −cjik. That is, the orientation of the
underlying simplex must be taken into account when manipulating the associated
k-form coefficients. This will be important when applying the edge subdivision
stencils, for example. Evaluating these integrals for a given smooth form ω over
the appropriate simplices in the mesh then corresponds to projecting the given
form into a subspace formed by as yet to be chosen bases.

With these in place the discrete analog of the smooth exterior derivative d is
naturally defined as the co-boundary operator ensuring that Stokes’ theorem is
verified at the discrete level by construction∫

Ω

dω =
∫

∂Ω

ω. (2)

At the discrete level of the mesh the integration domain on the left would be
a 1- or 2-simplex, while on the right it is the corresponding boundary. This al-
lows us to define the meaning of the discrete d in a purely topological manner
(as it should be). For example, computing the discrete differential d0 of a dis-
crete 0-form (coefficients at vertices), one assigns to each edge eij the coefficients
cij = cj − ci, i.e., computes the signed sum of the coefficients at the edge bound-
ary. Similarly, the discrete differential d1 of a 1-form computes the discrete 2-form
cijk = cij+cjk+cki at each triangle as the signed sum of coefficients over its bound-
ary. Consequently, the linear operators d0 and d1 are realized through the signed
incidence matrices of edges on vertices resp. triangles on edges (See Eq.(7)).

These discrete operations can be brought into correspondence with the smooth
exterior derivative through suitably chosen reconstruction functions (forms). An
example of this are the Whitney elements. For 0-forms, i.e., for data living at
vertices, these are just the standard linear hat functions φi associated to each
vertex. These will be used for functions on the surface as well as the surface itself.
Given the φi, linear interpolants for edge coefficients (1-forms) can be built as

φij = φidφj − φjdφi. (3)

Finally for 2-form data, i.e., coefficients at faces, a suitable reconstruction are
the piecewise constants

φijk = 2(φidφj ∧ dφk + φjdφk ∧ dφi + φkdφi ∧ dφj). (4)

These particular bases ensure that exterior derivative and reconstruction com-
mute: first reconstructing a 0-form and then applying the (smooth) exterior
derivative yields the same result as first applying the discrete exterior deriva-
tive and then reconstructing with the φij , and similarly for the transition from
1-forms to 2-forms.

To visualize the 1-forms on the mesh we use a metric to associate 1-forms
with (tangent) vector fields. Consider a single triangle embedded into an affine
space (Fig.1(a)), then
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dφA =
1
a
(1, 0), dφB =

1
b
(0, 1), and φA =

x

a
, φB =

y

b

⇒ φAB =
1
ab

(−y, x) ⊥ (x, y), (5)

i.e., the vector is perpendicular with OP and has the magnitude |OP |
ab .

x

y

O A(a,0)

B(0,b)

P(x,y)

(a) Embed a single triangle into an
affine space

x

y

O A

B

(b) Whitney 1-form φAB

Fig. 1. Visualization of a Whitney 1-form as a vector field

With these tools in place we can now proceed with the construction of the
1-form subdivision scheme. The key equations are the commutative relations (1):
if we ensure that the discrete exterior derivative commutes with the subdivision
operator and the corresponding subdivision scheme converges, then the limit
1-forms will form a basis for the underlying space of forms and discrete and
smooth exterior derivatives will commute with reconstruction. This is entirely
analogous to the formulé de commutation well known from the univariate setting
and generalizes it to the 2-manifold setting in the context of subdivision. To be
able to talk about a sequence of 1-forms converging, we introduced the piecewise
linear Whitney interpolators φij to map the coefficients on edges to a continuous
1-form. This is entirely analogous to the use of hat functions for interpolation of
data at vertices to speak of a sequence of piecewise linear meshes converging to
a smooth limit surface.

3 Regular Vertex

In this section we discuss the details of the subdivision stencil around regular
vertices (valence V = 6). The subdivision scheme maps the coarse control mesh
C0 to the refined mesh C1 and repeats this process iteratively. For the analysis
we only need to consider a local invariant neighborhood, i.e., a central vertex
with its surrounding k-ring of regular vertices.
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[1] α

[2] β

[3] β
[4] β

[5] β

[6] β

[7] β

1/3

1/3
1/3

(a) 0-form, odd/even vertices.

[7] b0

[12] b1

[8] -b1

[11] b2

[9] -b2

[10] b3

[1] a1

[2] a1

[6] a2

[3] a2

[4] a3

[5] a3

s
s

s
-s

(b) 1-form, odd/even edges.

[1] c1

[2] c1

[3] c2

[4] c3

[5] c3

[6] c2

(c) 2-form.

Fig. 2. Stencils (odd/even) for 0-, 1-, and 2-form subdivision rules indicating the cor-
responding weights. The numbers in square brackets give the indices used in the sub-
division matrices.

Using the indexing of Fig.(2) the associated subdivision matrices are:

S0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α β β β β β β

1/3 1/3 1/3 0 0 0 0

1/3 0 1/3 1/3 0 0 0

1/3 0 0 1/3 1/3 0 0

1/3 0 0 0 1/3 1/3 0

1/3 0 0 0 0 1/3 1/3

1/3 1/3 0 0 0 0 1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a1 a2 a3 a3 a2 b0 −b1 −b2 b3 b2 b1

a2 a1 a1 a2 a3 a3 b1 b0 −b1 −b2 b3 b2

a3 a2 a1 a1 a2 a3 b2 b1 b0 −b1 −b2 b3

a3 a3 a2 a1 a1 a2 b3 b2 b1 b0 −b1 −b2

a2 a3 a3 a2 a1 a1 −b2 b3 b2 b1 b0 −b1

a1 a2 a3 a3 a2 a1 −b1 −b2 b3 b2 b1 b0

−s 0 s 0 0 0 s s 0 0 0 0

0 −s 0 s 0 0 0 s s 0 0 0

0 0 −s 0 s 0 0 0 s s 0 0

0 0 0 −s 0 s 0 0 0 s s 0

s 0 0 0 −s 0 0 0 0 0 s s

0 s 0 0 0 −s s 0 0 0 0 s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1 c1 c2 c3 c3 c2

c2 c1 c1 c2 c3 c3

c3 c2 c1 c1 c2 c3

c3 c3 c2 c1 c1 c2

c2 c3 c3 c2 c1 c1

c1 c2 c3 c3 c2 c1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

with α = 2/3 and β = 1/18 for the regular case [10].
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Using the same indexing convention the discrete exterior derivative operators
have the following matrix representations:

d0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0

−1 0 1 0 0 0 0

−1 0 0 1 0 0 0

−1 0 0 0 1 0 0

−1 0 0 0 0 1 0

−1 0 0 0 0 0 1

0 −1 1 0 0 0 0

0 0 −1 1 0 0 0

0 0 0 −1 1 0 0

0 0 0 0 −1 1 0

0 0 0 0 0 −1 1

0 1 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, d1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0 1 0 0 0 0 0

0 1 −1 0 0 0 0 1 0 0 0 0

0 0 1 −1 0 0 0 0 1 0 0 0

0 0 0 1 −1 0 0 0 0 1 0 0

0 0 0 0 1 −1 0 0 0 0 1 0

−1 0 0 0 0 1 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

which are just the standard signed incidence matrices of the graph of the mesh.
Writing out the commutative relations between 0- and 1-form subdivision,

d0S0 = S1d
0, one finds 7 conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 + a2 + a3 = 1/6

a1 + b1 = 5/18

b0 = 0

a2 − b1 + b2 = −1/18

a3 − b2 = −1/18

b3 = 0

s = 1/6

, (8)

only six of which are independent, leaving two free variables. We represent all
variables in terms of the rim edge coefficients b1 and b2:

a1 =
5
18

− b1, a2 = − 1
18

+ b1 − b2, a3 = − 1
18

+ b2. (9)

Using the commutative relations between 1- and 2-form subdivision, d1S1 =
S2d

1, the parameters for the 2-form stencil may be written as functions of the
1-form stencil parameters

c1 = −b1 + s, c2 = −b2 + b1, c3 = b2 = b2. (10)

In particular they do not add any constraints to b1 or b2.
To determine b1 and b2 we switch to the Fourier domain, using the gener-

ating function of the subdivision matrix. Fig.(3) shows the three ring invariant
neighborhood around a regular vertex in both the coarse (C0) and refined (C1)
meshes.
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(a) 1-form-subdivision

 

(b) Indexing rule

Fig. 3. 3 rings of coarse mesh and refined mesh (before and after one step of
√

3-
subdivision )

The corresponding subdivision matrix SR
1 ∈ R90×90 can be simplified by tak-

ing advantage of the circulant symmetry of the k-ring neighborhood through a
circulant Fourier transform giving a block diagonal matrix

diag{SF
1 (z0), SF

1 (z1), SF
1 (z2), · · · , SF

1 (zV −1)},
where z = e2πi/V and

SF
1 (z) =

⎡⎣D1 0 0
∗ D2 0
∗ ∗ D3

⎤⎦
with

D1 =

[
a1 + a1z + a2z

2 + a3z
3 + a3

z2 + a2
z

−b1z − b2z
2 + b2

z2 + b1
z

− 1
6

+ z2

6
1
6

+ z
6

]

D2 =

⎡⎢⎢⎢⎢⎢⎣
− 1

6
1
6

0 0 0

a3z b1 − a3z a2 − b2z 0 −b2

−a3z −b2 + a2z −a3 + b1z −b2z 0

−a2z a3z −a1 b2z b1

a2z −a1z a3 b1z b2

⎤⎥⎥⎥⎥⎥⎦
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D3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −b2 −a3 a3 b2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 a3 −a2 −b1 0 b2 0

0 0 0 0 0 0 0 0

0 −b1z −a2z a3z 0 0 b2z 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Because the spectrum of SF
1 is formed by the eigenvalues of D1, D2 and D3, the

off-diagonal blocks are not important in the analysis which follows.
Because

√
3-subdivision performs a rotation of

√
z = eπi/V when going from

the coarser to the finer mesh we expect to find a global phase factor of
√
z in

all eigen values [11], i.e., they should be of the form ejπi/V λ for λ ∈ R. This
is certainly true for the D1 and D3 blocks. For the D2 block this requirement
implies further constraints on b1 and b2, leaving 3 possibilities:

Condition a1 a2 a3 b1 b2

Case 1: b2 = 0, b1 = a3 1/3 −1/9 −1/18 −1/18 0

Case 2: b2 = 0, b1 = −a3 2/9 0 −1/18 1/18 0

Case 3: b2 = −a2, a3 = 0 2/9 −1/18 0 1/18 −1/18

To determine the choice of coefficients we use the generating function of the
2-form subdivision (see Fig.(3) for the indexing rule for the facets in the inner
3 rings):

SF
2 (z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c3z
3 + c2z

2 + c1z + c1 + c2
z

+ c3
z2 0 0 0 0 0 0 0 0

c1 + c2z c3z c1 + c3z c2 0 0 0 0 0

zc1 + c1 c3z zc2 + c2 c3 0 0 0 0 0

c2 + c1z c2z c3 + c1z c3 0 0 0 0 0

0 c2 c1 c1 0 c3 c3 c2 0

c2 + c3z c2z c1 + c3z c1 0 0 0 0 0

zc3 + c3 c1z zc2 + c2 c1 0 0 0 0 0

c3 + c2z c1z c3 + c1z c2 0 0 0 0 0

0 c1z c1z c2z 0 c2z c3z c3z 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

Each of the three choices for the coefficients gives a different spectrum for SF
2 ,

only one of which has the correct leading terms (when ordered by modulus):

|λ0| > |λ1| = |λ2|︸ ︷︷ ︸
λ0/

√
3

> · · · (13)

This condition is satisfied only for case 2:

c1 =
1

9
, c2 =

1

18
, c3 = 0

⇒ σ(SF
2 ) =

{
z2

18
+

z

9
+

1

18z
+

1

9
,

√
z

18
,−

√
z

18
,

z

18
+

1

18
, 0, 0, 0, 0, 0

}
= {1

3
,

√
3

9
e±

πi
6 , · · · } (14)
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(a) (b)

(c)

Fig. 4. Visualization of 1-form bases. After some number of subdivision levels, the 1-
form over each triangle is visualized through its vector proxy at the barycenter of the
triangle. (a) A single edge basis form (one edge coefficient is set to be 1); (b) three
boundary edges of a coarse triangle with unit coefficient leading to a vortex; (c) source
due to setting coefficients of all edges (at the coarsest level) incident to a single vertex
to be 1.

Fig.(4) shows the subdivision process of a 1-form over a plane using the subdi-
vision stencil above.

In summary, we used three steps to determine the subdivision stencil in the
regular case: (1) the commutative relations between 0- and 1-form to reduce the
system and leaving only two free parameters; (2) the 1-form generating function
SF

1 (z), with z = e2πi/V , although complex-valued, should be representable as√
z times a real-valued matrix. With this condition there are only three possible
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choices for the stencil weights; (3) enforcing that the 2-form generating function
have a certain spectrum ((13)). This finally leads to a unique solution for the
stencil weights.

4 Irregular Vertices

We now turn to determining the 1-form and 2-form subdivision stencils around
irregular vertices. In this section, we begin with the general form of the problem
before solving specific instances.

4.1 Basic Setup

Fig.(5) shows the variable settings of 0-, 1- and 2-form subdivision stencils for
arbitrary valences. The corresponding subdivision matrices follow the same pat-
tern as those of the regular case (Eq.(2)).

[1] α [2] β

[3] β

[4] β

[V+1] β

[V] β

[5] β

1/3

1/31/3

(a) 0-form, odd/even vertices.

[1] a1

[2] a1
[3] a2

[V] a2

[4] a3

[V-1] a3

[V+1] b0

[V+2] -b1[V+3] -b2

[2V] b1

[2V-1] b2

s

s s

-s

(b) 1-form, odd/even edges. (c) 2-form.

Fig. 5. The variable settings for all of the 0-, 1- and 2-form stencil (odd/even rules.
extraordinary vertex case). The numbers in the square brackets provide the indexing
rule we use to write down the subdivision matrices.

Proceeding as before with a circulant Fourier transform followed by enforcing
the commutative relations we get (for v = �V

2 	):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0 = 0

bv = 0 (V is even)

a1 = 1
3
− b1 − β

a2 = b1 − b2 − β

a3 = b2 − b3 − β

· · ·
av−1 = bv−2 − bv−1 − β

av = bv−1 − β when V is even, av = 2bv−1 − β when V is odd

(For simplicity, we say av = bv−1 − bv − β,

here bv = 0 when V is even, bv = −bv−1 when V is odd )

s = 1/6

respectively,



√
3-Based 1-Form Subdivision 361

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 = 1
6
− b1

c2 = b1 − b2

c3 = b2 − b3

· · ·
cv−1 = bv−2 − bv−1

cv = bv−1 (V is even), cv = 2bv−1 (V is odd)

(For simplicity, we say cv = bv−1 − bv,

here bv = 0 when V is even, bv = −bv−1 when V is odd )

With b0 = 0, s = 1
6 and bv = 0 (V even), we have 3v − 1 stencil parameters:

a1, a2, . . . , av; b1, b2, . . . , bv−1; c1, c2, . . . , cv,

of which the commutative relations each fix v parameters leaving us with v − 1
remaining free parameters.

4.2 Valence 3 and 4

For the case V = 3 and 4 all stencil variables can be solved for directly from the
commutative relations and the spectrum requirement for the 2-form subdivision
(Eq. (13)).

(a) V = 3, even (b) V = 3, odd (c) V = 4, even (d) V = 4, odd

Fig. 6. The setting of variables

Based on the commutative relations the largest eigen value is always 1
3 and

comes from the upper-left (1×1)-block. The magnitude of the largest eigen value
from any other block is always ≤ 1

9 . Hence the subdominant eigenvalue can be
choosen from the range

[
1
9 ,

1
3

]
. For simplicity we set the subdominant eigen value

to
√

3
9 as in the regular case (and use this choice always from now on).

Fig.(6) shows the variable setting for V = 3 and 4. For the 0-form stencil [10]
α = 4/9, β = 5/27, for V = 3 and we have

a1 =
5 + 2

√
3

54
, a2 = −2 + 2

√
3

27
, b1 =

3 − 2
√

3

54
, c1 =

3 +
√

3

27
, c2 =

3 − 2
√

3

27
(15)

For V = 4, α = 5/9, β = 1/9 and we get

a1 =
5 +

√
6

36
, a2 = −1 +

√
6

36
, b1 =

3 −√
6

36
, c1 =

3 +
√

6

36
, c2 =

3 −√
6

36
(16)
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The subdivision results for V = 3, 4 are visualized in Fig.(7).

(a) V = 3.

(b) V = 4.

Fig. 7. Basis 1-forms (visualized via their vector proxies) on an edge incident to a
vertex of valance 3 (top) resp. 4 (bottom)

4.3 Irregular Vertex: V=5

For vertices with V > 4 (V �= 6) the stencil is not completely determined by
the techniques employed so far. Here we start with the case V = 5 and then
generalize to V > 6.
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Fig. 8. V = 5. Stencil for the even edge in the case V = 5.

Fig.(8) shows the variable setting for V = 5. Based on the commutative
relation, we have ⎧⎨⎩

a1 = 1
3 − β − b1

a2 = b1 − b2 − β
a3 = 2b2 − β

and

⎧⎨⎩
c1 = 1

6 − b1
c2 = b1 − b2
c3 = 2b2

(17)

For the 0-form stencil [10], when V = 5, α = 9+
√

5
18 , β = 9−

√
5

90 . Further, similar
to the low valence cases, we can choose the subdominant eigenvalue of the 2-
form subdivision generating function to be the same as in the regular case, i.e.,√

3
9 . Just as in the low valence case, this subdominant eigenvalue comes from the

upper-left (1×1)-block of SF
2 , i.e., g(z) � c3z

3+c2z
2+c1z+c1+c2z

−1. g(1) = 1
3

is the largest eigen value. Letting z0 = e2πi/5, the subdominant eigenvalue is
associated with the frequencies z = z±1

0 , i.e., |λ1| = |g(e2πi/5)| =
√

3
9 . Using b2

as the parameter t all stencil coefficients are functions of t

√
5b1 +

5 −√
5

2
b2 =

3 − 4
√

3 + 3
√

5

36
(18)

⇒

⎧⎪⎨⎪⎩
a1 = − 1−√

5
2

t + 27−√
5+4

√
15

180
, a2 = − 1+

√
5

2
t − 3−5

√
5+4

√
15

180
, a3 = 2t − 9−√

5
90

b1 = 1−√
5

2
t + 15+3

√
5−4

√
15

180
, b2 = t

c1 = − 1−√
5

2
t + 15−3

√
5+4

√
15

180
, c2 = − 1+

√
5

2
t + 15+3

√
5−4

√
15

180
, c3 = 2t

We first try to estimate the value of t. Fig.(9(a)) shows the relation between the
stencil parameters of the 1-form subdivision stencil and the unknown parameter
t. From Fig.(8) and the relative alignment between edges we deduce that a1

should have a large and positive value, a3 to be negative and b2 to be small.
Based on Fig.(9(a)), t should be in the interval [−0.2, 0.05].

We now consider again the eigen values of the 2-form subdivision. After circu-
lant Fourier transform (as before) we find the generating function for the 2-form
subdivision matrix
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(a) The relation between stencil pa-
rameters and t.

(b) The only eigenvalue affected by t.

Fig. 9. Estimation of the parameter

SF
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c3z
3 + c2z

2 + c1z + c1 + c2
z

0 0 0 0 0 0 0 0
z
18

+ 1
9

0 1
9

1
18

0 0 0 0 0
z
9

+ 1
9

0 z
18

+ 1
18

0 0 0 0 0 0
z
9

+ 1
18

z
18

z
9

0 0 0 0 0 0

0 1
18

1
9

1
9

0 0 0 1
18

0
1
18

z
18

1
9

1
9

0 0 0 0 0

0 z
9

z
18

+ 1
18

1
9

0 0 0 0 0
z
18

z
9

z
9

1
18

0 0 0 0 0

0 z
9

z
9

z
18

0 z
18

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Of the 45 eigen values t only controls those generated by the upper 1x1 block in
the z = z±2

o frequency. The dependency between the affected eigenvalue (solid
line) and t is shown in Fig.(9(b)). The dashed lines show the two largest of the
remaining eigen values. Since the absolute value of the varying (by t) eigen value
should be smaller than λ0 = 1/3, t ∈ (−0.0718, 0.0615). This is consistent with
the analysis based on Fig.(9(a)).

Experimenting with a range of parameters for t within the constraints spelled
out above yielded no apparently smooth eigen forms for that eigen value. This
is not surprising given the smoothness of the 0-form scheme. Instead we chose t

so that the eigen values controlled by it vanish, resulting in t = 3−2
√

3
90 and

1-form

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 12+
√

3+
√

5+
√

15
90 ∼ 0.2205

a2 = −3+
√

3+
√

5−
√

15
90 ∼ −0.0323

a3 = −3−4
√

3+
√

5
90 ∼ −0.0855

b0 = 0, b1 = 9−
√

3−
√

15
90 ∼ 0.0377

b2 = 3−2
√

3
90 ∼ −0.0052

s = 1
6

2-form

⎧⎪⎨⎪⎩
c1 = 6+

√
3+

√
15

90 ∼ 0.1289
c2 = 6+

√
3−

√
15

90 ∼ 0.0429
c3 = 3−2

√
3

45 ∼ −0.0103

Remark: An interesting question is how the parameter t affects eigen 1-forms.
The generating function for the 1-form subdivision scheme is the same as in the
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regular case, i.e., Eq.(11) except in the D1 block. Among all 75 eigen values,
only 2 (or 1 pair) of them can be affected by t. These affected eigen values, same
as in the 2-form case, are associated with the frequencies z = z±2

0 and come
from the upper-left (2 × 2)-block, D1.

The resulting 1-form basis form is visualized in Fig.(10).

Fig. 10. Basis 1-form for an edge incident to an irregular vertex with V = 5

4.4 Irregular Vertex: Results

The case of V > 6 arbitrary valence proceeds very much like the V = 5 case. We
consider again the resulting 2-form subdivision and the eigen values influenced
by the remaining v − 1 parameters. All such eigen values arise from the upper
left 1x1 block as before. Just as in the V = 5 case, after fixing the first 3 eigen
values to be 1/3,

√
3/9 (up to the phase factor), all remaining eigen values that

are controlled by the stencil parameters are set to zero.
Specifically, there are V eigen values influenced by the stencil parameters

through g(z) = c1 + c1z + c2z
2 + c3z

3 + . . . + c3
z2 + c2

z . Call these λ̄k, where
k = 0, 1, . . . , V − 1 indexes the block via zk = (e2πi/V )k.
(Frequency z = z0

0 = 1). Associated with the lowest frequency we get the first
principal eigenvalue 1

3 . This is guaranteed by the commutative relations.
(Frequency z = z±1

0 = e2πi/V). Associated with the second lowest frequencies,
we get two second principal eigenvalues whose modulus, similarly to the regular
and low-valence cases, are assumed to be

√
3

9 :

|λ1| = |g(e2πi/V )| = |c1 + c1z + c2z
2 + c3z

3 + . . . +
c3
z2

+
c2
z
| =

√
3

9
, (20)

where z = e2πi/V .
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(Frequency z = z±k
0 = e2kπi/V,2 ≤ k ≤ v − 1). We introduce v − 2 indepen-

dent linear equations by exactly the same method used in the valence-5-case.
The idea is that in the real domain, all the affected eigenvalues associate with
higher order of z0 are zero. Specifically, for k = 2, 3, . . . , v − 1, λ̄k = 0, i.e.,

g(e2kπi/V ) = c1 + c1z + c2z
2 + c3z

3 + . . . +
c3
z2

+
c2
z

= 0, (21)

where z = e2kπi/V , k = 2, 3, . . . , v − 1.
There are just v − 1 independent linear equations in Eqs.(21) and Eq.(20).

Together with the commutative relations we can solve all the stencil parameters.
We listed the results for V = 7, 10, 16 in Table.(1) below.

Finally, we use a 1-form over a plane which can contain vertex with arbi-
trary valence as examples. Fig.(11) shows the subdivision results for the plane
containing a high-valence vertex in the center for V = 7, 10 and 16.

(a) V=7 (b) V=10

(c) V=16

Fig. 11. Subdivision result for the vector field on a plane containing a high-valence
vertex



√
3-Based 1-Form Subdivision 367

Table 1. Stencil coefficients: V = 7, 10, 16

V=7 a1 a2 a3 a4

0.220127 0.016156 -0.030363 -0.051065
b1 b2 b3

0.069507 0.009653 -0.003683
c1 c2 c3 c4

0.097159 0.059855 0.013336 -0.007367

V=10 a1 a2 a3 a4 a5

0.210140 0.029491 0.006867 -0.015757 -0.029739
b1 b2 b3 b4 b5

0.096727 0.040770 0.007437 -0.003273 0.000000
c1 c2 c3 c4 c5

0.069940 0.055957 0.033333 0.010709 -0.003273

V=16 a1 a2 a3 a4 a5 a6 a7 a8

0.196148 0.025889 0.019252 0.010580 0.001194 -0.007478 -0.014115 -0.017707
b1 b2 b3 b4 b5 b6 b7 b8

0.122239 0.081404 0.047206 0.021679 0.005539 -0.001929 -0.002761 0.000000
c1 c2 c3 c4 c5 c6 c7 c8

0.044427 0.040835 0.034198 0.025526 0.016140 0.007468 0.000831 -0.002761

5 Summary and Discussion

We have presented a 1-form subdivision scheme based on
√

3 subdivision, which
in our context is a 0-form subdivision scheme. The construction of the subdi-
vision stencil is based on the commutative relations and additional constraints
on the spectrum. The 0-form subdivision scheme used here is C2 in the regu-
lar setting but C1 around irregular vertices. The induced 1-form scheme is also
able to reproduce the linear vector fields in the regular setting. Around the ex-
traordinary vertices, the 1-form scheme can reproduce constant fields but not
linear fields. This could be remedied with a larger 0-form subdivision stencil.
However, expanding the stencil eliminates the smallest-stencil advantage of the√

3-subdivision 0-form subdivision. The linear system will have more degree of
freedom and can only be solved after introducing additional constraints on the
stencil coefficients (e.g., constraints on higher order terms in {λ̄k = g(zk

0 )}).
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Curvature of Approximating
Curve Subdivision Schemes
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Abstract. The promise of modeling by subdivision is to have simple rules that
avoid cumbersome stitching-together of pieces. However, already in one variable,
exactly reproducing a variety of basic shapes, such as conics and spirals, leads to
non-stationary rules that are no longer as simple; and combining these pieces
within the same curve by one set of rules is challenging. Moreover, basis func-
tions, that allow reading off smoothness and computing curvature, are typically
not available. Mimicking subdivision of splines with non-uniform knots allows us
to combine the basic shapes. And to analyze non-uniform subdivision in general,
the literature proposes interpolating the sequence of subdivision control points
by circles. This defines a notion of discrete curvature for interpolatory subdivi-
sion. However, we show that this discrete curvature generically yields misleading
information for non-interpolatory subdivision and typically does not converge,
not even for non-uniform spline subdivision. Analyzing the causes yields three
general approaches for solving or at least mitigating the problem: equalizing pa-
rameterizations, sampling subsequences and a new skip-interpolating subdivision
approach.

Keywords: non-uniform subdivision, non-stationary subdivision, geometric
continuity, curvature, splines, shape.

1 Introduction

A major selling point of subdivision algorithms has been their conceptual simplicity
in smoothly connecting curve or surface regions by refinement with simple rules. A
main task of curve modeling in product design is to reproduce segments of a vari-
ety of basic shapes, such as conics, spirals and clothoids exactly, and to transition
smoothly between them. Since the standard uniform, polynomial subdivision algo-
rithms cannot reproduce these basic shapes, a number of non-stationary curve subdi-
vision algorithms have recently been devised to reproduce, in particular, circles and
ellipses [15,20,3,6,18,4,7,2,19]. However, the introduction of parameter-dependent sub-
division means that explicit basis functions for the control points are no longer easily
available, removing a reliable technique to compute curvature. Already establishing
smoothness or curvature continuity for non-stationary (or similar non-linear schemes
[1,21,10,12,8]) is a challenge as general techniques, such as [5, p18] and [22], do not
apply.

Furthermore, even when C2 smoothness can be proven, this may be meaningless in
practice without a reliable technique to compute curvature. Following e.g. Sabin et al.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 369–381, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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[20,2], we may therefore attempt to compute a discrete curvature, as the reciprocal of
a radius of the circle passing through the point and its two neighbours in the refined
polygon. For interpolating curvature continuous schemes this measure must, by defi-
nition of a curvature continuous scheme, converge to the proper curvature. Also when
refining the control polygon of uniform C2 splines, the discrete curvature represents
the curvature correctly. However, for the standard midpoint subdivision of non-uniform
C2 cubic splines, the measure diverges (cf. Fig. 4). In fact, divergence of the measure
is typical as Lemma 1 shows.

This paper therefore discusses three techniques for estimating curvature from control
points suitable for approximating subdivision: equalizing parameterization, sampling
subsequences and skip-interpolation. To illustrate them, we work with non-uniform
subdivision algorithms, a concept that is outlined in Section 2 and made concrete by
a simple quadratic subdivision that can reproduce conics, in Section 6. An approach for
reproducing more general basic shapes in one framework, is given in [14].

Concretely, for our focus on curvature from control points, we illustrate divergence
of the discrete curvature for two non-uniform, polynomial spline subdivision schemes
of degree 3, respectively degree 4. We also introduce the concept of skip-interpolation:
every second control point is interpolated by the refined polygon. This allows measur-
ing curvature as discrete curvature from the interpolating points while preserving the
typically better shape of non-interpolating, approximating subdivision.

Overview. In Section 2, we explain the need for subdivision mimicking splines with
non-uniform knots. In Section 3, we review non-uniform subdivision of degree 3 splines.
In Section 4 we use this subdivision to analyze discrete curvature, prove divergence
and to test strategies for obtaining predictive numbers from discrete curvature: equaliz-
ing parameters and subsampling. In Section 5, we derive a degree 4 skip-interpolating
subdivision algorithm. In Section 6, we complete the exposition with an example of a
non-uniform quadratic subdivision capable of reproducing various conics in one curve.

2 Non-uniform Subdivision

Non-uniform subdivision mimics the subdivision of splines with non-uniform knots.
Fig. 1 and 2 illustrate the challenges that motivate non-uniform subdivision. Of the
subdivision schemes listed in the introduction, Morin et al.’s scheme [15] is the only
one that can reproduce more than one primitive in one curve. But, as Fig. 1 shows,
even for this scheme, the underlying, inherently uniform spacing makes perturbations
non-local. Fig. 2 (b) shows that the approach of [15] also unable to reproduce a circle
on input of unevenly distributed samples. To prove the second claim, we note that for a
regular polygon on the unit circle with opening angle α, the approach of [15] produces
a circle of radius sin(α)

α . If the designer’s spacing of samples for perturbation is to be
honored in the control polygon, the control points’ distance to the circle center must be
scaled so that they can partially reproduce the circle (red in Fig. 2(b)). In the transition,
however, the reproduction is lost.

In order to reproduce different conics in one framework, splines use non-uniform
knot sequences {ti}. The rational cubic G2 constructions in [14] combine curvature
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(a) Uniform spline (b) local adjustment (c) [14] vs [15]

Fig. 1. In design, local refinement and shape adjustment naturally requires a switch from (a)
uniform to (b) non-uniform spacing. The approach of [14] can preserve segments, shown as thick
segments, of the original curve while (c) the superimposed red curve generated according to [15]
deviates everywhere from the original curve, i.e. is less local.

(a) circle sampled (b) [15] (c) [14] (d) local adjustment [14]

Fig. 2. Non-uniform spacing to support local adjustments. (a) Unequally-spaced designer sam-
ples on the circle in anticipation of local modification: small disks correspond to an opening angle
of π/16, large ones to 3π/16. (b) Circle in black, [15] in red. (c) Control net and exact circle gen-
erated by [14]. (d) Local modification using [14]: thick segments remain exactly on the circle.

continuity with exact reproduction of different basic shapes by simulating such non-
uniformity of the knot sequence by a non-uniform parameterization. The basic approach
can already be illustrated by a non-uniform quadratic subdivision mimicking rational
G1 splines. The details of such a scheme are given in Section 6. Here we outline the
main idea. Let fi and fi+1 be adjacent pieces of a C1 spline with non-uniform knots,
but with their domains re-parameterized to the unit interval [0, 1]. Then fi and fi+1 join
with geometric continuity (see e.g. [13]):

f ′
i+1(0) = βif

′
i(1), βi :=

Δi

Δi−1
, Δi := ti+1 − ti. (1)

By refining the control structure of such splines, we arrive at non-uniform subdivision
schemes [14] that are capable of combining primitives as shown in Fig. 1 and 2.

3 Non-uniform Subdivision of Cubic C2 Splines

We now consider subdivision of non-uniformC2 splines. Since we focus on measuring
curvature from control polygons, we may restrict attention to the polynomial scheme,
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pi+1pi+1

pi

q2i−1

q2i

q2i+1

Fig. 3. C2 cubic control net refinement

rather than the more complex rational construction of [14] needed for reproducing basic
shapes. Many draft shapes can be designed using B-splines with uniform knot sequence.
However, subsequent local modifications lead to non-uniform splines as illustrated in
Fig. 1. Fig. 3 illustrates the subdivision of such a non-uniform cubic B-spline curve.
Suppose the cubic C2 spline has the

control polygon {pi}, knot sequence {ti} and βi :=
Δi

Δi−1
, Δi := ti+1 − ti.

If we set t̄2i := ti and insert new knots at t̄2i+1 := (1 − ei)ti + eiti+1, with ratio
0 < ei < 1 then the spline’s refinement rules yield a new polygon {qi}, and constants,

q2i+1 := (1 − ηi)pi + ηipi+1 , (2)

q2i := μiq2i−i + (1 − μi − νi)pi + νiq2i+i (3)

ηi :=
1 + eiβi

1 + βi + βiβi+1
, μi :=

βi(1 − ei)
1 + βi

, νi :=
ei−1

1 + βi
, (4)

βnew
2i :=

ei

1 − ei−1
βi, βnew

2i+1 :=
1 − ei

ei
. (5)

Here, as in the previous section, we may interpret the terms βi in (5) as constants of a
linear reparameterization.

4 Discrete Curvature from Polygon Sequences

To be able to estimate curvature in the absence of explicit generating functions, we
follow [20] in defining the discrete curvature to be the inverse radius of the circle in-
terpolating three consecutive control points. The first experiment below demonstrates
that discrete curvature does not converge when tracking the control polygon of a non-
uniform cubic C2 spline under midpoint subdivision. A similar failure of discrete cur-
vature as estimator of curvature occurs for subdivision based on a quartic C2 spline
(Fig. 8). The particular setup of non-uniform cubic C2 spline subdivision is helpful in
that we can easily compute the true curvature of the limit curve of the limit curve.
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Fig. 4. Discrete curvature of Fig. 1,(b), plotted against the control point index i after k = 10
refinement steps of (left) subdivision for non-uniform subdivision (discontinuity enlarged), (right)
when applying equalizing subdivision: no visible discontinuity.

Experiment 1 – divergence. We locally refine the non-uniform C2 cubic B-spline of
Fig. 1, right, according to Section 3, by inserting knots with ratio ei = 1/2. The discrete
curvature after 10 refinement steps is displayed in Fig. 4, left. The spikes hint at a
discontinuity at the junction where Δi := ti+1−ti changes. Indeed, if we pick a knot t̄i,

Δi−1 Δi
t̄2i+1t̄2i−1 ti = t̄2i

q2i−1
q2i

q2i+1

Fig. 5. Calculating the discrete curvature of a cubic C2 spline from the control polygon

insert neighbors t̄2i−1 and t̄2i+1 using ei−1 = ei = 1/2 so that the ratio βi = Δi/Δi−1

remains unchanged under refinement, and set t̄2i := t̄i as in Fig. 5, then there is no
convergence. Let κ be the curvature of the spline at t̄i, denote by κ2ki−1 the discrete
curvature to the left of t̄i after k steps, by κ2ki+1 the discrete curvature to the right of
t̄i after k steps, and by κ2ki the discrete curvature at t̄i. Since we have the underlying
spline, we can compute the control polygon under midpoint subdivision and find
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lim
k→∞

κ2ki−1 =
6

βi + 5
κ , lim

k→∞
κ2ki = κ , lim

k→∞
κ2ki+1 =

6βi

5βi + 1
κ . (6)

That is κ2ki converges to κ but its left and right neighbors converge to the same value
only if βi = 1. In other words, only for uniform B-splines does the refined control
polygon provide correct information on the curvature of the limit curve. Fig. 8 shows an
even more extreme behavior for the control polygon of a spline of degree 4, defined by
(12) in Section 5: the discrete curvature jumps everywhere. Generally, without care, we
can therefore not infer the curvature directly from the control net of an approximating
subdivision.

Experiment 2 – equalization. Since, according to the previous experiment, control poly-
gons of uniform B-splines have useful discrete curvature expressions, we insert new
knots t̄2i+1 in the spirit of [20]:

ei :=
√

1 + βi√
1 + βi +

√
βi

√
1 + βi+1

.

This moving ratio ‘equalizes’, i.e. we get, in the limit, a uniform knot sequence. Indeed,
Fig. 4, right, shows that the spikes, hence discontinuities, in the discrete curvature dis-
appear. The following lemma formally substantiates this observation.

t−3 t−2 t−1 0 t1 t2 t3

q−2

q−1

q0

q1

q2

Fig. 6. Calculating the discrete curvature of a cubic G2 spline

Lemma 1 (Continuity of the discrete curvature). The discrete curvature of midpoint
subdivision of a cubic G2 B-spline with non-zero curvature is continuous if and only if
its knot sequence is uniform; it is always continuous under equalizing subdivision.

Proof. Let f be defined over [−1, 0] and g over [0, β]. Consider subintervals near the
origin 0 as illustrated in Fig. 6. For ε → 0 under subdivision,

f : [t−3, t−2], [t−2, t−1], [t−1, 0], (7)

t−3 := −ε(h−1 + h−2 + h−3), t−2 := −ε(h−1 + h−2), t−1 := −εh−1,

g : [0, t1], [t1, t2], [t2, t3], (8)

t1 := εh1, t2 := ε(h1 + h2), t3 := ε(h1 + h2 + h3).
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For midpoint subdivision h−3 = h−2 = h−1 = 1 , h1 = h2 = h3 = β , while for
equalizing subdivision, we have hi depend on ε and limε→0 hi(ε) = 1. We compute
the curvature κ of the spline at the origin 0; and we compute the discrete curvatures κi,
i = −1, 0, 1, from triples (qi−1,qi,qi+1) of control points of the refined spline. Then
with h∞

i := limε→0 hi(ε) and ρi := limε→0 κi/κ,

ρ−1 =
3(h∞

−2 + h∞
−1)

h∞
−3 + 2h∞

−2 + 2h∞
−1 + h∞

1

, ρ0 =
3(h∞

−1 + h∞
1 )

h∞
−2 + 2h∞

−1 + 2h∞
1 + h∞

2

,

ρ1 =
3(h∞

1 + h∞
2 )

h∞
−1 + 2h∞

1 + 2h∞
2 + h∞

3

.

(9)

For midpoint subdivisions this yields as in (6)

ρ−1 =
6

5 + β
, ρ0 = 1 , ρ1 =

6β
1 + 5β

, (10)

while for equalizing subdivisions all ρi = 1 and the claim follows.

Note that the proof of Lemma 1 is based on the explicit knowledge of the underlying
B-spline curve. A similar proof for a general non-stationary or non-linear subdivision
scheme would be tricky.

Experiment 3 – subsequences. Since equalization leads to complicated subdivision
rules, we try another approach. We insert new knots midway as in Experiment 1, but
determine the discrete curvature from subsequences. If we choose every 23rd control
point, the result for non-uniform C2 subdivision looks gratifyingly like Fig. 4, right.
However, proving convergence in a general setting is a subtle affair. By contrast, for the
next approach it is straightforward.

5 Skip-Interpolating Subdivision

In order to obtain a subdivision scheme with easily measurable curvature, we general-
ize splines of degree 4, but such that every second control point stays fixed. Then the
discrete curvature of the interpolating subsequence represents the limit curvature as it
would for an interpolating subdivision algorithm.

First, we review subdivision of quartic C2 splines. If all βi equal 1 and the domain
intervals of the Bézier quartics are split at their center then the refinement rules for
obtaining new control points [q̄, q̃] from [p̄, p̃] are (cf. Fig. 7(a))

q̄2i :=
3
16

p̃i−1 +
5
8
p̄i +

3
16

p̃i, q̄2i+1 :=
1
8
p̄i +

3
4
p̃i +

1
8
p̄i+1 ,

q̃2i :=
1
16

p̃i−1 +
3
8
p̄i +

9
16

p̃i, q̃2i+1 :=
9
16

p̃i +
3
8
p̄i+1 +

1
16

p̃i+1 .

(11)

In Fig. 8, the control points p̄i (black disks) and p̃i (gray disks) are equally distributed
on the unit circle. The discrete curvature of the refined polygons in Fig. 8(c,d) shows
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q̃2i+1q̃2i

q̄2i+2

q̄2i+1

q̄2i

p̄i+1

p̄i

p̃i+1

p̃i

p̃i−1

(a) standard uniform

q̃2i+1

q̃2i

q̄2i+2

q̄2i+1

q̄2i pi+1

pi

p̃i+1

p̃i

p̃i−1

(b) skip-interpolating

Fig. 7. Standard subdivision [p̄, p̃] → [q̄, q̃] and skip-interpolating subdivision [p, p̃] → [q, q̃]

(a) Control points (b) curvature (c) 4 refinement steps (d) 6 refinement steps

Fig. 8. (a) Quartic C2 spline, (b) the spline’s exact curvature plotted against the parameter on the
absissa and (c,d) the discrete curvature at i/2k during the kth refinement. The discrete curvature
jumps, oscillating densely about the true curvature.

that there is no sense in tracing their densely oscillating discrete curvature to estimate
the curvature of the limit C2 spline.

Next, we consider the conversion of the B-spline control points p̃i of the polynomial
spline to its Bernstein-Bézier coefficients bi,j (see e.g. [11,17] for the definitions of the
B-spline form and the Bernstein-Bézier (BB) form). With the constants βi representing
the ratios of the non-uniform lengths of adjacent knot intervals,

bi−1,3 :=
βip̃i−1 + p̄i

βi + 1
, bi1 :=

βip̄i + p̃i

βi + 1
, (12)

bi,2 := p̃i, bi−1,4 := bi0 =
βibi−1,3 + bi1

βi + 1
.

In particular, for βi = 1, we get the familiar formulas bi−1,3 := 1
2 p̃i−1 + 1

2 p̄i , bi1 :=
1
2 p̄i + 1

2 p̃i , bi−1,4 = bi0 := 1
2bi−1,3 + 1

2bi1.
To arrive at skip-interpolation, we define pi := bi,0 and observe in (12) and Fig. 9

that the relation between the sequence of point triples p̃i−1, p̄i, p̃i and p̃i−1,pi, p̃i is
linear. Therefore, we can equally well express a subdivision with the structure of (11)
in terms of points p̃i,pi as shown in Fig. 7(b). The corresponding subdivision rules for
deriving new points [q, q̃] from [p, p̃], generalized to account for varying βi, are
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p̃i−1 p̃i−1

p̃ip̃i

p̄i

bi,1
bi,1

bi,0 bi,0

pi

bi−1,2 bi−1,2bi,2 bi,2

bi−1,3 bi−1,3

Fig. 9. Control points p̄i, p̃i,pi and BB-coefficients bi,k, k = 0 . . . 4. (left) standard C2 B-
spline to BB-form conversion (12) (right) Skip-interpolating conversion with points pi = bi,0

on the resulting curve.

q2i := pi,

q2i+1 := a0p̃i−1 + a1pi + a2p̃i + a3pi+1 + a4p̃i+1, (13)

q̃2i := e0p̃i−1 + e1pi + e2p̃i,

q̃2i+1 := �0p̃i + �1pi+1 + �2p̃i+1.

where

a0 := −1
8

β2
i

βi + 1
, a1 :=

1
8
βi +

3
16

, a2 := 1 − a0 − a1 − a3 − a4,

e0 := −1
4

β2
i

βi + 1
, e1 :=

1
2

+
1
4
βi, e2 := 1 − e0 − e1,

and [a3, a4, �2, �1, �0] are obtained from [a1, a0, e0, e1, e2] by replacing βi → 1/βi+1.
This subdivision is called skip-interpolating, since every second point q2j of the control
polygon ends up on the limit curve. The curve inherits curvature continuity in the limit
from the underlying C2 spline.

We note that in both (11) and (13), the discrete curvature of the combined control
nets is meaningless: already the subpolygons, p̃i or p̄i, yield wildly oscillating plots.
But the subpolygon based on pi shows no spikes, as predicted.

6 Non-uniform Subdivision Based on a Rational Quadratic G1

Curve Construction

As promised in Section 2, we present a non-uniform subdivision scheme based on a
G1 curve construction. This construction is useful in its own right and its derivation is
similar but simpler than that in [14].

Given a control polygon p and weights ωi at the control points as in Fig. 10, middle,
we derive the BB-control-points of a rational quadratic G1 curve with BB-pieces fi

Fig. 10, left, such that numerator and denominator are in BB-form (Bernstein-Bézier
form):
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mi

mi−1

mi+1

mi+2

pi

pi+1

βi+2

βi+1βi

βi−1

pi−1
ωi−1

ωi

ωi+1
q2i−2

q2i−1 q2i

q2i+1

Fig. 10. Construction of Non-uniform Rational Quadratic Subdivision. (left) BB-control poly-
gons with end points mi. (middle) Affine control polygon p with weights ω and the G1 constant
βi associated with edge pi−1pi. (right) Once-refined control polygon.

fi : u �→
∑2

k=0 wkbkB
2
k(u)∑2

k=0 wkB2
k(u)

Bn
k :=

(
n

k

)
(1 − u)n−kuk. (14)

In terms of βi, the BB-control-points of a rational quadratic fi are

mi := (1 − νi)pi−1 + νipi , νi :=
ωi

βiωi−1 + ωi
,

bi,0 := mi, bi,1 := pi, bi,2 := mi+1, wi,0 = wi,2 := 1, wi,1 := ωi. (15)

We now associate the weights ωi with the coefficients bi,1 and the constants βi with
mi and hence with edges pi−1pi (see Fig. 10, middle).

To subdivide, we split each quadratic curve segment by de Casteljau’s algorithm at
its center u = 1/2. Then we re-normalize each piece’s rational weights so that the first
and last are both 1:

w̄i,k :=
wi,k

wi,0
, k = 0, 1, 2 ;

wsym
i,k := w̄i,kh

k
i , k = 0, 1, 2 ;hi :=

1√
w̄i,2

.
(16)

Then

βsym
i := hi−1hiβi.

Subdivision generates the new control points q2i−1, q2i of the two subquadratics, a
symmetrized weight ωj per point and a symmetrized constant βj per edge (cf. Fig. 10,
right) by the following weight-dependent, hence non-stationary, and constant-dependent,
hence non-uniform, subdivision algorithm.

Algorithm. [Non-uniform Rational Quadratic Subdivision]
Input: Control polygon p, weights ω and constants β (see Fig. 10, middle).
Output: Control polygon q, new weights ω and constants β (see Fig. 10, right).
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The explicit refinement rules are

q2i−1 := ai
0pi−1 + ai

1pi, q2i := bi
0pi + bi

1pi+1, (17)

ai
0 :=

ωi−1βi

(ωi−1βi + ωi)(1 + ωi)
, bi

1 :=
ωi+1

(ωiβi+1 + ωi+1)(1 + ωi)
, (18)

ai
1 := 1 − ai

0, bi
0 := 1 − bi

1. (19)

For the next refinement step, set ẇi :=
√

(1 + ωi)/2 and redefine

pk := qk , ω2i−1 = ω2i := ẇi , β2i−1 :=
ẇi−1

ẇi
βi , β2i := 1 .

We call the scheme ‘non-uniform’ to emphasize its dependence on the constants βi.
The smoothness of the subdivision algorithm is immediate since it corresponds to

subdividing an underlying G1 rational spline. If all weights ωi are equal and all βi = 1
in the algorithm then for ai

0 = bi
1 = c := 1

2(1+ω) ,

q2i−1 := cpi−1 + (1 − c)pi, q2i := (1 − c)pi + cpi+1, ω ←
√

1 + ω

2
, (20)

i.e. the subdivision simplifies to a known uniform non-stationary C1 circle-reproducing
subdivision [9].

Indeed, the non-uniform subdivision can reproduce a number of conics in one frame-
work. Fig. 11(a) illustrates the construction of a circle from an asymmetric circum-
scribed control polygon. We need only to set

wi := cos
αi

2
, βi :=

sin αi

2

sin αi−1
2

, (21)

where the αi are the opening angles between consecutive points on the circle that are
interpolated by the circumscribed control polygon. Fig. 11 (b) and (c) make the point
that the subdivision can reproduce the ‘uniform’ non-stationary subdivision from [9]
but additionally vary shape by varying βi. The uniform subdivision, even though non-
stationary, can only reproduce one primitive at a time, here an ellipse, making designs
such as Fig. 1(b) cumbersome. By contrast, Non-uniform Rational Quadratic Subdi-
vision adapts to two or more different prescribed conics by replicating the pieces as
rational quadratic splines and converting them to control polygons of the subdivision
algorithm. Fig. 11(d) shows (dotted) the circle as in (a), now reproduced from a control
polygon that is a circumscribed triangle. For the solid-drawn variant, the weights of
the top two control points are increased to locally yield hyperbolic pieces and the βi

has been adjusted to keep the bottom segment exactly on the circle. The curve in (e)
corresponds to uniform βi = 1.

7 Discussion

Our original goal was to address a shortcoming of recent subdivision algorithms for
practical design: none locally reproduces several basic shapes within the same curve by
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αi

pi pi−1

(a) circumscribed control
polygon

(b) uniform βi (c) non-unif. βi

(d) varying wi and βi (e) varying only wi

Fig. 11. Non-uniform Rational Quadratic Subdivision. (a) Circle-circumscribed control poly-
gon with unequal opening angles αi yields a circle (cf. (21)). (b) The result of setting βi = 1 and
wi := cosπ

4
is identical to [9]. (c) The result of unequal βi for wi := cosπ

4
. (d) Circle from a

triangle (both dotted) and an alternative shape where the circle piece is preserved by varying the
βi corresponding to the bottom; the remainder is replaced by two hyperbolic pieces, abutting at
the hollow circle marker, obtained by increasing the top two weights wi. (e) Same as (d) but with
all βi identical.

one algorithm. In addressing this challenge algorithmically by non-uniform subdivision
following the approach of [14], we noticed a second, related challenge, already present
in non-uniform subdivision of polynomial splines: While control polygons often work
well for extracting first-order information about curves, the experiments in Section 4
and Lemma 1 show that curvature of an approximating non-stationary subdivision is
not easily gleaned from control polygons. In retrospect, this should not surprise since
control nets without associated generating functions do not allow for a mathematical
analysis of the resulting limit shape [16, Introduction].

Among the options that we explored in order to nevertheless generate useful curva-
ture information in a practical way from control polygons, equalization leads to compli-
cated subdivision rules; and selecting subsequences requires additional careful analysis.
Skip-interpolation, on the other hand, is a simple technique to be able to read off curva-
ture while still preserving the typically better shape of non-interpolating, approximating
subdivision.
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Abstract. We motivate from interventional medical imaging some geo-
metric problems where one should identify how a curve could be gener-
ated from a known surface, asking for the pose of the surface from the
outline of an orthogonal projection of it, or the position of a sectional
plane from an isometric instance of the sectional curve. We describe a
distance between curves that is efficiently implementable and use it to
build stochastic trees in metric spaces towards subsets of curves of in-
terest that either have strong convergence properties or permit quick
searches on curves, and propose a real time application on a simplified
version of such problem.
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1 Introduction

Medical imaging, either for diagnostic or interventional purposes, provides many
instances of search problems in spaces of geometric objects such as curves or sur-
faces. Some of these can be successfully addressed using the methods of differ-
ential calculus in extended settings, but we found that some more direct search
methods adapted from computer science to metric spaces can also be useful. We
first motivate the problem of fitting a given surface to one of its planar sectional
curves, then sketch how calculus, when used for such a task, is hindered by dif-
ficulties that call for novel approaches. We shall also refer later to the classic
problem of inferring the pose of a known polyhedron from the outline of one of
its projections, which can be addressed by very similar procedures.

1.1 Image-Volume Fusion for Interventional Imaging and the
Retrieval of Surface Sections

When performing an image guided intervention on a patient – for instance a
biopsy or a radio-frequency ablation – one frequently has to use an imaging
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modality which is less informative than what is available in a purely diagnos-
tic setting. For instance, for a patient that already had very informative 3-
dimensional CT or MRI scans to image a tumor, it happens that during the
intervention one can only use 2-dimensional ultrasound imaging which only al-
lows to interactively control the probe and to choose the sectional plane while
monitoring the images displayed in real time. Some lesions however give less con-
trast in that modality and it is highly desirable to fuse the 2D ultrasonographic
data with the available 3D data previously acquired in the other modality. Such
fusion has been implemented using tracking devices that measure the position
and pose of the probe [1,24]. It is natural to ask whether it could be possible
to perform the fusion without such hardware based tracking, using only the 2D
image and the 3D data to infer the position and pose of the probe.

In that direction, we shall first simplify the problem to a more geometric one
by supposing that the information consists only in the shape of some surface
in space (the analog of a contrast surface, extractable from the 3D data), the
planar sections of which constitute the content of the 2D sectional images. Of
course real images have more content, for instance in the form of gray levels or
texture, which can still be used in the cases where our surface-based approach is
not sufficient. We further simplify the problem not taking into account possible
boundaries of such a surface and considering only the case of a non-convex
triangulated polyhedron.

1.2 Pose Identification from Projections for Computer-Assisted
Surgery

Computer-Assisted Surgery sometimes makes use of projection imaging to solve
the very similar problem of identifying during an intervention the pose of a
known object, for instance a bone (Fig. 1) the geometry of which is already
known from a former CT acquisition [18,19]. Computer Vision also deals with
such questions. We shall apply the same methods for the former problem and a
simple version of this one.

2 Retrieving Sections on a Surface and Other Intended
Applications

2.1 A Distance between Plane Curves or Plane Curve Shapes

The discrete version of the distance we now define will be used throughout this
paper. It is a distance between shapes of plane curves but it also provides ways
to compute vector fields along curves, to be used in the calculus approach. Let S1

be the unit circle parameterized by t ∈ [0, 2π] and σ1, σ2 : S1 → R2 two smooth
mappings from the unit circle to the plane.

To compare two plane curves C1, C2 which are the images of S1 by two smooth
mappings, we reparameterize them proportionally to curvilinear abcissa in R2

thus getting two embeddings σ1, σ2 of S1 in R2, and compute
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Fig. 1. Rendered views of a human right scapula model reconstructed from CT. The
planar sections of this surface will be searched using a tree like the one shown Fig. 8.

dc(C1, C2) = min
φ∈[0,2π]

(∫ 2π

0

‖σ2(t+ φ)− σ1(t)‖2dt

) 1
2

. (1)

Using the value φ̂ of φ that minimizes the former expression (cases of non-unicity
must be dealt with in algorithms), one can define the barycenter of two curves
C1 and C2 :

(1− λ)C1+̂λC2 : t �→ (1 − λ)C1(t) + λC2(t+ φ̂) . (2)

If we fix a group G of transformations acting on the elements of the affine plane,
either consisting of all isometries or only the direct isometries, we call shape of
a curve C its orbit under G, and we can compute a distance between the curve
shapes c1, c2 knowing a representative curve for each, say C1 and C2 and setting

ds(c1, c2) = min
T∈G

dc(C1, T (C2))

= min
(T,φ)∈G×[0,2π]

(∫ 2π

0

‖T (σ2(t+ φ))− σ1(t)‖2dt

) 1
2

. (3)

That these formulas for dc and ds provide actual distances results from Minkowski’s
inequality (see below the discrete case). Using the values T̂ of T and φ̂ of φ that
minimize the former expression (cases of non-unicity must be dealt with in algo-
rithms), one can also define the barycenter of two curve shapes c1, c2 with respec-
tive representative curves C1 and C2 : a representative curve of it is

(1− λ)c1+̊λc2 : t �→ (1− λ)C1(t) + λT̂ (C2(t+ φ̂)) . (4)

Discrete Case. We now redefine these distances and barycenters for plane
polygonal curves (polygons) to be used in applications. We will write a n-gon C
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as an ordered set (Ci)n−1
i=0 of vertices in R2, and n-gon shapes will still be the

orbits of n-gons under the action of a group G of isometries of the plane. A n-gon
will be called equilateral if all its sides have equal lengths:

∀i, 0 ≤ i ≤ n− 1, ‖Ci+1 (mod n) − Ci‖ = ‖C1 − C0‖ .
For each n, we only compare equilateral n-gons, which practically requires fixing
n and remapping all the curves of interest, like plane sections of surfaces or
barycenters of n-gons (see below), to such equilateral n-gons. If C1 and C2 are
equilateral n-gons (C1,i)n−1

i=0 and (C2,i)n−1
i=0 , we set

l(C1, C2, p) =
(
Σn−1
i=0 ‖C2, i+p (mod n) − C1,i‖2

) 1
2 , (5)

dc(C1, C2) = min
k∈{0,...,n−1}

l(C1, C2, k)

= min
k∈{0,...,n−1}

(
Σn−1
i=0 ‖C2, i+k (mod n) − C1,i‖2

) 1
2 , (6)

and for equilateral n-gon shapes c1 and c2 represented by such C1 and C2 we
define

ds(c1, c2) = min
T∈G

dc(C1, T (C2))

= min
k∈{0,...,n−1}

min
T∈G

(
Σn−1
i=0 ‖T

(
C2, i+k (mod n)

)− C1,i‖2
) 1

2 . (7)

Let us now prove in this discrete setting that dc and ds are distances.

Theorem 1. Let n be a positive integer, dc is a distance on the set of equilateral
n-gons in R2 and ds is a distance on the set of equilateral n-gon shapes in R2.

Proof. We first need:

Lemma 1. Let C1, C2, C3 be n-gons and p, q, r be integer such that p+ q = r
(mod n), then

l(C1, C3, r) ≤ l(C1, C2, p) + l(C2, C3, q) . (8)

Proof. (Of the Lemma) Minkowski’s inequality can be written(
Σn−1
i=0 ‖C3, i+r (mod n) − C1,i‖2

) 1
2

≤ (
Σn−1
i=0 ‖C2, i+p (mod n) − C1,i‖2

) 1
2 +

(
Σn−1
i=0 ‖C3, i+q (mod n) − C2,i‖2

) 1
2

since hypothesis p+q = r (mod n) implies that for each i verticesC3,i+r (mod n)

and C3,i+p+q (mod n) coincide. 	

Now for the theorem. For any equilateral n-gons C1, C2, C3, call p̂, q̂, r̂ integers
which respectively minimize l(C1, C2, p), l(C2, C3, q) and l(C1, C3, r). The lemma
tells us that

l(C1, C3, p̂+ q̂) ≤ l(C1, C2, p̂) + l(C2, C3, q̂) = dc(C1, C2) + dc(C2, C3), (9)



386 Y.L. Kergosien

and by definition
dc(C1, C3) ≤ l(C1, C3, p̂+ q̂) . (10)

For three n-gon shapes c1, c2, c3, represented by three n-gons C1, C2, C3, call
(p̂, T̂ ), (q̂, Û), (r̂, V̂ ) values in N×G which minimize respectively l(C1, T (C2), p),
l(C2, U(C3), q) and l(C1, U ◦T (C3), r). By the lemma and the fact that elements
of G are isometries

l(C1, U ◦ T (C3), p̂+ q̂) ≤ l(C1, T (C2), p̂) + l(T (C2), U ◦ T (C3), q̂) (11)
= l(C1, T (C2), p̂) + l(C2, U(C3), q̂) (12)
= ds(C1, C2) + ds(C2, C3), (13)

and by definition

ds(C1, C3) ≤ l(C1, U ◦ T (C3), p̂+ q̂) . (14)

	

A barycenter of two equilateral n-gons C1 et C2 with weights α and β such that
α+ β �= 0 can be defined, using a value p̂ that minimizes l(C1, C2, p):

αC1+̂βC2 = (αC1,i + βC2,i+p̂ (mod n))n−1
i=0 , (15)

and for two equilateral n-gon shapes c1, c2 with respective representatives
equilateral n-gons C1 and C2, if (p̂, T̂ ) is a value in N × G which minimizes
l(C1, T (C2), p), the barycenter of c1 and c2 with weights α and β can be defined
as the class of

αC1+̊βC2 = (αC1,i + βC2,i+p̂ (mod n))n−1
i=0 . (16)

However, in both cases, these expressions are not in general equilateral n-gons
and we need to use some approximation to stay in the set of equilateral n-gons.
We shall also use these formulas with α+ β = 0 to compute vector fields along
curves or curve shapes. In the discrete case a vector field along a curve is simply
a mapping which associates a vector to each vertex of the n-gon. With α = −1
and β = 1 we shall note C2−̂C1 for αC1+̂βC2 and and C2−̊C1 for αC1+̊βC2.

Remark. The choice of the discrete distance just described was led by com-
putational efficiency. There exist exact formulas to minimize over transforms in
G which have been used in Procrustes’ methods of Statistics and are based on
singular value decomposition [17,12]. Using n-gons with n of the order of 100 is
still tractable on PCs for real-time applications. Inherent parallelism could be
further exploited.

2.2 Setting for the Section Retrieval Problem

Consider a surface S in R3, image of a smooth embedding of the 2-sphere S2 into
R3. We fix a plane P in R3, say {(x, y, z) ∈ R3 : z = 0}, and consider the group
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D of direct affine isometries of R3 (which can be expressed by a rotation followed
by a translation). The problem of section retrieval can be phrased: “given a non
empty subset C of P such that there exists T ∈ D with C = T (S)∩P , find such
a T ”. A more general question : ”find all elements T ∈ D which minimize the
distance from C to T (S)∩P”, for an adequate distance, permits at the same time
to account for imprecise data and to address the decision problem of whether a
T exists starting from a more general C. One can address that problem under
some extra hypotheses, for instance to avoid the intersection being reduced to a
single point, or to suppose that the intersection is transversal.

2.3 Calculus Approach for Section Retrieval

Infinitesimally perturbing T produces changes of CT (S) = T (S) ∩ P which can
be viewed as vector fields along C (see for instance [7]). Starting from a position
T0(S) of S producing an intersection T0(S) ∩ P with P , if we could find a path
in G which would progressively deform the “source curve” T0(S) ∩ P into the
“target curve” Ct = T (S) ∩ P , we would eventually get T . Several difficulties
arise, however. First, if the surface is not convex, the topology of the intersection
set can change, at least requiring the use of an adequate distance to compare non
homeomorphic sets. Second, even if no such change happens – allowing us to use
the distances formerly described – the mapping from infinitesimal transforms on
T (S) to vector fields along T (S) ∩ P , despite linear, is not invertible.

2.4 Implementation

We suppose S to be a (non necessarily convex) known polyhedron in R3 and Ct,
the target curve, to be a plane section of it given by an isometric instance of it
in P . More precisely, Ct is a given polygonal curve in P such that there exists
Tt ∈ D with Ct = Tt(S) ∩ P , where Tt is an unknown transform which we want
to compute from Ct.

In the whole implementation [12] we only deal with transforms T of S that
equivalently lead to sections of S by planes T−1(P ) that are in general position,
i.e., not containing any vertex of S (which also guarantees that intersections
of edges of T (S) by P are transversal). This condition is easy to check and it
simplifies the algorithmics of intersection computing, especially the topological
types of the intersection sets. If not met, we slightly perturb the plane to get
it, but this is extremely rarely necessary. The effect of a perturbation of the
plane in such condition depends only on the set of vertices of the edges that are
intersected, which we call a tube. We call CT (S) the intersection of T (S) and P .

Infinitesimal motions that act on S are elements of the tangent space at the
identity to the group D of displacements in R3 (D is a semi-direct product of
SO(3) for rotations and R3 for translations), i.e. elements of its Lie algebra. The
Jacobian of the mapping h from elements of D to their corresponding CT (S) can
be computed as a composition of a linear mapping Tf from the Lie algebra TD
to the tangent space of the manifold of tubes and a linear mapping Tg from
the tangent manifold of tubes to the vector space of vector fields along CT (S).
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Its matrix Jh can be written and for any desired deformation V of CT (S), i.e.,
for any vector field along CT (S) – expressed as a column matrix –, one can find
a generalized solution to the equation JhX = V to get a desired infinitesimal
transformation X . There is then an exact formula for the exponential – from the
Lie algebra of D to D – which from X permits to compute a finite transformation
in D (see [12] for full details). The desired vector field V along C1 is computed as
V = ε(Ct−̂CT (S)) with ε a positive constant. One can also use V = ε(Ct−̊CT (S)),
which may avoid some of the local minima.

Starting from a certain value of T , and knowing S and Ct, one thus iterates
the sequence:

1. compute and parametrize CT (S) = T (S) ∩ P
2. compute matrices Jh and V = ε(Ct−̂CT (S)) (or V = ε(Ct−̊CT (S)))
3. find a generalized solution to JhX = V
4. compute a finite displacement expX and apply it to T (S)

until some threshold is reached for the distance dc(CT (S), Ct).

2.5 The Idea of an Atlas to Initialize Searches

We implemented this scheme with anatomical surfaces such as a human scapula
(Fig. 1) – reconstructed from CT data – which have very diverse sectional shapes.
The convergence is satisfactory when the initial position is close enough to the
position to be found, however the evolution often terminates in local minima of
the distance to the target curve, and novel approaches have to be found because
classical remedies like simulated annealing of multiresolution techniques seem
to require too much computer time and human supervision for the intended
applications. As a first obvious remedy, we used an “atlas” of sectional curves to
start from which were recorded with the corresponding positions of the surface,
for instance constructed from some uniform sampling of the possible sectional
planes, which notably improved the results. Exploring the possibility of doing
as much search as possible with such a brute force approach on sets of sectional
curves lead to investigate the problems of building the database and achieving
good performance of the queries. There is a vast literature about searches in
databases of high dimensional objects [22] that can apply to the present problem.
We present here an approach that was derived from self-organization research
[16,10] and turns out to be quite versatile.

2.6 A Similar Problem in Computer Vision: Finding the Pose of a
Known Solid from Its Projection Outline

For this problem, we consider a polyhedral surface free to move around one of
its points, and for each of its poses we compute its orthogonal projection on a
fixed plane, only keeping the outline of the projection (Fig. 2) to answer the
question : “knowing the surface and the outline curve, retrieve the pose of the
surface”. We shall take as the surface a polyhedron S ⊂ R3, non necessarily
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convex, and call outline of its image by a projection π the frontier of the non
compact connected component of R3 \ π(S), which keeps the topological type of
a circle, most conveniently for the distance we intend to use. Here the unknown
is a rotation matrix, i.e., the pose of the surface. We shall use for this problem a
pure search approach and build an “atlas” or database of contour outlines with
the records of their corresponding rotation matrices, not considering further
refinement by interpolation or descent on distance. Moreover, as we shall see, it
is advantageous to work on curve shapes rather than curves as the problem is
invariant by rotations in the plane of projection.

Fig. 2. A polyhedral surface and the outlines of its projections for two different poses

3 Adaptive Trees: Algorithms and Convergence Results

Adaptive trees [13,14] originated in self-organization research, both in the con-
text of neural networks[10] and the morphogenesis of branching phenomena [11].
They share some features with Self-Organizing Maps (SOM) [16] and also Clas-
sification And Regression Trees (CART) [3]. They consist in algorithms which
grow trees in metric spaces with some convergence to given target subsets of
these metric spaces. In the present study, the process will take place in the space
of plane curves and will build a tree of curves progressively approximating the
different curves contained in the target, the target being either the set of plane
sections of the surface or the set of outlines of projections of the surface. A vari-
ant of the algorithm will be later introduced to build adaptive search trees to
address our problems.
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3.1 Adaptive Trees

Let (E, d) be a metric space with distance d, and T a subset of it, T ⊂ E, called
the target, which is the support of a probability measure P defined on E. We are
going to evolve in time a growing set Gt, where for each t ∈ N, Gt ⊂ E, starting
from a given finite subset G0 ⊂ E which we call the seed (a single point if we
want to get a tree). At each step of the algorithm, Gt is built from Gt−1 adding
to it a point – we call this operation an accretion to Gt−1 – which depends on a
point randomly selected from the target T using probability P . A pseudo-code
for the algorithm used is:

Adaptive Tree Algorithm

1. set t = 0
2. until some condition on t or Gt is met, repeat:

(a) increment t
(b) randomly select a point ct from T using P
(c) compute the point at in Gt−1 which minimises d(ct, at), possibly using

a randomised rule to break ties
(d) set bt = (1 − ε)at + εct and Gt = Gt−1 ∪ {bt}, call bt a child of at

Line d) in the loop is an accretion which also builds the tree structure. We say
that the accretion of bt took place at at. It uses a barycenter construction but
the algorithm can be also used in metric spaces, such as Riemannian manifolds,
where it is possible to find bt aligned with at and ct, i.e. such that d(at, bt) +
d(bt, ct) = d(at, ct), with d(at, bt) = εd(at, ct). The parameter ε can be chosen in
a wide range of values (say from 10−1 to 10−4) and makes the tree more regular
if small.

Running the algorithm in the plane, from a single point towards a line seg-
ment, as well as in higher dimension (Fig. 3) shows how Gt progressively develops
branchings with most of its leaves approaching the target set. Growing Gt in the
plane from a single point towards more complex targets such as the one obtained
by mixing the probability laws of uniform distributions on a circle and a disk
(Fig. 4) exemplifies further some kind of adaptivity property. Please notice that
in the process some small branches stop growing. This phenomenon is known as
abortive branching and is studied in [10,15].

In order to state a convergence theorem, we need some definitions. A point in
E is called active at t if it belongs to Gt and has a positive probability of being
selected as at. For any c in T we define the set of points active for c at time t to
be Γt(c) = {a ∈ Gt| d(c, a) = d(c,Gt)}. The target share of a point a ∈ Gt is the
set Sa = {c ∈ T | ∀a′ ∈ Gt, d(c, a) ≤ d(c, a′)}. An element of Gt with a void or
P -negligible target share is obviously inactive and will remain so since the other
points of Gt which are closer to some points of the target will also be in Gt′ for
all t′ > t.
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Fig. 3. Adaptive trees. Left: tree grown towards a line segment in R2. Right: tree grown
towards a 7-hypercube in R8, projected on a plane normal to the target.

Fig. 4. Adaptive tree grown in R2 towards a target mixing the probability laws of a
circle with uniform distribution (top) and a disk with uniform distribution (bottom)

We can then state:

Theorem 2 ([15]). Let (E, d) be a metric space, T a compact subset of E which
is the support of a probability measure on E, and G0 a finite subset of E. The
following property is P -almost sure: for any real ξ > 0 there exists a finite time t
from which the sets Gt′ , t′ ≥ t grown from G0 using the adaptive tree algorithm
will all satisfy the two properties
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1. for any c ∈ T there exists x ∈ Gt′ such that d(c, x) < ξ, i.e. no point of the
target is more than ξ away from Gt′

2. for any x ∈ Gt′ and any c ∈ T , if x is active for c at t then d(x, c) < ξ, i.e.
active points are no farther than ξ away from any point of their target share.

Proof. A full proof can be found in [15].

Remark 1. Theorem 2 obviously implies the following more concise result:

Theorem 3. Let (E, d) be a metric space, T a compact subset of E which is
the support of a probability measure on E, and G0 a finite subset of E. Almost
surely the set of active points at time t converges to T in the Hausdorff metric
associated to d.

3.2 Adaptive Search Trees

The former algorithm has no direct use for a search. A variant of it that we now
describe permitted searches in some real time applications. Its convergence is how-
ever not guaranteed, as the tree growth, despite using very similar rules, does not
take place in a metric space. It builds a binary search tree which is used at each
step to quickly retrieve the active point in Gt which is closest to the ct selected
from the target, with considerable time improvement. The idea, quite natural for
search trees, is to split the target when a branching occurs – using an oblique hy-
perplane as a separatrix – and to permanently assign each part of it to one of the
two subtrees to be grown from the branching point – each target share assigned
to the closest child of the branching point – then recursively nesting successive
splits. The permanent character of each of the target splits brings at the same
time computational efficiency and the risk of less adaptivity to the target.

We shall assume G0 to be a singleton, and we shall say that a branching
occured at time t if the point at where the accretion of bt took place to build
Gt already had a child in Gt−1; at is then called a branching point. To make
the new algorithm comparable to the former one, we use instead of d a function
dn : T × E �→ R+, starting with d1 = d, which is updated after each branching
and does not remain a distance.

Adaptive Search Tree Algorithm

1. set t = 0, d1 = d
2. until some condition on t or Gt is met, repeat:

(a) increment t
(b) randomly select a point ct from T using P
(c) compute the point at in Gt−1 which minimises dt(ct, at), possibly using

a randomised rule to break ties
(d) set bt = (1 − ε)at + εct and Gt = Gt−1 ∪ {bt}, call bt a child of at
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(e) if no branching occured at at, set dt+1 = dt, otherwise update dt+1

with the following rule: let b′, b′′ the two children of at (one of them is
bt). For any x in T such that dt(x, b′) < dt(x, b′′) and any y in E, set
dt+1(x, y) = dt(x, y) if dt(y, b′) < dt(y, b′′), otherwise set dt+1(x, y) = ∞.
For x in T such that dt(x, b′′) < dt(x, b′), apply the same rule swapping
the roles of b1 and b2. Test for ties and provide a randomized rule if a
tie happens.

When a point ct is selected from T , in order to find the at in Gt which minimizes
dt(ct, at), one successively compares the values of d(ct, b′1) and d(ct, b′′1) to choose
a subtree of Gt, where b′1 and b′′1 are the two children of the branching point
closest to the root, then d(ct, b′2) and d(ct, b′′2) are compared to choose the next
subtree, where b′2 and b′′2 are the children of the first branching point in the
subtree already chosen, and so on, as in simple binary search trees.

To speed up searches it is efficient to maintain, besides the data structure
holding all the accretion points of the tree, a separate tree data structure, which
we call the reduced tree, obtained by removing from Gt all the non-branching
points from which one cannot reach a leaf without crossing a branching point.
We call nodes the vertices of the reduced tree which come from branching points
of Gt and we store with each node νk coming from a point pk in Gt the two
children of pk in Gt (or references to them). We shall call restricted tree the
restriction of the reduced tree to the nodes.

Experimentally (Fig. 5), the trees resulting from this algorithm are very simi-
lar to those produced by the former algorithm with the same targets, except for
some details, like the absence of abortive branchings. They are produced very
quickly and allow fast searches once the tree is built. However, convergence is
not guaranteed and some special target shapes – especially when the tree has to
cross some parts of the target to reach other parts of it, which might be less of a
problem in greater dimensions – show that the adaptive capabilities of the trees
are weaker [14,15].

3.3 Uninformed Accretion Adaptive Trees

The Adaptive Tree Algorithm uses an accretion rule that one could want to
avoid. First, it relies on a barycenter construction that, despite taking the form
of a pairing efficiently implementable in the case of curves, can be problematic to
generalize, e.g., to grow trees in a space of surfaces. Second, when interpreted in
the context of Biological Evolution, it infringes the Darwinian paradigm [5] [15]
because its accretion step uses some information about the point drawn from
the target to construct the point to be accreted. We described an uninformed
adaptive tree algorithm [15] where the accretion step consists in a random selec-
tion of a point bt in E on a sphere centered at at, and for which there is also a
theorem of convergence of the set of active points to the target set [15]. This al-
gorithm is compatible with distances, like Hausdorff [4,20] or Gromov-Hausdorff
[8,4] distances, which involve no point pairing, and although it is probably less
efficient, it permits easier generalizations to new problems.
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Fig. 5. Adaptive search trees. Left : towards the same target as in Fig. 3. Right :
towards a 6-hypercube in R7, projection of the tree on a plane normal to the target.

4 Using Adaptive Search Trees

4.1 The Pose from Outline of Projection Problem

We used the equilateral n-gon shape distance to grow an adaptive search tree in
the space of n-gons towards a target consisting in the set of outlines of a known
polyhedron after these outlines were mapped to equilateral n-gons, with a uni-
form probability measure on the set of 3-dimensional rotation matrices. We fixed
n = 100 and a number N of steps, then repeated N times a sequence of : (1)
randomly selecting a rotation matrix and rotating the polyhedron accordingly,
(2) computing the orthogonal projection on a fixed plane of the resulting poly-
hedron and extracting the outline of that projection, (3) mapping the outline
on an equilateral n-gon, (4) accreting a new point to the adaptive search tree
started from an equilateral n-gon approximation of an ellipsoid. To solve the pose
problem, with each accreted point we recorded, besides the n-gon constructed
by the barycentric accretion formula, two matrices : the matrix of the rotation
that produced the projection outline, and the matrix of the plane transformation
found whle computing the distance between shapes.

Fig. 6 shows the nodes of the restricted tree produced were each node is
positioned at a conventional location (like for an abstract binary tree, but with
progressive superimposition) and replaced by a representative of its n-gon shape.
Observe the progressive differentiation from the ellipsoidal shape of the root
towards the diverse shapes of the leaves that approximate the shapes of actual
outlines of projections of the surface.

Once a tree built, we could use it in a computer-simulated recognition of
the pose from the outline (Fig. 7 is a screen shot of the interface used at the
conference) : a 3-dimensional orthogonal shaded view of the polyhedron was
displayed on the screen with the possibility to interactively rotate it using a



Adaptive Trees in Spaces of Curves 395

Fig. 6. (Rotated) Nodes of the restricted tree associated to an adaptive search tree
grown in the space of 100-gons, starting from the equilateral 100-gon approximation of
an ellipsoid, towards the set of equilateral 100-gon approximations of the outlines of
the surface shown Fig. 2, after 2000 accretions (ε = 0.069). Only the curves associated
to the nodes (branching points of the adaptive search tree) are drawn. Notice the
progressive differentiation towards actual outlines.

mouse. Simultaneously, the outline of that view was computed and the tree was
searched for the closest n-gon shape in the tree. From the two matrices stored
in the tree with the retrieved outline shape and the matrix of the 2D transform
found while computing the distance between the computed outline (i.e., the
query) and the closest tree node (i.e., the answer), the pose was inferred and
used to display in a second window a view of the surface in that pose. The fit
of the original outline (computed from the surface controlled with the mouse)
with the inferred one (computed from the surface displayed with the inferred
pose) was visually assessed by superimposition in a third window. The searches
were quick enough, on a portable PC, to enable real time testing of the ability
to retrieve the pose from the outline.
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Fig. 7. Interface to check the pose inferred in real-time from projection outlines. The
pose of the 3D surface in the left window is interactively controlled by the user; its
projection outline is extracted and displayed in real time in the central window. The
right window shows in real time the surface in the pose inferred in real time from
the projection outline just extracted and its projection outline is superimposed in the
central window together with the curve associated to the node returned by the search
tree.

4.2 The Plane from Sectional Curve Problem

More control parameters occur in the section problem, which makes an inter-
active demonstration more difficult to set up. It is however possible to test the
possibility of building and using an adaptive search tree for the sections of a
surface. We grew an adaptive search tree as before in the space of n-gons, with
n = 100, towards the set of sections of the surface of a human scapular bone
reconstructed from CT data (Fig. 1), using a uniform probability on the set of
planes which intersect the surface, and starting from an equilateral n-gon approx-
imation of an ellipsoid. The adaptive tree and adaptive search tree algorithms
apparently produced similar results, the search tree version however being faster
and enabling quick searches among the sectional curves. As some curves can be
non-connected, in cases of several connected components in a sectional curve we
kept only the largest connected component and we returned no result for the
queries on very small sections.

To be able to use the tree to retrieve a transform which makes the polyhedron
intersect the reference plane along the given intersection polygon (up to some n-
gon approximations), one can modify the algorithm used to retrieve poses from
outlines, starting from an equilateral n-gon approximation of an ellipsoid and it-
erating N times a sequence of : (1) randomly selecting a 3D displacement 4 × 4
matrix and transforming the polyhedron accordingly, (2) computing the intersec-
tion with the fixed plane of the resulting polyhedron, (3) mapping the intersection
on an equilateraln-gon, (4) accreting a new point to the adaptive search tree. With
each accreted point we now record, besides the n-gon constructed by the barycen-
tric accretion formula, two matrices : the matrix of the 3D displacement that pro-
duced the intersection curve used as the current target point, and the matrix of
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Fig. 8. (Rotated) Restricted tree associated to an adaptive search tree grown in the
space of 100-gons, starting from the equilateral 100-gon approximation of an ellipsoid,
towards the set of equilateral 100-gon approximations of the plane sections of the
surface shown Fig. 1, after 1000 accretions (ε = 0.09). Only the curves associated to the
nodes (branching points of the adaptive search tree) are drawn. Notice the progressive
differentiation towards actual sections of a human right scapula. With each node, two
curves slightly different from the one shown here are stored in the data structure, and,
given a query sectional curve, the leaf closest to it is found like in a binary search tree,
starting from the root and recursively computing shape distances from the query curve
to the two curves of the node to decide, depending on which one is less, which child to
explore next.

the plane transformation found while computing the distance between the target
section and the point where the accretion takes place.

Fig. 8 shows the nodes of the restricted tree produced from the adaptive
search tree obtained. Each node is positioned at the conventional location of a
binary tree and replaced by a representative of the n-gon shape of the associated
point. Observe the progressive differentiation from the ellipsoidal shape of the
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root towards the diverse shapes of the leaves that approximate the shapes of
actual sections of the surface.

Experimental data on the time complexity of the algorithm are reproduced
in tables 1 and 2. The algorithm was implemented in language C (but with no
multi-thread programming, to be added in the future) with calls to the BLAS
level 3 and LINPACK’s SVD routine [6], and executed on a Linux system with
a 2.4 GHz quad-core processor, for sections of the surface shown Fig. 1, which
is a non-convex polyhedron with 2971 vertices and 5764 triangles reconstructed
from CT data.

Table 1 gives, for different numbers of accretions, and using 100-sided poly-
gons, the time for growing the tree (in seconds), the number of branching points
in the tree (producing as many nodes in the restricted tree), the number of
leaves, the mean height of leaves in the restricted tree, and the mean time to
answer a curve query once the search tree is available. Typically the tree would
be built off-line and only the query time would be critical for the feasibility of a
real-time application like the one already shown for projections. The data appear
to be compatible with such a possibility. The algorithm being stochastic, these
times vary from one instance of the tree to another. For the case of N = 1000
accretions the numbers given in the corresponding column are the means and
standard deviations measured on a sample of 100 trees. Other columns report a
single experiment for each N . In the last row, for each adaptive search tree built,
10000 random sections were used to estimate the mean time (in milliseconds)
to retrieve a random section (except for N=1000 : 1000 searches for each of the
100 trees). Notice that this time is approximately linear in the mean height of
leaves in the restricted tree.

Table 1. Retrieving sectional curves with an adaptive search tree: execution times
depending on the number N of accretion steps, using 100-gons. In the column of 1000
accretions, the numbers are means and standard deviations on a sample of 100 different
random trees (each one obtained with 1000 accretions). In other columns, the numbers
refer to a single random tree, and thus would vary slightly from tree to tree. In the last
row, each mean time for a section search was computed averaging the search times for
10000 random sections, except for N=1000 : 1000 queries for each of the 100 trees.

Number of accretions 1000 4000 16000 64000 256000

Time to grow the tree (s) 7.05 ± 0.43 35 185 1021 5418

Number of branching points 134.52 ± 7.21 620 3409 16890 75662

Number of leaves 74.59 ± 5.62 333 2004 9899 43810

Mean height of leaves in the restricted tree 7.22 ± 0.36 9.73 13.94 19.43 26.24

Mean time for a section search (ms) 8.72 ± 0.49 10.6 14.0 19.5 25.7
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Table 2 gives execution times for a fixed number (N=1000) of accretions with
increasing numbers n of polygon vertices, which appear to set the limits of real-
time feasibility for the present algorithm. Mean search times (in milliseconds)
were estimated from 1000 random sections of the surface for each tree.

Table 2. Retrieving sectional curves with an adaptive search tree: execution time
depending on the number of vertices of the polygons used for computing the distance;
the number of accretions is fixed to 1000

Number of polygon vertices 50 100 200 400 800

Time to grow the tree (s) 3 6 20 66 233

Mean height of leaves 7.39 6.77 7.21 6.80 6.62

Mean time for a section search (ms) 3 8 24 78 275

5 Conclusion and Prospects

After motivating a search approach to some geometric problems arising in inter-
ventional imaging medical applications, we described an algorithm which grows
trees in metric spaces which can be those of geometric objects if adequate dis-
tances are available. We described such a distance to permit searches of plane
curves or their approximations by equilateral n-gons. It involves some plane rigid
matching and a search for a best parametrization but still can be efficiently im-
plemented numerically. The adaptive tree algorithm has strong stochastic con-
vergence properties to compact subsets on metric spaces where a barycenter
can be used or generalized. A variant of it, still with some strong stochastic
convergence properties, the so-called non-informed accretion adaptive tree al-
gorithm, allows for distances that do not provide matching, such as Hausdorff
or Gromov-Hausdorff distances. An algorithm to produce search trees with very
similar behaviour towards targets in metric spaces was then described and exper-
imentally tested but it has no guaranteed convergence. It was used to address
the two problems described and showed satisfying speed permitting real-time
searches in spaces of plane curves.

Several issues are still calling for further research. Extending the distance to
more complex objects while keeping computational efficiency is one of them. The
search algorithm needs improvement on the side of convergence. Among possible
directions, one might try to combine the provably convergent adaptive trees with
classical search tree algorithms, using the points newly built. Adaptive trees,
despite being built stochastically so far, could also be interesting as descriptors
for sets of curves, somewhat like medial axes [2] or Reeb graphs [23] for embedded
manifolds. The kind of progressive shape interpolation that they perform, and its
analogy with multiresolution, also calls for some exploration of how they could
be used for shape matching and morphing. We shall address unicity issues and
some related geometric results in a separate publication, of a less applied type.
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The practical problem of unicity deserves going back to the original problem
where more information is usually available to disambiguate the results, and
some useful forms of answer can be sought even in the absence of unicity.
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Abstract. In this paper we describe the LIETree, a new data structure
for verified spatial decomposition of implicit objects. The LIETree is
capable of utilizing implicit linear interval estimations for calculating a
verified enclosure of the implicit function’s codomain. Furthermore, it
uses consistency techniques to tighten the object enclosure. Overall, it
delivers improved accuracy and uses fewer nodes than common uniform
subdivision schemes using interval or affine arithmetic for enclosure.

1 Introduction

There are various techniques for geometric modeling available, like polyhedral
meshes, free form surfaces or implicit objects. In this paper we will only consider
objects O described by a single implicit function f : Rn → R. A point x ∈ Rn

belongs to the object if f(x) ≤ 0. Formally, we have:

f(x) =

⎧⎨⎩< 0 x ∈ O \ ∂O
= 0 x ∈ ∂O
> 0 x �∈ O

(1)

Note that points on the boundary ∂O are also part of the object.
Like most geometric modeling types, implicit objects can be used in a wide

range of applications. For our work, medical applications are of special interest.
In the recent research project PROREOP, CSG trees with superquadric leaves
are used for modeling the femur bone and shaft. The models are used in the
scope of a total hip replacement procedure, where we have to find an implant
that will fit into a femur shaft that has already been shaped.

For this procedure we need to derive a verified enclosure of the distance be-
tween the femur shaft and the implant. While the direct distance computation
between two superquadrics is a non trivial task even in a non verified computa-
tion [3] , in our case the bones are CSG models with superquadric leafs. We use
hierarchical decomposition, in order to break the model down into less complex
pieces. Some preliminary tests that have been carried out in the scope of the
work [4], however showed the need for more sophisticated decomposition strate-
gies for complex implicit objects. Especially the common octree technique with
uniform space decomposition did not perform very well.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 402–415, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The hierarchical decomposition of the implicit object given by the formula
2−cos(x+αy)+cos(x−αy)+cos(y+αz)+cos(y−αz)+cos(z+αx)+cos(z−αx) with α =
1.61803 in the interval box [−4.8, 4.8]3 using our novel technique with a maximum
subdivision depth of 21.

In this work we discuss, how to construct a verified and tight spatial hier-
archical decomposition of an object given by a complex implicit formula (cf.
Fig. 1).

2 Preliminaries

2.1 Interval Arithmetic

In general a real number x ∈ R cannot be exactly represented by a floating point
number as the set of all floating point numbers F is only a finite subset of R.
In the commonly used IEEE 754 standard the real number x is rounded to the
nearest1 floating point number x′. The same is of course true for an operation
with two floating point numbers.

While often the round-off errors cancel each other out, sometimes floating
point computations may produce disastrous wrong results. In medical applica-
tions, we need to make sure that our computation is really correct. Using interval
arithmetic [1], a common tool for verified computations, we are a able to retrieve
an interval that is guaranteed to contain the result of the exact real computation.

Let I denote the set of all compact intervals. An interval2 X = [X,X] ∈ I
consists of a lower bound X and an upper boundX with X ≤ X. On a computer,
the bounds are floating point numbers.
1 In the standard rounding mode ’round to nearest even’.
2 Intervals and interval vectors are denoted with capital letters.
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We can define the basic operations between intervals. Formally, we have for
X,Y ∈ I and an operation ◦ ∈ {+,−, ·, /}:

X ◦ Y = {x ◦ y|x ∈ X, y ∈ Y }.

For the basic operations, simpler formulas have been derived:

X + Y = [X + Y ,X + Y ]

X − Y = [X − Y ,X − Y ]

X × Y = [min(XY ,XY ,XY ,XY ),
max(XY ,XY ,XY ,XY )]

X ÷ Y = X × [ 1
Y
, 1
Y ], 0 �∈ Y.

We can implement these formulas on a computer but we have to cope with the
round-off errors. This can be done using directed rounding modes3. We round
towards −∞ for calculating the lower bound and towards +∞ for the upper
bound.

If we replace all operations, constants and variables in a function f by their
respective interval counterparts, we get the (natural) interval extension F . An
interval extension has to satisfy the inclusion property:

F (X) ⊇ {f(x)|x ∈ X}. (2)

As there are various ready-to-use software packages like the C-XSC library [11]
available, which not only provides the basic operations but also interval exten-
sions for elementary functions like sin, cos, exp etc., we assume that the interval
extension of an implicit function is available.

For an interval, we will denote the width of the interval with w(X) = X −X
and the midpoint with mid(X) = (X +X)0.5. An interval vector (box) X ∈ In

is an axis-aligned box in n-space. Figure 2 demonstrates the two-dimensional
case. The width of an interval vector is defined as the maximum over the width
of its components.

Not only can interval arithmetic handle round-off errors, but it is also a very
powerful tool for range analysis of functions. According to the inclusion property
(2), we can calculate an enclosure of the function’s true range over an interval
using its interval extension.

2.2 Hierarchical Decomposition and Interval Arithmetic

The ability to calculate an enclosure of a function’s range over a box is a key
feature of the application of IA within the scope of spatial hierarchical decom-
position. We can adapt an octree [13] to an interval octree with two simple
steps:

3 Directed rounding modes are required by the IEEE 754 standard.
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Fig. 2. The two dimensional interval
vector ([1, 3], [2, 4]) represents an axis-
aligned box in R2

Fig. 3. An interval quadtree decom-
position. The nodes are boxes.

1. Represent the octree’s nodes with boxes
2. Use the implicit function’s interval extension to determine the node colors

Given an object O with the implicit function f and its respective interval exten-
sion F , we can determine the color of the box X as follows:

COLOR(X) =

⎧⎨⎩black if F (X) ≤ 0
white if F (X) > 0
gray else

If the node is black or white, we basically have a computational proof that the
node lies completely inside O or is disjoint with O. However, if the node is gray,
we cannot make any statement until we subdivide the node further. As it is
not possible to represent arbitrary objects exactly using axis-aligned boxes, we
have to define some maximum depth where the subdivision process stops. So,
in general, we also have gray leaf nodes. These are uncertain areas, we do not
know whether they contain a part of the object or not.

As mentioned in Sect. 1, we want to use the decomposition for distance com-
putation as described in [4], [5]. The gray leaf nodes have direct impact on the
tightness of the distance computation. We can see this in Fig. 4. Basically, we
have to treat the gray leaf nodes as black for computing the lower bound and
as white when computing the upper bound on the actual distance between the
trees. To get a tight enclosure, it is necessary to shrink the gray leaf node’s area
as much as possible.

The gray leaf nodes are not only produced by the approximation of an object
by axis-aligned boxes. Another source is the overestimation of IA. If we consider
the inclusion property (2) more closely, we see that IA only guarantees the
computation of a superset of the true range. This so-called overestimation can
also lead to (unnecessary) gray leaf nodes.
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Fig. 4. Distance computation between two
quadtrees. The acutal distance (continuous line)
is enclosed by the lower bound (dashed line) and
upper bound (dotted line).

Fig. 5. The joint range of two
affine forms with partial linear de-
pendencies is a centrally symmet-
ric polytope (shaded) and often
tighter than the interval enclosure
(dotted box)

2.3 Affine Arithmetic

Several more sophisticated arithmetics have been proposed to reduce the over-
estimation in classic IA. One is affine arithmetic [7], which is an arithmetic for
verified numerics with first-order dependency tracking. In affine arithmetic, a
partially unknown quantity X is represented as an affine form X̂, which is an
affine combination of a central value x0 and error terms:

X̂ = x0 + x1ε1 + x2ε2 + · · ·+ xnεn.

Every error term consists of a symbolic noise variable εi and a partial deviation
xi. It is assumed that every εi lies somewhere in the interval [−1, 1]. There is
partial linear dependency between two affine forms if they share one or more
symbolic noise variables. The joint range of affine forms is a centrally symmetric
polytope and not an axis-aligned box, as we can see in Fig. 5.

Affine operations can be performed straightforwardly. Given two affine forms
X̂ and Ŷ we get:

X̂ + X̂ = (x0 + y0) + (x1 + y1)ε1 + · · ·+ (xn + yn)εn,
αX̂ = (αx0) + (αx1)ε1 + · · ·xn)εn,
α+ X̂ = (x0 + α) + x1ε1 + · · ·+ xnεn.

If we perform these operations in a floating-point number system, they are unfor-
tunately not exact. So we have to cope with the round-off errors by adding a new
error term with an independent, unused noise symbol εn+1 to enclose the error.
A non-affine operation or function f(a) cannot be performed straightforwardly.
The basic idea is to split f(a) into an affine part fa(a) approximating f(a) and
a non-affine part enclosed by a new error term with a previously unused noise
symbol εn+1.

2.4 Implicit Linear Interval Estimations

Implicit linear interval estimation (ILIE) [2] is a linearization technique devel-
oped by Katja Bühler. Let O be an implicit object described by f(x) = 0 with
x ∈ Rd, its level set F = {x|f(x) = 0} and
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L(x) :=
d∑
i=1

aixi + J with J ∈ I, xi ∈ R (3)

The hyperplane segment L = {x ∈ X |0 ∈ L(x)} is called an ILIE of O over X ,
if and only if

0 ∈ L(x)

holds for all x ∈ F ∩X .

Fig. 6. An ILIE enclosing the objects
boundary. Every part of the boundary
is enclosed; however, the enclosure can
suffer from overestimation.

Fig. 7. Minimal outer box enclosure of
the solution set after applying hull con-
sistency. Some areas cannot be pruned
even if they are not covered by the
ILIE.

Informally we can say, that an ILIE is a thick hyperplane enclosing the bound-
ary of an implicit object over a box X in a verified manner. An illustration is
given in Fig. 6. The oriented hyperplane encloses the object boundary in the
box, so it is only valid for X . It is important to note that per definition we have

x ∈ ∂O⇒ 0 ∈ L(x) (4)

∀x ∈ X . However the opposite direction is not true. So

x ∈ ∂O⇐ 0 ∈ L(x)

does not hold in general. The thickness is determined by the width of the interval
parameter J in (3). It is a measure for the uncertainty and the linearization
error. In most cases, w(J) decreases as we shrink the box X . So we get normally
a better fit if we subdivide a box and recalculate the ILIE for the new smaller
boxes.

The ILIE is calculated using affine arithmetic. As the paper [2] describes the
process in detail, we will only give a short outline here. The process exploits the
linear dependency tracking of affine arithmetic. Basically, the linear dependency
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of the function value f(x) on the input variables x is measured using affine arith-
metic. This information is used for computing the normal vector. Moreover, the
central value and the linear dependencies determine the distance to the origin.
Finally, the non-linear approximation errors and round-off errors are enclosed
in an error interval and combined with the distance to the origin, forming the
interval quantity J .

3 LIETree

In this section we propose the LIETree: A new data structure that prunes the
uncertain area while still maintaining a proper hierarchy4 and covering the whole
subdivision domain. We use a binary tree as the basis of our structure. The
space decomposition is non-uniform, and the nodes are interval vectors. Instead
of classic IA or affine arithmetic, we use ILIE for object enclosure. But we also
exploit the linearization to prune the area of uncertainty.

3.1 Pruning the Uncertainty

The pruning is based on a consistency method. In our case, we will use hull
consistency (HC) as described in [10]. Given X,Y ∈ I and an equation f(x, y) =
0 with x ∈ X, y ∈ Y , we say that x ∈ X is consistent relative to f if there
exists a y ∈ Y with f(x, y) = 0. It is clear that an inconsistent value x cannot
fulfill the equation. Therefore, we can discard all inconsistent values without
losing a solution. This idea is obviously applicable for an arbitrary number of
variables. In the HC procedure, we apply this idea by solving the equation for
one occurrence of one variable and replacing all other occurrences and variables
with their respective interval bounds. This is repeated for all variables and will
hopefully lead to sharper bounds.

Let L(x) be an ILIE for the object O over X ∈ Rd then every point x ∈
(X ∩O)5 has to satisfy

L(x) ≤ 0

This follows directly from the ILIE’s definition (4) and its orientation. We assume
that the normal vector of L points outwards. The orientation depends on the
definition of the implicit object (1). Furthermore, we can rewrite the inequality
as

L(x) ∈ [−∞, 0]

and deduce that every solution point x∗i of the i-th component of X has to satisfy

x∗i ∈

⎛⎜⎜⎝[−∞,−J ]−
d∑
j=1
j �=i

njXj

⎞⎟⎟⎠ 1
ni
.

4 0 or 2 children.
5 x is part of O and lies inside the ILIE’s domain.
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Using this information we can compute a new enclosure for Xi introducing

X ′
i =

⎛⎜⎜⎝
⎛⎜⎜⎝[−∞,−J ]−

d∑
j=1
j �=i

njXj

⎞⎟⎟⎠ 1
ni

⎞⎟⎟⎠ ∩Xi. (5)

We intersect the new enclosure with the original interval Xi to prevent growth
of the component. So after applying (5)

X ′ ⊆ X (6)

always holds. As the new bounds X ′ are always in box form and an outer approx-
imation of the solution set6, the bounds will still suffer from overestimation in
general. That is, we have areas which are outside the ILIE but are not deletable
by the HC procedure (Fig. 7)

3.2 Inversion Nodes

Fig. 8. The area that is not part of the
object after pruning cannot be covered
by a single box

Fig. 9. Applying the HC procedure in
this example cannot result in good
progress, as the prunable area is too
small

After applying (5) to every component for computing new bounds X ′, we
have proven that the points X \X ′ are not part of our implicit object O. We can
use this information to create a spatial hierarchical decomposition of the object.
Remember that every node has an associated area described by a box. In the
simplest case, we would just split X into two nodes, covering X ′ and X \ X ′

respectively.
Unfortunately, in practice this does not work. The major problem is visualized

in Fig. 8. The set X \ X ′ is not necessarily a box, so it cannot be represented
by a single white node. An obvious solution would be to split it at the line S.
However, in this case the node including X ′ is enlarged and covers an area we
6 That is, we do not lose any solution during the process.
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have proven to contain no part of O. We solved this problem by introducing an
inversion node. This new node type has the color white inv and can cover the
set X \X ′:

Definition 1 (Inversion node). An inversion node has the color white inv
and occupies the area of its parent’s box P.X which is not covered by its own box
X: P.X \X.

An inversion node can be converted exactly to a set of maximum 2d white nodes
using Alg. 1.

Algorithm 1. Converts an inversion node to a set of white nodes

Data: Parent Box P , Pruned Box X, Dimension d
Result: Set of boxes K covering P \ X
K = ∅;
i = 0;
for i < d do

if Pi ≤ Xi then
N = P ;
Ni = [Pi, Xi];
K = K ∪ N ;

end

if Pi > Xi then
N = P ;

Ni = [Xi, Pi];
K = K ∪ N ;

end

Pi = [Xi, Xi];
i = i + 1;

end
return K;

3.3 Insufficient Progress

The pruning process is often plagued by bad progress (Fig. 9), especially when
the box X is relatively large and linearization is bad. In this example, the maxi-
mum prunable area is very small. We add white nodes for the pruned area, only
if the progress is large enough. If it is not, we use a normal subdivision procedure
that is, we bisect the box using the midpoint of the longest axis of X .

But when is the progress large enough? A similar problem occurs in interval
global optimization, where we need to judge whether an interval contractor leads
to sufficient progress. Hansen and Walster describe in [10] a heuristic method,
which can be adapted for our algorithm. Let X be the original box and X ′ the
pruned box. Then, we define
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D = 0.25w(X)− max
1≤i≤d

(w(Xi)− w(X ′
i)) (7)

Note that the maximum term is never negative as (6) always holds. The progress
is sufficient if D ≤ 0.

3.4 Construction Algorithm

Formally a LIETree node in our structure is a 6-tuple N = (X, I, F, C, T, P ).
Here X is the interval vector containing the covered area7, I contains the ILIE
for this node, F a pointer to its parent, C is a set containing pointers to its
children, T is the node color and P is the pruned area.

The pruned area results from the pruning processes that yield insufficient
progress. In such a case, the pruned area is propagated to the child nodes in the
regular bisection progress. As X \ P does not belong to the object, and P ⊆ X
always holds we can just work on P instead of X . In general, this results in
tighter codomain enclosures of the implicit function.

The complete algorithm for splitting a LIETree node is given in Alg. 2. First,
we try to recolor our current node either black or white (2, 3). In some cases it
may be necessary to create an inversion node (4). If this is not possible, we try to
prune the uncertain area (5) and recolor the node white if the whole area has been
deleted during this step (6). Next, we measure the progress (7). If the progress is
sufficient (8), we create an inversion node for the pruned area and a gray one for
the rest. Otherwise, we just use the common bisection procedure (9).

4 Test Results

We have compared our new structure with common uniform subdivision schemes,
using binary trees with interval arithmetic (BinTree IA) and affine arithmetic
(BinTree AA) for enclosure. Our seven test surfaces are listed in Tab. 1. The
test criteria are the uncertainty (area of gray leaf nodes), the total number of
nodes and the computation time. As subdivision depths, we have chosen 10, 15,
20 and 25. The test system was a Intel Core i7-860 system with 8 GB of memory
running under Ubuntu Linux 10.04. For interval arithmetic, we used the C-XSC
library and, for affine arithmetic, the C++ Affine Arithmetic Library libaffa [9].

It is a well known phenomena that IA often performs better for relatively
large boxes than more sophisticated arithmetics. This also occurred during our
tests, where the classic IA evaluation performed better than the LIETree or
BinTree AA for low subdivision depths. To get a better enclosure at the expense
of computational effort, we can perform an intersection with the natural interval
extension’s result. To do so, we replace Line 1 in Alg. 2 by

E = I(P ) ∩ F (P )

where F is the natural interval extension of the implicit function. This is called
LIETree (intersect.) in our comparison.
7 Except for white inv nodes (Subsect. 3.2).
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Algorithm 2. Splits a LIETree node

Data: Current Node N = (X, I,F, C, T, P )
Result: Set of newly created nodes S
.
S = ∅;

1 E = I(P );
2 if E > 0 then

T = white;

else if E ≤ 0 then
3 if X == P then

T = black;
4 else

S = S ∪ (P,null,N , ∅, white inv, P );
S = S ∪ (P,null,N , ∅, black, P );

end

else
5 Calculate X ′ using (5);
6 if X ′ == ∅ then

T = white
else

7 Calculate D using (7);
8 if D ≤ 0 then

S = S ∪ (X ′,null,N , ∅, white inv, X ′);
S = S ∪ (X ′, calc ilie(X ′),N , ∅, gray, X ′);

9 else
Determine longest axis i of X ′;
Bisect X using axis i and mid(X ′[i]) into X(0), X(1);

Bisect X ′ using axis i and mid(X ′[i]) into X
′(0), X

′(1);

S = S ∪ (X(0), calc ilie(X
′(0)),N , ∅, gray, X

′(0));

S = S ∪ (X(1), calc ilie(X
′(1)),N , ∅, gray, X

′(1));

end

end

end
return S ;

The averaged uncertainty is given in Fig. 10. While, for the low subdivision
depth of 10, the BinIA tree and the LIETree (intersect.) structure perform best,
for medium and high subdivision depths the LIETree performs considerably
better than the BinTree IA and the BinTree AA, and nearly as well as the
LIETree (intersect.). If we look at the computation times summarized in Fig. 11,
we see that computing the LIETree (intersect.) is very time-consuming. The
LIETree however, has a very low overhead with respect to time compared to
BinTree IA and especially BinTree AA. Fig. 12 shows that the new structure
uses significantly fewer nodes.
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Table 1. Implicit surfaces for our test series

Bretzel 5 (x2 + y2/4 − 1)2 · (x2/4 + y2 − 1) + z2 − 0.5
Sphere Hole (y − x2 − y2 + 1)4 + (x2 + y2 + z2)4 − 1
Dodecahedral 2 − cos(x + αy) + cos(x − αy) + cos(y + αz) + cos(y −

αz) + cos(z + αx) + cos(z − αx) with α = 1.61803
Heart (x2 + 2.25y2 + z2 − 1)3 − x2z3 − 0.1125y2z3

Cube x6 + y6 + z6 − 1
Klein’s bottle (x2 + y2 + z2 + 2y − 1)((x2 + y2 + z2 − 2y − 1)2 − 8z2) +

16xz(x2 + y2 + z12 − 2y − 1)
Sphere x2 + y2 + z2 − 1

5 Conclusion and Future Work

5.1 Summary

In this paper we presented a novel technique for creating a verified spatial de-
composition of implicit objects. Featuring non-uniform box-based space decom-
position and the use of implicit linear interval estimations, the new technique
results in tighter object fitting and reduces the area of uncertainty compared to
common techniques based on interval arithmetic or affine arithmetic. In combi-
nation with the new inversion node, the tighter fitting reduces the number of
nodes significantly. However, the computation times are slightly increased, as
the construction process is more complicated. Also, our structure suffers from
large overestimation at low subdivision depths. This is a problem common to
most techniques utilizing more sophisticated arithmetics like affine arithmetic.
Using the intersection with standard interval arithmetic, it can be solved, but
at the price of increased computation time.

5.2 Application to CSG Models and Superquadrics

We can conclude that our goal of a tighter fitting has been reached for the
surfaces we tested. However, no test has been done with superquadrics because
it is difficult to evaluate them with affine arithmetic. A superquadric F can be
described by the implicit formula

F (x, y, z) =

((
x

a1

) 2
ε2

+
(
y

a2

) 2
ε2

) ε2
ε1

+
(
z

a3

) 2
ε1 − 1 (8)

where the exponents ε1 and ε2 are positive real numbers. Therefore the argu-

ments of (·)
1

ε{1,2} have to be positive. This holds for superquadrics because the
arguments are squared. But the square of an affine form is not always completely
positive due to overestimation, so we cannot evaluate these powers. Here, the
use of an affine quadratic form [12] could solve the problem.
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Fig. 10. Averaged uncertainty for all test cases on a logarithmic scale

Fig. 11. Averaged computation times Fig. 12. Averaged number of nodes

Also, the application to CSG models remains undetermined. For this, we need
a way to propagate the linear dependency information through set theoretic
operations. One option for this may be R-functions [14], as already used in [8].
Another option might be a hybrid approach in which we use common uniform
space subdivision and combine it with the CSG simplification algorithm from [6].
We then can apply our LIETree structure as soon as the simplification procedure
produces a single CSG leaf node for a box.
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Abstract. In this paper, we present an image separation method for
separating images into point- and curvelike parts by employing a com-
bined dictionary consisting of wavelets and compactly supported shear-
lets utilizing the fact that they sparsely represent point and curvilinear
singularities, respectively. Our methodology is based on the very recently
introduced mathematical theory of geometric separation, which shows
that highly precise separation of the morphologically distinct features of
points and curves can be achieved by �1 minimization. Finally, we present
some experimental results showing the effectiveness of our algorithm, in
particular, the ability to accurately separate points from curves even if
the curvature is relatively large due to the excellent localization property
of compactly supported shearlets.

Keywords: Geometric separation, �1 minimization, sparse approxima-
tion, shearlets, wavelets.

1 Introduction

The task of separating an image into its morphologically different contents has
recently drawn a lot of attention in the research community due to its signif-
icance for applications. In neurobiological imaging, it would, for instance, be
desirable to separate ’spines’ (pointlike objects) from ’dendrites’ (curvelike ob-
jects) in order to analyze them independently aiming to detect characteristics
of Alzheimer disease. Also, in astronomical imaging, astronomers would often
like to separate stars from filaments for further analysis, hence again separating
point- from curvelike structures. Successful methodologies for efficiently and ac-
curately solving this task can in fact be applied to a much broader range of areas
in science and technology including medical imaging, surveillance, and speech
processing.

Although the problem of separating morphologically distinct features seems to
be intractable – the problem is underdetermined, since there is only one known
data (the image) and two or more unknowns – there has been extensive studies
on this topic. The book by Meyer [18] initiated the area of image decomposition,
in particular, the utilization of variational methods. Some years later, Starck,
Elad, and Donoho suggested a different approach in [19] coined ‘Morpholog-
ical Component Analysis’, which proclaims that such a separation task might
be possible provided that we have prior information about the type of features to

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 416–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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be extracted and provided that the morphological difference between those is
strong enough. For the separation of point- and curvelike features, it was in fact
recently even theoretically proven in [3] that �1 minimization solves this task
with arbitrarily high precision exploring a combined dictionary of wavelets and
curvelets. Wavelets provide optimally sparse expansions for pointlike structures,
and curvelets provide optimally sparse expansions for curvelike structures. Thus
�1 minimization applied to the expansion coefficients of the original image into
this combined dictionary forces the pointlike structures into the wavelet part and
the curvelike structures into the curvelet part, thereby automatically separating
the image. An associated algorithmic approach using wavelets and curvelets has
been implemented in MCALab1.

Recently, a novel directional representation system – so-called shearlets – has
emerged which provides a unified treatment of continuum models as well as digi-
tal models, allowing, for instance, a precise resolution of wavefront sets, optimally
sparse representations of cartoon-like images, and associated fast decomposition
algorithms; see the survey paper [11]. Shearlet systems are systems generated by
one single generator with parabolic scaling, shearing, and translation operators
applied to it, in the same way wavelet systems are dyadic scalings and trans-
lations of a single function, but including a directionality characteristic owing
to the additional shearing operation (and the anisotropic scaling). The shear-
ing operation in fact provides a more favorable treatment of directions, thereby
ensuring a unified treatment of the continuum and digital realm as opposed to
curvelets which are rotation-based in the continuum realm, see [1].

Thus, it is natural to ask whether also a combined dictionary of wavelets
and shearlets might be utilizable for separating point- and curvelike features,
the advantage presumably being a faster scheme, a more precise separation,
and a direct applicability of theoretical results achieved for the continuum do-
main. And, in fact, the theoretical results from [3] based on a model situation
were shown to also hold for a combined dictionary of wavelets and shearlets [2].
Moreover, numerical results give evidence to the superior behavior of shearlet-
based decomposition algorithms when compared to curvelet-based algorithms;
see [11] for a comparison of ShearLab2 with CurveLab3.

In this paper, we will present a novel approach to the separation of point- and
curvelike features exploiting a combined dictionary of wavelets and shearlets as
well as utilizing block relaxation in a particular way. Numerical results give evi-
dence that indeed the previously anticipated advantages hold true, i.e., that this
approach is superior to separation algorithms using wavelets and curvelets such
as MCALab in various ways, in particular, our algorithm is faster and provides
a more precise separation, in particular, if the curvature of the curvilinear part
is large. In the spirit of reproducible research [5], our algorithm is included in
the freely available ShearLab toolbox.

1 MCALab (Version 120) is available from http://jstarck.free.fr/jstarck/Home.

html
2 ShearLab (Version 1.0) is available from http://www.shearlab.org
3 CurveLab (Version 2.1.2) is available from http://www.curvelet.org

http://jstarck.free.fr/jstarck/Home.html
http://jstarck.free.fr/jstarck/Home.html
http://www.shearlab.org
http://www.curvelet.org
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This paper is organized as follows. In Section 2, we introduce the multiscale
system of shearlets, and Section 3 reviews the mathematical theory of geometric
separation of point- and curvelike features. Our novel algorithmic approach is
presented in Section 4 with numerical results discussed in Section 5.

2 Shearlets

In most multivariate problems, important features of the considered data are
concentrated on lower dimensional manifolds. For example, in image processing
an edge is an 1D curve that follows a path of rapid change in image inten-
sity. Recently, the novel directional representation system of shearlets [14,8] has
emerged to provide efficient tools for analyzing the intrinsic geometrical features
of a signal using anisotropic and directional window functions. In this approach,
directionality is achieved by applying integer powers of a shear matrix, and those
operations preserve the structure of the integer lattice which is crucial for dig-
ital implementations. In fact, this key idea leads to a unified treatment of the
continuum as well as digital realm, while still providing optimally sparse approx-
imations of anisotropic features. As already mentioned before, shearlet systems
are generated by parabolic scaling, shearing, and translation operators applied to
one single generator. Let us now be more precise and formally introduce shearlet
systems in 2D.

We first start with some definitions for later use. For j ≥ 0 and k ∈ Z, let

A2j =
(

2j 0
0 2j/2

)
, Ã2j =

(
2j/2 0
0 2j

)
, and Sk =

(
1 k
0 1

)
.

We can now define so-called cone-adapted discrete shearlet systems, where the
term ‘cone-adapted’ originates from the fact that these systems tile the frequency
domain in a cone-like fashion. For this, let c be a positive constant, which will
later control the sampling density. For φ, ψ, ψ̃ ∈ L2(R2), the cone-adapted dis-
crete shearlet system SH(φ, ψ, ψ̃; c) is then defined by

SH(φ, ψ, ψ̃; c) = Φ(φ; c) ∪ Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),

where

Φ(φ; c) = {φ(· − cm) : m ∈ Z2},
Ψ(ψ; c) = {ψj,k,m = 2

3
4 jψ(SkA2j · −cm) : j ≥ 0, |k| ≤ �2j/2�,m ∈ Z2},

Ψ̃(ψ̃; c) = {ψ̃j,k,m = 2
3
4 jψ̃(STk Ã2j · −cm) : j ≥ 0, |k| ≤ �2j/2�,m ∈ Z2}.

In [9], a comprehensive theory of compactly supported shearlet frames is pro-
vided, i.e., systems with excellent spatial localization. It should also be men-
tioned that in [12] a large class of compactly supported shearlet frames were
shown to provide optimally sparse approximations of images governed by curvi-
linear structures, in particular, so-called cartoon-like images as defined in [1].
This fact will be explored in the sequel.
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3 Mathematical Theory of Geometric Separation

In [19], a novel image separation method – Morphological Component Analy-
sis (MCA) – based on sparse representations of images was introduced. In this
approach, it is assumed that each image is the linear combination of several
components that are morphologically distinct – for instance, points, curves, and
textures. The success of this method relies on the assumption that each of the
components is sparsely represented in a specific representation system. The key
idea is then the following: Provided that such representation systems are iden-
tified, the usage of a pursuit algorithm searching for the sparsest representation
of the image with respect to the dictionary combining all those specific repre-
sentation systems will lead to the desired separation.

Various experimental results in [19] show the effectiveness of this method for
image separation however without any accompanying mathematical justification.
Recently, the first author of this paper and Donoho developed a mathematical
framework in [3] within which the notion of successful separation can be made
definitionally precise and can be mathematically proven in case of separating
point- from curvelike features, which they coined Geometric Separation. One key
ingredient of their analysis is the consideration of clustered sparsity properties
measured by so-called cluster coherence. In this section, we briefly review this
theoretical approach to the Geometric Separation Problem, which will serve as
the foundation for our algorithm.

3.1 Model Situation

As a mathematical model for a composition of point- and curvelike structures,
we consider the following two components: As a ‘point-like’ object, we consider
the function P which is smooth except for point singularities and is defined by

P =
P∑
i=1

|x− xi|−3/2.

As a ‘curve-like’ object, we consider the distribution C with singularity along a
closed curve τ : [0, 1] → R2 defined by

C =
∫
δτ(t)dt.

Then our model situation is the sum of both, i.e.,

f = P + C. (1)

The Geometric Separation Problem now consists of recovering P and C from the
observed signal f .



420 G. Kutyniok and W.-Q Lim

3.2 Chosen Dictionary

As we indicated before, it is now crucial to choose two representations systems
each of which sparsely represents one of the morphologically different compo-
nents in the Geometric Separation Problem. Our sparse approximation result,
described in the previous section, suggests that curvilinear singularities can be
sparsely represented by shearlets. On the other hand, it is well known that
wavelets can provide optimally sparse approximations of functions which are
smooth apart from point singularities. Hence, we choose the overcomplete sys-
tem within which we will expand the signal f as a composition of the following
two systems:

– Orthonormal Separable Meyer Wavelets: Band-limited wavelets which form
an orthonormal basis of isotropic generating elements.

– Bandlimited Shearlets: A directional and anisotropic tight frame generated
by a band-limited shearlet generator ψ defined in Section 2.

3.3 Subband Filtering

Since the scaling subbands of shearlets and wavelets are similar we can define
a family of filters (Fj)j which allows to decompose a function f into pieces fj
with different scales j depending on those subbands. The piece fj associated to
subband j arises from filtering f using Fj by

fj = Fj ∗ f,

resulting in a function whose Fourier transform f̂j is supported on the scaling
subband of scale j of the wavelet as well as the shearlet frame. The filters are
defined in such way, that the original function can be reconstructed from the
sequence (fj)j using

f =
∑
j

Fj ∗ fj, f ∈ L2(R2).

We can now exploit these tools to attack the Geometric Separation Problem
scale-by-scale. For this, we filter the model problem (1) to derive the sequence
of filtered images

fj = Pj + Cj for all scales j.

3.4 �1 Minimization Problem

Let now Φ1 and Φ2 be an orthonormal basis of band-limited wavelets and a tight
frame of band-limited shearlets, respectively. Then, for each scale j, we consider
the following optimization problem:

(Ŵj , Ŝj) = argminWj ,Sj
‖ΦT1Wj‖1 + ‖ΦT2 Sj‖1 subject to fj = Wj + Sj . (2)
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Notice that ΦT1Wj and ΦT2 Sj are the wavelet and shearlet coefficients of the
signals Wj and Sj , respectively. Notice that our objective is not on searching for
the sparsest expansion in a wavelet-shearlet dictionary, but on separation. Thus
we can avoid an extensive, presumably numerically instable search by minimizing
specific coefficients, namely the analysis in contrast to the synthesis coefficients,
for each possible separation fj = Wj + Sj .

We wish to further remark, that here the �1 norm is placed on the analysis
rather than the synthesis coefficients to avoid numerical instabilities due to the
redundancy of the shearlet frame.

3.5 Theoretical Result

The theoretical result of the precision of separation of fj via (2) proved in [3]
and [2] can now be stated in the following way:

Theorem 1 ([3] and [2]). Let Ŵj and Ŝj be solutions to the optimization
problem (2) for each scale j. Then we have

‖Pj − Ŵj‖2 + ‖Cj − Ŝj‖2

‖Pj‖2 + ‖Cj‖2
→ 0, j →∞.

This result shows that the components Pj and Cj are recovered with asymptot-
ically arbitrarily high precision at very fine scales. The energy in the pointlike
component is completely captured by the wavelet coefficients, and the curvelike
component is completely contained in the shearlet coefficients. Thus, the theory
evidences that the Geometric Separation Problem can be satisfactorily solved
by using a combined dictionary of wavelets and shearlets and an appropriate �1
minimization problem.

3.6 Extensions

Our numerical scheme for image separation, which we will present in detail in
the next section, will use a shift invariant wavelet tight frame and a compactly
supported shearlet frame as opposed to orthonormal Meyer wavelets and band-
limited shearlets required for Theorem 1. Hence this deserves some comments.
Firstly, Theorem 1 is based on an abstract separation estimate which holds for
any pair of frames, provided certain relative sparsity and cluster coherence condi-
tions with respect to the components of the data to be separated are satisfied (cf.
[3]). Secondly, using the recently introduced concept of sparsity equivalence (see
[2,10]), results requiring sparsity and coherence conditions can be transferred
from one system (set of systems) to another by ‘merely’ considering particular
decay conditions of the cross-Grammian matrix (matrices). We strongly believe
that this framework allows a similar result as Theorem 1 for the pair of a shift
invariant wavelet tight frame and a compactly supported shearlet frame. Since
the focus of this paper is however on the introduction of the numerical scheme,
such a highly technical, theoretical analysis is beyond the scope of this paper
and will be treated in a subsequent work.
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4 Our Algorithmic Approach to the Geometric
Separation Problem

In this section, we present our algorithmic approach to the Geometric Separa-
tion Problem of separating point- from curvelike features by using a combined
dictionary of wavelets and shearlets. The ingredients of the algorithm will be
detailed below.

4.1 General Scheme

In practice, the observed signal f is often contaminated by noise which requires
an adaption of the optimization problem (2). As proposed in numerous publica-
tions, one typically considers a modified optimization problem – so-called Basis
Pursuit Denoising (BPDN) – which can be obtained by relaxing the constraint
in (2) in order to deal with noisy observed signals (see [6]). For each scale j, the
optimization problem then takes the form:

(Ŵj , Ŝj) = argminWj ,Sj
‖ΦT1Wj‖1 + ‖ΦT2 Sj‖1 + λ‖fj −Wj − Sj‖2

2. (3)

In this new form, the additional content in the image – the noise – characterized
by the property that it can not be represented sparsely by either one of the two
representation systems will be allocated to the residual fj −Wj − Sj . Hence,
performing this minimization, we not only separate point- and curvelike objects,
which were modeled by Pj and Cj in Subsection 3.1, but also succeed in removing
an additive noise component as a by-product. Of course, solving the optimization
problem (3) for all relevant scales j is computationally expensive.

4.2 Preprocessing

To avoid high complexity, we observe that the frequency distribution of point-
and curvelike components is highly concentrated on high frequencies. Hence it
would be essentially sufficient for achieving accurate separation to solve (3) for
only sufficiently large scales j, as also evidenced by Theorem 1. This idea leads
to a simplification of the problem (3) by modifying the observed signal f as
follows: We first consider bandpass filters F0, . . . , FL, where (Fj)j=0,...,L is the
family of bandpass filters defined in Subsection 3.3 up to scale L, and F0 is a
lowpass filter. Thus the observed signal f satisfies

f =
L∑
j=0

Fj ∗ fj with fj = Fj ∗ f.

For each scale j, we now carefully choose a non-uniform weight wj > 0 satisfying,
in particular, wj < wj′ , if j < j′. These weights are then utilized for a weighted
reconstruction of f resulting in a newly constructed signal f̃ by computing

f̃ =
L∑
j=0

wj · (Fj ∗ fj). (4)
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In this way, the two morphological components, namely points and curves, can
be enhanced by suppressing the low frequencies.

While emphasizing that certainly other weights can be applied in our scheme,
for the numerical tests presented in this paper we chose L = 3, i.e., 4 subbands,
and weights w0 = 0, w1 = 0.1, w2 = 0.7, and w3 = 0.7. This coincides with the
intuition that a strong weight should be assigned to a band on which the power
spectrum of the underlying morphological contents is highly concentrated. We
do not claim that this is necessarily the optimal choice, and a comprehensive
mathematical optimality analysis is beyond our reach at this moment. To our
mind, the numerical results though justify this choice.

4.3 Solver for the �1 Minimization Problem

Using the reweighted reconstruction of f from (4) coined f̃ , we now consider the
following new minimization problem:

(Ŵ , Ŝ) = argminW,S‖ΦT1W‖1 + ‖ΦT2 S‖1 + λ‖f̃ −W − S‖2
2. (5)

Note that the frequency distribution of f̃ is highly concentrated on the high
frequencies – in other words, scaling subbands of large scales j –, and Theorem
1 justifies our expectation of a very precise separation using f̃ instead of f . Even
more advantageous, the reduced problem (5) no longer involves different scales
j, and hence can be efficiently solved by various fast numerical schemes. In our
separation scheme, we use the same optimization method as the one used in
MCALab to solve (5) now applied to a combined wavelet-shearlet dictionary.
We refer to [7] for a detailed description of an algorithmic approach to solve (5);
see also [6]. In the following subsections, we discuss the particular form of the
matrices ΦT1 and ΦT2 which encode the wavelet and shearlet transform in the
minimization problem (5) we aim to solve.

4.4 Wavelet Transform

Let us start with the wavelet transform. The undecimated digital wavelet trans-
form is certainly the most fitting version of the wavelet transform for the filtering
of data, and hence this is what we utilize also here. This transform is obtained
by skipping the subsampling, thereby yielding an overcomplete transform, which
in addition is shift-invariant. The redundancy factor of this transform is 3J + 1,
where J is the number of decomposition levels. We refrain from further details
and merely refer the reader to [17].

4.5 Shearlet Transform

For the shearlet transform, we employ the digital shearlet transform implemented
by 2D convolution with discretized compactly supported shearlets, which was in-
troduced in [16], see also [13]. In the earlier work [15], an faithful digitalization
of the continuum domain shearlet transform using compactly supported shear-
lets generated by separable functions has been developed. However, firstly, this
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algorithmic realization allows only a limited directional selectivity due to sep-
arability and, secondly, compactly supported shearlets generated by separable
functions do not form a tight frame which causes an additional computational
effort to approximate the inverse of the shearlet transform by iterative methods.
These problems have been resolved in [16,13] by using non-separable compactly
supported generators, and we now summarize this procedure.

In the sequel, we will discuss the implementation strategy for computing the
shearlet coefficients 〈f, ψj,k,m〉 only for ψj,k,m ∈ Ψ(ψ, 1). The same procedure
can be applied to shearlets in Ψ̃(ψ̃, 1) except for switching the role of variables.
Without loss of generality, let j/2 be an integer. For J > 0 fixed, assume that
f(x) =

∑
n∈Z2 fJ(n)2Lφ(2Lx−n), where φ is a 2D separable scaling function of

the form φ1(x1)φ1(x2) satisfying

φ(x) =
∑
n∈Z2

h(n)2φ(2x− n). (6)

Let ψ be a 2D separable wavelet defined by ψ(x1, x2) = ψ1(x1)φ1(x2), where ψ1

is a 1D wavelet. Further, assume that ψ can be written as

ψ(x) =
∑
n∈Z2

w(n)2φ(2x− n), (7)

where w(n) are 2D separable wavelet filter coefficients associated with scaling
filter coefficients h(n). For each j ≥ 0, define the (non-separable) shearlet gen-
erator ψnon

j by

ψ̂non
j (ξ) = PJ−j/2(ξ)ψ̂(ξ), (8)

where P�(ξ) = P (2�+1ξ1, ξ2) for � ≥ 0 and the trigonometric polynomial P is a
2D fan filter (c.f. [4]). To implement 〈f(·), ψnon

j,k,m(·)〉 = 〈f(·), ψnon
j,0,m(S2−j/2k·)〉,

we make two observations: Firstly, the functions ψnon
j,0,m are wavelets generated

by refinement equations (6), (7) and (8). Thus, for each j, there exists an asso-
ciated 2D wavelet filter wj . Secondly, the shear operator S2−j/2k can be faith-
fully discretized by the digital shear operator Sd

2−j/2k
(see [15,16], also [13]).

The digital (non-separable) shearlet transform is then, using the shearlet filters
ψdj,k = Sd

2−j/2k
(wj), defined by

SH(fJ)(m1,m2) = (fJ ∗ ψdj,k)(2J−jm1, 2J−j/2m2) for fJ ∈ �2(Z2).

If downsampling by A2j is omitted, a shift invariant shearlet transform (fJ ∗
ψdj,k)(m1,m2) is obtained, in which case dual shearlet filters ψ̃d

j,k can be easily
computed by deconvolution. We then obtain the reconstruction formula

fJ =
∑
j,k

(fJ ∗ ψd
j,k(− ·)) ∗ ψ̃d

j,k.
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5 Numerical Results

In this section, we present and discuss some numerical results of our proposed
scheme for separating point- and curvelike features. In each experiment we com-
pare our scheme, which is freely available in the ShearLab4 toolbox, with the
separation algorithm MCALab5. In contrast to our algorithm, MCALab uses
wavelets and curvelets to separate point- and curvelike components, and we re-
fer to [7] for more details on the algorithm.

5.1 Comparison by Visual Perception

Aiming first at comparison by visual perception, we choose an artificial image I
composed of two subimages P and C, where P solely contains pointlike structures
and C different curvelike structures (see Figures 1(a) and (b)). We further add
white Gaussian noise to I = P + C, shown in Figure 1(c).

(c)(b)(a)

Fig. 1. (a) P: Image of points. (b) C: Image of curves. (c) Noisy image (512 × 512).

Our scheme consists of two parts: Preprocessing of the image as described in
Subsection 4.2, followed by separation using a combined wavelet-shearlet dictio-
nary as described in Subsections 4.3-4.5. First, we will focus on the preprocessing
step, and apply MCALab with and without our preprocessing step – due to lim-
ited space we just mention that our scheme is similarly positively affected by
preprocessing. Figures 2(a) and (b) then visually indicate that preprocessing
indeed significantly improves the accuracy of separation.

To achieve a fair comparison, we now apply both schemes to the same prepro-
cessed image as defined in (4). Figures 3(a)-(d) and Figures 4(a)-(b) show the
comparison results. In Figure 3(c), it can be observed that the curvelet trans-
form performs well for extracting lines due to excellent directional selectivity.
However, some part of the curve is missed and appears in the pointlike part, see
also Figure 4(a). This error becomes worse with growing curvature. In contrast
to this, compactly supported shearlets provide much better spatial localization

4 ShearLab (Version 1.1) is available from http://www.shearlab.org
5 MCALab (Version 120) is available from http://jstarck.free.fr/jstarck/Home.

html

http://www.shearlab.org
http://jstarck.free.fr/jstarck/Home.html
http://jstarck.free.fr/jstarck/Home.html
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(a) (b)

Fig. 2. (a) Pointlike image component extracted by MCALab without preprocessing.
(b) Pointlike image component extracted by MCALab with preprocessing.

(a) (b)

(c) (d)

Fig. 3. (a) MCALab: Pointlike component. (b) Our scheme: Pointlike component. (c)
MCALab: Curvelike component. (d) Our scheme: Curvelike component.

than (band-limited) curvelets, which positively affects the capturing of local-
ized features of the curve as illustrated in Figure 3(d) and Figure 4(b). Hence,
with respect to this visual comparison, our scheme outperforms MCALab, in
particular, when curves with large curvature are present.
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(a) (b)

Fig. 4. Zoomed images: (a) MCALab. (b) Our scheme

5.2 Comparison by Quantitative Measures

We now put the comparison on more solid ground by introducing two quantita-
tive measures for analyzing how accurate our scheme as compared to MCALab
extracts points and curves.

To define our first quantitative measure, let P and C be (binary) images
containing points and curves, respectively, with image domain Ω ⊂ Z2, and let
P̂ and Ĉ be the separated images from I = P + C + noise by the separation
scheme to be analyzed. Letting T ≥ 0, BT be defined by

BT (I) = χ{n∈Ω:I(n)≥T}, for a 2D image I,

and g be a 2D discrete Gaussian filter, we introduce the test measures

Mp(P̂ )(T ) =
‖g ∗ P − g ∗ (BT ·max(P̂ )(P̂ ))‖2

‖g ∗ P‖2

and

Mc(Ĉ)(T ) =
‖g ∗ C − g ∗ (BT ·max(Ĉ)(Ĉ))‖2

‖g ∗ C‖2
.

Using P and C as given by Figure 1, the graphs of the error functions Mp(P̂ )
and Mc(Ĉ) for our scheme and MCALab are plotted in Figure 5 depending on
the threshold parameter 0 < T < 1.

These figures imply that our scheme outperforms MCALab with respect to
this quantitative measure.

As our second quantitative measure, we will use the running time of each
scheme. With respect to this comparison measure, MCALab runs 182.19 sec (30
iterations) to produce the test results while our scheme takes 135.37 sec (15
iterations). The running time was computed by taking the average over 10 runs.
Again, with respect to this measure our scheme performs superior.
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(a) (b)

Fig. 5. (a) Graph of quantitative measure T �→ Mp(P̂ )(T ): Our scheme (dashed curve)
and MCALab (solid curve). (b) Graph of quantitative measure T �→ Mp(Ĉ)(T ): Our
scheme (dashed curve) and MCALab (solid curve).

6 Application in Neurobiology

To test the performance of our scheme on real-world images, we apply it to an
image of a neuron generated by fluorescence microscopy (Figure 6(a)), which
is composed of ‘spines’ (pointlike features) and ‘dendrites’ (curvelike features).
Figures 6(b) and (c) show the extracted images containing spines and dendrites,
respectively.

(c)(b)(a)

Fig. 6. (a) Image of neuron. (b) Extracted spines. (c) Extracted dendrites.

7 Conclusion

In this paper, we introduced a novel methodology for separating images into
point- and curvelike features based on the new paradigm of sparse approxima-
tion and using �1 minimization. In contrast to other approaches, our algorithm
utilizes a combined dictionary consisting of wavelets and shearlets, implemented
as shift-invariant transforms, and is based on a mathematical theory. The excel-
lent localization property of compactly supported shearlets allows shearlets to
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capture the curvelinear part very accurately and efficiently, even if the curvature
is relatively large. Numerical results show that our scheme extracts point- and
curvelike features more precise and uses less computing time than the state-of-
the-art algorithm MCALab, which is based on wavelets and curvelets.
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University of West Bohemia, Faculty of Applied Sciences, Department of Mathematics,
Univerzitnı́ 8, 301 00 Plzeň, Czech Republic
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Abstract. Rational shapes with rational offsets, especially Pythagorean hodo-
graph (PH) curves and Pythagorean normal vector (PN) surfaces, have been tho-
roughly studied for many years. However compared to PH curves, Pythagorean
normal vector surfaces were introduced using dual approach only in their rational
version and a complete characterization of polynomial surfaces with rational off-
sets, i.e., a polynomial solution of the well-known surface Pythagorean condition,
still remains an open and challenging problem. In this contribution, we study a re-
markable family of cubic polynomial PN surfaces with birational Gauss mapping,
which represent a surface counterpart to the planar Tschirnhausen cubic. A full
description of these surfaces is presented and their properties are discussed.

1 Introduction

Surfaces with Pythagorean normal vector fields (PN surfaces) were defined in [1] as a
surface analogy to Pythagorean hodograph (PH) curves introduced in [2]. These sur-
faces provide an elegant and practical solution of various difficult problems occurring
in technical applications, in particular in the context of CNC machining. They are dis-
tinguished by having rational offsets, i.e., tool paths do not have to be approximated
and they are described exactly in NURBS form, which represents currently a universal
standard in CAD. For a survey of shapes with Pythagorean property (i.e., possessing ra-
tional offsets) see [3] and references therein. Many interesting questions related to this
subject have arisen, including analysis of geometric and algebraic properties of offsets,
determining the number and type of their components and constructing suitable rational
parameterizations, cf. [4,5,6,7,8,9].

Although PH curves in the plane and PN surfaces in the space share common goals,
the main one being rationality of their offsets, one can find a significant difference
between them. The curves with Pythagorean hodographs were introduced as planar
polynomial shapes and a compact formula for their description based on Pythagorean
triples of polynomials is available. Later, the concept was generalized also to rational
PH curves, cf. [1], using a dual representation. The interplay between the different ap-
proaches to polynomial and rational PH curves was thoroughly studied in [10] and the
former were established as a proper subset of the latter by presenting simple algebraic
constraints. In addition, we would like to emphasize that a main advantage of polyno-
mial PH curves is that their arc length is expressible as a polynomial function of the
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parameter (for rational PH curves the situation is more complicated as the integral of a
rational function is not necessarily rational).

On the other hand, the situation in the surface case is absolutely different. We have
only a description of rational Pythagorean normal vector surfaces reflecting again the
dual approach and polynomial formulae (including an algebraic condition for the spe-
cialization of rational PN surfaces to polynomial ones) have not been known yet. Hence,
finding a polynomial solution of the Pythagorean condition in the surface case still re-
mains an open and challenging problem.

In this paper we will study an analogy between a polynomial PH curves and PN sur-
faces of low parametric degrees. As known, the only curve with a non-trivial quadratic
polynomial parameterization is a parabola. This curve belongs to the so called LN
curves (i.e., curves with Linear normals, cf. [11]) and thus it can be reparameterized
coherrently with respect to the unit circle (yielding a rational PH parameterization) – a
proper rational parameterization for the two-sided offset to a parabola was firstly con-
structed in [12]. The analogy in surface case was revealed quite recently in [13] and
thoroughly studied in [14]. It was proved that all polynomial non-developable quadratic
surfaces are again LN surfaces, i.e., as in the plane case they admit (after rational
reparametrization) rational offsets. This property was used later in [15].

It is well-known fact that the unique polynomial PH cubic is the so-called Tschirn-
hausen cubic, cf. [2]. There also exists a whole affine family of LN cubics but they
provide only rational PH parameterizations. On the other hand, the situation for cubic
PN surfaces has not been answered yet. The only thing, one can find in literature, is a
remark on a PN parameterization of the so called Enneper surface in [16,17]. This fa-
mous minimal surface is studied in [16] from the point of view isothermal (conformal)
parameterizations which are closely related to Pythagorean-hodograph preserving map-
pings (cf. [18]). In this paper, we will follow this approach and show that there exists
a whole class of cubic polynomial PN surfaces containing among others the mentioned
Enneper surface. Moreover, we identify in this family a direct surface analogy to the
Tschirnhausen cubic, i.e., a cubic PN surface of algebraic degree three.

The remainder of this paper is organized as follows. Section 2 recalls some basic
facts concerning surfaces with Pythagorean normal vector fields, isothermal parame-
terizations and PH preserving mappings. Section 3 is devoted to a thorough study of
cubic polynomial PN parameterizations. We present generators of these shapes and
study them in connection to Enneper-Weierstrass formula for minimal surfaces. The
geometric properties of cubic PN surfaces and curves on these surfaces are investigated
in Section 4. Finally, we conclude the paper in Section 5.

2 Preliminaries

We briefly review fundamentals of rational surfaces with rational offsets and some re-
lated topics. The reader is referred to [3] and [1] for more details.

2.1 Rational Surfaces with Rational Offsets

Consider a parametric surface x : R2 → R3 given by a parameterization x(u, v). The
δ-offset of x(u, v) is the set of all points in R3 that lie at a distance δ from x. The two
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branches of the offset are given by

xδ(u, v) = x(u, v)± δN(u, v), N(u, v) =
x1 × x2

‖x1 × x2‖ , (1)

where ‖ · ‖ denotes the usual Euclidean norm and x1 and x2 are partial derivatives with
respect to u and v, respectively.

A study of offset rationality led to the class of surfaces with Pythagorean normal
vector fields introduced in [1]. In this paper, we use a modified description (of course,
equivalent with the original one). Let x(u, v) be a rational surface in Rn, n = 3, . . . for
which there exists a rational function σ(u, v) ∈ R(u, v) such that

G(u, v) = det(gij) = σ(u, v)2, i, j = 1, 2, (2)

whereG(u, v) is the associated Gram determinant with the entries gij = xi ·xj . As the
Gramian has for surfaces in R3 the following form

G(u, v) = g11g22 − g2
12 = ‖x1 × x2‖2, (3)

where g11, g12, g22 are the coefficients of the first fundamental form, then condition
(2) shows that surfaces with Pythagorean area elements are in R3 equivalent to PN
surfaces. Hence, (2) guarantees rational offsets of x, cf. (1).

Let us recall that the approach based on the associated Gramian can be applied for
all Pythagorean k-varieties, 1 ≤ k ≤ n − 1, in an arbitrary dimension n, specially for
PH curves parameterized by x(t) . These are distinguished by the property

G(t) = det(g11) = g11 = ‖x′(t)‖2 = σ(t)2. (4)

For the sake of brevity, we will deal only with non-developable PN surfaces. Such sur-
faces x(u, v) can be obtained as the envelope of a two-parametric set of the associated
tangent planes

T (u, v) : N(u, v) · x(u, v)− h(u, v) = 0, (5)

where h(u, v) = e(u, v)/f(u, v) is a rational function (the so called support function)
representing the oriented distance from the origin and N(u, v) is a rational parameteri-
zation of the unit sphere S2, cf. [1],

N(u, v) =
(

2ac
a2 + b2 + c2

,
2bc

a2 + b2 + c2
,
a2 + b2 − c2
a2 + b2 + c2

)�
, (6)

with a = a(u, v), b = b(u, v), c = c(u, v) fulfilling the condition gcd(a, b, c) = 1.
A parametric representation of an arbitrary non-developable PN surface can be then
obtained from the system of equations T = 0, ∂T/∂u = 0, ∂T/∂v = 0 using Cramer’s
rule – see formula (3.3) in [1].

We will consider only such a(u, v), b(u, v), c(u, v) in what follows that (6) is a
proper parameterization of S2. The corresponding PN surfaces with birational Gauss
map play the most prominent role among all PN parameterizations as they are closed
under the operation of convolution and moreover, they preserve the PN property when
the convolution with any arbitrary PN surface is constructed, cf. [17] for more details.
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2.2 Isothermal Surfaces and Pythagorean-Hodograph Preserving Mappings

A parametric surface x(u, v) is said to be isothermal if the coefficients of the first fun-
damental form satisfy the condition

g11 = g22, g12 = 0. (7)

The parameter lines on a isothermal surface are orthogonal and their speeds are equal.
Clearly, all polynomial or rational isothermal surfaces are PN surfaces, cf. (3).

Moreover, isothermal surfaces considered as mappings x : R2 → R3 are closely
related to the class of the so called Pythagorean-hodograph preserving mappings dis-
tinguished by the property that for every rational PH curve r(t) = (u(t), v(t))�, the
image x(r(t)) is also PH. More precisely if g11 = g22 = �(u, v)2, g12 = 0 then the
surface x(u, v) is called a scaled Pythagorean-hodograph preserving mapping, cf. [18]
for more details. Obviously, all parameter lines on such PN surfaces are rational (not
necessarily planar) PH curves. In [16], the Enneper surface is studied as a particular
example of PH preserving isothermal surfaces.

2.3 A Note on Polynomial Minimal Surfaces

Any simply connected minimal surface in R3 (i.e., a surface with zero mean curvature)
can be represented by the Enneper-Weierstrass parameterization

x(u, v) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
Re

(∫ ω

0

f(z)(1− g(z)2)dz
)

Re

(∫ ω

0

if(z)(1 + g(z)2)dz
)

Re

(∫ ω

0

2f(z)g(z)dz
)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ω = u+ iv, (8)

where f is a holomorphic function on a domain D, g is meromorphic on D and the
product fg2 is holomorphic on D. Then, the coefficients of the first fundamental form
are given by

g11 = g22 =
(|f |(|g|2 + 1)

)2
= �(u, v)2, g12 = 0. (9)

Thus, all polynomial minimal surfaces are isothermal (i.e., PN) with the PH preserving
property.

Consequently, (8) can be easily used for generating polynomial PN surfaces. As a
particular example, choosing f(z) = 1, g(z) = z we obtain the well-known parameter-
ization of the Enneper surface

x(u, v) =
(
u− u3

3
+ uv2,−v − u2v +

v3

3
, u2 − v2

)�
, (10)

possessing Tschirnhausen cubics as parameter lines, see Fig 1.
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Fig. 1. The Enneper surface P1 (left) and its parameter lines, i.e., the Tschirnhausen cubics (right)

3 Polynomial Cubic PN surfaces

In this section, we will focus on cubic polynomial PN surfaces with birational Gauss
mapping, which represent a surface counterpart to the Tschirnhausen cubic. A full de-
scription of these surfaces is given and their properties are studied.

3.1 Cubic PN Parameterizations

Similarly to the curve case, the most simple non-trivial polynomial PN parameteriza-
tions are of the parametric degree 3. Let x(u, v) be a parameterization of this type.
The degree of the associated normal vector field (6) is even and after computing the
dual representation (and comparing the degrees of polynomials) we can conclude that
this degree is for cubic PN surfaces at most 4.

Furthermore, it can be shown that if x(u, v) is a cubic polynomial PN parameteriza-
tion then the associated unit normal vector field (6) forms a birational parameterization
of the unit sphere. Thus any cubic polynomial PN parameterizations may be obtained
by choosing some linear polynomials a(u, v), b(u, v), c(u, v) and a suitable support
function h(u, v) = e/(a2 + b2 + c2), where e(u, v) is a polynomial. By a simple repa-
rameterization we arrive at

a(u, v) = u, b(u, v) = v, c(u, v) = pu+ qv + 1, p, q ∈ R, (11)

and thus w.l.o.g. we consider (11) in what follows.
First, we focus on the special but the most interesting case p = q = 0. After multi-

plying (5) by a2 + b2 + c2 = u2 + v2 + 1 we arrive at

2ux(u, v) + 2vy(u, v) + (u2 + v2 − 1)z(u, v) = e(u, v). (12)
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The cubic parameterization x(u, v) =
(
x(u, v), y(u, v), z(u, v)

)�
may be then ob-

tained by solving the following system of equations

M · x =

⎛⎝2u 2v u2 + v2 − 1
2 0 2u
0 2 2v

⎞⎠ ·
⎛⎝x
y
z

⎞⎠ =

⎛⎜⎜⎜⎝
e(u, v)
∂ e(u, v)
∂ u

∂ e(u, v)
∂ v

⎞⎟⎟⎟⎠ = E(u, v). (13)

Then,

x(u, v) = M−1 ·E, or x(u, v) =
1

detM
MA ·E, (14)

where
detM = −4(u2 + v2 + 1) (15)

and the adjoint matrix to M has the form

MA =

⎛⎝−4u 2(u2 − v2 − 1) 4uv
−4v 4uv 2(−u2 + v2 − 1)
4 −4u −4v

⎞⎠ . (16)

Hence, we are looking for all polynomials e(u, v) such that

det(M)xi = MA
i1e(u, v) + MA

i2

∂ e(u, v)
∂ u

+ MA
i3

∂ e(u, v)
∂ v

, i = 1, 2, 3, (17)

simultaneously assuming

max
{

deg(x(u, v)), deg(y(u, v)), deg(z(u, v))
}

= 3. (18)

This leads to a system of linear equations with unknowns being coefficients of the poly-
nomial e(u, v). It can be shown (for the sake of brevity we omit this purely technical
step) that all the cubic PN parameterizations gained by this computation have the fol-
lowing form

x(u, v) = α1P1 + α2P2 + α3P3 + (τ1, τ2, τ3)�, (19)

where

P1 =
(
u− u3

3
+ uv2,−v − u2v +

v3

3
, u2 − v2

)�
,

P2 =
(
−v + u2v − v3

3
,−u− u3

3
+ uv2,−2uv

)�
,

P3 =
(
u− u(u2 + v2)

3
, v − v(u2 + v2)

3
, u2 + v2

)�
,

(20)

and (α1, α2, α3) ∈ R3 \ (0, 0, 0), τ1, τ2, τ3 ∈ R. The above introduced surfaces P1,
P2, P3 (generators of an arbitrary cubic PN parameterization of the first type) will be
studied in more detail in the following subsections.



On a Special Class of Polynomial PN Surfaces 437

Fig. 2. A cubic PN surface of the second type
(
p = q = 1

2

)
An analogous approach can also be applied when the polynomial c(u, v) has the

form pu + qv + 1, cf. (11). If both coefficients p, q do not vanish simultaneously we
arrive at the unique solution (up to a translation and scaling) in the form

⎛⎜⎝ (pu+qv)(u2p3+2vup2q+3p2u−pu2+v2q2p+v2p+3pqv+3p−2uqv)
(pu+qv)(u2p2q+2vuq2p+3puq−2puv+qu2+q3v2+3q2v−qv2+3q)

(pu+qv)2(2pu+2qv+3)

⎞⎟⎠ . (21)

One example of this type of PN surfaces is given in Fig. 2. However, as for any fixed
choice of p, q (i.e., for a fixed normal vector field) one can construct only one surface
(up to a translation and scaling) we will not deal with these surfaces in what follows
and focus mainly on the first family described by (19).

3.2 Enneper Minimal Surface and Its PN Parameterizations

To get a better insight into the properties of cubic PN surfaces from the family (19),
we will thoroughly study the generating surfaces Pi, i = 1, 2, 3. Obviously, the surface
P1(u, v) is nothing else than the Enneper surface (10) – some of its properties were
recalled in the previous subsections.

Now, we will study the parameterization P2(u, v). Computing the coefficients of the
first fundamental form

g11 = g22 = (u2 + v2 + 1)2, g12 = 0, (22)

we conclude that this surface is again isothermal with PH preserving property (its pa-
rameter lines are spatial PH cubics), see Fig 3. Furthermore, P2(u, v) is a polynomial
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Fig. 3. Enneper surface P2 (left) and its parameter lines (right)

minimal surface and thus it may be given by the Enneper-Weierstrass formula (8) for

f(z) = i, g(z) = z. (23)

In addition, P2(u, v) is a surface of the algebraic degree 9 and if F (x, y, z) = 0 is
its implicit equation then F (x′, y′, z′) = 0, where

x =
√

2
2
x′ −

√
2

2
y′,

y =
√

2
2
x′ +

√
2

2
y′,

z = z′,

(24)

is the implicit equation of P1(u, v). Hence, P2(u, v) is again a parameterization of the
Enneper surface (rotated by π

4 along the z-axis).
Finally, if we restrict our considerations only to the class α1P1(u, v) + α2P2(u, v)

then any representative is a polynomial minimal surface described by the Enneper-
Weierstrass formula (8) for

f(z) = α1 + α2i, g(z) = z. (25)
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Fig. 4. Tschirnhausen cubic surface P3(u, v) (left) and the parameter lines of the rational para-
meterization constructed by the rotation of the Tschirnhausen cubic curve (right)

All of these parameterized surfaces are Enneper surfaces with parameter lines being
(generally) spatial PH cubics characterized by the associated Gramians, cf. (4),

G(u) = (α2
1 + α2

2)(1 + u2 + v2
0)

2,

G(v) = (α2
1 + α2

2)(1 + u2
0 + v2)2.

(26)

In particular, planar parameter lines (i.e., Tschirnhausen cubics) are obtained only when
α2 = 0.

3.3 Tschirnhausen Cubic Surface

In this subsection, we will study the third generating surface P3 which is not (compared
to the surfaces P1 and P2) minimal and its parameter lines are not PH curves. This
surface possesses the algebraic degree 3 and is described by the implicit equation

9x2 + 9y2 + z(z + 3)2 = 0. (27)

It is an affine image of the surface known as Ding-dong surface mentioned among
interesting cubic surfaces of revolution, see Fig. 4.

Despite the fact that its parameter lines are not PH curves, this surface is a di-
rect surface analogy to the Tschirnhausen cubic as it is not only a polynomial cubic
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Pythagorean variety but it also has the algebraic degree three. However, it can be ob-
tained as a rotational surface given by the meridian (for y = 0, i.e., setting v = 0 into
the parameterization P3(u, v)) (

u− u3

3
, u2

)�
, (28)

which is the Tschirnhausen cubic, cf. Fig.4 (right). Nevertheless, the parameterization
reflecting the rotational nature of this surface is not polynomial but rational.

Furthermore, if we compute the 2-valued support functions of both Tschirnhausen
cubic varieties (see e.g. [19,20,21] for more details about the support function repre-
sentation theory) then we find another analogy. For the Tschirnhausen cubic curve we
obtain

h(n1, n2)=
3n2

1n2 + 2n3
2 ± 2

√
(n2

1 + n2
2)3

3n2
1

=
3n2 − n3

2 ± 2
3(1− n2

2)
, (29)

where n2
1 + n2

2 = 1, and for the Tschirnhausen cubic surface we arrive at

h(n1, n2, n3)=
3(n2

1 + n2
2)n3 + 2n3

3 ± 2
√

(n2
1 + n2

2 + n2
3)3

3(n2
1 + n2

2)
=

3n3 − n3
3 ± 2

3(1− n2
3)

, (30)

where n2
1 + n2

2 + n2
3 = 1.

Obviously, all cubically parameterized PN surfaces represent a subfamily of Bézier
cubic surfaces, cf. [22]. A Bézier triangular cubic patch on the Tschirnhausen surface
is shown in Fig. 5 – its boundary lines are planar (but generally not PH) cubics.

Fig. 5. A triangular Bézier patch on the Tschirnhausen cubic surface

4 Dual Kinematic Description

Consider the unit normal vector field (6) for a = u, b = v, c = 1. Next, let be given
two focal parabolas
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p1(u) =
(

2u, 0, u2 − 1
2

)�
and p2(v) =

(
0,−2v,−v2 +

1
2

)�
. (31)

As it holds

N(u, v) =
p1(u)− p2(v)
‖p1(u)− p2(v)‖ =

(
2u, 2v, u2 + v2 − 1

)�
(u2 + v2 + 1)

, (32)

this gives us a geometric description of the normal vector field of all polynomial cubic
PN surfaces (19).

In particular, it is well known fact that the envelope of two-parameter family of
the planes of symmetry of two points p1(u) and p2(v) is the Enneper surface, see [16].
To generalize this construction we consider translated copies of these planes in the di-
rection of their normal vectors, i.e., we take the family of tangent planes(

p1(u)− p2(v)
)
·
(
x +

λ

1− λp2 − 1
1− λp1(u)

)
= 0, (33)

where λ ∈ R is the division ratio describing the position of a chosen point on the line
p1p2.

All envelope surfaces given by (33) are polynomial cubic PN surfaces given by the
parameterization

P(u, v) =
1

1− λ

⎛⎜⎝ u(−u2 + v2 − 2λv2 + 3)
v(λu2 − 2u2 − λv2 + 3λ)
(6u2 + 6λv2 − λ− 1)/2

⎞⎟⎠ . (34)

As the factor 1/(1− λ) brings only scaling, we can omit it in what follows.

Then after a short computation one can express the envelope surfaces (34) in the
form of the linear combination (19) for the values

α1 =
3
2
(1− λ), α2 = 0, α3 =

3
2
(1 + λ), τ1 = τ2 = 0, τ3 = −1

2
(1 + λ). (35)

Hence, especially for λ = −1 we obtain an envelope of planes of symmetry and thus (up
to scaling) the Enneper surface P1(u, v) (see Fig. 6), the case λ = 1 is the limit case and
the resulting surface is (up to scaling and translation) the Tschirnhausen cubic surface
P3(u, v). Finally, all the surfaces (34) are in a direct correspondence with surfaces
from the family α1P1 + α3P3, see Fig. 7 for one particular example different from the
canonical surfaces P1, P3.

It is also seen that the remaining PN surfaces from the class (19) (i.e., surfaces with
α2 �= 0) cannot be obtained via (34). To gain all surfaces of this type one would have
to allow also non-constant λ(u, v).
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Fig. 6. A kinematic description of the Enneper surface P1(u, v). The focal parabolas (red and
blue) with the points p1, p2 and the associated tangent plane (green) touching the Enneper surface
(at the magenta point).

Fig. 7. Kinematic description of a general PN surface given dually by (33). The focal parabolas
(red and blue) with the points p1, p2 and the associated tangent plane (green) touching the PN
surface (at the magenta point) .
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5 Conclusion

In the present paper we continued the discussion from [16] and extended the ideas
concerning the Enneper surface to further cubic polynomial PN parameterizations. This
study was motivated by the fact that a polynomial solution of the Pythagorean condition
in the surface case remains an open problem and a general formula is still unknown.

Especially, we studied a remarkable class of cubic parametric surfaces with
Pythagorean normals. Full description of these surfaces was given and some of their
properties, e.g. their dual kinematic construction, were presented. In addition, the close
relation to isothermal surfaces and PH preserving mappings was also studied.

Acknowledgement. The work on this paper was supported by the Research Plan MSM
4977751301. We thank all referees for their comments, which helped us to improve the
paper.
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9. Vršek, J., Lávička, M.: On convolution of algebraic curves. Journal of symbolic computa-
tion 45(6), 657–676 (2010)

10. Farouki, R.T., Pottmann, H.: Polynomial and rational Pythagorean-hodograph curves rec-
onciled. In: Proceedings of the 6th IMA Conference on the Mathematics of Surfaces, pp.
355–378. Clarendon Press, New York (1996)
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Abstract. Numerical causal derivative estimators from noisy data are
essential for real time applications especially for control applications or
fluid simulation so as to address the new paradigms in solid modeling and
video compression. By using an analytical point of view due to Lanczos
[9] to this causal case, we revisit nth order derivative estimators origi-
nally introduced within an algebraic framework by Mboup, Fliess and
Join in [14,15]. Thanks to a given noise level δ and a well-suitable inte-
gration length window, we show that the derivative estimator error can

be O(δ
q+1

n+1+q ) where q is the order of truncation of the Jacobi polyno-
mial series expansion used. This so obtained bound helps us to choose
the values of our parameter estimators. We show the efficiency of our
method on some examples.

Keywords: Numerical differentiation, Ill-posed problems, Jacobi orthog-
onal series.

1 Introduction

There exists a large class of numerical derivative estimators which were in-
troduced according to different scopes ([8,18,1,22,20,16,17]). When the initial
discrete data are corrupted by a noise, numerical differentiation becomes an
ill-posed problem. By using an algebraic method inspired by [6,13,10], Mboup,
Fliess and Join introduced in [14,15] real-time numerical differentiation by inte-
gration estimators that provide an effective response to this problem. Concerning
the robustness of this method, [4,5] give more theoretical foundations. These es-
timators extend those introduced by [9,19,23] in the sense that they use Jacobi
polynomials. In [14], the authors show that the mismodelling due to the trun-
cation of the Jacobi expansion can be improved by allowing a small time-delay
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in the derivative estimation. This time-delay is obtained as the product of the
length of the integration window by the smallest root of the first Jacobi polyno-
mial in the remainder of series expansion.

In [11], we extend to the real domain the parameter values of these Jacobi
estimators. This allows us to decrease the value of this smallest root and conse-
quently the time-delay estimation. In [12], we study for center derivative Jacobi
estimators the convergence rate of these estimators.

Thanks to these results, we propose in this article to tackle the causal conver-
gence rate case. We give an optimal convergence rate of these estimators depend-
ing on the derivative order, the noise level of the data and the truncation order.
Moreover, we show that the estimators for the nth order derivative of a smooth
function can be obtained by taking n derivations to the zero-order estimator of
the function. Hence, we can give a simple expression for these estimators, which
is much easier to calculate than the one given in [12].

This paper is organized as follows: in Section 2 the causal estimators in-
troduced in [14] are studied with extended parameters. The convergence rate of
these estimators are then studied. Finally, numerical tests are given in Section 3.
They help us to show the efficiency and the stability of this proposed estimators.
We will see that the numerical integration error may also reduce this time-delay
for a special class of functions.

2 Derivative Estimations by Using Jacobi Orthogonal
Series

Let f δ = f +� be a noisy function defined on an open interval I ⊂ R, where
f ∈ Cn(I) with n ∈ N and � be a noise1 which is bounded and integrable with
a noise level δ, i.e. δ = sup

x∈I
|�(x)|. Contrary to [19] where Legendre polynomials

were used, we propose to use, as in [14,15], truncated Jacobi orthogonal series
so as to estimate the nth order derivative of f . In this section, we are going to
give a family of causal Jacobi estimators by using Jacobi polynomials defined
on [0, 1]. From now on, we assume that the parameter h > 0 and we denote
Ih := {x ∈ I; [x− h, x] ⊂ I}.

The nth order Jacobi polynomials (see [21]) defined on [0, 1] are defined as
follows

P (α,β)
n (t) =

n∑
j=0

(
n+ α

j

)(
n+ β

n− j
)

(t− 1)n−j (t)j (1)

where α, β ∈]−1,+∞[. Let g1 and g2 be two functions which belong to C([0, 1]),
then we define the scalar product of these functions by

〈g1(·), g2(·)〉α,β :=
∫ 1

0

wα,β(t)g1(t)g2(t)dt,

1 More generally, the noise is a stochastic process, which is bounded with certain
probability and integrable in the sense of convergence in mean square (see [11]).
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where wα,β(t) = (1 − t)αtβ is a weighted function. Hence, we can denote its
associated norm by ‖ · ‖α,β. We then have

‖P (α,β)
n ‖2

α,β =
1

2n+ α+ β + 1
Γ (α+ n+ 1)Γ (β + n+ 1)
Γ (α+ β + n+ 1)Γ (n+ 1)

. (2)

Let us recall two useful formulae (see [21])

P (α,β)
n (t)wα,β(t) =

(−1)n

n!
dn

dtn
[wα+n,β+n(t)] (the Rodrigues formula), (3)

d

dt
[P (α,β)
n (t)] = (n+ α+ β + 1)P (α+1,β+1)

n−1 (t). (4)

Let us ignore the noise � for a moment. Since f is assumed to belong to Cn(I),
we define the qth (q ∈ N) order truncated Jacobi orthogonal series of f (n)(x−ht)
(t ∈ [0, 1]) by the following operator: ∀x ∈ Ih,

D
(n)
h,α,β,qf(x− th) :=

q∑
i=0

〈
P

(α+n,β+n)
i (·), f (n)(x− h·)

〉
α+n,β+n

‖P (α+n,β+n)
i ‖2

α+n,β+n

P
(α+n,β+n)
i (t).

(5)
We also define the (q+n)th order truncated Jacobi orthogonal series of f(x−ht)
(t ∈ [0, 1]) by the following operator

∀x ∈ Ih, D(0)
h,α,β,qf(x− th) :=

q+n∑
i=0

〈
P

(α,β)
i (·), f(x− h·)

〉
α,β

‖P (α,β)
i ‖2

α,β

P
(α,β)
i (t). (6)

It is easy to show that for each fixed value x, D(0)
h,α,β,qf(x − h·) is a polyno-

mial which approximates the function f(x − h·). We can see in the following
lemma that D(n)

h,α,β,qf(x− h·) is in fact connected to the nth order derivative of

D
(0)
h,α,β,qf(x− h·). It can be expressed as an integral of f .

Lemma 1. Let f ∈ Cn(I), then we have

∀x ∈ Ih, D(n)
h,α,β,qf(x− th) =

1
(−h)n

dn

dtn

[
D

(0)
h,α,β,qf(x− th)

]
. (7)

Moreover, we have

∀x ∈ Ih, D(n)
h,α,β,qf(x− th) =

1
(−h)n

∫ 1

0

Qα,β,n,q,t(τ)f(x − hτ)dτ, (8)

where Qα,β,n,q,t(τ) = wα,β(τ)
q∑
i=0

Cα,β,n,iP
(α+n,β+n)
i (t)P (α,β)

n+i (τ), and

Cα,β,n,i = (β+κ+2n+2i+1)Γ (β+α+2n+i+1)Γ (n+i+1)
Γ (β+n+i+1)Γ (α+n+i+1) with α, β ∈]− 1,+∞[.
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Proof. By applying n times derivations to (6) and by using (4), we obtain

dn

dtn

[
D

(0)
h,α,β,qf(x− th)

]
=

q∑
i=0

〈
P

(α,β)
i+n (·), f(x − h·)

〉
α,β

‖P (α,β)
i+n ‖2

α,β

dn

dtn

[
P

(α,β)
i+n (t)

]

=
q∑
i=0

〈
P

(α,β)
i+n (·), f(x − h·)

〉
α,β

‖P (α,β)
i+n ‖2

α,β

Γ (α+ β + 2n+ i+ 1)
Γ (α+ β + n+ i+ 1)

P
(α+n,β+n)
i (t).

(9)

By applying two times the Rodrigues formula given in (3) and by taking n
integrations by parts, we get〈

P
(α+n,β+n)
i (·), f (n)(x − h·)

〉
α+n,β+n

=
∫ 1

0

wα+n,β+n(τ)P
(α+n,β+n)
i (τ) f (n)(x− hτ)dτ

=
∫ 1

0

(−1)i

i!
w

(i)
α+n+i,β+n+i(τ) f

(n)(x− hτ)dτ

=
1

(−h)n
∫ 1

0

(−1)i+n

i!
w

(n+i)
α+n+i,β+n+i(τ) f(x − hτ)dτ

=
1

(−h)n
∫ 1

0

(n+ i)!
i!

wα,β(τ)P
(α,β)
n+i (τ) f(x − hτ)dτ.

Then, after some calculations by using (2) we can obtain〈
P

(α+n,β+n)
i (·), f (n)(x− h·)

〉
α+n,β+n

‖P (α+n,β+n)
i ‖2

α+n,β+n

=

〈
P

(α,β)
i+n (·), f(x− h·)

〉
α,β

(−h)n‖P (α,β)
n+i ‖2

α,β

Γ (α+ β + 2n+ i+ 1)
Γ (α+ β + n+ i+ 1)

.

(10)

Finally, by taking (5) and (9) we obtain

∀x ∈ Ih, D(n)
h,α,β,qf(x− th) =

1
(−h)n

dn

dtn

[
D

(0)
h,α,β,qf(x− th)

]
. (11)

The proof is complete. 	

If we consider the noisy function f δ, then it is sufficient to replace f(x− h·) in
(8) by f δ(x− h·). In [14], for a given value tτ ∈ [0, 1], D(n)

h,α,β,qf
δ(x− tτh) (with

α, β ∈ N and q ≤ α + n) was proposed as a point-wise estimate of f (n)(x) by
admitting a time-delay tτh. We assume here that these values α and β belong
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to ]−1,+∞[. This is possible due to the definition of the Jacobi polynomials.
Contrary to [14], we do not have constraints on the value of the truncation order
q. Moreover, the function Qα,β,n,q,t is easier to calculate than the one given in
[12]. Thus, we can define the extended point-wise estimators as follows.

Definition 1. Let f δ = f+� be a noisy function, where f ∈ Cn(I) and � be a
bounded and integrable noise with a noise level δ. Then a family of causal Jacobi
estimators of f (n) is defined as

∀x ∈ Ih, D(n)
h,α,β,qf

δ(x− tτh) =
1

(−h)n
∫ 1

0

Qα,β,n,q,tτ (u)f δ(x− hu)du, (12)

where α, β ∈]− 1,+∞[, q, n ∈ N and tτ is a fixed value on [0, 1].

Hence, the estimation error comes from two sources : the remainder terms in
the Jacobi series expansion of f (n)(x − h·) and the noise part. In the following
proposition, we study these estimation errors.

Proposition 1. Let f δ be a noisy function where f ∈ Cn+1+q(I) and � be
a bounded and integrable noise with a noise level δ. Assume that there exists
Mn+1+q > 0 such that for any x ∈ I, ∣∣f (n+q+1)(x)

∣∣ ≤Mn+1+q, then∥∥∥D(n)
h,α,β,qf

δ(x− tτh)− f (n)(x− tτh)
∥∥∥
∞
≤ Cq,tτh

q+1 + Eq,tτ
δ

hn
, (13)

where Cq,tτ = Mn+1+q

(
1

(n+1+q)!

∫ 1

0

∣∣un+1+qQα,β,n,q,tτ (u)
∣∣ du+ tq+1

τ

(q+1)!

)
and

Eq,tτ =
∫ 1

0 |Qα,β,n,q,tτ (u)| du. Moreover, if we choose h =
[

nEq,tτ

(q+1)Cq,tτ
δ
] 1

n+q+1
,

then we have∥∥∥D(n)
h,α,β,qf

δ(x − tτh)− f (n)(x − tτh)
∥∥∥
∞

= O(δ
q+1

n+1+q ). (14)

Proof. By taking the Taylor series expansion of f at x, we then have for any
x ∈ Ih that there exists ξ ∈]x− h, x[ such that

f(x− tτh) = fn+q(x− tτh) +
(−h)n+1+qtn+1+q

τ

(n+ 1 + q)!
f (n+1+q)(ξ), (15)

where fn+q(x−tτh) =
n+q∑
j=0

(−h)jtjτ
j!

f (j)(x) is the (n+q)th order truncated Taylor

series expansion of f(x− tτh). By using (8) with fn+q(x − h·) we obtain

f
(n)
n+q(x− tτh) =

1
(−h)n

∫ 1

0

Qα,β,n,q,tτ (τ)fn+q(x− hτ)dτ. (16)

Thus, by using (12) and (16) we obtain

D
(n)
h,α,β,qf(x− tτh)− f (n)

n+q(x− tτh)

=
(−h)q+1

(n+ 1 + q)!

∫ 1

0

Qα,β,n,q,tτ (τ)τn+1+qf (n+1+q)(ξ)dτ.
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Consequently, if for any x ∈ I ∣∣f (n+1+q)(x)
∣∣ ≤ Mn+1+q, then by taking the qth

order truncated Taylor series expansion of f (n)(x− tτh)

f (n)(x − tτh) = f
(n)
n+q(x− tτh) +

(−h)1+qt1+qτ

(1 + q)!
f (n+1+q)(ξ̂),

we have∥∥∥D(n)
h,α,β,qf(x− tτh)− f (n)(x − tτh)

∥∥∥
∞

≤
∥∥∥D(n)

h,α,β,qf(x− tτh)− f (n)
n+q(x− tτh)

∥∥∥
∞

+
∥∥∥f (n)
n+q(x− tτh)− f (n)(x− tτh)

∥∥∥
∞

≤hq+1Mn+1+q

(
1

(n+ 1 + q)!

∫ 1

0

∣∣τn+1+qQα,β,n,q,tτ (τ)
∣∣ dτ +

tq+1
τ

(q + 1)!

)
.

(17)

Since ∥∥∥D(n)
h,α,β,qf

δ(x− tτh)−D(n)
h,α,β,qf(x− tτh)

∥∥∥
∞

=
∥∥∥D(n)

h,α,β,q

[
f δ(x − tτh)− f(x− tτh)

]∥∥∥
∞

≤ δ

hn

∫ 1

0

|Qα,β,n,q(τ)| dτ,

by using (17) we get∥∥∥D(n)
h,α,β,qf

δ(x − tτh)− f (n)(x− tτh)
∥∥∥
∞

≤
∥∥∥D(n)

h,α,β,qf
δ(x− tτh)−D(n)

h,α,β,qf(x− tτh)
∥∥∥
∞

+
∥∥∥D(n)

h,α,β,qf(x− tτh)− f (n)(x− tτh)
∥∥∥
∞

≤ Cq,tτh
q+1 + Eq,tτ

δ

hn
,

where Cq,tτ = Mn+1+q

(
1

(n+1+q)!

∫ 1

0

∣∣τn+1+qQα,β,n,q,tτ (τ)
∣∣ dτ + tq+1

τ

(q+1)!

)
and

Eq,tτ =
∫ 1

0
|Qα,β,n,q,tτ (τ)| dτ.

Let us denote the error bound by ψ(h) = Cq,tτ h
q+1 +Eq,tτ

δ
hn . Consequently,

we can calculate its minimum value. It is obtained for h∗ =
[

nEq,tτ

(q+1)Cq,tτ
δ
] 1

n+q+1

and

ψ(h∗) =
n+ 1 + q

q + 1

(
q + 1
n

) n
n+1+q

C
n

n+1+q

q,tτ E
q+1

n+1+q

q,tτ δ
q+1

n+1+q . (18)

The proof is complete. 	

Let us mention that if we set tτ = θq+1, the smallest root of the Jacobi polyno-
mial P (α+n,β+n)

q+1 in (5), then D(n)
h,α,β,qf(x − θq+1h) becomes the (q + 1)th order

truncated Jacobi orthogonal series of f (n)(x − θq+1h). Hence, we have the fol-
lowing corollary.
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Corollary 1. Let f ∈ Cn+2+q(I) where q is an integer. If we set tτ = θq+1, the
smallest root of the Jacobi polynomial P (α+n,β+n)

q+1 in (12) and we assume that
there exists Mn+2+q > 0 such that for any x ∈ I, ∣∣f (n+q+2)(x)

∣∣ ≤Mn+2+q, then
we have∥∥∥D(n)

h,α,β,qf
δ(x− θq+1h)− f (n)(x− θq+1h)

∥∥∥
∞
≤ Cq,θq+1h

q+2 + Eq,θq+1

δ

hn
,

where Cq,θq+1 = Mn+2+q

(
1

(n+q+2)!

∫ 1

0 |τn+q+2Qα,β,n,q,θq+1(τ)| dτ + tq+2

(q+2)!

)
and

Eq,θq+1 is given in Proposition 1. Moreover, if we choose ĥ =
[

nEq,θq+1
(q+2)Cq,θq+1

δ
] 1

n+q+2
,

then we have∥∥∥D(n)
h,α,α,qf

δ(x− θq+1h)− f (n)(x− θq+1h)
∥∥∥
∞

= O(δ
q+2

n+2+q ).

Proof. If tτ = θq+1, the smallest root of polynomial P (α+n,β+n)
q+1 in (5), then we

have

D
(n)
h,α,β,qf(x− θq+1h)

=
q+1∑
i=0

〈
P

(α+n,β+n)
i (·), f (n)(x− h·)

〉
α+n,β+n

‖P (α+n,β+n)
i ‖2

α+n,β+n

P
(α+n,β+n)
i (θq+1).

This proof can be completed by taking the (n+ q+ 1)th order truncated Taylor
series expansion of f as it was done in Proposition 1. 	

The numerical calculation of Eq,θq+1 for q, n ∈ N and α, β ∈]− 1, 10] shows that
Eq,θq+1 increases with respect to q. Hence, in order to reduce the noise influence
it is preferable to choose q as small as possible. However, Cq,θq+1 decreases with
respect to q. A compromise consists in choosing q = 2. If we take D(n)

h,α,β,2f
δ(x−

θ2h) as an estimator of f (n)(x), then we produce a time-delay θ2h. For this
choice of θ2, we have D(n)

h,α,β,1f
δ(x − θ2h) = D

(n)
h,α,β,2f

δ(x − θ2h). We can see

that the estimators D(n)
h,α,β,2f

δ(x) do not produce a time-delay but C1,θ2 < C2,0

and E1,θ2 < E2,0. This generally introduces more important estimation errors.
Consequently, so as to estimate f (n)(x) we useD(n)

h,α,β,1f
δ(x−θ2h) which presents

a time-delay.

3 Numerical Experiments

In order to show the efficiency and the stability of the previously proposed
estimators, we give some numerical results in this section.

From now on, we assume that f δ(xi) = f(xi) + c�(xi) with xi = Tsi for i =
0, · · · , 500 (Ts = 1

100 ), is a noisy measurement of f(x) = exp(−x1.2 ) sin(6x+π). The
noise c�(xi) is simulated from a zero-mean white Gaussian iid sequence by using
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the Matlab function ’randn’ with STATE reset to 0. Coefficient c is adjusted in
such a way that the signal-to-noise ratio SNR = 10 log10

( ∑
|y(ti)|2∑
|c�(ti)|2

)
is equal

to SNR = 22.2dB (see, e.g., [7] for this well known concept in signal processing).
By using the well known three-sigma rule, we can assume that the noise level for
c� is equal to 3c. We can see the noisy signal in Figure 1. We use the trapezoidal
method in order to approximate the integrals in our estimators where we use
m + 1 discrete values. The estimated derivatives of f at xi ∈ I = [0, 5] are
calculated from the noise data f δ(xj) with xj ∈ [−xi − h, xi] where h = mTs.

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

fδ(x
i
)=exp(−x

i
/1.2) sin(6 x

i
+π)+0.5ϖ(x

i
)

x

f

fδ

Fig. 1. Signal and noisy signal

We can see the estimation results for the first order derivative of f in Figure 2.
The corresponding estimation errors are given in Figure 3 and in Figure 4. We can
see that the estimate given by the causal Jacobi estimator with integer parame-
ters introduced in [14] (dash line), produces a time-delay of value θq+1h = 0.11.
The estimate given by the causal Jacobi estimator with extended parameters
(dotted line) is time-delay free. Firstly, the root values θq+1 for q = 0, 1 can
be reduced with the extended negative parameters, so does the time-delay. Sec-
ondly, the numerical integration method with a negative value for β produces a
numerical error which allows us to finally compensate this reduced time-delay.
This last phenomena is due to the fact that the initial function f satisfies the
following differential equation f (2) + kf = g where k ∈ R and g is a continuous
function. Consequently, in the case of the first order derivative estimations, we
can verify that this numerical error which depends on f may reduce the effect
of the error due to the truncation in the Jacobi series expansion. This is due to
the fact that the truncation error depends on f (2). Hence, the final total error is
O(g). Finally, since D(1)

mTs,α,β,q
f δ(xi − θ2h) produces a time-delay of value θ2h,

we give in Figure 5 the errors D(1)
mTs,α,β,q

f δ(xi − θ2h)− f (1)(xi − θ2h).



Convergence Rate of the Causal Jacobi Derivative Estimator 453

0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6
Estimations

x

f(1)(x
i
)

D
0.2,1,−0.25,0
(1) fδ(x

i
)

D
0.4,0,0,1
(1) fδ(x

i
−0.11)

Fig. 2. Estimations by Jacobi estimators D
(1)
h,α,β,qf

δ(xi) with h = 0.2, β = −0.25, α =

1, q = 0 and D
(1)
h,α,β,qf

δ(xi − θ2h) with h = 0.4, α = β = 0, q = 1, θ2 = 0.276
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Fig. 3. D
(1)
h,α,β,qf

δ(xi) − f (1)(xi) with h = 0.2, β = −0.25, α = 1, q = 0
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Fig. 4. D
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h,α,β,qf

δ(xi − θ2h) − f (1)(xi) with h = 0.4, α = β = 0, q = 1, θ2 = 0.276
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Fig. 5. D
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δ(xi − θ2h)− f (1)(xi − θ2h) with h = 0.4, α = β = 0, q = 1, θ2 = 0.276
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Visual Computing Group, University of Magdeburg, Germany

Abstract. We introduce a novel continuous surface deformation method
which relies on a time-dependent vector field over a triangular mesh. For
every time step the piecewise linear vector field is obtained by least-
squares minimization of the metric distortion induced by integration
subject to boundary conditions. As an integral part of the approach,
we introduce a new measure to describe local metric distortion which
is invariant to the particular triangulation of the surface and which can
incorporate smoothness of the field. Neither of these properties are met
by previous work. A GPU implementation of the proposed algorithm
enables fast deformations. The resulting deformations have lower metric
distortions than deformations by existing (linear or non-linear) methods.
This is shown for a number of representative test data sets.

Keywords: Shape Deformation, Isometry, Vector Field.

1 Introduction

Shape deformations constitute a standard problem in modeling and computer
graphics. A variety of approaches have been proposed in the recent decade, and
shape deformation is still an active area of research. A good approach to defor-
mations should be intuitive, visually convincing, geometrically or/and physically
sound, and reasonably fast.

We consider shapes represented as triangle meshes. Most current approaches
define deformations as a minimization problem. Given certain boundary condi-
tions, the unknown vertex positions have to be determined. This yields a linear
or non-linear optimization problem depending on the measure to be minimized.
Proceeding this way, only the final positions of the vertices are computed without
considering the deformation path leading to the final state. We call this kind of
deformations discrete deformations. In contrast, continuous deformations inte-
grate vertex positions along smooth vector fields. Here, the boundary conditions
of the deformation are paths of parts of the shape. In this sense, we are aware
of only two approaches to continuous deformations so far: [14] and its exten-
sion [15] which applies divergence-free vector fields for volume preserving shape
deformation, and [18] which considers the deformations in a shape space.

Various measures have been proposed for minimization in discrete shape de-
formations. These measures typically reflect or simulate physical properties like
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Fig. 1. Optimization Problem at three Time Steps of the Integration. The small handle
region is marked yellow while the blue border corresponds to the fixed surface part.
For every integration step, the current vertex positions and black vectors are given,
while the gray vectors are obtained by solving a sparse linear system

bending energies which may be simplified or linearized. Only recently, minimiza-
tion of metric distortion has been considered [18,17].

In this paper we present a new approach to continuous deformations which
minimizes distortion of the surface and tries to preserve isometry. We define the
deformation continuously over time, i.e., as a vector field which is determined in
every time step as the result of a linear problem. The arising system matrices are
sparse and can be solved reliably and efficiently supported by the GPU, which
renders our approach reasonably fast. Figure 1 illustrates the main idea of our
approach: following the standard deformation metaphor [4,24], we define regions
of full and zero deformation of the shape. For regions of full deformation, the
deformation is given as parametric curves. Then in every time step a piecewise
linear vector field is constructed such that metric distortion is minimized un-
der integration. Boundary conditions are defined by the tangent vectors of the
parametric curves describing the full deformation.

In summary, the main contributions of this work are: (1) design of a new dis-
crete isometry measure which is invariant to surface tessellation and which ex-
tends naturally to incorporate smoothness. (2) Definition of continuous, isometry
preserving shape deformations which are constrained by trajectories of surface
regions. The whole approach is completely geometry-driven.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 introduces our approach and defines all measures while Section 4
discusses how the theoretic concepts are applied and implemented. Results are
presented in Section 5 followed by a discussion of the method in Section 6 and
final conclusions (Section 7).

2 Related Work

There is a vast amount of literature on shape deformation, a proper review is far
beyond the scope of this section. Instead, we point to the recent survey of Botsch
and Sorkine [6]: they discuss and compare the most important classes of explicit
surface deformation methods. In fact, we use their reference deformations as
benchmarks. All reviewed methods implement discrete deformations which are
completely determined by boundary constraints, i.e., the placement of surface
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regions, fixed or handle regions, in 3-space. Deformation of the surface is then
modeled in one of several ways:

• as a variational problem minimizing an energy functional which penalizes
certain bending energies (see, e.g., [4]),

• as reconstruction from any kind of differential coordinates (see, e.g., [19]),
• as a projection or Poisson reconstruction after application of a ”transfor-

mation field” to individual triangles thus over-determining vertex positions
(see, e.g., [27]), or

• as simulation of forces to rigid and loosely coupled prism elements enveloping
the surface [5].

Several methods are closely related, and they all share the goals of feature preser-
vation and establishing smooth transitions towards deformed regions. All of these
methods (except [5]) rely on the factorization of few or even only one single linear
systems, a fact that renders these methods interactive. In particular, movement
of handles requires only back-substitution for solving the system.

Furthermore, there is a variety of methods which determine a piecewise defor-
mation where individual pieces are close to rigid transformations, i.e, they ought
to be as rigid as possible. We refer to recent work by Sumner et al. [25] (and
the references therein): here, a free-form deformation is determined based on
a user provided “deformation graph”, which defines the piecewise deformation.
A non-linear minimization determines the degrees of freedom for the individual
transformation pieces associated with the nodes. We note that our goal is not to
obtain an as-rigid-as possible deformation but to stay as-isometric-as possible,
and we refer to [18] for a more elaborate discussion. Furthermore our approach
does not define a space warp but an explicit surface deformation (evaluation of
our guiding vector fields is meaningful only for surface points), and we explicitly
include the surface metric. Of course this review cannot be complete as there
is a vast amount of literature on shape deformation. Among other non-linear
methods we mention [3,16,26] as recent examples.

For all the above mentioned methods, deformation remains a discrete process:
it is solely the rest position of the handles that determines the result but not
their particular trajectory.

In contrast, von Funck et al. [14] introduce an approach based on integration
of a surface along a time-dependent vector field. Their goal is volume preserving
deformations. This is achieved in an elegant way: the guiding vector fields are
constructed to show zero divergence. Remarkable in the context of our work is
that this constitutes a continuous deformation which does depend on the partic-
ular trajectories of the handles. (Note that otherwise this method is fundamen-
tally different to ours.) The method was extended in [15] by the introduction
of deformation paths. An earlier approach [2] related to this does not rely on
continuous vector fields but instead discretizes the deformation.

Kilian et al. [18] regard continuous deformations in a shape space: they solve a
boundary value problem in order to find a time-dependent deformation
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(a) (b) (c)

Fig. 2. Deformation examples. (a) Perfectly isometric deformation of developable
plane. (b) Twisting deformation of the head of the cow and a strong twist of a bar
by 280◦ which is not achievable by discrete deformations. (c) Continuous deformations
using multiple handles.

between two poses of the same shape. They advocate to determine optimal de-
formations by isometry preservation rather than a more traditional as-rigid-as
possible [1] criterion. Then a discrete version of Killing fields [8] characterizes
time-dependent deformation vector fields. While the focus is on boundary value
problems and their solution by a space-time multigrid approach, initial value
problems are discussed briefly. In both cases, the approach is not interactive.

We consider the latter deformation approaches by Funck et al. [14] and Kil-
ian et al. [18] as continuous deformation methods. Discrete methods mentioned
above rely on the minimization of certain (potentially linearized) energy func-
tionals which often results in solving associated Euler-Lagrange equations char-
acterizing an equilibrium state. While this is clearly different from our setting,
it is also obvious that such discrete methods which are not modeled by a time-
dependent flow can easily be modified such that a single deformation is broken
into multiple steps defined, e.g., along a path (Section 6 shows an experiment).
In fact, this may be regarded as a simple approach to emulating parametrization-
independent, non-linear operators [6].

Isometry preserving deformations have been studied extensively in differential
geometry (see, e.g., [8]) and mathematics in general: Efimow [12] theoretically
investigated infinitesimal first order and higher order deformations. In this work
we consider the first order case for piecewise linear discrete surfaces.

Finally, we remark that there are scenarios where physical objects including
thin shells or cloth are modeled and shapes (or solids) obtain measured or syn-
thesized material attributes. In a series of papers inspired by physically-based
settings, Qin et al.[22,10] consider time-dependent surfaces using a dynamic FEM
formulation for shape modeling. Emphasis is on the design of smooth surfaces,
the process is governed by a mass-spring system. For recent work on cloth sim-
ulation in the context of developable surfaces we refer to [13]. Generally such
deformations must be physically correct or at least plausible. While this is far
from our goals we remark that such simulations may be seen as continuous pro-
cesses, see, e.g., the survey of Nealen et al.[20].
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3 Minimum Distortion Shape Integration

Our method is based on penalizing metric distortion when integrating vertex
positions along a piecewise linear vector field. In this section we describe our
approach in detail. We start with the derivation of the error measure for a single
triangle. Contributions of each triangle are accumulated on the entire shape.
Finally, we show how the concept can be extended naturally to incorporate
smoothness of the resulting vector fields.

3.1 Error Measure on a Single Triangle

Reviewing the situation for a single triangle T is sufficient to explain the error
measure. We consider a triangle with vertex positions x0,x1,x2 ∈ IR3 and asso-
ciated vectors v0,v1,v2 ∈ IR3. The triangle surface x and the vector field v are
obtained by linear interpolation as

xT (u, v) = u x0 + v x1 + (1− u− v) x2

vT (u, v) = u v0 + v v1 + (1− u− v) v2.

The subsequent derivation is motivated by the fact that integrating perfectly
rigid vector fields yields zero distortion. Obviously they won’t yield a reasonable
deformation either. However, local rigid fields can be easily constructed and
serve as a reference: the closer vT is to a rigid field, the more isometric the
deformation.

We consider a 3D vector field r(x) describing a rigid vector field, i.e., it can be
written as r(x) = rt+(rr×x). Here, rt and rr describe the translational part and
the rotation axis, respectively. Note that even though r is defined everywhere
in IR3, we evaluate it only on the triangle. We define the error eT as squared
difference of r and v integrated over the triangle T :

eT (x,v, r) =
∫ 1

0

∫ 1−v

0

||v(u, v)− r(x(u, v)) ||2 du dv . (1)

This can be expressed in closed form as

eT (x,v, r) =
1
6

∑
(i,j)∈{(0,1),(1,2),(2,0)}

||vij − r(xij)||2

with xij = 1
2 (xi + xj) and vij = 1

2 (vi + vj).
Given x, our goal is to compute the best fitting rigid vector field r̂(x,v) as a

function of v by minimizing eT (x,v, r) for all rigid fields r:

r̂(x,v) = argmin
r

eT (x,v, r) . (2)

This is a linear least-squares problem in the six coefficients of r (see also Sec-
tion 4.2). Its solution depends on both, the positions xi and vectors vi, i = 0, 1, 2.

Finally, we express metric distortion of x under instantaneous motion along
v as

dT (x,v) = eT (x,v, r̂(x,v)) . (3)
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3.2 Properties of d

The measure dT is invariant under adding a rigid field to v: let r̂ be the best
fitting rigid field for x and v, and let p(x) be another arbitrary rigid vector
field. Then the best fitting rigid field for x and the modified vectors v′

i = (vi +
p(xi)), i = 0, 1, 2, is r̂ + p. Furthermore, dT (x,v) = dT (x,v′).

The computation of r̂ is robust as long as the triangle is not degenerated, i.e.,
as long as the triangle area and the edge length ratios are bounded from below.

We emphasize that by construction dT (x,v) measures metric distortion: iso-
metric distortions of developable surfaces (see Figure 2a) indeed yield zero dis-
tortion although the deformation is not rigid. In particular this differs from
as-rigid-as possible formulations (see [18] for a comparative discussion).

In the literature [18,11], (discrete) metric distortion of a triangle under inte-
gration of its vertices is usually described as

d̄T (x,v) = h2
0 +h2

1+h2
2 with hk = r�k (vπk+1−vπk

), rk = (xπk+1−xπk
), (4)

and πk = (k + 1) mod 3. Then the summation of d̄T over all triangles is the
global measure to be minimized. Our measure is related and compatible to this
in the sense that dT (x,v) = (h0, h1, h2)S (h0, h1, h2)�. Let rij = r�i rj and
α = 4 area(T )2. Then S is a symmetric 3 × 3 matrix which depends only on x
and not on v:

S =
−1

144α (r12 + r20 + r01)

⎡⎣ 3 r212 + 4α 6 r12 r20 − 4α 6 r20 r01 − 4α
6 r20 r12 − 4α 3 r220 + 4α 6 r01 r12 − 4α
6 r01 r20 − 4α 6 r12 r01 − 4α 3 r201 + 4α

⎤⎦ .
Hence, generally no edge or area weighting–scheme exists which turns d̄T (x,v)
into dT (x,v), since S is generally not diagonal. In contrast to d̄T (x,v) and
roughly speaking, our measure dT (x,v) also incorporate all mixed products
hihj , i �= j.

The integration of quantities over triangles is essential to the design of our
measure: this way, dT (x,v) will be invariant to subdivision of triangles or gen-
erally independent of parametrization/tessellation. Figure 3a illustrates this by
a simple example and compares dT (x,v) to d̄T (x,v): we prescribe a vector field
and apply the measure for different tessellations of the same shape, a unit sphere.
Then tessellation-independence requires low variance of measured values. Geo-
metrically the absolute values are meaningless for this experiment. However, they
can physically be interpreted to be the applied membrane strain since isometric
deformations are a geometric approximation of real-life, thin surfaces deforming
with a very high Young’s modulus [20]. Further experiments and a compari-
son are shown in Figures 6 and 3b (see Section 6). Tessellation-independence is
generally an important requirement for many algorithms. It is essential for mean-
ingful deformations also because coherence for time–dependent deformations is
improved.
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dT (x,v)
d̄T (x,v)

(a) Tesselation Dependence (b) Measure Stability

Fig. 3. Measure Comparison. (a) Different unit sphere tesselations and values of mea-
sures dT (x,v) and d̄T (x,v) for the normal field. Important is the variance of the
measure for different tessellations of the same shape which should be low. (b) The
irregularly tessellated test surface (1–2) is Euler-integrated three steps by minimizing
d̄T (x,v) (3–5), and by minimizing dT (x,v) (6–8).

3.3 Error Measure on the Entire Surface

The shape S is given as a triangle mesh M = (V , E , T ) with vertices V , directed
edges E , and triangles T . The embedding of the surface x in 3-space is defined
by vertex positions xi ∈ IR3, furthermore the piecewise linear vector field v is
defined by vectors vi, i = 1, . . . , |V|.

We define the global metric distortion as

d1(x,v) =
∑

(i,j,k)∈T
dT ([xi,xj ,xk], [vi,vj ,vk]) . (5)

With (3) it is evident that v is a Killing field [8,12,18] of x iff d1(x,v) = 0. This
also corresponds to intuition: if v is a Killing field, the best fitting rigid field for
every triangle will be identical to v at each triangle, yielding d1(x,v) = 0.

An error measure which is based solely on the preservation of isometry is ob-
viously not sufficient to determine meaningful surface deformation: for instance,
foldings yield perfect isometry whereas for shape deformation they are consid-
ered unwanted artifacts. The measure d1 does not exclude, e.g., foldings of a
developable surface (see, e.g., [17]). Consequently, we require an additional mea-
sure which penalizes discontinuous deformation and enforces smoothness of the
vector field v.

A suitable measure that fits our setting should be derived from existing quan-
tities. We take advantage of the fact that the best fitting rigid vector fields r̂ are
defined not only on respective triangles but everywhere in IR3. In particular, we
can evaluate r̂ for a certain triangle T on an adjacent triangle T ′.

Let triangles T = (r, s, t) and T ′ = (s, r, t′) be adjacent with vertex positions
x�, and associated vectors v�, � ∈ {r, s, t, t′}. Furthermore, let r̂ and r̂′ be the
best fitting rigid fields on T and T ′. Then, loosely spoken, r̂ and vT ′ should not
differ too much for a meaningful deformation. We formalize this by applying r̂
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to T ′ (and r̂′ to T respectively). We obtain

fT,T ′(x,v) =
∫ 1

0

∫ 1−v

0

||vT ′ (u, v)− r̂(xT ′(u, v)) ||2 du dv

where xT ′(u, v) and vT ′(u, v) denote the linear interpolation as before but on
triangle T ′ whereas r̂ is the best fitting rigid field on T . This can be expressed
in closed form

fT,T ′(x,v) =
1
6

∑
(m,n)∈{(r,s),(s,t′),(t′,r)}

||vmn − r̂(xmn)||2

with xmn = 1
2 (xm + xn) and vmn = 1

2 (vm + vn). With the measure fT,T ′ on
single triangles we define the global measure d2 on the entire shape as

d2(x,v) =
∑

T,T ′∈T adjacent

fT,T ′(x,v) .

In general fT,T ′(x,v) �= fT ′,T (x,v) which both have to be added in d2. Botsch
et al. [5] use a similar principle to match transformations of incident prisms.

With the derivation of d1 and d2 we finally define the error measure which
will be minimized in our approach as

d(x,v) = (1− ω) d1(x,v) + ω d2(x,v) (6)

for a small weight ω > 0 (see below).
We motivated the second measure d2 by the fact that isometry does not always

convey enough information for meaningful deformations. We remark that d2 is
required for another reason: in special cases, minimizing d1 yields a singular or ill-
conditioned operator, and d2 acts as a regularization term. For instance, a planar
surface constitutes this special case. Of course, then it applies only to the first
integration step – after that the surface is probably no longer planar. However,
to ensure robustness of our approach in any possible situation we require ω > 0.

Our experiments show that a rather high value in (0, 1] can be chosen for ω
without spoiling minimization of distortion, i.e., the effect of d1. The reason for
this is that the definition of d2 contains essentials of d1 just with the difference
of extrapolating the rigid fields. We close this section with two final remarks:
First, the errors d1 and d2 are compatible in a sense that comparable quantities
are measured. Second, there is a bias in the weighting as summation is over |T |
triangles for d1 and over |E| adjacent triangles for d2. From the latter relation
Euler’s formula yields ω = 1

3 for an even weighting.

3.4 Shape Integration

Given the shape with vertex positions x, our goal is to find a piecewise lin-
ear vector field v̂ that minimizes the error functional d(x,v). This vector field
minimizes metric distortion under integration of x due to the definition of d1.
Additionally, the contribution of d2 to d accounts for smoothness of v̂.
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Our approach to isometry preserving shape deformation assumes time-de-
pendent shape x(t) and vector field v̂(x, t) such that

∂

∂t
x(t) = v̂(x, t) .

In every time step t (or generally every point t where the vector field is evaluated)
we determine v̂(t) for x(t). The associated optimization problem is linear in the
unknowns vi, i = 1 . . . , |V|.

4 Implementation

In this section we discuss the implementation of each stage of our approach.
These are firstly, the specification of deformations, secondly, the GPU based
linear framework for finding vector fields that minimize our error measures in
every time step, and finally, the numerical integration of the shape over time.

4.1 Defining Deformations

Deformations are defined by certain constraints. In our case these are constraints
on the vector field v(x, t), i.e., for a subset of vertices, we prescribe the associated
time-dependent vectors. This way we implement the standard handle metaphor
for shape modeling: the user selects surface regions which are either fixed, de-
formable, or displaced by a handle. In fixed regions, the vector field is constant
zero at each time step. The deformable regions define the free parameters, there
the vector field is determined by minimization. In handle regions, vertices are
displaced over time along smooth curves. The tangents of these curves define
the vector field at each handle and hence determine the movement of handle
vertices.

From the user’s point of view, fixed and handle regions are selected. There
is no restriction on the number of such regions or their connectivity. Then she
prescribes arbitrary parametric guidance curves for moving the handles. Note
that a single curve prescribes the rigid motion of a full handle region: every
handle vertex is associated with the curves’ tangent.

Such guidance curves can be designed easily and intuitively [15]. Indeed, our
approach is even more general in a sense that we are not restricted to parametric
curves for specifying constraints: any piecewise linear time-dependent vector field
can be applied to prescribe motion of handles. In particular, twisting and bending
of the shape can be modeled easily.

4.2 Minimizing Error Measures

Error measures are quadratic forms in the unknown vector field v ∈ IR3 |V|. Our
goal is to minimize an expression

d(x,v) = v� [(1− ω)D1 + ωD2] v .
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Fig. 4. Computational Pipeline. For each triangle on the GPU we compute the param-
eter mapping matrices Ri which are used to determine the gradient components of the
distortion and smoothness measures d1 and d2. These coefficients are combined in the
final sparse system matrix which is solved by the CPU using a precomputed symbolic
factorization yielding the optimal vector field.

where D1 and D2 implement error measures d1 and d2, respectively. The setup of
the corresponding linear system A(x) is attended by considerable computational
costs but is inherent parallizable. To guarantee fast execution times we opt for
the combined GPU and CPU approach shown in Figure 4.

Best rigid fields. Both measures d1 and d2 depend on the evaluation of the
best fitting rigid fields r̂i (parameterized by pi =

(
r�t,i, r

�
r,i

)� ∈ IR6) induced

by the linear vector fields vi =
(
v�
r ,v

�
s ,v

�
t

)� ∈ IR9 applied to single triangles
Ti = (r, s, t) ∈ T . For each triangle i we therefore find the linear maps Ri vi =
pi, Ri ∈ IR6×9 relating linear and best rigid fields in the following way:

Switching to matrix notation (1) is expressed as eTi = ||L�
i (v−Ei pi)||2. Here

Ei ∈ IR9×6 evaluates r̂ at the triangle vertices and L�
i is the Cholesky factor of

the matrix Ni = Li L�
i ∈ IR9×9 performing the integration along the triangle

and which is defined by Ni, lm =

⎧⎪⎨⎪⎩
area(Ti)

6 l = m
area(Ti)

12 (l −m) mod 3 = 0
0 else

. Then (2) is

solved for Ri by solving the linear system corresponding to ∇pi eTi = 0 yielding

Ri = (E�
i NiEi)−1 E�

i Ni .

We perform these independent computations in a parallized and numerically
stable way for each triangle on the GPU by computing one dense Cholesky
factorizations of E�

i NiEi and nine corresponding back-substitutions.

Distortion and smoothness gradients. For each triangle i its gradient components
Di

1 ∈ IR9×9 contributing to D1 are found by the evaluation of the gradient of
dTi = ||L�

i (I−EiRi)vi)||2 giving

Di
1 = 2 (I−R�

i E�
i )Ni (I−EiRi) .

Similarly we find Dk
2 ∈ IR12×12 contributing to D2 for each neighboring pair

k of triangles Ti and Tj = (s, r, t′) by the evaluation of the gradient of
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fTi,Tj = ||L�
j (I′ −Ej RiPk) vij ||2, where I′ =

[
I,0

]
and with a permuta-

tion matrix Pk ∈ IR9×12 selecting the vector vi corresponding to Ti out of
vij =

(
v�
j v�

t′
)� ∈ IR12 in the correct order. Computed in parallel on the GPU

this yields
Dk

2 = 2 (I′� −P�
k R�

i E�
j )Nj (I′ −Ej RiPk) .

Linear systems. In the last step the final sparse symmetric linear system A
is constructed as half of the Hessian of d in parallel by a weighted segmented
reduction operation [23]. The non-zero entries are computed of all Di

1 and Dk
2

by weighted sums according to

Aef =
1
2

∂2d

∂ve∂vf
=

1
2

((1− ω)D1,ef + ωD2,ef ) .

We minimize d(x,v) = v�Av on the CPU subject to boundary conditions (see
Section 4.1). A is symmetric positive definite and sparse with about 1.5% non-
zero entries. The linear systems are solved by state-of-the-art direct solvers,
namely a sparse Cholesky factorization in combination with an approximate
minimum degree preordering to reduce fill-in [9]. We exploit the fact that the
structure of the linear system stays fixed in consecutive minimization steps,
which allows the precomputation of a symbolic factorization that strongly accel-
erates the optimization. Experiments reveal that the direct CPU solver is two
orders of magnitude faster than a GPU based sparse preconditioned conjugate
gradient solver.

4.3 Numerical Integration

In order to compute the deformation we require integration of vertex positions,
i.e., we have to find the solution to an initial valued ordinary differential equa-
tion. Straightforward Euler integration yields visually pleasing results even for
moderate time-steps. However, the lack of accuracy of this scheme would spoil
our overall approach and render this scheme unacceptable. Instead we rely on
higher order schemes.

For numerical integration we prefer a third order multistep predictor-corrector
method with adaptive step size control: in contrast to single-step methods such
as Runge-Kutta, the Adams-Bashforth-Moulton scheme (see, e.g., [21]) takes ad-
vantage of results from previous integrations steps. The initialization is provided
by few fourth order Runge-Kutta steps. The main motivation for choosing this
method is the relatively fewer number of expensive evaluations of the vector field
required compared to single-step methods when assuming similar approximation
errors. This choice was justified by experiments.

5 Analysis and Results

In order to analyze our approach, we apply it to the four standard deformation
problems defined by Botsch and Sorkine [6]. In particular, we compare our defor-
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Fig. 5. Weighting of Error Measures. Smaller weights ω lead to small distortion (see
table 1) but may produce deformation artifacts if the boundary conditions do not allow
for an isometric deformation (d). Slightly higher ω values solve the problem (c).

mations with the (discrete) deformations described in [5] (PriMo), [7] (Thin-

Shells), [27] (GradientEd), [24] (LaplacianEd), and [19] (RotationInv).
The results are summarized in Table 1. It first shows that our deformations look
visually convincing (the images in Table 1 show the original and the deformed
shape by using our method with ω = 1

3 for each of the four benchmark shapes).
In order to do an additional quantitative comparison, we compute an estima-

tion of the final metric distortion by summing up the squared differences of the
edge lengths in the original and deformed mesh (metricErr). In a similar way we
compute the area distortion by considering the squared area difference over all
triangles (areaErr), and the angular distortion by considering the squared angle
differences over all triangles (angleErr). These values are measured between orig-
inal and deformed shape for the reference deformation, and between original and
final time step deformation for our method. For our method, we use four different
values of ω. Since the absolute values of the distortion do not have a geomet-
ric meaning (because they depend on a particular triangulation), we normalized
them by the distortion of our method with ω = 1

3 . (A number above 100% in
the table indicates a higher distortion than for our method with ω = 1

3 .) For all
examples, our technique shows significantly smaller metric distortion than any of
the compared discrete deformation techniques. In fact, our continuous approach
achieves even lower errors than the discrete, yet non-linear PriMo approach.
Moreover, the same statement holds for most of the techniques concerning area
and angular distortion. Also note that our approach performs especially well on
the bumpplane problem, since only at the small junctions of the bumps to the
underlying plane minimal distortions are introduced and the remaining surface
deforms isometrically with correct detail orientation.

Timings were measured on a 2.6GHz AMD Opteron system with 8GB RAM
and a NVIDIA GTX 280 running CUDA. The number of required integration
steps for each problem was 13 (cactus), 44 (bar), 46 (cylinder) and 76 (bump
plane), and the number of vector–field evaluations was roughly twice as many.
The first three models can be modified at interactive rates. However, performance
is impaired for the very large bump plane model. Here the sparse solver becomes
the bottleneck of the optimization due to the size of the arising linear system,
which was not the case for all other examples in this paper.
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Table 1. Experimental Results. The tables summarizes the final errors of the bench-
mark problems. Measures are given relative to the absolute values of the shape inte-
grated with parameter ω = 1

3
. The images illustrate the deformation results of our

approach using this parameter.

Further examples of our approach are in Figures 2 and 8. Figure 2a shows
a perfectly isometry-preserving deformation of a developable surface. Figure 2b
(top) shows a twisting deformation of the head of a cow model. There, the
body leans forward to compensate metric distortion. Figure 2c shows that the
deformations can contain different handle paths: the front legs of the animals
were moved in different directions, yielding realistic deformations. In Figure 8
a beetle car model is deformed in four antipodal directions giving four rather
different deformation results.

The impact of the variation of the weight ω is illustrated in Figure 5 (error
values are listed in Table 1). It shows that too small weights ω in (d) can lead to
artifacts when deformations can not be perfectly isometric and metric distortion
minimization is enforced at the expense of vector-field smoothness in (6).

6 Discussion

In this section we discuss several aspects of our approach.

Isometry Measure. For our approach, it was necessary to develop a new discrete
measure of metric distortion of a vector field acting on the surface. The usual
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(a) (b)

Fig. 6. Mesh Resolution Independence. Pulling the handle vertices up vertically
produces a smooth deformation (b) independent of the inhomogeneous mesh
resolution (a).

approach (4) as used in [18,11] fails because of two reasons: first, it does not
consider the shape and size of the triangles. Figure 3b gives an illustration of
this: for this experiment, the surface z(x, y) = 1

2 (1 + x)(1− x)(1 + y)(1− y) was
sampled over the interval [−1, 1]× [−1, 1] as shown in Figure 3b (1–2). Note that
an irregular tessellation was chosen. The deformation was defined by keeping the
boundary constant and translating the (yellow) region in the direction of the z-
axis. Figures 3b (3–5) show three steps of an Euler integration by minimizing
d̄(x,v), while Figure 3b (6–8) shows the same steps by minimizing d(x,v) with
ω = 0. Even this very small example clearly shows that the measure d̄(x,v) does
not yield the desired results. Note that this is not due to missing regulariza-
tion (the initial surface is not planar), the linear operators are sufficiently well
conditioned.

The second reason for developing the new measure is that it offers a simple
method to incorporate the smoothness of the surface, i.e., to prevent appearance
or disappearance of sharp edges during the deformation. While we do not see a
straightforward way to extend (4) in this direction, our measure can easily deal
with it as shown in Section 3.3.

We conclude this aspect by visualization tessellation-independence of our de-
formation method for a simple example. Figure 6 shows a plane that is triangu-
lated with different resolutions and then deformed trivially: the tessellation has
no effect on the result due to the design of our measure (see also Figure 3a and
Section 3.2).

Handle Path Dependency. The result of our deformation depends not only on
the final position of the vertices building the boundary constraints but also on
the paths on which they move from starting to final position. This is a signifi-
cant difference to most existing deformation approaches. Figure 7 illustrates this.
There, the shape (a) is deformed by moving the yellow boundary to the right
while keeping the blue boundary constant (b). The successive reverse deforma-
tion (c) gives almost the original shape. Contrary, moving the handle to the left
first (Figure 7 (d)) ends up in a significantly different shape (e). Figures 7 (f–i)
show the movement of the handle over two mirrored paths, yielding different
final shapes.
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Fig. 7. Handle Path Dependency. Deforming the initial surface at t = 0 by different
handle pathways from and to the same rest positions result in different deformation
results at t = 1. The images (b–e) show two linear antipodal deformations, the images
(f–i) two parabolic deformation curves.

Fig. 8. Beetle Car Deformations. The original beetle model (left) is deformed by fix-
ing the rear of the car and moving the handle at the engine hood into four different
directions (right).

While such a path dependence is not always the desired scenario, we believe
that for a number of applications it opens a wider flexibility of the modeling
process because it reflects the fact that real materials are never totally elastically
deformed. The ”memory effect” of the deformation gives the look of a combined
plastic and elastic deformation of a real material, even though only geometric
measures of the surface are considered. Furthermore, it allows to obtain a strong
twisting as shown in Figure 2b (bottom) which is impossible by path independent
methods.

Comparing to time-dependent Laplacian. We point out that it is not sufficient to
modify existent discrete and direct methods to operate in a continuous setting to
minimize metric distortion. Consider Figure 9 as an example. For this deforma-
tion a bi–Laplacian operator (see [6]) was discretized for every time step, partial
deformations were integrated within the same solver, boundary constraints are
same as in Figure 6. Comparing results, metric distortion is still significantly
higher – it didn’t improve much – than for our method. This is not surpris-
ing as different errors are minimized. We remark as bottom line that breaking
a discrete bi–Laplacian deformation trivially into a “continuous” deformation
one cannot achieve the same effect as our continuous method and other discrete
state-of-the-art methods are likely to exhibit higher distortion by this strategy
compared to our approach, too.

Limitations. We see the main limitation of the approach in the relatively high
computation times: despite the fact that we accelerate our approach using the
GPU, the technique is far less interactive than state-of-the-art linear frameworks
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Fig. 9. Time-Dependent bi–Laplacian Deformation. Comparison of metric distortions
over time for our method and time-dependent bi–Laplacian deformation.

when applied to large models and thus does not scale to very large meshes yet. We
also mention that for the linear operators applied memory footprint is probably
higher.

The path dependence of our method can as well be seen as a limitation.
We claim it is a features and an integral property of continuous deformations.
However, we are aware that depending on the application path dependence may
be also interpreted as an artifact.

7 Conclusions

In this paper, we made the following contributions: we defined the deforma-
tion by prescribing paths along which certain regions move over time. Then for
every time step a piecewise linear vector field is constructed by applying an
quadratic energy minimization approach. As a measure for metric distortion,
we introduced a new approach which considers the size of the triangles and can
be extended to incorporate the surface smoothness. The deformation tries to
preserve isometry. It shows significantly lower distortion of length, angles, and
area for a set of representative shapes compared to existing standard (linear
and non-linear) deformations. Moreover, the results look visually pleasing. Our
modeling metaphor defines handle paths. Both the final position of the handles
and the path influence the deformation.

The most prominent issue in future research is to further improve the perfor-
mance. In fact, we see reasonable chances to obtain higher frame rates using a
multiresolution approach for the error measures and solvers. Another interesting
challenge is the boundary value problem of path planning where the optimal
path between two poses is determined.
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Abstract. In this paper, we study nonlinear multiscale representations
on R2 which are interpolatory and based on non-diagonal dilation ma-
trices, such as the quincunx matrix. A compression procedure is then
introduced for that kind of representations while numerical experiments
conclude the paper.

Keywords: Nonlinear Multiscale Representation, Image Compression.

1 Introduction

Due to the hierarchical structure of visual information, multiscale representations
are widely used in image processing [5,3,6]. Images are bidimensional complex
objects made of homogeneous regions separated by piecewise smooth curves,
called edges. Linear multiscale representations based on tensor product wavelet
bases are not well adapted to code efficiently an image at its edges. This has
motivated the development of new bidimensional image dependent techniques.
In order to have a better treatment of the image at its edges, A. Harten in [8,9]
introduced a general framework to multiscale data representations. The idea is
to associate to any function v, a set of sequences Mv := (v0, d0, d1, d2, . . .),
where the sequence v0 := (v0

k)k∈Z2 is the coarsest approximation of v and the
sequences dj := (djk)k∈Z2 , with j ≥ 0, are additional detail coefficients which
represent the fluctuations of v between two successive levels of resolution. There
exist many ways to build such nonlinear representations. In most papers, the
multiscale structure is associated to dyadic levels of resolution [8,5]. We use here
the quincunx matrix as dilation matrix to define the scales which allows a two
times finer scales discretization than when the tensor product approach is used.
Several approaches, using the quincunx matrix as dilation matrix, have already
been developed for image representation improving the compression rate [3,7].

In the present paper, we consider a general class of multiscale representations
based on a non-diagonal dilation matrix which was already studied in a tensor
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product approach in [13,5]. We detail the construction of interpolatory and non-
linear multiscale representations based on quincunx refinement. More precisely,
we study multiscale representations based on affine or quadratic quasi-linear
prediction operators. We then define a compression procedure which consists
in applying the EZW algorithm [16] to a properly renormalized version of the
proposed multiscale representation. Using this compression procedure, we show
the relevance of using quasi-linear prediction operators to define multiscale rep-
resentations.

2 Notations and Multiresolution Analysis Definition

2.1 Notations

The subspace of bounded sequences on Z2 is denoted by �∞(Z2), ‖u‖�∞(Z2) is
the supremum of {|uk| : k ∈ Z2}, and �p(Z2) is the space of sequences u on Z2

such that ‖u‖�p(Z2) <∞, where ‖u‖�p(Z2) :=

( ∑
k∈Z2

|uk|p
) 1

p

for 1 ≤ p <∞. For

any w = (w1, w2) ∈ �p(Z2)2, we define

‖w‖�p(Z2)2 := max(‖w1‖�p(Z2), ‖w2‖�p(Z2))

We also denote by Lp(R2), 1 ≤ p < ∞, the space of all measurable functions f

such that ‖f‖Lp(R2) :=
(∫

R2 |f(x)|pdx) 1
p for <∞ and ‖f‖L∞(R2) is the essential

supremum of |f | on R2. An invertible matrix M is called a dilation matrix if it
has integer entries and if lim

n→∞
M−n = 0 and we put m := | det(M)|. Finally,

(e1, e2) stands for the canonical basis on Z2 and for two positive quantities A and
B depending on a set of parameters,the relation A <∼ B implies the existence
of a positive constant C, independent of the parameters, such that A ≤ CB.
Also A ∼ B means A <∼ B and B <∼ A.

2.2 Multiresolution Analysis of L2(R2)

To begin with, let us recall the multiresolution analysis structure associated to
a non-diagonal dilation matrix M .

Definition 1. A multiresolution analysis of L2(R2) is a sequence (Vj)j∈Z of
closed subspaces embedded in L2(R2) satisfying the following properties:

1. Vj ⊂ Vj+1

2. f ∈ Vj ⇔ f(M.) ∈ Vj+1

3. ∪j∈ZVj = L2(R2), ∩j∈ZVj = {0}
4. We assume the existence of a compactly supported function ϕ ∈ V0, called

scaling function, such that the family of their translates {ϕ(·−k)}k∈Zd forms
a Riesz basis for V0.
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It follows from Definition 1, that the function ϕ satisfies a dilation equation of
type

ϕ(x) =
∑
n∈Z2

gnϕ(Mx− n), with
∑
n

gn = m. (1)

We adopt the biorthogonal point of view, that is we assume the existence of a
dual function ϕ̃ with compact support satisfying

ϕ̃(x) =
∑
k∈Z2

hkϕ̃(Mx− k), with
∑
k

hk = m, (2)

and such that the following duality property holds < ϕ̃(x − n), ϕ(x − k) >=
δn,k, where δn,k denotes the Kronecker symbol and < ., . > the Euclidean inner
product. The approximation at level j can be obtained by projection of v ∈
L2(R2) on Vj as follows:

vj =
∑
k∈Z2

vjkϕj,k(x), (3)

where, ϕj,k(x) = ϕ(M jx− k) and vjk =< v, ϕ̃(M jx− k) >.

3 Interpolatory Nonlinear Multiscale Representations
Based on Non-diagonal Dilation Matrix

In this section, we define nonlinear multiscale representations based on a non-
diagonal dilation matrix M . Let (Γ j)j≥0 be the set of embedded grids {M−jk,
k ∈ Z2}. We consider vj = (vjk)k∈Z2 the data at level j, associated to the location
M−jk on the grid Γ j . In order to build the nonlinear multiscale representation
of v, we assume the existence of a prediction operator P j−1

j acting from coarse
to fine level. This operator computes the approximation v̂j = P j−1

j vj−1 of vj

and may be nonlinear.
Interpolatory multiscale representations also assume that ϕ̃ is the Dirac dis-

tribution meaning that the data at level j are of the following type:

vjk = v(M−jk), k ∈ Z2,

which implies that vj−1
k = v(M−j+1k) = vjMk. Thus, to define a nonlinear

approximation we only compute v̂jMk+ε, ε ∈ Z2\MZ2 from vj−1 using the predic-
tion operator and then compute the prediction error as follows: dj−1

Mk+ε = vjMk+ε

− (P j−1
j vj−1)Mk+ε, ε ∈ Z2 \MZ2. Thus, the data vj is equivalent to the infor-

mation contained in (vj−1, dj−1), where dj−1 =
{
dj−1
Mk+ε, ε ∈ Z2 \MZ2, k ∈ Z2

}
.

Iterating, we obtain the following nonlinear multiscale representation:

Mv = (v0, d0, · · · , dj , · · ·). (4)
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4 Theoretical Results on Nonlinear Multiscale
Representations

4.1 Definition of the Prediction Operator

As shown above, the nonlinear multiscale representation is given by the definition
of P j−1

j . In the present paper, we will consider an extension of quasi-linear
prediction operators, defined in [5], to the case where the dilation matrix is
non-diagonal:

Definition 1. A quasi-linear prediction operator S is a function which asso-
ciates to any w ∈ �∞(Z2) a linear subdivision operator S(w) defined by

(S(w)u)k :=
∑

{l∈Z2,‖k−Ml‖∞≤K}
ak−Ml(w)ul,

for any u ∈ �∞(Z2) and |ak−Ml(w)| < C, for any w ∈ �∞(Z2). The constants K
and C are independent of the data w.

The general form for the prediction operator, given the data vj−1, is then

v̂jk = (P j−1
j vj−1)k = (S(vj−1)vj−1)k =

∑
l∈Z2

ak−Ml(vj−1)vj−1
l . (5)

4.2 Definitions of Difference Operators and of Joint Spectral Radius

We say that the quasi-linear prediction operator S reproduces the constants
when ∑

p∈Z2

ak−Mp(w) = 1, ∀k ∈ Zd and ∀w ∈ �∞(Z2). (6)

Then, the following result holds:

Proposition 1. Let S be a quasi-linear prediction operator reproducing the con-
stants. Then, there exists a local and bounded difference operator S1 such that
∇S(w)u := S1(w)∇u, where ∇uk := (∇iuk)i=1,2 = (uk+e1 − uk, uk+e2 − uk).
Proof. Consider

(S(w)u)k+ei − (S(w)u)k =
∑

p∈V (k+ei)
⋃
V (k)

(ak+ei−Mp(w) − ak−Mp(w))up

=
∑

p∈V (k+ei)
⋃
V (k)

αk−Mp(w)up,

where V (k) = {p ∈ Z2, ‖k−Mp‖∞ < K}. Since S reproduces the constants, we
have

∑
p∈V (k+ei)

⋃
V (k)

αk−Mp(w) = 0. We then deduce that, since

{
∇lδp−β , p ∈ V (k + ei)

⋃
V (k), β ∈ Z2, l = 1, · · · , d

}
,
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spans the sequence orthogonal to the constants and defined for p ∈ V (k +
ei)

⋃
V (k) [10]:

(S(w)u)k+ei − (S(w)u)k =
∑
β∈Z2

∑
p∈V (k+ei)

⋃
V (k)

2∑
l=1

cp−β,l∇lu
j−1
p ,

where (c.,l) is a finite sequence for each l. Computing the differences for other
directions ei we obtain the expected result. 	

We will also need the notion of joint spectral radius for S1 in l2(Z2).

Definition 2. Let S1 be the difference operator associated to the quasi-linear
prediction operator S. Its joint spectral radius in l2(Z2) is defined by

ρ2(S1) := inf
j≥0

sup
(w0,···,wj−1)∈(�∞(Z2))j

‖S1(wj−1) · · ·S1(w0)‖
1
j

(l2(Z2))2→(l2(Z2))2

= inf
j≥0

{ρ, ‖S1(wj−1) · · ·S1(w0)∇u‖(l2(Z2))2 <∼ ρj‖∇u‖(l2(Z2))2 , ∀u ∈ �∞(Z2)}

4.3 Multiscale Representation Convergence Theorem

We now give a convergence result for the multiscale representation when the
prediction operator is quasi-linear and when the matrix M is isotropic, corre-
sponding to the following definition:

Definition 3. The matrix M is isotropic if it is similar to the diagonal matrix
diag(σ1, σ2), i.e. there exists an invertible matrix Λ such that

M = Λ−1diag(σ1, σ2)Λ,

(σi)i=1,2 being the eigenvalues of the matrix M and |σ1| = |σ2| = √
m.

Moreover, for any given norm on R2 there exist constants C1, C2 such that for
any integer n and for any v ∈ R2

C1m
n/2‖v‖ ≤ ‖Mnv‖ ≤ C2m

n/2‖v‖. (7)

The convergence theorem we now recall involves L2(R2). For any v ∈ L2(R2),
we can show the following result:

Theorem 1. If the quasi-linear prediction operator S reproduces the constants,
if ρ2(S1) < m1/2 and if

‖v0‖l2(Z2) +
∑
j≥0

m−j/2‖dj‖l2(Z2) < ∞,

then the limit function v belongs to L2(R2) and

‖v‖L2(R2) ≤ ‖v0‖l2(Z2) +
∑
j≥0

m−j/2‖dj‖l2(Z2).



478 B. Matëı S. Meignen, and A. Zakharova

The proof of this theorem is available in [14] for Lp spaces.

Remark 1. The stability of nonlinear multiscale representations is another cru-
cial issue which is strongly related to that of the associated prediction operator.
Since our focus in the present paper is rather to show the relevance of the ap-
proach we propose next for image compression from a numerical point of view,
the stability issue will not be addressed here and is left for future work.

5 Bidimensional Interpolatory Quasi-Linear Prediction
Operators

The nonlinear representations we now introduce are based on (weighted) es-
sentially non-oscillatory ((W)ENO) approaches in an interpolatory framework.
(W)ENO methods, first introduced by A. Harten [8], have been widely used
to represent piecewise smooth images [1,6]. Such methods are also very useful
to study equations coming from the physics such as advection or gaz dynam-
ics [15]. When applied to image processing, these methods follow the general
multiscale framework detailed in Section 2 and define the prediction operator
P j−1
j depending on some quantity computed on the data vj−1 as explained in

Section 4.

5.1 Nonlinear (W)ENO Affine Multiscale Representation Based on
Quincunx Refinement

In this section, we build an interpolatory multiscale representation based on

quasi-linear prediction operators and using the quincunx matrix M =
(

1 1
1 −1

)
,

to define the scales. One can see this refinement as the insertion of one midpoint
per square and two steps are equivalent to quadrisection. Since the scheme is
interpolatory, it follows that vjMk = vj−1

k , and we only have to predict vj from
vj−1 at the inserted point in the middle of each square, corresponding to the
indices Mk + e1.

We first consider affine interpolation polynomials (i.e. p(x) = a+ bx+ cy) on
one of the following four stencils defined on Γ j−1:

V j,1k = M−j+1{k, k + e1, k + e2}
V j,2k = M−j+1{k, k + e1, k + e1 + e2}
V j,3k = M−j+1{k + e1, k + e2, k + e1 + e2}
V j,4k = M−j+1{k, k + e2, k + e1 + e2},

and then define the prediction rules by putting v̂jMk+e1
= p(M−j(Mk + e1)),

where p is one of the four just defined polynomials. This leads to two potential
choices for v̂j , which we denote by v̂j,i, i = 1, 2:

v̂j,1Mk+e1
= 1

2 (vj−1
k + vj−1

k+e1+e2
), (8)
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v̂j,2Mk+e1
= 1

2 (vj−1
k+e1

+ vj−1
k+e2

). (9)

To build the quasi-linear prediction operator we choose between the two predic-
tion rules (8) and (9) using the following cost function:

Cj(k) = min(|vj−1
k+e1

− vj−1
k+e2

|, |vj−1
k − vj−1

k+e1+e2
|). (10)

When the minimum of Cj(k) corresponds to the first (resp. second) argument
the prediction (9) (resp. (8)) is used. We now explain the motivation to use such
a cost function. When an edge intersects the cell

Qj−1
k := M−j+1{k, k + e1, k + e2, k + e1 + e2}, (11)

several cases may happen:

1. either an edge intersects [M−j+1k,M−j+1(k + e1 + e2)] and [M−j+1(k +
e1),M−j+1(k + e2)] and no direction is favored.

2. or an edge intersects [M−j+1k,M−j+1(k + e1 + e2)] or [M−j+1(k + e1),
M−j+1(k + e2)], in this case the prediction operator favors the direction
corresponding to the segment not intersected by the edge.

WhenQj−1
k is not intersected by an edge, the gain between choosing one direction

or the other is very small [7]. We, therefore, need a procedure to define the edge-
cells Qj−1

k , such that the index k satisfies

argmin(|vj−1
k − vj−1

k+e1+e2
|, |vj−1

k+e1+e2
− vj−1

k+2e1+2e2
|, |vj−1

k−e1−e2
− vj−1

k |)| = 1

or argmin(|vj−1
k+e1

− vj−1
k+e2

|, |vj−1
k+2e1−e2

− vj−1
k+e1

|, |vj−1
k+e2

− vj−1
k−e1+2e2

| = 1. (12)

This corresponds to the case where the first order differences are locally maxi-
mum is the direction of prediction. When a cell does not satisfy this property,
we will apply the rule (9) to predict.

Let us expand the different prediction rules that can be used to predict at
level j from levels j − 1 and j − 2. Since M2 = 2Id, we have

v̂j2k = vj−2
k , v̂j2k+e1 =

{
1
2 (vj−2

k + vj−2
k+e1

)
or 1

2 (vj−1
Mk+e1

+ vj−1
Mk+e2

)

v̂j2k+e2 =

{
1
2 (vj−2

k + vj−2
k+e2

)
or 1

2 (vj−1
Mk+e1

+ vj−1
Mk−e2 )

, v̂j2k+e1+e2
=

{
1
2 (vj−2

k + vj−2
k+e1+e2

)
or 1

2 (vj−2
k+e1

+ vj−2
k+e2

)

.

Looking at the cost function Cj defined in (10), it is clear that the prediction
uses the coefficients at level j − 1 to predict at 2k + e1 (resp. 2k + e2) at level
j only when |vj−2

k − vj−2
k+e1

| = |vj−1
Mk − vj−1

Mk+e1+e2
| > |vj−1

Mk+e1
− vj−1

Mk+e2
| (resp.

|vj−2
k − vj−2

k+e2
| = |vj−1

Mk − vj−1
Mk+e1−e2 | > |vj−1

Mk+e1
− vj−1

Mk−e2 |). This suggests that,
as we use the smoothest direction to predict, the detail coefficients dj−1 shall
decay faster than when only the level j−2 is used to predict at level j. This will
be shown in the Numerical Applications section. Based on this remark, we thus
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conjecture that the quasi-linear prediction operator should lead to a convergent
multiscale representation if the simplified multiscale representation associated
to the following prediction operator S̃ does:

v̂j2k = vj−2
k , v̂j2k+e1 = 1

2 (vj−2
k + vj−2

k+e1
)

v̂j2k+e2 =
1
2
(vj−2
k + vj−2

k+e2
), v̂j2k+e1+e2

= 1
2 (vj−2

k+e1
+ vj−2

k+e2
). (13)

But, as S̃ corresponds to the linear finite interpolation on a type-II triangulation
of R2 with set Z2, its convergence in L2(R2) is immediate.

The quasi-linear prediction operators are associated with interpolation poly-
nomials on different stencils that takes into account the orientation of the edge
and lead to so-called essentially non-oscillatory (ENO) multiscale representa-
tions. The main drawback of the ENO method is that an arbitrary small change
at the round-off level can lead to a change of stencil chosen for prediction. For
this reason, the ENO representations are unstable [13] therefore an improvement
of these methods, called WENO methods, have been introduced.

The WENO formulation we consider to predict on edge-cells (see (12)) is
based on a convex combination of potential prediction rules defined above that

is: v̂jk :=
m−1∑
r=0

αr,kv̂
j,r
k with αr,k ≥ 0 and

m−1∑
r=0

αr,k = 1, which are known to

provide a more robust representation than the ENO one. A classical form for
the WENO prediction is the following [13]:

v̂jMk+e1
=

a1,k

2(a1,k + a2,k)
(vj−1
k+e1

+ vj−1
k+e2

)+
a2,k

2(a1,k + a2,k)
(vj−1
k + vj−1

k+e1+e2
) (14)

with a1,k = 1(
ε+(vj−1

k+e1
−vj−1

k+e2
)2

)2 , a2,k = 1(
ε+(vj−1

k −vj−1
k+e1+e2

)2
)2 , for some ε > 0.

Using the same argument as the one put forward to conjecture that the multiscale
representation associated to the ENO prediction operator is convergent, one can
build a simplified and convergent version of the WENO multiscale representation
as follows:

v̂j2k = vj−2
k , v̂j2k+e1 =

1
2
(vj−2
k + vj−2

k+e1
), v̂j2k+e2 =

1
2
(vj−2
k + vj−2

k+e2
),

v̂j2k+e1+e2
=

a1,k

2(a1,k + a2,k)
(vj−2
k+e1

+ vj−2
k+e2

) +
a2,k

2(a1,k + a2,k)
(vj−2
k + vj−2

k+e1+e2
),

and then numerically show that the detail coefficients computed with the pre-
diction operator defined in (14) decrease faster than those obtained with the
simplified WENO prediction operator.

5.2 Quasi-Linear Prediction Operators Using Higher Degree
Polynomials

We now introduce a new type of quasi-linear prediction operators based on
higher degree interpolation polynomials. In the previous section, we saw that the
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prediction rules built using an affine polynomial on a given cell are independent of
the neighboring cells. Using higher degree polynomials for prediction, on the one
hand, would enable to increase the accuracy of the representation on smooth
regions but may, one the other hand, create spurious oscillations close to the
edges due to the Gibbs phenomenon.

Therefore, the idea developed by some authors is to reduce the degree of the
polynomials used to define the prediction operator close to the edges [4]. Our
strategy will thus be to use a nonlinear prediction operator based on quadratic
polynomials on cells Qj−1

k , defined in (11), which are 4-connected to an edge-cell
(meaning that either Qj−1

k−e1 , Q
j−1
k+e1

, Qj−1
k−e2 or Qj−1

k+e2
is an edge-cell), then to use

an affine nonlinear prediction operator as defined in section 5.1 on egde-cells,
and finally to use a linear prediction based on a quadratic polynomial on the
remaining cells.

To be more precise, to compute v̂jMk+e1
when Qj−1

k is 4-connected to an edge-
cell, we consider a family of quadratic interpolation polynomials (i.e. a + bx +
cy + dx2 + ey2 + fxy) defined on one of the following four stencils of Γ j−1:

V j,1k = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k + 2e1, k + 2e2}
V j,2k = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k − e1, k + 2e2}
V j,3k = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k + 2e1, k − e2}
V j,4k = M−j+1 {k, k + e1, k + e2, k + e1 + e2, k − e1, k − e2} . (15)

Let us now explain how the stencil selection is carried out. For each stencil V j,ik ,
we consider the triangles made of neighboring points inside that stencil. This
corresponds to 6 triangles for each V j,ik . For instance, for the stencil V j,1k , the
triangles are as follows: M−j+1{k, k + e1, k + e2},M−j+1{k, k + e1, k + e1 +
e2},M−j+1{k, k+e2, k+e1 +e2},M−j+1{k+e1, k+e2, k+e1 +e2},M−j+1{k+
e1, k+2e1, k+ e1 + e2)},M−j+1{k+ e2, k+ e1 + e2, k+2e2}. We then compute a
cost function on each triangle as the sum of the first order differences computed
on the triangles that make up V j,ik . For the prediction, we then use the quadratic
polynomial associated to the stencil with the minimal cost. On cells Qj−1

k (de-
fined in (11)) that are neither edge-cells nor 4-connected to an edge-cell, we use
the quadratic polynomial defined on V j,1k to build the prediction operator.

This approach enables the same behaviour as the one using the nonlinear affine
prediction operator at edge-cell while improves the approximation order as one
moves away from the edge. We will see, at the end of this paper, that, doing so,
compression results for natural images can be considerably improved. Similarly
to the case of edge-cells explained in section 5.1, a WENO formulation could
easily be derived from the above ENO strategy by making a convex combination
of the 4 potential prediction rules on cells 4-connected to an edge-cell while of
the 2 potential prediction rules on edge-cell.
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6 Practical Implementation of the Multiscale
Representations

We now focus on another aspect of the method which is to create a quadtree
structure from the multiscale representation so that it fits into the category of
representations that can be compressed with one of the most performant com-
pression algorithm, the so-called EZW (Embedded Zero Tree) algorithm [16].

To obtain a quadtree structure from the multiscale representation, if one con-
siders the level j, the error dj−1 is associated to the locations M−j(k + e1) and
M−j(k+ e2) while dj−2 is associated to the location M−j(k+ e1 + e2). Looking
at Figure 1.(A), it is clear that the error dj−1 can again be split into (d̄j−1, d̃j−1)
using as the same procedure as the one used to compute (vj−2, dj−2) from vj−1.
This leads to the representation of Figure 1.(C).

+

+ +

+ +

+

+ +

+dv j−2 d
j−2 j−1 

V j−2 d

d d

j−2

j−1 j−1

+ +

+ +

+j−2 d *ddv

*

*

*

*

j−2 j−1 j−1 

(A) (B) (C)

Fig. 1. (A): locations of the points where vj−2, dj−2 and dj − 1 are computed,(B):
matrix corresponding to two successive steps of decomposition, (C): locations of the
points where vj−2, dj−2, d̄j−1 and d̃j−1 are computed

The encoding algorithm of a square image of size 2J thus leads to the repre-
sentation

Mv = (v0, d0, d̄1, d̃1, ..., dJ−2, d̄J−1, d̃J−1).

This decomposition can be written under a matrix form, which we call V in what
follows, as shown on Figure 1.(B), which naturally leads to a quadtree structure.

The EZW algorithm, developed for wavelet transforms, exploits the quadtree
structure generated by the wavelet decomposition. The algorithm is based on
progressive encoding: the data is compressed through multiple passes with in-
creasing accuracy. The EZW encoder builds zero-tree structures from the
quadtree based on the observation that the wavelet coefficients decrease as j
increases. Note that this is true provided the wavelet basis is L2-normalized
(i.e. the L2 norm of the wavelet basis functions should be equal to 1), which
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is not the case in our interpolatory framework. A very important issue before
applying the EZW encoder in our interpolatory framework is thus to renormalize
the multiscale decomposition to preserve the decay of the detail coefficients at
j increases. In that context, the appropriate renormalization is the following
(assuming J is even):

M̃v = (2
J
2 −1v0, 2

J
2 −1d0, 2

J
2 −1d̄1, 2

J
2 −1d̃1, ...,

2p−1dj−2p, 2p−1d̄j−2p+1, 2p−1d̃j−2p+1, ..., dJ−2, d̄J−1, d̃J−1). (16)

Considering the matrix V associated to multiscale representation, the initial
threshold is then set to T0 = 2
log2(max |Vi,j |)�. The encoder scans the matrix V
using the Morton scan [2], compares it with threshold and gives ’p’, ’n’, ’z’ or
’t’ as an output; if the absolute value is larger than the threshold, it outputs
either ’p’, if the coefficient is positive or ’n’, if it is negative, else it constructs
a tree with the considered element as the root. If it is a zero-tree (that is, the
values at the nodes are all smaller or equal to the threshold), the output is ’t’,
and ’z’ (isolated zero) otherwise. The EZW encoder assumes that there will be
a very high probability that all the coefficients in a quadtree will be smaller
than a certain threshold if the root is smaller than this threshold. One then
only encodes the elements ’p’ or ’n’ as outputs. In this case, one puts them in a
so-called ’subordinate list’ either with 3T0

2 , if it is larger than 3T0
2 or − 3T0

2 (for
elements smaller than − 3T0

2 ) and remove them from V (replace them by 0) so
that they will not be encoded again in that pass. After all the elements have
been scanned, the threshold is set to T0/2 and the algorithm starts a new pass
and finally stops after a number of passes corresponding to a predefinite minimal
value for the threshold. The just described encoding algorithm thus computes a

sequence of quantized coefficients (v̂0, d̂0, ̂̃d1, ̂̄d1, · · · , d̂J−2, ̂̃dJ−1, ̂̄dJ−1). We finally
write the inverse operator (called decoding step) as follows:

v̂J = M̃−1(v̂0, 2−
J
2 +1d̂0, 2−

J
2 +1 ̂̄d1, 2−

J
2 +1 ̂̃d1, ...,

2−2p+1d̂J−2p, 2−2p+1 ¯̂dJ−2p+1, 2−2p+1 ̂̃
dj−1, ..., d̂J−2, ̂̄dJ−1, ̂̃dJ−1).

It is worth noting that due to the compression step, v̂j is not equal to vj which
implies that the prediction operator at the encoding step and at the decoding
step will not be the same. This problem is known as the absence of synchro-
nization between the encoder and the decoder. To avoid this problem, a possible
choice is to memorize the stencils used at the encoding for the decoding step [7].
However, this requires to allocate bits for that operation which deteriorates the
compression results. Our point here is to show that even when the stencils choice
is not memorized at the encoding, to use a quasi-linear prediction operator in
the decoding step improves the compression results.
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Fig. 2. Decay of the details coefficients for the image of Lena for linear multiscale
representation, nonlinear affine representation and nonlinear quadratic representation

7 Numerical Applications

7.1 Decay of the Coefficients

In this section, we compare the decay of the coefficients of the proposed non-
linear decomposition decay compared to that of the coefficients of the linear
decomposition, involving only the scale j−2 to predict at scale j, given by (13).
To do so, we compute the decomposition of the image of Lena until j = J − 6
(corresponding to nine subspaces of detail coefficients) either using the ENO
predictions based on affine or quadratic polynomials and the prediction based
on (13). For each of these 3 cases, we sort the corresponding coefficients in de-
creasing order. The results displayed on Figure 2 show that the amplitude of
the detail coefficients is significantly reduced when one uses a nonlinear predic-
tion operator based on a quadratic or affine polynomial compared to the linear
prediction. This suggests that since the corresponding linear multiscale represen-
tation is convergent in L2(R2), the proposed nonlinear multiscale representation
should also be convergent in that space.



On a (W)ENO-Type Multiscale Representation 485

Fig. 3. Compression results for the image of Lena, either using a non separable lin-
ear affine multiscale representation, an affine ENO representation, an affine WENO
representation (ε = 10−2) or an quadratic ENO representation

7.2 Compression Results

To investigate the compression performance of the proposed nonlinear scheme,
we compute the nonlinear decomposition until j = J − 6 and we then apply the
linear scheme for smaller j. The linear scheme corresponds to the application of
(9) in the affine case and to consider the quadratic polynomial based on V j,1k

(see section 5.2) in the quadratic case. As on coarse scales edges are not resolved,
the nonlinear scheme will be as good as any other scheme therefore we use the
linear scheme in that case.

We apply the EZW algorithm to the decomposition of the images of Lena
and of Peppers. They both show that the new ENO scheme we propose based
on quadratic polynomials representation on smooth regions and affine predic-
tion at edge locations leads to better compression results. These encouraging
results suggests that to decrease the degree of the polynomial used to predict at
edge location while increasing it when one moves away from the edge is a good
strategy. However, proofs of convergence and of stability of such scheme are still
missing and will be the motivation for future work.
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Fig. 4. Similar to Figure 3, but for the image of peppers

8 Conclusion

We have presented some theoretical aspects on nonlinear and non-separable in-
terpolatory multiscale representations. We have then built some particular bidi-
mensional nonlinear multiscale representations based on affine or quadratic in-
terpolatory prediction operators on grids defined using the quincunx matrix. To
show the relevance of these approaches, we have proposed an application to image
compression. The compression results show a clear improvement brought about
by ENO and WENO methods when affine or quadratic quasi-linear prediction
operator are used compared to linear techniques. The better performance of the
prediction based on quadratic polynomials interpolation emphasizes the impor-
tance of modifying the order of approximation depending on the image data. In
terms of perspectives, we are currently investigating extensions of this approach
to non-interpolatory prediction operators and also we are thinking about proofs
for both convergent and stability of the proposed multiscale representations.
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Abstract. In this paper we present OpenFlipper, an extensible open
source geometry processing and rendering framework. OpenFlipper is a
free software toolkit and software development platform for geometry
processing algorithms. It is mainly developed in the context of various
academic research projects. Nevertheless some companies are already
using it as a toolkit for commercial applications. This article presents
the design goals for OpenFlipper, the central usability considerations
and the important steps that were taken to achieve them. We give some
examples of commercial applications which illustrate the flexibility of
OpenFlipper. Besides software developers, end users also benefit from
this common framework since all applications built on top of it share the
same basic functionality and interaction metaphors.

Keywords: Geometry Processing, Software Framework, Open Source.

1 Introduction

Currently a lot of work is being done to simplify the research and development in
the field of geometry processing algorithms. Results of this work are for example
the software frameworks Meshlab [2] or Graphite [3]. Most of these frameworks
have two major limitations.

On the one hand, they focus on one special type of geometric primitives,
namely triangle or polygonal meshes. However there are a lot of applications
where multiple types of data are needed, e.g., isosurfaces get extracted from
volumetric data or meshes are generated from point clouds. Therefore these ap-
plications only focus on parts of the overall geometry processing pipeline. More-
over types like subdivision or spline curves and surfaces are often not supported
by these frameworks and thus reduce their versatility. On the other hand, the
applications are usually published under the GPL [4] and are therefore not us-
able in industrial projects leaving out another large group of potential users and
contributors.

Our main goal is to provide a common software development platform for
the majority of the geometry processing community. Researchers should be able
to use the framework to significantly speed up development and focus on the
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actual research project as most basic functionality is readily available. Industry
should obtain a common platform to build their software upon while end users
benefit from a unified look and feel for all algorithms using the framework. This
large user community heavily improves development as existing code from other
people can be re-used and combined to new algorithms.

In the next section we give an overview of our design goals for the Open-
Flipper framework. Section 3 briefly describes its central API. In Section 4 the
currently available features are presented, and in Section 5 OpenFlipper’s script-
ing system is explained. Finally, some examples on how OpenFlipper simplifies
the development process of two projects are given in Section 6.

2 Design Goals

The ultimate motivation for the implementation of a general application frame-
work is that in most research groups various projects are being worked on in
parallel and that a considerable percentage of the functionality is shared be-
tween those projects. Hence the primary goal of a common framework is to
avoid implementation and code redundancy by providing a central repository of
modules, e.g., for user interfaces, data file handling, rendering and others.

Another observation is that throughout the life cycle of a project (or of an al-
gorithm) different aspects of software engineering become relevant. In the initial
basic research phase, the software framework should allow the programmer to
focus on the algorithm itself and it should provide a test bed in which different
variants of the algorithms can be evaluated.

At a later stage of the development, the implemented functionality needs to be
tested extensively. While the major mode of usage for our framework is that of
an interactive application, extensive testing and repetitive execution of similar
procedures is more effective in some kind of batch mode. Hence our system
comes with a scripting interface that enables the flexible meta-implementation
of control procedures that build on top of the available functionality in the C++
implemented modules.

Finally, we want our framework to also support the dissemination and com-
mercialization of geometry processing functionality. This imposes two additional
requirements at the technical as well as at the legal level. First, the design of
ergonomic and intuitive user interfaces needs to be supported effectively. This
is made possible through the option to implement custom designed user inter-
faces for groups of users with different levels of technical expertise, e.g., software
developer or client users. On the legal level we have to resolve licensing issues
(this is why we have put our framework under the LGPL license) and we have
to offer a mechanism to exchange and license functionality without exchanging
source code.

Our solution to the latter issue is that individual modules are implemented
as plugins that can be loaded (as pre-compiled code) at runtime. The plugins
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can access the central functionality through a flexible API that also supports
the communication between plugins. In addition we included a license checker
mechanism into the framework which enables the protection of individual plugins
by identifying the computer on which the program is running.

Our vision is that the OpenFlipper framework will provide a software ecosys-
tem within which an open source community can develop and share their im-
plementations and where there is a seamless transition to and integration with
commercial modules. A research group or company could provide some of their
plugins as open source while for others a user license has to be obtained. Users
can collect their personalized set of plugins satisfying their particular applica-
tion requirements which can consist of a combination of free and commercial
modules.

Currently, the OpenFlipper framework is used intensively in the context of
our computer graphics and geometry processing teaching curriculum since it is
perfectly suited for student projects.

Compared to other mesh processing software frameworks (e.g., Meshlab [2])
the two major distinctive features are (1) the scripting module which allows users
to run OpenFlipper in batch mode and eases the definition of custom tailored
interfaces and (2) the scenegraph structure that can handle multiple objects
(even with different representations) simultaneously.

Fig. 1. Left: View of the OpenFlipper interface. It consists of a menu bar and several
toolbars at the top, a configurable set of toolboxes on the right, and a large area for the
viewers on the left. The viewer area can be split into multiple views rendering the scene
with different visualization settings. Every part of the user interface can be extended
and re-designed by plugins. Right: Framework scheme.
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3 OpenFlipper API

A common design goal for today’s software is cross-platform compatibility. As
a consequence, a user interface library has to be used which must enable plat-
form independent software development. We chose the Qt cross-platform appli-
cation and User Interface framework [11] and adopted our API to some of the
metaphors and concepts used by it.

Qt is based on a signal/slot architecture. Every event, e.g., a mouse click,
results in a signal. Every signal can be connected to an arbitrary number of
slots which are functions to be executed at each occurrence of the event. Events
occuring in parallel are stored in a global event queue and get executed by the
main thread in a serialized order.

OpenFlipper uses this signal/slot metaphor as its internal communication
paradigm. OpenFlipper’s core application communicates with the plugins by
emitting signals and in turn activate functions at their counterpart. The func-
tions provided by plugins or by the core application are grouped into separate
interfaces which are subdivided into user interaction (keyboard or mouse events,
picking), user interface specification (toolboxes, menus), file input/output, ob-
ject modification, texturing, view control and many others. It is not necessary to
implement all functions of an interface, allowing developers to quickly develop
little plugins focusing on certain algorithms. The core application will automat-
ically detect what has been implemented and only the relevant signals will be
passed to the plugins avoiding function call overhead.

OpenFlipper is not bound to a specific type of geometric data. The core ap-
plication is independent of the data representation as types are handled via
container objects. These objects provide the rendering code and the actual data
structure as well as functions for setting and retrieving the data. Due to this
representation, arbitrary types can be added by the programmer with little addi-
tional implementation effort. For common data types like triangle and polygonal
meshes OpenFlipper uses the OpenMesh library [1] which is a highly efficient
halfedge based data structure. Additionally, we plan to integrate other com-
monly used data types like the tetrahedron meshes implemented in CGAL [13]
or the volume data acquired with CT or MRI scanners.

The framework does not introduce an abstraction layer between algorithms
and data types. Therefore, developers can directly access the underlying data
structure (e.g., OpenMesh or CGAL) in their plugins. This results in low ef-
fort when porting existing algorithms to OpenFlipper as no code change has to
be made for the algorithms themselves. OpenFlipper provides several iterators
to retrieve objects in the framework. The iterators can be restricted to fetch
objects of a specific data type, e.g., triangle meshes, or to fetch only user se-
lections when working on multiple objects. After retrieval and modification of
the data, a plugin has to send a signal and the core application will pass the
information to all other plugins and updates the viewers accordingly. It is not
the main purpose of the OpenFlipper framework to provide a library with geom-
etry processing algorithms. It only provides the framework to use existing algo-
rithms (such as the excellent CGAL [13] library) and easily test and develop new
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algorithms in one system. Nevertheless, the free branch contains already a sig-
nificant number of public domain implementations of state-of-the-art algorithms
(see Section 4 ).

An integral part of the OpenFlipper framework is the rendering. The scene
is represented by an OpenGL-based scenegraph and already provides rendering
functions for the integrated data types. As almost all graphic cards support
vertex buffers we use them for efficient rendering (with cache optimization to
increase speed). OpenFlipper uses shaders for advanced rendering techniques but
also provides fallbacks, if shaders are not supported by the used hardware. For
presentations, the system can render images off-screen with very high resolution.
Additionally we will integrate scene export for ray tracers and Sketch 3D (Latex
code) in a future release. As the system is completely modular, developers can
exchange the rendering for different kinds of data types with their own OpenGL
code.

We also integrated a solution for tracing mouse clicks through the scene. The
scenegraph implements color picking such that mouse events can be directly
mapped to the clicked object or parts of the object, e.g., its faces or vertices.

4 Current Functionality

In this section we present a short overview of the currently available function-
ality of OpenFlipper and give some preview on functionality that will be added
in future releases. The framework runs on Windows, Linux and Mac OS X.
We provide IO plugins for OBJ (Wavefront), OFF (Object File Format), STL
(stereolithography CAD), PLY (Polygon File Format),BVH (Biovision) and OM
(OpenMesh). Furthermore we plan to integrate DAE (Collada), VTK (Visual-
ization Toolkit) and NETGEN (automatic mesh generator, implemented along
with tetrahedron meshes) support in one of the next releases.

Currently, OpenFlipper has built-in support for several data types. Triangle
and polygonal meshes are supported via the integrated OpenMesh [1] data struc-
ture. B-Spline curves and surfaces are represented by proprietary data structures
(IO supported through OBJ). Furthermore we provide a skeleton datastructure
for skeleton based animations of polygon meshes and some simple primitives
like planes, spheres and light sources. For future releases, we plan to integrate
tetrahedron meshes (CGAL [13]), point clouds, polygonal lines and volumetric
data (e.g., from CT or MRI).

For the current release a set of standard geometry processing algorithms is
already included. The standard algorithms are implementations from recent re-
search papers and constitute a basic repository for other software developers
and users. The OpenFlipper framework only provides the interface to use them.
Some of the algorithms have been developed in well maintained libraries such
as CGAL and OpenMesh and are only imported here to show how simple it is
to integrate new functionality by using existing code. The following list gives a
short overview of the available functionality:
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Selections: OpenFlipper comes with a large set of selection metaphors for all
supported data types. The build in selections are: single click , surface and vol-
ume lasso, paint ball, boundary, connected component, and a flood filling based
on normal deviation between adjacent primitives. The selection metaphors are
implemented for triangle and polygon meshes and, where applicable, for other
data types. For polygonal meshes we also distinguish between standard selections
and special feature selections (e.g., important edges). For area based algorithms
it is possible to select a handle and a modeling area.

Isotropic Remesher: The isotropic remesher implements the remeshing algo-
rithm by Botsch and Kobbelt [6] and tries to establish an average target edge
length specified by the user on an isotropic triangle mesh.

Decimater: The decimater based on [15,16] decimates triangular meshes with
respect to different constraints for the resulting meshes. It currently supports
approximate distance constraints(error quadrics) to the original surface, up-
per bounds for the normal deviation, aspect ratio of triangles and a target
complexity.

Smoother: This plugin implements a Laplacian smoother for triangular meshes
[14]. It can smooth in both tangential and normal direction with C0 or C1

continuity while keeping the result within a prescribed distance to the original
surface. OpenFlipper’s feature selection can be used to specify edges or areas
which are kept fixed.

Subdivider: Implementation of Loop [8], sqrt(3) [7], interpolatory sqrt(3) [9]
and modified butterfly[10] subdivision for triangular meshes.

Mesh Information: This plugin provides various information about arbitrary
polygonal meshes. It computes statistics about aspect ratios, dihedral angles,
bounding boxes, average edge length, genus, number of elements and many more.

Laplace, Mean Curvature, Gaussian Curvature: The three plugins com-
pute the laplace vector, mean curvature and Gaussian curvature for every vertex
on a triangular mesh. The computed values are attached to the mesh and can
be used by other plugins.

Texture Control: This plugin provides a user interface to change texture files
and to select an arbitrary property on a mesh to be used as texture coordinates.
For example the Gaussian curvature plugin computes the curvature at each
vertex and stores it as a property. Texture control reads these precomputed
values and uses them as texture coordinates for a 1D texture. It also computes
a histogram of the values and provides the user with additional functions like
clamping values or taking the absolute value of them.

Slicing: Clipping planes can be created by this plugin, enabling the user to look
inside of objects. This is especially useful when analyzing tetrahedron meshes
like the ones generated by CGAL [13].
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Topology Control: This plugin implements elementary topological operations
for meshes like flipping or splitting edges and adding or removing faces.

Scripting: This scripting plugin controls the integrated scripting environment.
It collects functions available to scripting and provides a script editor. Section
5.1 gives a more detailed description of OpenFlipper’s scripting capabilities.

Visual Scripting: The visual scripting plugin provides a higher level interface
to the scripting module. This plugin is further described in Section 5.2.

5 Scripting

OpenFlipper provides a variety of modules to ease the development of an inter-
active application. At a later stage of software development extensive testing of
algorithms is required. OpenFlipper provides a scripting environment integrated
into the framework to automate such processes in a batch mode. Qt already
ships with an excellent scripting system that is used as the basis for OpenFlip-
per’s scripting environment. As the language follows the ECMA-262 standard
[12] which is also used for JavaScript, the syntax is familiar to a large number
of developers.

The scripting system of OpenFlipper can be divided into two major parts.
The first one is the general text based scripting system for experienced developers
while the second one is a high level Visual Scripting Interface built on top of
the general scripting.

5.1 General Scripting

OpenFlipper includes a text based scripting editor and interpreter. The editor
collects and shows all available functions exported by the plugins, a description
of their functionality and parameters. Scripts are visualized with syntax high-
lighting and can be directly executed without any compilation. Each function
provided by a plugin can be made available to the scripting system.

Basic types like vectors or matrices are known to the system and can be used or
manipulated directly. Like JavaScript, the language provides loops, conditionals,
input/output and many other standard operators. As scripts are evaluated at
runtime, all existing algorithms in OpenFlipper can be used and controlled via
the scripting system without having to recompile code. This is especially useful
when testing and evaluating algorithms or trying to find optimal parameters for
a set of algorithms.

The scripting system is also capable of modifying and extending the user in-
terface. Qt includes the Qt Designer tool which can be used to generate user
interfaces and toolboxes. The user interface specification files generated by this
graphical designer tool can be loaded at run time and connected to all existing
algorithms via the scripting language. Consequently no change to a plugin is nec-
essary for creating a new interface, a simple script is sufficient. The quadrilateral
remeshing application described in Section 6.1 uses this option.
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5.2 Visual Scripting Interface

Scripting is a powerful tool to combine simple algorithmic blocks to more com-
plex algorithms. However, a programming or scripting language is usually too
complex for end users. To support less technically-experienced users in generat-
ing scripts, we implemented the more abstract Visual Scripting Interface [21].
The Visual Scripting Interface is build directly on top of OpenFlipper’s text
based scripting system. The visual script editor is a data flow based block edi-
tor inspired by the block or filter based processing in audio or video processing
applications [20]. The algorithms in OpenFlipper are represented as blocks with
separate inputs and outputs. A simple example is an isotropic remesher. Input
and output for this algorithm are surface triangle meshes. Additionally there
can be other input parameters like, e.g., average edge length for the remeshed
output. Figure 2 shows a simple example for such a visual script. This script
consists of only three blocks. The first block computes the average edge length
of an input mesh. Afterwards the computed length is passed to a math block and
divided by a user specified number. The result is then passed to the isotropic
remesher that uses the input value as the target edge length for its output mesh.
The execution order for the different blocks can get fairly complicated, so the
user has to define an order in which the algorithms are called. This is visualized
by the data flow connections. For blocks that don’t change objects (e.g., math
blocks) the execution order is computed automatically.

Fig. 2. Remeshing algorithm in the Visual Scripting Editor

Many algorithms require user interaction to select an object to work on. The
visual scripting system provides several interactive blocks, allowing to select
objects or asking for user input.

From the implementational point of view every block in the editor is associ-
ated with an xml file containing in- and output specifications as well as small
code snippets which represent the blocks in the final script. Every visual script is
therefore parsed, the blocks from the xml files and all variables are connected to
a documented OpenFlipper script which optionally can be viewed and modified
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by the user in the text based script editor. We have observed that these gener-
ated scripts provide an excellent foundation to learn the OpenFlipper scripting
language. Users can read the code and use it as a starting point for creating
more complex algorithms. The scripts are documented and changes made can
be directly executed to get new results.

As the scripting blocks are defined and composed from simple xml files, the
visual scripting system is not restricted to OpenFlipper’s language. Therefore
the editor and its components can be used to create script code for arbitrary
languages.

6 Industrial Use Cases

A major design goal for OpenFlipper was to provide a toolkit allowing us to
reduce the time and implementational overhead when converting research code
to an end user application. This requires a solid base of working code that can
be legally used in commercial and open source projects (LGPL). Researchers
are provided with a stable toolkit, enabling them to focus on implementation
and testing of new algorithms while visualization, selection or analytic tools are
readily available.

Additionally, the user interface in research and end user applications is usually
quite different. As OpenFlipper allows us to create an additional interface on
top of the existing functionality, only little effort has to be spend to abstract the
interface while keeping the original interface available for expert users.

There are already several commercial projects using OpenFlipper as their
platform. The projects provide continuous improvements and new features to
OpenFlipper’s freely available parts and algorithms. A lot of basic algorithms are
implemented for these projects which will also be published as open source and
are therefore usable and valuable for the community. In the following sections,
we present two of these projects where OpenFlipper significantly reduced the
coding effort during development.

6.1 Quadrilateral Remeshing

Based on the OpenFlipper toolkit, a software for generating high quality quad-
rangular meshes from unstructured triangle meshes [17] has been developed in
the context of a commercial project. The user can control the algorithm’s out-
put by providing additional constraints for the output structures and therefore
modify the resulting quadrangulation.

In the development process of this project the interaction metaphors already
defined in OpenFlipper have been used to define these constraints. One of the
constraint controls is OpenFlipper’s selection system. The user can select im-
portant edges and the algorithm uses the selection as a guidance for the final
edge directions. Additionally, OpenFlipper provides freely drawable polygonal
lines on surfaces which are also used by the system to control the final out-
put. Furthermore the selection system is used to specify where singular vertices
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should be positioned. All interaction metaphors, visualization, data types and
input/output functions for this algorithm were already provided by the toolkit.

At its frontend the algorithm makes extensive use of multiple interfaces. The
implementation consists of several parts which are implemented in independent
plugins. The first plugin computes the principal curvature directions on the input
mesh. The second plugin computes, based on the principal directions and possi-
ble user hints, a direction guiding field which is used to control the edge flow in
the resulting quadrangular mesh. The third plugin generates a parametrization
and extracts a quadrangular mesh. The interfaces to all plugins are available
to the professional user while a simple unified interface exists showing only the
relevant steps and settings while hiding the remaining parameters (with empiri-
cally derived defaults) from the user. This additional interface is purely defined
as an OpenFlipper script and can be loaded and even modified at run time.

The mixed-integer quadrangulation solver used in [17] is also freely available
as a separate library (CoMISo [18]). An example for the algorithm’s output is
shown in Figure 3.

Fig. 3. Model of Iphigenie as an unstructured triangle mesh and the result after the
quadrangular remeshing algorithm

6.2 Car Modeling

In this project [19], a semi-automatic approach to efficiently and robustly recover
the characteristic feature curves of a given free-form surface has been developed
where the input is not required to be a proper manifold. The technique supports a
sketch-based interface implemented in OpenFlipper where the user must roughly
sketch the feature location by drawing a stroke on the input mesh. For this type
of interaction OpenFlipper’s picking system provides functions that return the
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3D position of a mouse click in the scene. The system then snaps the initial sketch
curve to the correct position based on a graph-cut optimization scheme that takes
various surface properties into account. Additional positional constraints can be
placed and modified manually which allows interactive feature curve editing.
The feature curves can be used as handles for surface deformation, since they
describe the main characteristics of an object. The system allows the user to
manipulate a curve while the underlying surface adopts itself to the deformed
feature.

During development of this project a lot of the existing functionality of Open-
Flipper has been used and therefore significantly reduced the coding effort for
this project. No rendering code was required as it was already available for the
B-Spline and mesh data types used in this project. For these types the IO and
file management already existed in the framework. Figure 4 shows an example
for modeling a car using the final application.

Fig. 4. Car modelling implemented on top of OpenFlipper. Left: Original models,
Right: Modified models.

7 Conclusion and Future Improvements

In this paper we presented our OpenFlipper software framework. We developed
a system which is should be helpful for the majority of the geometry processing
community.

By now OpenFlipper is used for many different purposes. Students use it for
learning the basics of computer graphics and especially geometry processing and
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rendering. Researchers use it to develop and test algorithms while companies
benefit by directly using research code in an end user application with only little
effort. All of these users provide updates and extensions to the freely available
part of the framework. Therefore the functionality of OpenFlipper rapidly in-
creases and it has a growing toolbox of basic algorithms, interaction metaphors
and rendering functions which has been given back to the community by the
various contributors as free software.

The user community is currently developing a lot of new functions for Open-
Flipper. These include support for more file formats (Netgen, VTK, Collada),
new data types like point splats or tetrahedron meshes and many algorithms
working on them. Figure 5 shows a preview of the tetrahedron meshes.

All this functionality simplifies development and enables the people to focus
on their creative work when inventing new algorithms, making OpenFlipper a
valuable framework for the community.

The source code and executables are available at our website [22].

Fig. 5. Preview of a tetrahedron mesh in OpenFlipper
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20. Pavic, D., Schönefeld, V., Krecklau, L., Habbecke, M., Kobbelt, L.: 2D Video Edit-
ing for 3D Effects. In: VMV 2008, pp. 389–398 (2008)

21. Kasprzyk, D.: Diploma Thesis on Optimized User Interface for Geometry-
Algorithms. RWTH Aachen University (2009)

22. OpenFlipper website, http://www.openflipper.org

http://qt.nokia.com
http://www.cgal.org
http://www.graphics.rwth-aachen.de/comiso
http://www.openflipper.org


Parameterization of Contractible Domains Using
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Abstract. In this paper, we propose a new method for parameterizing
a contractible domain (called the computational domain) which is de-
fined by its boundary. Using a sequence of harmonic maps, we first build
a mapping from the computational domain to the parameter domain,
i.e., the unit square or unit cube. Then we parameterize the original
domain by spline approximation of the inverse mapping. Numerical sim-
ulations of our method were performed with several shapes in 2D and
3D to demonstrate that our method is suitable for various shapes. The
method is particular useful for isogeometric analysis because it provides
an extension from a boundary representation of a model to a volume
representation.

1 Introduction

Parameterization is one of the classical topics and attracts a lot of research in
computer graphics and geometric modeling because it plays a central role in
various applications such as texture mapping or morphing, to name a few. Even
though there are many powerful methods to deal with this problem for surfaces,
only few results have been achieved for volumes. In fact, due to computational
complexity, volume parameterization is considered a big challenge. In general,
methods proposed for this problem exploit information about representation and
topology of volumes such as tetrahedral mesh volumes or swept volumes. Our
work investigates more general problems in which objects are given in boundary
representation.

Assume that we are given a contractible domain defined by its boundary. We
also assume that we are able to divide the boundary into several patches, i.e.,
four curves in plane or six surfaces in three-dimensional space. Our goal is to
construct a spline representation for the domain. To achieve that, our method
creates a mapping from the domain to the unit square or unit cube, see Figure 1.
The mapping should be regular or injective. We attain this by solving several
variational problems. Finally, the spline approximation for the inverse of the
mapping is found by least squares fitting.

2 Related Work

Isogeometric Analysis. (IGA for short) was invented by Hughes et al. [12]
in 2005 as a promising approach to bridge the gap between numerical simu-
lation and computer aided design (CAD). Immediately, it attracted a lot of
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Fig. 1. Mapping from a planar domain to the unit square: the same style curves should
be mapped to each other

research interest from both numerical analysis and geometric modeling commu-
nities because of some important advantages. The first advantage of IGA is that
the computational domains are solid objects which are represented by tensor
product B-splines or NURBS. It is superior to classical finite element methods
which work on approximate domains represented by discrete meshes. The sec-
ond advantage of IGA is that the discretization space is spanned by B-splines
or NURBS basis and therefore it provides refinement possibilities as proposed in
[12]. So, refinement does not require interaction with the original CAD model as
finite element methods, but only requires simple operators such as knot inser-
tion or degree elevation. Due to these properties, the authors called the method
isogeometric analysis, i.e., geometry is preserved at all levels of refinement.

Nevertheless, there are some difficulties arising when one wants to use IGA to
solve a particular problem. One of the problems is that IGA requires solid models
represented by tensor product NURBS, i.e., a NURBS mapping from a paramet-
ric domain to a physical domain should cover the entire domain. However, CAD
systems usually only provide information on the boundary, i.e., mappings from
the parametric domains to the boundary of the models [3]. This observation
motivates our research to find a spline representation of the solid models which
are only defined by their boundary representation.

Ad Hoc Parameterization. The problem of parameterizing a domain defined
by boundary curves (or surfaces) can be traced back to the well known work
by Gordon and Coons [11]. This method uses blending functions to define a
Boolean sum operator interpolating boundary curves. It provides reasonable
parameterization for quadrilateral patches with nice shapes. Inspired by this
direction, there is a later work by Farin on discrete Coons patches [7]. However,
because of its simplicity this method may not be suitable for singular cases and
complicated shapes. Recently, Xu et al. have used the discrete Coons method
combined with shape optimization method to find optimal parameterizations as
a prerequisite of IGA for planar shapes [18].

In volume parameterization motivated by IGA, to the best of our knowledge,
there are only two remarkable results. The first is the paper by Martin et al.
[15] where the authors proposed a parameterization method for a generalized



Parameterization of Contractible Domains 503

cylinder-type volume defined by a tetrahedral mesh. This method bases on dis-
crete volumetric harmonic functions and solves several Laplace equations. After
remeshing the tetrahedral mesh to the hexahedral mesh, a trivariate B-spline
for the solid model is generated by an iterative fitting method. The second is
the paper by Aigner et al. [1] where the authors proposed a parameterization
method for swept volumes which cover many free-form shapes in CAD system
like blades or propellers. In this method, a spline approximation for a solid model
can be found by solving a minimization problem with several penalty terms cor-
responding to particular features of the shape.

In Voruganti et al. [17], a method is proposed to build a bijective map between
a genus-zero domain in three-dimensional space and the unit sphere, which par-
tially inspired our approach. The authors first choose a point inside the domain,
called “shape center”, and compute a potential function by solving the Laplace
equation with Dirichlet boundary conditions which are zero at the shape center
and one on the boundary. Then, streamlines, which are the curves joining each
boundary point to the shape center, are build so that they intersect the level
sets of the computed function orthogonally. This results in a parameterization
of the unit sphere by means of spherical coordinates.

3 Harmonic Maps

Recently, there has been much research interest in harmonic maps and their ap-
plications in computer graphics [2,5,8]. Harmonic maps are used to find mappings
between two manifolds due to their beautiful properties. It is well-known that
any conformal mapping between 2-dimensional manifolds is harmonic. More-
over, if we consider the mappings between a surface in R3 and a fixed boundary
domain in R2, harmonic and conformal mappings are the same [10]. A map u
between Riemannian manifolds (M, g) and (N, h) is called p-harmonic if it is a
critical point of the p-harmonic energy

Ep(u) =
∫
M

||∇Mu||pdvolM

where ||∇Mu|| is the length of the differential in M . If p = 2, we call it simply
harmonic map. Results concerning existence and regularity of the solution of
the above problem are described by Jost [13]. In particular, we are interested in
the maximum principle of the solution in the case that M has a boundary and
N = R. Then if u is a harmonic map, it attains maxima or minima values on the
boundary. So, we see that the level sets of u onM are contractible hypersurfaces.
In our method, we use the following particular cases of manifolds M and N :

1. M = M̄0 and M0 is an open subset of Rn (n = 2 or 3) and N ⊆ R (both M
and N with Euclidean metrics): In this case, the harmonic energy has the
form

E2(u) =
∫
M

||∇u||2dx
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where ∇ is the gradient operator and integration has the usual meaning in
Rn.

2. M is a Riemannian manifold in Rn (n = 2 or 3) which is given by the zero
level set of some functions, and N ⊆ R: In this case, the harmonic energy
has the form

E2(u) =
∫
M

||∇Mu||2dvolM

Here, ∇Mu is the covariant derivative of u with respect to M which is simply
the projection of gradient of u in Rn on the tangent space of M [2].

4 Our Framework

For the sake of simplicity, we describe our framework only for the planar case. It
can be naturally extended to the three-dimensional case by similar ideas. Recall
that we are given a contractible computational domain Ω defined by a closed
piece-wise smooth curve. Assume that we are able to divide the curve into 4
curves. In fact, this can be done simply by picking 4 points on the curve. Our
framework consists of 2 main steps.

4.1 Step 1: Finding a Mapping F : Ω → [0, 1]2

The mapping F should map the boundary of Ω to the boundary of the unit
square and might provide constant parametric speed along boundary. In coor-
dinates, F can be written as F = (f, g)T . In order to use the mapping F in
step 2, F should be regular or injective. In other words, the determinant of the
Jacobian of F should not vanish in Ω or equivalently, ∇f and ∇g should be
linearly independent on Ω. In order to achieve this goal, we propose a 2-step
method, namely, we first find f then use f to find g.

Step 1.1. The scalar function f : Ω → [0, 1] can be found by minimizing its
Dirichlet energy

E2(f) =
∫
Ω

||∇f ||2dx → min
f

(1)

subject to the boundary conditions

f(x, y) = 0 on Γ1

f(x, y) = 1 on Γ3

f(x, y) = s(x, y) on Γ2 and Γ4

(2)

where s(x, y) is any function that maps points on the curves Γ2 or Γ4 to [0, 1]
and is strictly increasing in the direction from Γ1 to Γ3. In our computations,
s(x, y) restricted to a curve is the arc-length function scaled to [0, 1]. On the



Parameterization of Contractible Domains 505

∇ f

∇ g

Γ

Ω

Γ

Γ

Γ

f
f

g

∇ M g

f c

g

Fig. 2. Covariant gradient of g on a level set of f

other hand, we can choose Neumann boundary conditions, i.e., we can set <
∇f, n >= 0 on Γ2 or Γ4 where n is the normal vector at corresponding point.
However, we observed in our computations that this boundary conditions lead
to unsatisfactory solutions.

Step 1.2. Once f is found, the scalar function g is generated such that g min-
imizes the harmonic energy on the level sets of f . More precisely, we define
M = f−1(c) ∩Ω for some constant c and we aim at solving the following mini-
mization problem

E2(g) =
∫
M

||∇Mg||2dvolM → min
g

subject to the boundary conditions

g(x, y) = 0 if (x, y) ∈ Γ4

g(x, y) = 1 if (x, y) ∈ Γ2.

Note that there are only 2 points in the boundary conditions which are the
intersections of M with 2 curves Γ2 and Γ4. The covariant gradient of g on M is
the projection of the gradient of g onto the tangent line with the normal vector
∇f , see Figure 2. Its length can be calculated by

||∇Mg||2 = ||∇g − 〈∇g,∇f〉 ∇f
||∇f ||2 ||

2.

Hence, we can rewrite the harmonic energy as

E2(g) =
∫
M

||∇g − 〈∇g,∇f〉 ∇f
||∇f ||2 ||

2dvolM

=
∫
Ω

||∇g − 〈∇g,∇f〉 ∇f
||∇f ||2 ||

2δ(f − c)||∇f ||dx (3)
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where δ(.) is the Dirac delta function in the sense of distributions. In the last
equality, we use the formula∫

M

RdvolM =
∫
Ω

Rδ(f − c)||∇f ||dx

where R is some function. Next, by means of minimizing simultaneously the
harmonic energy for all level sets of f contained in Ω, we can eliminate the
Dirac delta function in the Eq. (3) and formulate our minimization problem as∫

Ω

||∇g − 〈∇g,∇f〉 ∇f
||∇f ||2 ||

2||∇f ||dx → min
g

(4)

subject to the boundary conditions

g(x, y) = 0 if (x, y) ∈ Γ4

g(x, y) = 1 if (x, y) ∈ Γ2.

Note that we do not need to specify any boundary condition on the two curves
Γ1 and Γ3.

4.2 Step 2: Finding a Spline Approximation S of F −1

We use least squares fitting to find the mapping S that maps the unit square to
R2. We write S in the tensor product B-spline form as

S(u, v) =
∑
i∈I

∑
j∈J

Mi,U (u)Mj,V(v)dij = B(u, v) ·D, (u, v) ∈ [0, 1]2,

where D = (dij) is the vector of control points and B(u, v) = Mi,U(u)Mj,V(v)
is the vector of tensor product B-splines. We denote by U and V two given
knot vectors with degree-fold boundary knots 0 and 1. The index sets I and J
are determined by the knot sequences and degrees of the B-splines. Then, we
formulate the problem to find S ≈ F−1 as the following least squares problem∫

Ω

||S ◦ F − id||2 +Rf → min
D

(5)

where Rf is the fairness term

Rf = ω1

∫
[0,1]2

(S2
u + S2

v)dudv + ω2

∫
[0,1]2

(S2
uu + 2S2

uv + S2
vv)dudv

and ω1 and ω2 are weights. The least squares problem is a quadratic minimization
problem with respect to D. Therefore, it is relatively simple to find the solution
by solving a linear system.
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5 Injectivity

Before going to the details of the implementation, we discuss the injectivity of
the mapping F . The argument for three dimensional case is similar. We will
consider each coordinate function of F separately.

The first coordinate function f minimizes the harmonic energy over the whole
domain Ω. The Euler-Lagrange equation associated with (1) is the Laplace equa-
tion Δf = 0. In fact, if f is a solution of (1), f is a weak harmonic function. By
the maximum principle, we conclude that each level set of f is a simple curve
segment in Ω.

For the second coordinate function g, the Euler-Lagrange equation corre-
sponding to the problem (4) is

1
||∇f ||∇ ·

((
∇g − 〈∇g,∇f〉 ∇f

||∇f ||2
)
||∇f ||

)
= 0 (6)

So, if g is a solution of (4), then g is a weak solution of (6). Conversely, if g is a
weak solution of (6), then the weak form of (6) also is satisfied on the manifold
M = f−1(c) ∩ Ω where c is some constant. Therefore, g is a weak harmonic
function on the manifold M and g satisfies the maximum principle on M .

Proposition 1. If f is the solution of (1) and g is the solution of (4), then the
mapping F = (f, g)T from Ω to the unit square is injective.

Proof. We assume that there are 2 points P1 and P2 on Ω such that F (P1) =
F (P2). So, P1 and P2 must lie on a level set of f . By the assumption, we have
that g(P1) = g(P2). Since each level set of f is a simple curve segment, and g is
continuous on that level set and has no local maxima or minima, we conclude that
P1 and P2 must lie on the boundary of that level set of f or more precisely on the
intersection of that level set of f with boundary of Ω. However, the intersection
set consists of only 2 points. Since g satisfies the boundary conditions, the values
of g on those points are different. This is a contradiction. �

However, because we must solve the variational problems numerically, the dis-
cretization error may potentially destroy the injectivity. It depends on how well
we can approximate the exact solutions. This will be described in the next
section.

6 Implementation and Examples

In this section, we present how to solve the problems (1), (4) and (5). Then we
present some experiments with our method.

6.1 Solving Variational Problems

To solve the variational problems (1) and (4) in the previous section, we employ
a least squares meshless method using B-splines which is inspired by web-splines
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[9]. We want to find approximate solutions f̂ ≈ f and ĝ ≈ g in the finite
dimensional space spanned by B-splines. The reason to use this space is that
B-spline functions are locally piecewise polynomial with rectangular supports
and provide possibilities for refinement. Moreover, we can obtain a very good
approximation while having only to use a few basis functions. So, once we obtain
the solution f̂ , we can evaluate its values very fast. This is important because in
the next variational problem for g, fast evaluation of f̂ and its gradient speeds
up the time for computing g.

For finding an approximate solution f̂ , we write

f̂ =
∑

(i,j)∈I′
Ni,X (x)Nj,Y(y)cij

where cij are real coefficients. The basis functions Ni,X and Nj,Y are B-splines of
degree d1 and d2 with respect to knot sequences X and Y which are determined
by the projections to the axes of the edges of the bounding box B of Ω. In our
implementation, we use uniform knot vectors in x and y direction and consider
only those tensor-product basis functions whose supports overlap the domain.
By using the penalty method to enforce the boundary conditions, we arrive at
the following least squares problem

λ

∫
∂Ω

(f̂ − fD)2ds+
∫
Ω

||∇f̂ ||2dx → min
cij

(7)

where λ is a large weight, e.g., 103 and fD is the function defined by Dirichlet
boundary conditions of f on the boundary ofΩ. The above minimization problem
is quadratic with respect to cij , so it can be solved by solving a linear system.
Note that we have to evaluate the second integral on the domain Ω which is
unknown except for its boundary. At this point, an approximate implicitization
algorithm, such as [14] or [6], comes to play its role. So, the boundary of Ω can
be represented by the zero level set of an auxiliary function. The domain inside
the boundary curve corresponds to the points on which the function possesses
non-positive values. In other words, we can construct a characteristic function
χ of the domain Ω. The second term in (7) can be rewritten as∫

B
||∇f̂ ||2χ(Ω)dx

The linear system may be singular when the supports of some B-splines basis
functions lie outside the domain Ω. Also, it may have a high condition number,
if the supports have only a small intersections with the domain. In the web-
spline method [9], this issue is dealt with by coupling some functions along the
boundary. Instead of implementing the full web-spline method, we use a simpler
approach. We simply set the value of χ to 1 on Ω and to a small value, e.g. 10−3,
outside Ω. We evaluate the integral by Gauss quadrature. The first integral term
in (7) is evaluated by taking a weighted sum of finitely many points.
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For finding the approximate solution ĝ, we use a similar method as above.
The least squares problem is

λ

∫
Γ2∪Γ4

(ĝ − gD)2ds+
∫
Ω

||∇ĝ − 〈∇ĝ,∇f̂〉 ∇f̂
||∇f̂ ||2 ||

2||∇f̂ ||dx → min
c′ij

(8)

where gD is the function defined by Dirichlet boundary conditions of g on the
two curves Γ2 and Γ4. We denote c′ij the new variables to indicate that we can
use a different discretization space but the domain is the same. Analogously,
the integral over Ω can be transformed to the integral over B by using the
characteristic function. Again, this is a quadratic minimization problem with
respect to the coefficients of ĝ.

6.2 Spline Approximation of the Inverse Mapping

Here we want to describe in detail how to solve the problem (5). The first integral
term in (5) can be written as∫∫

R2
||B(f(x, y), g(x, y)) ·D − (x, y)T ||2χΩ(x, y)dxdy

where the characteristic function χΩ(x, y) is already known from approximate
implicitization but now it is set to 0 outside Ω. We evaluate the integral by
numerical quadrature, i.e., taking uniform grid of points on the bounding box B
of Ω. In order to obtain a good approximation for the boundary of Ω, we add
more terms that are integrals over the boundary of Ω as

ω0

(∫
Γ1

||B(0, g(p)) ·D − p||2dp +
∫
Γ3

||B(1, g(p)) ·D − p||2dp

+
∫
Γ2

||B(f(p), 1) ·D − p||2dp +
∫
Γ4

||B(f(p), 0) ·D − p||2dp
)

where ω0 is a large weight to indicate that we want to achieve a better approxi-
mation on the boundary. Once we have found the spline approximation, we use
the L∞ norm to estimate the error on the boundary of the domain. If the accu-
racy is not sufficient, then one may increase the numbers of degrees of freedom
via knot insertion.

The obtained parametrization is an approximation on the inverse of the con-
structed coordinate functions, hence it does not reproduce the original boundary
curves in general. It is possible to preserve the original boundaries, provided that
the computed parameterization is compatible with the original parameterization
of the boundaries. In this situation, the given control points of the boundary
curves can be used as known coefficients in the fitting process.

The compatibility of the parametrizations can be achieved by composing the
computed parameterization with two monotonic re-parameterizations, one for
each coordinate function. Each of these monotonic re-parameterizations takes
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constant values 0 and 1 on two of the four boundaries, and it is determined by
the original and the computed parametrizations on the other two boundaries.
It can be extended to the entire domain by simple linear interpolation, which
preserves the monotonicity along the parameter lines.

We did not (yet) implement this approach. We feel that the main advantage
of IGA is that simulation and geometric design are based on the same geometry
representation, and not necessarily in using an already existing CAD description.
This will often be impossible, e.g., for domains possessing more or less than four
B-spline boundary curves.

6.3 Putting Things Together

Now we summarize the implementation step by step. First, a domain defined by
4 curves is given. Next, we have to parameterize the curves Γ2 and Γ4 to [0, 1]
in order to define the boundary conditions (2). This is performed by arc length
parameterization scaled to [0, 1]. Next, we find the bounding box of Ω. It is the
domain for spline approximation of the functions f and g. Then, we generate
the characteristic function for Ω by approximate implicitization. Finally, the two
main steps, variational problems solving and spline approximation as described
above, are performed.

6.4 Examples

Our method is implemented in C++ and uses Gotools [16] for B-splines manip-
ulations. In addition, for solving the various arising sparse linear systems, we
employ the umfpack routine [4]. The results in this paper are visualized using
OpenGL and Qt. All examples in this paper are performed on a 2.8 GHz Intel
Core 2 Duo CPU with 4 GByte Ram.

Example 1. Figure 3 demonstrates our method for a weird planar shape. Three
boundary curves of that shape are line segments and the remain curve is modeled
as quadratic B-splines curve with 7 control points. The picture (3a) shows the
resulting spline approximation S and the level sets of f and g are approximated
to the green curves and blue curves, respectively. The estimate errors in L∞

norm are 0.002, 0.0004, 0.004 and 0.001 with respect to the boundary curve 1 to
4. We check the injectivity of F and S by evaluating its Jacobian at each sample
point inside the domain. Then we plot the Jacobian of S in the picture (3c).

It is also possible to certify the injectivity of the parameterization. For ex-
ample, sufficient conditions for injectivity are presented in the recent paper [18].
However, this method requires additional computational effort.

The construction of the parametrization map is not symmetric. If we swap
the order for constructing f and g, we obtain the result plotted in the picture
(3d). It is not a good parameterization, although F is still injective.

Example 2. The second example in Figure 4 is a shape representing the map of
Austria. The four boundary curves of this shape are quadratic B-spline curves.
The spline which parameterize the shape has 62× 62 control points.



Parameterization of Contractible Domains 511

(a) The resulting parameteri-
zation

(b) Zoom in

(c) Jacobian of the resulting
spline surface

(d) The resulting parameteri-
zation in the reverse order

Fig. 3. Parameterization for a weird planar shape

Fig. 4. The Austria map
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Example 3. We shows some results for 3D case in Figure 5. In this situation, the
input data is a closed triangular meshes. To be able to perform our the method,
two preprocessing steps must be done. First, the mesh is segmented into 6 faces
such that each face has exactly 4 incident faces. In other words, we should have
the same topology as the unit cube. Second, we parameterize 4 faces to obtain
boundary data for the variational problems. In order to visualize the quality of
the parametrization, the figures (5b) and (5d) show a cut-off view of the interior
of the solid objects.

(a) The triangular mesh model for a
sphere

(b) The resulting parameterization for
the sphere

(c) The triangular mesh model for a
base of a screwdriver

(d) The resulting parameterization for
the base of the screwdriver

Fig. 5. Volumetric parameterization for two solids represented by closed triangular
meshes
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7 Conclusion

In this paper, we proposed a framework to compute an injective mapping from
a domain defined by its boundary curves (surfaces) to the unit square (unit
cube). This mapping is defined via solutions of two (three in 3D) variational
problems. The final spline representation for the domain was constructed as an
approximation of the inverse of the computed mapping. We also demonstrated
that our method works efficiently for some complicated domains.
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Abstract. In this article, we address the problem of interpolating data
points lying on a regular grid by C1-continuous L1-bicubic spline sur-
faces. Our algorithm is based on a local univariate L1 minimization
method which enable us to calculate first derivative values for C1-cubic
spline curves. In order to construct the interpolation surface, we calcu-
late four derivative values at each data point using this local method. At
is was shown in [17], our local interpolation L1 cubic spline curve algo-
rithm preserves well the shape of the data even for abrupt changes.The
sequential computational complexity of this local method is linear and
the parallel computational complexity is O(1). Consequently, we can ad-
dress in this manner data on large grids. In order to keep this linear
complexity for spline surface interpolation, we define an interpolation
scheme based on four linear directions so as to construct our L1-bicubic
surface. Some image interpolation examples show the efficiency of this
non linear interpolation scheme.

Keywords: L1 spline, interpolation, shape preserving, images.

Introduction

A common requirement in data interpolation is that curves or surfaces obtained
”preserve shape”, which means they express the geometric properties of the inter-
polated data in accordance with human perception. These geometric properties
are variously interpreted as linearity, monotonicity, convexity and smoothness.
Conventional 2D splines, which are calculated by minimizing the square of the
L2 norm of the second partial derivatives of a cubic piecewise polynomial in-
terpolant, represent sufficiently ”smooth” data quite well. However, they often
have extraneous, nonphysical oscillations when used for interpolation of data
with abrupt changes.

Recently, a new kind of splines called cubic L1 splines has arisen, cf. [4, 5, 6,
8, 11, 13]. Cubic L1 splines, which are calculated by minimizing the L1 norm of
the second derivatives of a C1-smooth piecewise cubic interpolant, ”preserve the
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Fig. 1. L2 (dotted line) versus L1(solid line) global interpolations

shape” of data with abrupt changes (cf. [10] [12]) as we can see in Figure 1.
In [17], we show that our local cubic L1 spline interpolation algorithm preserves
linear parts and does not produce Gibbs phenomena.

The advantageous properties of L1 splines in univariate situations suggest
that L1 splines may have advantages in bivariate situations also, so we have
decided to extend our local algorithm to bivariate interpolation for images. This
bicubic model can be used for image applications like resampling [19, 24, 7] or
warping [18].

The L1 splines are generated by minimizing a nonlinear functional, cf. [10,
14, 15]. Since nonlinear programming procedures for minimizing the L1 spline
functional are not yet practical for global data interpolation, a discretization
of this functional is commonly used. Minimization of the discretized L1 spline
functional which is a nonsmooth convex programming problem, leads to solving
of an overdetermined linear system that can be reduced to a linear program for
which many methods are available(cf. [16], [23], [20], [21], [22]). The drawback
of this global minimization is the calculation time which can be very important
for big data sets.

We introduce a local univariate minimization method based on a sliding win-
dow defined over five points so as to smoothly interpolate data points. This local
method allows us to define a fast computational algorithm based on analytically
minimizing the L1 spline functional over only five data points. Furthermore, we
showed in [2] that a five-point window allows us to preserve the linear parts of
the data points while in general the global method does not satisfy this property.

This paper is organized as follows. In Section 1, we give some results concern-
ing C1-continuous cubic L1 spline interpolation on five points. Based on these
results, we have defined a new interpolation strategy with a sliding five points
window to create a local L1C

1 interpolating method. In Section 2, we use this
univariate method so as to construct bicubic spline surfaces. By applying our
L1C

1 interpolating algorithm to regular data grids in four directions, we gener-
ate a set of derivative values at each data point. We show the efficiency of this
method by applying continuous transformations on some images.

1 Local L1 Cubic Spline Minimization

The C1 interpolating cubic spline curve is calculated by minimizing the L1−norm
of the second derivative vector of the spline. Let a = u1 < u2 < · · · < un = b be



Nonlinear L1C
1 Interpolation: Application to Images 517

an arbitrary and strictly monotonic partition of the finite real interval [a, b]. If
we denote by Δ the classical forward difference operator, we showed in [1] that
the solution to this problem is obtained by minimizing the following functional

E(T1, . . . , Tn) =
n−1∑
i=1

∫ 1
2

−1
2

‖ΔTi + 6t(Ti+1 + Ti − 2
ΔPi
Δui

)‖1dt (1)

where the Ti ∈ IRd are the first order derivative vectors at points Pi for i =
1, . . . , n. As E(T1, . . . , Tn) is not strictly convex, then its minima are not nec-
essarily unique. To reduce the set of solutions, Lavery in [10] added a ”regu-
larization” term so as to select the derivative vectors Ti which are as short as
possible in the L1-norm. Consequently, a global C1-continuous cubic L1 spline
is obtained by minimizing the following functional

E(T1, . . . , Tn) + ε

n∑
i=1

|Ti|, (2)

where ε is a strictly positive real. As this problem is also nonlinear, this func-
tional is discretized by using the midpoint rule method for each integral. The
resulting problem raised by the L1-minimization of linear system is solved by
the Vanderbei, Meketon and Freedman primal affine algorithm defined in [23]
and outlined in [12]. This algorithm was improved in [25] in order to reduce the
calculation time. Nevertheless for big data sets, global calculus is prohibited.
Thanks to this fact, we have calculated the exact solutions to this minimization
problem (1) on a set of five data points. To do so, let us study the three-point
case.

1.1 Univariate Cubic L1C1 Interpolation over Three Points

The following lemma gives the exact solution to the minimization of (1) with
n = 3.

Let (ui, zi)i=1,2,3 be three couples of real values where u1 < u2 < u3 and the
slopes be defined by hi = Δzi

Δui
for i = 1, 2. The solution of the minimization

problem

ϕh1,h2 (x) = min
(b2,b3)∈IR2

Φ(b1, b2, b3) (3)

with

Φ(b1, b2, b3) =
∫ 1

2

−1
2

|Δb1+6t(b2+b1−2h1)|dt+
∫ 1

2

−1
2

|Δb2+6t(b3+b2−2h2)|dt, (4)
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where b1, b2 and b3 are the first derivative values at the three points is

a) if b1 is comprised between h1 +
√

10+1
3 (h2 − h1) and h1 then

b2 = h1 +
√

10−1
3 (b1 − h1) , b3 = h2 +

√
10−5
5 (h1 − h2) + 5−2

√
10

5 (b1 − h1) ,

b) if b1 is comprised between h1 and h1 +
√

10−5
5 (h2 − h1) then

b2 = h1 − 5+
√

10
3 (b1 − h1) , b3 = h2 +

√
10−5
5 (h1 − h2) + (b1 − h1) ,

c) otherwise b2 = b3 = h2.
(5)

This was demonstrated in [17].
For the five point algorithm defined hereafter, we need to calculate the subdif-

ferential of this continuous convex function. Let us define the following functions:

ϕ1
h1,h2

(x) = − 3
2 (x+ h2 − h1)− (h2−h1−x)2

6(x+h2−h1)
,

ϕ2
h1,h2

(x) = 8−4
√

10
3 x+

2(
√

10−1)
3 (h1 − h2) , ϕ3

h1,h2
(x) =

2(
√

10−1)
3 (h1 − h2) ,

ϕ4
h1,h2

(x) = ϕ1
h1,h2

(x) , ϕ5
h1,h2

(x) = x− h2 + h1, ϕ
6
h1,h2

(x) = −ϕ1
h1,h2

(x) .

Consequently, we can infer that

ϕh1,h2 (x) = σϕk
h1,h2

(x) if x ∈
[
min

(
σxk−1

h1,h2
, σxk

h1,h2

)
, max

(
σxk−1

h1,h2
, σxk

h1,h2

)]
,

(6)

where σ = {1 if h2 − h1 ≥ 0 and −1 otherwise} and{
x0
h1,h2

= −∞, x1
h1,h2

=
√

10+1
3 (h2 − h1) , x2

h1,h2
= 0, x3

h1,h2
=

√
10−5
5 (h2 − h1) ,

x4
h1,h2

= − 1
2 (h2 − h1) , x5

h1,h2
= −2 (h2 − h1) , x6

h1,h2
= +∞.

(7)

1.2 Univariate Cubic L1C1 Interpolation over Five Points

Let (ui, zi)i=1,...,5 be five couples of real values where u1 < · · · < u5 and the
slopes be defined by hi = Δzi

Δui
for i = 1, . . . , 4. Hence, the univariate L1C

1 spline
solution is obtained from

min
(b1,...,b5)∈IR5

4∑
i=1

∫ 1
2

−1
2

|Δbi + 6t(bi+1 + bi − 2hi)|dt

where the bi are the derivative values of the spline at ui. This functional is the
sum of positive and convex continuous functions. It can be written by

minb3∈IR
(
min

(b2,b1)∈IR2 Φ(b3, b2, b1) + min
(b4,b5)∈IR2 Φ(b3, b4, b5)

)
= minb3∈IR (ϕh2,h1 (b3 − h2) + ϕh3,h4 (b3 − h3))

(8)
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where Φ is defined by (4). Let us denote by ∂ϕhi,hj (x) the subdifferential of
ϕhi,hj (x) at x (cf. [3], [9]). Since (8) is convex and continuous, its subdifferential
is compact and nonempty.

We define dg(x) = min ∂ϕh2,h1 (x− h2) + min ∂ϕh3,h4 (x− h3) and dd(x) =
max∂ϕh2,h1 (x− h2)+max∂ϕh3,h4 (x− h3) respectively the left and right deriva-
tive values of (8) at x. As function (8) is convex the minimal value is obtained
for any b3 such that dg(b3).dd(b3) ≤ 0.

Consequently, the algorithm needed to define b3 is

– create {βk}k=1...10 = sorted list from the abscissa
(
xjh3,h4

+h3, x
j
h2,h1

+h2

)5

j=1

– calculate α1 = min
k∈{1,...,10}

(βk such that dg(βk)dd(βk) ≤ 0 or dd(βk)dg(βk +

1) < 0)
– calculate α2 = max

k∈{1,...,10}
(βk such that dg(βk)dd(βk) ≤ 0 or dd(βk−1)dg(βk)<

0).
– if α1 = α2 then b3 = α1 = α2.
– if α1 �= α2 and dd(α1) = 0 and dg(α2) = 0 then b3 = min

x∈[α1,α2]

∣∣x− h2+h3
2

∣∣
(this solution preserves linear parts when possible).

– if α1 �= α2 and ( dd(α1) �= 0 or dg(α2) �= 0) then b3 is calculated by using a
dichotomic search algorithm in ]α1, α2[.

Since b3 is obtained, we can calculate b1, b2, b4 and b5 by using Lemma 1.

1.3 Local L1 Cubic Interpolation Spline

We define a five-point sliding window on a set of points and we calculate the
derivative vector only for the middle point by using the previous algorithm (cf.
Fig. 2). By translating the window, point by point over all the data, we obtain
a derivative vector at each interpolation point. Hence, we are able to construct
a cubic spline which is our local L1 interpolation spline curve.

Fig. 2. Sliding window over the sets of points

We have shown in [17] that the minimization problem over five points retains
linearity when three points are aligned. Hence, our local algorithm ensures that
linear parts of the data will be interpolated by linear segments everywhere.

The previous algebraic algorithm over five points needs few operations and
the total calculation time depends linearly of the number of interpolated data.
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Another advantage of our local minimization method is that each window calcu-
lus can be done separately. So, the algorithm can be massively parallelized onto
GPU cards or parallel computers.

These two above properties led us to extend this method on large data sets
like images.

2 L1 Bicubic Interpolation Method over Images

2.1 Bicubic Spline Surface Construction

A image can be defined as scattered data by using pixel values1. Applying trans-
formations like rotations, resampling or warping to this discrete data set may
produced blur or flattening. To overcome these problems, we can construct a
continuous model by using a bicubic spline surface which interpolates the pixel
values. In order to use our local L1 minimization method for images, we have to
extend our univariate algorithm to the bivariate case.

Firstly, we apply our local univariate algorithm onto each horizontal and ver-
tical line of the image grid. This gives the first partial derivatives at each data
point. Secondly, we calculate partial cross derivative values by using the diago-
nal directions of the image. The main advantage of this solution is that the two
cross directions are also defined on a regular grid (see Fig. 3). Thirdly, by using
these values, we can construct a grid of control points for a bicubic spline.

Fig. 3. Definition of control polygon for bicubic spline surface

2.2 Image Interpolation Results

This section shows that our algorithm has been tested with different kinds of
images.

1 These values are the components of the image so we can use RVB, YUV or other
encoding systems.
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As we have already mentioned, our univariate algorithm preserves linear parts.
By using our surface construction algorithm, the part of the bicubic surface de-
fined other a set of pixel values lying on a plane belong to this plane. In Fig-
ure 4.a, we have created three polygonal colored areas from black to white. As
we can see in Fig 4, our method well preserves the different planes of data. Con-
sequently, the color is uniform and there are no unwanted effects or oscillations
near the edges. We have also tested our new algorithm with drawing (Fig. 5 ) and
natural images. The so obtained interpolation surfaces can be used to transform
these images.

a.Three polygonal areas b.The associate bicubic spline surface

Fig. 4. Planar areas

Drawing image

Fig. 5. Original, areas and their interpolation surfaces

2.3 Image Transformations

This section will not provide new algorithms for rotation, resampling, warping
or other transformation. We apply continuous mathematical transformations on
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our continuous local L1-bicubic interpolation spline surface in order to simply
modify a image.

Rotation. Our method allows us to apply rotational transformation into the
parameter-space of the bicubic spline interpolation model of an image. This
method works well even for a rotation of 45 degrees which generally produces a
bad result.

Original Rotated

Fig. 6. 45 rotated image

Resampling Application. The (re)sampling from a continuous model is not a
problem contrarily to case of discrete data. This could be easily done whereas the
resampling coefficient is not an integer. In Example 7, the resampling images are
obtained with a scale coefficient of 1.8. We have applied one octave decimation
(:2) onto the Mika image (cf. Figure 5) and after one octave super resolution (x2)
in order to produce a test image. The calculated PSNR between the original and
test image is 24,42 dB which is not so bad (cf. [24])

Warping Applications. The warping examples below had been obtained by
applying continuous transformations into the parameter-space of the bicubic
spline surfaces. Since the warping-model is continuous, it is very easy to apply
to interpolation bicubic surface.

2.4 GPU Parallelization Results

Our algorithm complexity is O (n) because it only depends on the number of
data points even for the bivariate case. Since we use algebraic solution for each
local univariate calculus, the calculation time is drastically decreased comparing
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to a global L1 surface algorithm ( [13]). In addition, all five point calculus can
be made independently because our algorithm use sliding windows. Thus, the
calculation time can be optimized by using parallel computer architectures like
GPU cards. If we compare CPU L1 interpolation algorithm to a GPU parallelized
one2 (see Fig. 9), we can see that the calculation time decreases. We can infer
that as much as cores we have, as much as the global calculus time is decreasing;
the limit is the time spent for one five point window calculus.

Areas (100x100) from original 1.8x scaled images

Fig. 7. Resampling

Fig. 8. Various warping images

2 We used a NVidia Tesla Card with 240 TPU cores.
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Fig. 9. Processing times for L1 curve interpolation over 3729 data point set

3 Conclusion

We have developed a L1 bicubic interpolation surface algorithm which can be
used over data grid and therefore with images. Because we’re using a L1-norm
minimization algorithm with a five point sliding window, we have got a method
which has very good properties:

– shape preserving
– no Gibbs effects near abrupt data changes
– O (n) complexity in sequencial calculus mode and O (1) complexity in par-

allele calculus mode (with n = number of bivariate data points).
– massively parallelized possibility

After some tests, we have proved that the L1 bicubic spline interpolation algo-
rithm can be a good choice if someone want to create a continuous model from
discrete data sets. Our local L1-bicubic spline surface algorithm can be easily
used to transform images. In a future work we will study the unstructured data
set case.

Acknowledgments. The authors thank the referee for his helpful suggestions
and comments.
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Abstract. We prove well-posedness, convergence, and detail decay es-
timates for the normal triangular mesh multi-scale transform for C1,α

graph surfaces given in the simplest case when the subdivision rule S
used for base point prediction is given by edge midpoint insertion. A
restrictive assumption is that the initial triangular mesh needs to be
quasi-regular and of small enough mesh-size. We also provide numerical
evidence with other S for dyadic refinement (Butterfly, Loop), and pro-
pose a modification of the normal scheme resulting in improved detail
decay for smooth surfaces.

Keywords: Nonlinear geometric multi-scale transforms, linear subdivi-
sion, surface representation, detail decay.

1 Introduction

Normal multi-scale transforms (MTs) for curves and surfaces [7] are nonlinear
MTs based on a linear subdivision operator S and a nonlinear transformation for
the detail part involving approximate normal directions. They have been used
for multi-scale representation and compression of geometric objects [12,14,4], for
adaptive approximation of level curves [2], in image analysis [1], and recently
for interface tracking [17]. Roughly speaking, normal MT starts from an initial
triangular mesh on Σ (a curve in R2 or a surface in R3) represented by its vertex
set v0, and creates denser triangular meshes with vertex sets v1,v2, . . . on Σ by
recursively repeating the following steps:

– Given vj−1 ⊂ Σ and a primal linear subdivision scheme S for triangular
meshes, a set v̂j = Svj−1 of base points is computed, these points typically
do not belong to Σ.

– Similarly, a set n̂j of approximate normals of unit length (one for each base
point) is computed, e.g., by taking suitable averages of normal directions to
the triangles in the mesh associated with vj−1.

– By finding the intersection points vji of the family of parametric ”normal”
lines v̂ji + sn̂ji passing through the base points from v̂j in the direction
given by the corresponding approximate normal from n̂j with Σ, one arrives
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J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 527–542, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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at the new triangular mesh with vertex set vj on Σ (with the topology
inherited from the basepoint mesh), and the sequence dj of scalar details
dji (given by the projection of vji − v̂ji onto n̂ji ) to be stored. This task is
the most ambiguous one, as no or many intersection points with Σ may
exist resp. mesh obstructions may occur. The vertex set vj can be recovered
from vj−1 and dj by first computing v̂j , n̂j from vj−1, and then using the
reconstruction formula

vj = v̂j + djn̂j ,

where the multiplication djn̂j has to be executed entry-wise.

If, with proper specification of the intersection procedure and under certain
conditions on v0, this construction does not fail (well-posedness), we obtain
the normal MT Σ → {v0, d1, d2, . . .} and can recover Σ as limit of triangular
surfaces by computing vj , j ≥ 1, using the reconstruction formula recursively.

Normal MTs for smooth curves in R2 have been investigated in [3,16,10], and
are well-understood by now. In this note, we make a first step towards a theory
of normal MTs for smooth surfaces in R3 by investigating the normal MT for
C1,α surfaces Σ ⊂ R3 with the simplest S (based on edge midpoint insertion)
for triangular meshes. The definition and basic properties of this transform and
the underlying triangular meshes will be introduced in Section 2. Our main
result concerning the well-posedness, convergence, and guaranteed detail decay
of order O(2−j(1+α)) of this MT for C1,α graph surfaces, and sufficiently dense
and regular initial meshes will be stated and proved in Section 3. Section 4
discusses the possible extensions of this initial result to more general S, and
provides numerical evidence on detail decay for smooth surfaces. In particular,
we show that the influence of extraordinary vertices can practically be neglected.
We also introduce a new normal multi-scale transform with improved detail
decay, consisting of a clever combination of Loop subdivision (for predicting
base points and approximate normals) and Butterfly subdivision (for predicting
a point closer to the surface along the normal line).

2 Definitions and Preliminary Facts

2.1 Surfaces and Triangular Meshes

For the study of normal MTs for closed 2-dimensional C1,α manifolds Σ embed-
ded in R3 (the treatment of boundaries is beyond the scope of our investigation),
due to the locality of the used subdivision rule and the density assumptions on
the initial meshes v0 necessary for our asymptotic analysis, we may resort to
graph surfaces Σ = {vP := (P, f(P )) : P := (x, y) ∈ R2} ⊂ R3 given by a C1,α

function f : R2 → R with globally bounded gradient and Lipschitz constants,
i.e., there are constants C0, C1 such that

|nP | =
√

1 + |∇f(P )|2 ≤ C0,
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where nP = (−∇f(P ), 1) is the normal to the tangent plane to Σ at vP ,

|∇f(Q)−∇f(P )| ≤ C1|Q− P |α, P,Q ∈ R2,

and consequently also

f(Q) = f(P ) +∇f(P )(Q− P ) +R(P,Q), |R(P,Q)| ≤ C1|Q− P |1+α,

where P,Q ∈ R2. Everywhere, | · | denotes the Euclidean norm in Rd with
d = 1, 2, 3, depending on context. Products of vectors in Rd, if not specified
otherwise, are to be understood as scalar products.

We consider triangular meshes on Σ generated by triangulations in R2, i.e., if
V is the vertex set of a triangulation T in R2 then v := {vP : P ∈ V} represents
the vertex set of a triangular mesh on Σ, with the mesh topology (edges, faces)
inherited from T . The edges e = ePQ = vQ − vP can be identified with pairs
neighboring vertices P and Q of T . The global mesh-width h(v) is defined as
the supremum of all edge lengths |e|. By hT we denote the similarly defined
mesh-width of T . Since

|Q− P | ≤ |e| = |vQ − vP | ≤ C0|Q− P | (1)

we always have hT ≤ h(v) ≤ C0hT . We call a triangular mesh with vertex set v
regular with regularity constant c = sin γ, γ ∈ (0, π/3] (or in short c-regular), if
the interior angles of any triangular face of the mesh are ≥ γ. More conveniently,
this can be expressed by requiring the inequality

|e× ẽ| ≥ c|e||ẽ|

to hold for any two edges of any triangular face of the mesh. Without detailed
proof, we state the following elementary properties.

Proposition 1. Let Σ be a C1,α graph surface, and v the vertex set of a c-
regular triangular mesh on Σ, as described above.
a) For any two edges e and ẽ belonging to the same face, we have |e|/|ẽ|/ ≤ 1/c.
b) There is a h̄1 > 0 (depending on c, C0 only) such that for h(v) ≤ h̄1, the
underlying triangulation T of R2 is c̄-regular, with some other c̄ ≥ c/(2C0). Con-
versely, if T is c̄-regular and hT is small enough, then the associated triangular
mesh on Σ is c-regular for some c > c̄/(2C2

0 ).

Since |e × ẽ| = |e × ē| = |ẽ × ē|, where ē denotes the remaining edge of the
triangular face under consideration, we have

|e|
|ẽ| =

|e||ē|
|ẽ||ē| ≤

c−1|e× ē|
|ẽ× ē| =

1
c
.

This gives part a). For part b), see the remarks in the proof of Proposition 2
below.
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2.2 Approximate Normals

Normal MTs need a rule for creating approximate normals. In our case, base
points will be the midpoints of edges e (see Section 2.3 below), and the property
we need in the proofs is the existence of a constant C2 such that

min | ± n̂e − n̂P | ≤ C2|Q− P |α, n̂P := (
√

1 + |∇f(P )|2)−1nP ,

uniformly for all edges e = ePQ. In other words, either n̂e or −n̂e should be very
close to the unit normal n̂P to the surface Σ at the nearby point vP . Obviously,
P can be replaced by any other point at distance ≤ C|Q−P | from P . That this
condition can be realized is guaranteed by the following

Proposition 2. Under the conditions of Proposition 1, assume that h(v) ≤ h̄1.
Then the unit normal to any of the two triangular faces attached to e satisfies the
above inequality with a constant C2 depending on c, C0, C1, only. More precisely,
if e = vQ − vP and ẽ = vQ̃ − vP denote edges attached to P and belonging to
one of these triangular faces then we have

min | ± ne×ẽ − n̂P | ≤ 4C1C
α
0 c

−(1+α)|Q− P |α.

Here, nu = |u|−1u denotes the unit vector in direction u �= 0.

Proof. The notation used throughout this proof and at later occasions is given
in Fig. 1. Elementary computations show that

e× ẽ = (Q− P, f(Q)− f(P ))× (Q̃− P, f(Q̃)− f(P ))
= (Q− P,∇f(P )(Q − P ) + ε)× (Q̃− P,∇f(P )(Q̃− P ) + ε̃)
= 2APQQ̃(−∇f(P ), 1) + r = 2APQQ̃nP + r,

where APQQ̃ = ± 1
2 |(Q − P, 0) × (Q̃ − P, 0)| is the signed area of the triangle

PQQ̃ in R2, and the remainder term r can be estimated as

|r|2 ≤ 2(ε2|Q̃− P |2 + ε̃2|Q− P |2)
≤ 2C2

1 |Q̃− P |2 |Q− P |2(|Q̃− P |2α + |Q− P |2α)
≤ 2C2

1 |e|2|ẽ|2(|e|2α + |ẽ|2α)
≤ 4C2

1 |e|2|ẽ|2 max(|e|2α, |ẽ|2α).

Since by (1) and part a) of Proposition 1

max(|e|, |ẽ|) ≤ C0 max(|Q− P |, |Q̃− P |) ≤ C0c
−1|Q− P |,

we arrive at

|r| ≤ 2C1|e||ẽ|(max(|e|, |ẽ|))α ≤ 2C1C
α
0 c

−α|e||ẽ||Q− P |α. (2)
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Fig. 1. Notation used throughout the paper. Shown is the flap neighborhood of an edge
e = vQ − vP in the spatial mesh, with the left triangle associated with the triangle
PQQ̃ in T , the base point v̂e, the approximate normal n̂e, and the newly inserted
intersection point ve of the normal line with Σ (not shown is Σ itself). The scalar
detail associated with this edge is given by de = n̂e(ve − v̂e).

Note that this inequality yields part b) of Proposition 1 with some c̄ ≥ c/(2C0)
since for small enough h(v)

sin(∠QPQ̃) =
|2APQQ̃|

|Q− P ||Q̃− P | ≥
|e× ẽ| − |r|

|nP ||Q− P ||Q̃− P |
≥ |e||ẽ|(c− 2C1h(v)α)

C0|Q− P ||Q̃− P | ≥ c

2C0
.

The argument for the opposite direction of the statement in Proposition 1 b) is
analogous, it will not be needed in this paper.

We apply next the elementary fact that

|nu − nũ| ≤ |u− ũ|
min(|u|, |ũ|)

holds for any two non-zero directions u, ũ to the following two particular vectors:

u :=
e× ẽ

2APQQ̃
, ũ := nP = (−∇f(P ), 1).
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Since 2APQQ̃(u−ũ) = r, 2APQQ̃nP = e×ẽ−r, and min(|u|, |ũ| = min(|nP |, |e×
ẽ|/|2APQQ̃| by the notation introduced above, with the assumption |e × ẽ| ≥
c|e||ẽ| and (2) this yields

min | ± ne×ẽ − n̂P | ≤ |nu − nũ| ≤ |r|
min(|2APQQ̃nP |, |e× ẽ|)

≤ |r|
|e× ẽ| − |r| ≤

2C1C
α
0 c

−α|e||ẽ||Q− P |α
|e||ẽ|(c− 2C1h(v)α)

.

Thus, for small enough h(v), we arrive at the statement of Proposition 2.
Note that the slightly more symmetric with respect to e choice of an approx-

imate normal n̂e := ne×d, where d := vQ̃ − v ˜̃
Q

is the other diagonal of the
quadrilateral composed of the two triangular faces attached to e, will satisfy the
same distance bound

min | ± ne×d − n̂P | ≤ C2|Q− P |α, C2 = 4C1C
α
0 c

−(1+α). (3)

Indeed, since Proposition 2 applied to ˜̃e× e with ˜̃e = v ˜̃Q
−vP leads to the same

estimate (and to the same sign for the area A
P ˜̃QQ

), the linear combination

e× ẽ + ˜̃e× e = e× (ẽ− ˜̃e) = e× d

must give it, too.

2.3 Normal MT with Edge Midpoint Prediction

For better reference, and to introduce some auxiliary notation, we first inves-
tigate a single step of the normal MT considered in this paper. Let T and the
associated vertex set v on Σ be given. For each edge e = vQ − vP , we compute
base point and approximate normal:

v̂e :=
1
2
(vQ + vP ), n̂e := ne×d. (4)

Then we find ve ∈ Σ by intersecting the line v̂e + sn̂e with Σ, and denote the
corresponding parameter s by de (most of this notation was already introduced
in Fig. 1). This way, we obtain a new triangular mesh with vertex set ṽ composed
of v and the newly created points ve, its underlying triangulation T̃ in R2, and
the detail vector d̃ composed of the individual de.

The following proposition states that for c-regular triangular meshes with
small enough h(v), the intersection step is safely executable, leads to a new
triangular mesh with only slightly smaller regularity constant, and also delivers
the bound |de| = O(|e|1+α). It is central for carrying out the recursion argument
for proving our main result on normal MT in the next section.

Proposition 3. Under the conditions of Proposition 1, there are positive con-
stants h̄2 ≤ h̄1 and C3, C4, C5, depending on the constants c, C0, C1, α, such that
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for any edge e in a triangular mesh with h(v) ≤ h̄2, there exists a unique inter-
section point ve of the line segment {v̂e + sn̂e : |s| ≤ |Q − P |/|nP |} with Σ.
The resulting detail coefficient de satisfies the estimate

|de| = |ve − v̂| ≤ C3|Q− P |1+α.
The new triangular mesh with vertex set ṽ is c̃-regular with a constant

c̃ ≥ c(1− C4h(v)α),

and has mesh-width
h(ṽ) ≤ 1

2
(1 + C5h(v)α)h(v).

Proof. Since

1
2
(f(P ) + f(Q)) = f(P ) +

1
2
∇f(P )(Q− P ) + ε, |ε| ≤ 1

2
C1|Q− P |1+α,

and by the definition of n̂e and the calculations leading to Proposition 2

(1 + |∇f(P )|2)1/2n̂e = (−∇f(P ), 1) + (D, δ),
√
|D|2 + δ2 ≤ C0C2|Q− P |α,

we obtain the following parametrization

v(t) = (P +(Q−P )/2+ t(−∇f(P )+D), f(P )+∇f(P )(Q−P )/2+ ε+ t(1+ δ))

with parameter t := s|nP | ∈ [−|Q − P |, |Q − P |] of the line segment under
consideration. The condition v(t) ∈ Σ is thus equivalent to

f(P ) +∇f(P )(Q− P )/2 + ε+ t(1 + δ)
= f(P + (Q− P )/2 + t(−∇f(P ) +D))
= f(P ) +∇f(P )((Q− P )/2 + t(−∇f(P ) +D)) + ε̃(t),

where
|ε̃(t)| ≤ C1|(Q− P )/2 + t(−∇f(P ) +D)|1+α.

After cancelation of equal terms on both sides, we obtain a scalar fix point
equation

t = φ(t) :=
ε̃(t)− ε

1 + |∇f(P )|2 + δ −∇f(P )D
.

It is easy to verify that for small enough h(v)

d

dt
(t− φ(t)) ≥ 0, |φ(t)| < |Q− P |, t ∈ [−|Q− P |, |Q− P |].

For the first inequality, observe that in the interval of interest and small enough
h(v)

φ′(t) =
ε̃′(t)

1 + |∇f(P )|2 + δ −∇f(P )D
=

O(|Q− P |α)
1 + |∇f(P )|2 + O(|Q− P |α)

,
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since the definition of the above introduced function ε̃(t) yields

ε̃′(t) = ∇f(P + (Q− P )/2 + t(−∇f(P ) +D))−∇f(P ))(−∇f(P ) +D)
= O(|Q− P |α) = O(h(v)α).

Similarly, the second inequality follows from

|ε̃(t)| ≤ C1(|(Q− P )|(1
2

+ |∇f(P )|+ |D|))1+α ≤ C1(2C2
0 |Q− P |)1+α.

Thus, ψ(t) = t − φ(t) is a continuous, monotonously increasing function on
[−|Q − P |, |Q − P |], and takes opposite signs at the endpoints of this interval,
which implies that φ(t) = t possesses a unique solution te = de(1+ |∇f(P )|2)1/2.
By the already available bounds on ε̃(t) and ε we get

|de| = |ve − v̂e| ≤ |te| = |φ(te)| ≤ |ε̃(te)|+ |ε|
1 + |∇f(P )|2 − |δ| − |∇f(P )D|

≤ C1((2C2
0 )1+α + 1

2 )|Q− P |1+α
1
2 (1 + |∇f(P )|2) ≤ C3|Q− P |1+α, (5)

with C3 := C1(1 + 2(2C0)1+α), if we choose h̄2 small enough. Observe that C3

only depends on C0, C1, α, while h̄2 may also depend on c (e.g., via C2).
The above estimate (5) for |de| = |ve− v̂e| shows the new vertex set ṽ will be

a small perturbation of the base point set v̂ obtained by edge midpoint insertion
of the original triangular mesh with vertex set v. Any two adjacent edges e′, ẽ′

in the new mesh given by ṽ are naturally associated with a triangle PQQ̃ in T ,
and with two edges e, ẽ of the triangular face in v corresponding to it so that
we can write

e′ = ±1
2
e + r, ẽ′ = ±1

2
ẽ + r̃, |r|, |r̃| ≤ 2C3Δ

1+α, (6)

where Δ = max(|Q − P |, |Q̃ − P |, |Q − Q̃|). Indeed, each edge e′ is either con-
necting a newly inserted point ve with one of the endpoints of e = vQ−vP (say
vP ) in which case by (4)

e′ = ve − v̂e +
1
2
(vP + vQ)− vP = r +

1
2
e

gives the result with r = ve− v̂e estimated via (5), or it connects two new points
ve and vẽ corresponding to two adjacent edges e = vQ − vP and ẽ = vQ̃ − vP
in v associated with a triangle Q̃PQ (note that this way any two adjacent edges
e′, ẽ′ in ṽ determine such a triangle uniquely). In the latter case, by using again
(4) we can write

e′ = vẽ − v̂ẽ +
1
2
(vQ̃ − vQ) + v̂e − ve,

i.e., the third edge ē = vQ̃ − vQ corresponding to the triangle Q̃PQ is now
associated with e′ in (6), and (5) delivers the estimate for the remainder term
r = (vẽ − v̂ẽ) + (v̂e − ve).
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Since for any triangle

Δ ≤ max(|e|, |ẽ|, |ē|) ≤
{
h(v),
c−1 min(|e|, |ẽ|, |ē|),

the representation (6) gives

|e′| ≤ |e|
2

+ |r| ≤ |e|
2

(1 +
4C3Δ

1+α

|e| ) ≤ h(v)
2

(1 + 4C3c
−1h(v)α),

which implies the claimed bound for h(ṽ) with C5 := 4C3c
−1.

Similarly, for adjacent e′, ẽ′ by (6) one can write

|e′ × ẽ′|
|e′||ẽ′| ≥ |e× ẽ| − 2(|e||r̃|+ |ẽ||r|+ 2|r̃||r|)

|e||ẽ|+ 2(|e||r̃|+ |ẽ||r|+ 2|r̃||r|)
≥ c

1− 2c−1(|r|/|e|+ |r̃|/|ẽ|+ 2(|r||r̃|)/(|e||ẽ|))
1 + 2(|r|/|e|+ |r̃|/|ẽ|+ 2(|r||r̃|)/(|e||ẽ|)) .

Now substitute
|r|
|e| ≤ 2C3

|Δ|1+α
|e| ≤ 2C3c

−1h(v)α,

and the similar estimate for |r̃|/|ẽ| to arrive at the bound for c̃. This concludes
the proof of Proposition 3. �

3 Main Result

We are now in a position to prove that the normal MT introduced in the previous
section is well-posed for all j ≥ 1, possesses the expected detail decay, and
converges as j → ∞, provided that the initial c-regular triangular mesh with
vertex set v0 mesh has small enough mesh-width (how small depends on the
constants c, C0, C1, and α). Convergence is understood as follows. Denote by T̃ j
the triangulations in R2 obtained after j steps of uniform dyadic refinement from
T 0 = T̃ 0 (note that these triangulations are topologically equivalent and close to
but generally different from the triangulations T j associated with vj if j ≥ 1).
Then we can define piecewise linear continuous vector functions f j : R2 → R3 by
piecewise linear interpolation of the values from vj at the vertices of T̃ j. For the
given class of Σ, we call the normal MT convergent for the initial mesh v0 ⊂ Σ
if f j converges uniformly to a continuous limit function f : R2 → R3 which we
call normal re-parametrization of Σ.

Theorem 1. Let Σ be a C1,α graph surface with associated constants C0, C1,
and fix c ∈ (0,

√
3/2]. Then there exist constants C6, C7, and h̄ > 0 (depending on

C0, C1, c, α only) such that for any c-regular initial triangular mesh with vertex
set v0 on Σ satisfying h(v0) ≤ h̄, the normal MT described in Subsection 2.3
is well-posed for all j ≥ 1, converges to a C0,1 re-parametrization f of Σ, and
possesses the detail decay estimate

‖dj‖∞ ≤ C62−(1+α)jh(v0)1+α, h(vj) ≤ C72−jh(v0), j ≥ 0.
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Proof. Concerning the well-posedness of normal MT, we are almost there. The
trick is to use the results from Section 2 with c̄ < c (say c̄ = c/2), and apply
Proposition 3 recursively. If cj is the regularity constant after j successful steps
of normal MT, and if cj ≥ c̄, we can continue. Since lower bounds for cj can
be derived from Proposition 3, with a proper choice for h̄ we will be able to
guarantee this for all j ≥ 1. Here are the details. Let us tentatively assume that
we have cj ≥ c̄ for all j ≥ 0, and set hj := h(vj). If h0 ≤ h̄2 for the constant h̄2

determined from c̄, C0, C1, α in Proposition 3 then

h1 ≤ 1
2
h0(1 + C5h

α
0 ) ≤ 1

2
h0(1 + C5h̄

α),

and choosing h̄ ≤ h̄2 such that also C5h̄
α ≤ 1

3 holds, we guarantee that h0 ≤ h̄
yields h1 ≤ 2

3h0 ≤ h̄. By recursion, we thus get

hj ≤ (
2
3
)jh0, j ≥ 1.

Substituting this auxiliary result into the estimates in Proposition 3, we obtain

hj ≤ 2−jh0

j−1∏
l=0

(1 + C5(
2
3
)lαhα0 ) ≤ (1 + Chα0 )2−jh0,

as well as

cj ≥ c

j−1∏
l=0

(1− C4(
2
3
)lαhα0 ) ≥ c(1− C′hα0 ),

possibly after decreasing h̄ further. Again, the constants C,C′ in these bounds
depend on C0, C1, c̄, α only. Altogether, we see that for c̄ = c/2 there is h̄ (pos-
sibly smaller than mandated by earlier restrictions, to also satisfy C′h̄α ≤ 1/2)
such that the normal MT starting from a coarse mesh v0 with h0 ≤ h̄ is well-
posed for all j ≥ 1, and satisfies the stated decay estimates for hj and ‖dj‖∞.

To establish convergence to a C0,1 limit f , it remains to observe that because of
the definition of f j as piecewise linear interpolant of vj over the dyadic refinement
T̃ j we have

‖f j − f j−1‖C = sup
e
|ve − v̂e| ≤ C3h(vj−1)1+α ≤ C3(C72−jh0)1+α,

where the supremum is with respect to all edges e = vQ − vP associated with
vj−1, and notation and estimates from the proof of Proposition 3 have been
recycled. This gives uniform convergence of f j to f , together with the estimate

‖f j − f‖C ≤ C8(2−jh0)1+α, j ≥ 0.

That f is in C0,1 is automatic from the fact that f j interpolates the graph
surface Σ given by a C1,α function f , and that mesh regularity is already
guaranteed. Obviously, better than C0,1 regularity cannot be expected for the
re-parametrization f . We leave the detailed argument to the reader.
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4 Discussion and Extensions

The above result is only a first step in the investigation of normal MTs for
surfaces and other situations beyond the case of curves in R2. Even in the partial
case considered here, some questions are left open. Do we have well-posedness
and convergence also for C1 surfaces? Is this normal MT stable (see [3,9] for
the curve case)? Some applications and experimental results [14] suggest a need
in investigating normal MTs for piecewise smooth (rather than globally C1)
surfaces. Finally, it is desirable to clarify the connection to research on manifold
subdivision and multi-scale transforms, which builds on proximity conditions
[18,5] that seem to be implicitly present in the investigation of normal MTs for
smooth surfaces, too.

One of the drawbacks of normal MTs for surfaces is that due to the more
complicated surface topology they may fail independently of the choice of the
subdivision operator S for coarse or distorted meshes. This is the main reason for
the density and regularity assumptions on v0 in our Theorem 1. Modifications
of normal MTs to address this problem have already been discussed in [12]. In
this respect, the situation for curves is better: Normal MT with linear B-spline
S corresponding to edge midpoint insertion [3] resp. with the quadratic B-spline
S (also called Chaikin’s corner cutting subdivision) [10] converge globally, i.e.,
without any assumptions on v0, and can be used in the initial stages of the
normal MT recursion to improve mesh properties before switching to the S of
choice, compare [3,8]. Guaranteeing global convergence for normal MTs in the
surface case remains an open problem.

To serve possible applications such as surface compression [12] or front track-
ing algorithms in 3D applications [17], it is desirable that normal MTs guarantee
as fast as possible detail decay by choosing more general S. It is known from
the curve case that one can expect decay estimates ‖dj‖∞ = O(2−jr) for normal
MT and Ck,α manifolds Σ (k ≥ 1, α ∈ (0, 1]), if r ≤ min(k + α, s∞(S) + 1, Pe),
where k + α is the smoothness exponent of the manifold, s∞(S) the Hölder
smoothness exponent of S, and Pe its order of exact polynomial reproduction,
see [3,10] (note that for some S, equality is not admissible in the above bound
for r). Similar results are expected to hold for the surface case, at least away
from the extraordinary vertices induced by the initial mesh. For the simple S
corresponding to edge midpoint insertion considered in the previous sections, we
have s∞(S) = 1, Pe = 2, and thus r ≤ 1 + α which is reflected in Theorem 1.
Thus, improvements can only be expected for Ck,α manifolds with k ≥ 2 and
subdivision operators S with Pe ≥ 3 and s∞(S) > 1. Examples that satisfy these
conditions are the Butterfly scheme but also some interpolating schemes for

√
3

subdivision [6,13,11]. Loop subdivision, which was, together with the Butterfly
scheme, practically tested in [12], does not provide better detail decay since for
it Pe = 2 (Pe ≥ 3 implies the existence of negative coefficients in the averaging
rules defining S). The theoretical study of normal MTs for Ck,α graph surfaces
Σ, more general S with Pe ≥ 2 and s∞(S) > 1, and mesh topologies without
extraordinary vertices is the subject of a forthcoming paper.
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Fig. 2. Normal scheme for unit sphere with non-uniform tetrahedron at start. Left:
Sorted detail plots for linear, Loop, and Butterfly normal MTs Right: Plot of
{|d1|, . . . , |d9|) (sorted by decreasing absolute value over all levels resp. only within
each level) for the Butterfly normal MT.

Here we provide results of some preliminary numerical experiments on de-
tail decay with normal MTs based on linear, Loop, and Butterfly subdivision
operators. Our example is the unit sphere, with four points as the initial point
set v0 located in such a way that the underlying tetrahedron is non-degenerate
but non-uniform. Such an initial topology has four vertices of valence 3, and
for any scheme some precaution is necessary to achieve at least C1 smooth
meshes (re-parameterizations) near these extraordinary vertices of low valence.
In Fig. 2, we compare on the left the decay of the detail coefficients stored in
{|d1|, |d2|, . . . , |d9|}, sorted by decreasing absolute value, for three normal MTs,
namely with S defined by linear subdivision as theoretically investigated in Sec-
tions 2 and 3, Loop subdivision, and Butterfly subdivision, respectively. For the
last two which were already tested in connection with surface compression in
[12], extraordinary vertex treatment was implemented using the modifications
originally proposed by Loop [15] and Zorin, Schröder, and Sweldens [19]. Ap-
proximate normals associated with base points corresponding to edge midpoints
were computed by averaging the normals to the two attached triangular faces in
the old mesh as described in Subsection 2.2 while for base point prediction close
to vertices in vj−1 as needed in Loop normal MT, a similar averaging of the
normals to all triangular faces attached to this vertex was performed. Evidently,
Butterfly normal MT produces much faster detail decay than linear and Loop
normal MT. On the right of Fig. 2, for the Butterfly normal MT we show by the
dashed line the same data {|d1|, |d2|, . . . , |d9|}, but sorted only within each level.
The slower decay of ‖dj‖∞ is due to the lower regularity of subdivision meshes
at the four extraordinary vertices inherited from v0. Larger |dji | values remain
well-localized, and no pollution effect seems to occur (this is also documented
by comparing with the solid line representing the detail sequence after sorting
over all levels).

Table 1 provides more numerical evidence in support of these observations.
We show approximations to the decay exponents r in the expected O(2−jr)
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Table 1. Approximate detail decay exponents for standard normal MTs

Level Linear Loop Butterfly

j rj,∞ rj,2 rj,∞ rj,2 rj,∞ rj,2

2 0.5954 0.8378 0.9767 1.0404 0.5678 0.7648
3 1.9136 1.8983 1.4685 1.9634 3.0669 3.3070
4 1.8688 1.9448 1.8566 1.9735 2.4129 3.0355
5 1.9498 1.9834 1.9771 1.9857 2.1280 2.7896
6 1.9853 1.9955 2.0037 1.9959 2.0234 2.8613
7 1.9962 1.9988 1.9973 1.9990 2.0046 2.9190
8 1.9990 1.9997 1.9996 1.9997 2.0027 2.9569
9 1.9998 1.9999 1.9999 1.9999 2.0011 2.9772

estimates for two norms of the detail sequences dj , namely maximal and mean-
square detail values

‖dj‖∞ = max
i=1,...,nj

|dji |, ‖dj‖2 =

(
n−1
j

nj∑
i=1

|dji |2
)1/2

,

where nj is the length of the sequence dj . Note that nj is smaller for interpolat-
ing than for approximating normal MTs, and is an argument in favor of using
interpolating S in the construction of normal MTs. As indicator for the decay
exponent characterizing the asymptotic decay of these norms, we used

rj,α := log2(‖dj−1‖α/‖dj‖α), j = 2, . . . , 9, α = 2,∞.
The values in Table 1 are in line with the predictions obtained by ”extrapolating”
results available from the theoretical analysis of normal MTs for curves in R2

to the surface case. In [3,10], it has been shown that for normal MTs of smooth
curves, the decay exponent r is restricted by two factors: the limit Hölder smooth-
ness s∞(S) of the linear subdivision scheme S, and its order of exact polynomial
reproduction Pe. More precisely, r < min(Pe, s∞(S)), with equality possible in
certain cases. Similar results are expected to hold also for the surface case, at
least, away from extraordinary vertices. Since Pe = 2, s∞(S) = 1 for linear subdi-
vision and Pe = 2, s∞(S) = 3 for Loop subdivision (this is the Hölder regularity
exponent for regular triangulations, whereas the implemented modifications at
extraordinary vertices guarantee s∞(S) ≥ 1 in the general case), this explains
the entries in the first four columns. Note that the first two columns show the
sharpness of our Theorem 1 for α = 1 since the sphere Σ is C∞, and thus C1,1

smooth. For the Butterfly subdivision operator we have Pe = 4 and s∞(S) = 2
for regular mesh topologies (as far as we know, the latter statement has not yet
been proved rigorously but only supported by numerical experiments), whereas
s∞(S) ≥ 1 holds in the general case. Thus, we expect a decay exponent close
to max(Pe, s∞(S) + 1) = 3 in the absence of extraordinary vertices, r ≥ 2 in
general. The numerical approximations rj,∞ ≈ 2 and rj,2 ≈ 3 contained in the
last two columns of Table 1 perfectly match these theoretical extrapolations,
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and also show that the presence of extraordinary vertices affects the decay rate
of the maximal detail but can be neglected on average.

Finally, in Fig. 3 and Table 2, we compare the above standard MTs with
the detail decay from a new combined scheme. The rationale of this scheme
is based on the following observations: The normal Loop MT produces very
smooth meshes but predicts base points far off the target surface, as it repro-
duces only linear polynomials exactly (Pe = 2). Normal Butterfly meshes are not
as smooth but predicted base points are relatively close to the surface since this
interpolating scheme reproduces cubic polynomials exactly on uniform meshes
(Pe = 4). Both factors (limit Hölder smoothness s∞(S) of the meshes and order
of polynomial exactness Pe) are limiting the rate of detail decay. The idea of the
combined scheme is to use the normal Loop MT to find the meshes but instead
of storing the relatively large details corresponding to the distance from the
Loop-generated base point to the intersection point with the surface, another
prediction with a scheme of high order of exact polynomial reproduction (in
our case, the Butterfly scheme) should yield an improved base point along the
same normal line, located at a distance asymptotically much smaller than either
scheme alone could achieve. To be more precise, let SB and SL denote the linear
Butterfly and Loop subdivision operators. Then, with vj−1 at hand, the com-
bined scheme computes vj as in the normal Loop MT by setting v̂j = SLvj−1,
defining approximate normals n̂j as usual, and intersecting the resulting lines
with Σ. What changes is the definition of details and the reconstruction formula.
Denote ṽj = SBvj−1, and define two sequences d̃j , d̂j entry-wise by the formulas

d̃ji = (vji − ṽji )n̂
j
i , d̂ji = (ṽji − v̂ji )n̂

j
i .

Obviously, dj = d̃j + d̂j , and

v̂j = v̂j + (d̃j + d̂j)n̂j .

What is stored as normal MT data for the combined scheme is now d̃j , since
everything else can be recovered from vj−1, at the expense of computing the
additional vector ṽj .

Each plot in Fig. 3 shows three curves, the sorted modified detail sequence
{|d̃1|, |d̃2|, . . . , |d̃9|} for the new combined Loop/Butterfly normal MT, the sim-
ilarly defined combined Linear/Butterfly normal MT, and (for comparison) the
Butterfly normal MT which was the best one among the standard schemes. In
addition to result with the non-uniform tetrahedron as v0, we also show the test
results with a symmetric double-pyramid over a regular pentagon as v0 (this
choice yields extraordinary vertices of valence 4 and 5). Note that although the
detail sequences d̃j to be stored for the new combined but non-interpolating
Loop/Butterfly scheme are longer in comparison with the dj stored for the
interpolating Butterfly normal MT, the combined scheme is superior in the
asymptotic range. The combination of linear normal MT with additional
Butterfly-based base point prediction is not competitive due to the low limit
smoothness of the associated meshes.
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Fig. 3. Decay of detail sequences (sorted over all levels) for normal MTs (dashed
line: combined Linear/Butterfly, solid line: Butterfly, dashed-dotted line: combined
Loop/Butterfly schemes) for unit sphere with non-uniform tetrahedron (left) and dou-
ble pyramid (right) as coarse mesh.

This is also documented by the corresponding approximations rj,α of the de-
cay exponents collected into Table 2 (again, the results for the standard Butterfly
normal MT are included for better comparison). The observed approximations
rj,2 of decay exponents for the mean-square detail size on each level for the com-
bined Loop/Butterfly scheme improve upon the stand-alone Loop and Butterfly
normal MTs. That the asymptotic decay of maximal detail size ‖d̃j‖∞ expressed
by rj,∞ ≈ 4 is as good the mean-square detail decay is somewhat surprising. For
the combined Linear/Butterfly normal MT, the asymptotic behavior of these
numbers is expectedly worse, and given by rj,2 ≈ 5/2 and rj,∞ ≈ 2. Tests with
other initial v0 showed similar results. The theoretical understanding of these
empirical observations is still ahead.

Table 2. Approximate detail decay exponents for standard normal MTs

Level Linear/Butt. Loop/Butt. Butterfly

j rj,∞ rj,2 rj,∞ rj,2 rj,∞ rj,2

2 0.7359 0.8993 0.5361 0.6114 0.5678 0.7648
3 2.5279 2.8563 2.6135 3.5637 3.0669 3.3070
4 2.0309 2.3733 3.2952 3.7820 2.4129 3.0355
5 2.1528 2.4372 3.8059 3.9327 2.1280 2.7896
6 2.0436 2.4801 3.9294 3.9824 2.0234 2.8613
7 2.0104 2.4926 3.9912 3.9953 2.0046 2.9190
8 2.0026 2.4969 3.9948 3.9986 2.0027 2.9569
9 2.0006 2,4986 3.9984 3.9995 2.0011 2.9772
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Abstract. Dupin cyclides are algebraic surfaces of order three and four
whose lines of curvature are circles. These surfaces have a variety of in-
teresting properties and are aesthetic from a geometric and algebraic
viewpoint. Besides their special property with respect to lines of curva-
ture they appear as envelopes of one-parameter families of spheres in a
twofold way. In the present article we study two families of canal surfaces
with rational lines of curvature and rational principal curvatures, which
contain the Dupin cyclides of order three and four as special instances
in each family. The surfaces are constructed as anticaustics with respect
to parallel illumination and reflection at tangent planes of curves on a
cylinder of rotation.

Keywords: rational lines of curvature, canal surface, envelope of spheres,
anticaustic by reflection.

1 Introduction

Dupin cyclides are among the famous surfaces studied in classical geometry and
date back to the nineteenth century, see [4,6]. These surfaces are characterized
by the fact that their lines of curvature are circles. These two families of circles
lie in two pencils of planes and the tangent planes along a fixed circle envelope
a cone of revolution. Dupin cyclides are special instances of the larger class
of Darboux cyclides which denote algebraic surfaces of order four having the
ideal conic x2 + y2 + z2 = 0 as double curve. The image surfaces of quadrics in
R3 with respect to inversion x′ = x/‖x‖2 are typically Darboux cyclides. The
inverse images of a cone or a cylinder of revolution or a torus is typically a Dupin
cyclide.

Dupin cyclides are also quite popular in Computer Aided Geometric Design,
in particular their applications for blending surfaces, see [13]. They are special
instances of double Blutel conic surfaces [5], also known as supercyclides [1,14].
These surfaces carry two families of conics being contained in two pencils of
planes where tangent planes along the conics form quadratic cones. The images
of Dupin cyclides with respect to projective mappings are supercyclides.
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A Dupin cyclide is the envelope of two one-parameter families of spheres,
whose centers are contained in a pair of confocal conics. Moreover, Dupin cy-
clides are rational surfaces having rational offset surfaces. Thus they admit ra-
tional parameterizations with rational unit normal vectors. This property holds
for all rational canal surfaces (envelopes of one-parameter families of spheres)
but typically it is difficult to characterize canal surfaces with rational lines of
curvature. Rational offset surfaces with rational nets of planar lines of curvature
have been investigated in detail in [12]. According to this contribution there exist
two classes of rational surfaces with planar lines of curvature. Their construction
is based on orthogonal families of circles in the unit sphere S2. With regard to
these networks of circles in S2, the surfaces are given by rational solutions of
particular second order partial differential equations.

Contribution: We present two families of rational canal surfaces generalizing
Dupin cyclides with regard to their property of having rational lines of curvature.
A surface Φ of the first family possesses a rational center curve C on a rotational
cylinder G and its spheres touch a cross section plane of G. Dupin cyclides of
order four are obtained for ellipses C ⊂ G as center curves, thus C is a planar
section of G. The surfaces Φ of the second family generalize the Dupin cyclides
of order three in a similar way. Their center curves are rational plane curves and
their spheres touch a given plane which is perpendicular to the carrier plane of
the center curve. All these rational canal surfaces Φ have rational offset surfaces,
rational lines of curvature and rational principal curvatures. This implies that Φ
has rational focal surfaces and rational Gaussian and mean curvature. Rational
parameterizations of these surfaces Φ and the mentioned invariants are given
explicitly.

1.1 Geometric Preliminaries

Let a surface Φ be given by the parameterization f(u, v), where (u, v) are coor-
dinates in R2. Denoting the partial derivatives by fu(u, v) and fv(u, v), a normal
vector of f(u, v) is computed by n(u, v) = fu(u, v)× fv(u, v). The first fundamen-
tal form of f(u, v) is based on the scalar products of its partial derivatives,

‖df‖2 = ‖fudu+ fvdv‖2 = ‖fu‖2du2 + 2fu · fvdudv + ‖fv‖2dv2. (1)

Using the abbreviations E = ‖fu‖2, F = fu · fv, and G = ‖fv‖2, it is written as

‖df‖2 = Edu2 + 2Fdudv +Gdv2 = (du, dv) ·
(
E F
F G

)
· (du, dv)T

= (du, dv) · I(f) · (du, dv)T . (2)

The right hand side of (2) defines a local metric on the surface Φ and serves to
measure lengths and areas in Φ.

Assuming n(u, v) to be a unit normal vector of f(u, v), the coefficients of the
second fundamental form are L = n · fuu, M = n · fuv, and N = n · fvv. Since the
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identities fu ·n = fv ·n = 0 hold, L can also be expressed by −fu ·nu. Analogous
expressions hold for M and N and we note that nu and nv are tangent vectors
of Φ. The second fundamental form of f(u, v) reads

Ldu2 + 2Mdudv +Ndv2 = (du, dv) ·
(
L M
M N

)
· (du, dv)T

= (du, dv) · II(f) · (du, dv)T . (3)

The principal directions of f(u, v) are eigenvectors of II(f) with respect to I(f)
and the principal curvatures κ1 and κ2 are the respective eigenvalues. Consider-
ing a general rational surface, these functions are typically not rational.

A geometric characterization of lines of curvature on a given surface is as fol-
lows: A curve C on a surface Φ is a line of curvature if and only if the normals of
Φ along C form a developable ruled surface. Lines of curvature are also charac-
terized as surface curves having a Darboux frame which is rotation-minimizing
with respect to the tangent vector of the curve, see [2].

We consider a parameterization f(u, v) of Φ with respect to lines of curvature
which means that the u-lines as well as the v-lines are lines of curvature, thus
fu · fv = 0. Consider the developable ruled surface f(u, v�) + tn(u, v�) formed
by the normals along a u-line f(u, v�) with v� = const., and assume ‖n‖2 =
1. The last condition implies n · nu = 0, and we have det(fu,n,nu) = 0 and
consequently nu · fv = 0. Analogous considerations for the normals along v-lines
lead to nv · fu = 0. These properties imply that n(u, v) is an orthogonal net of
curves in the unit sphere S2. In case of rational offset surfaces with rational lines
of curvature, n(u, v) is a rational orthogonal net of curves in S2.

2 Canal Surfaces with Cylindrical Center Curve

Consider the cylinder of rotation Z : x2 + y2 = 1. A rational curve M on Z is
parameterized by

m(u) =
(

1− f(u)2

1 + f(u)2
,

2f(u)
1 + f(u)2

, r(u)
)
, (4)

with rational functions f(u) and r(u). The substitution λ(u) = 2 arctanf(u)
implies

cosλ(u) =
1− f(u)2

1 + f(u)2
, sinλ(u) =

2f(u)
1 + f(u)2

, and λ̇(u) = 2
ḟ(u)

1 + f(u)2
. (5)

Thus, any rational curve on Z can be parameterized by

m(u) = (cosλ(u), sinλ(u), r(u)) . (6)

We show that the envelope Φ of the one-parameter family of spheres

S(u) : ‖x−m(u)‖2 − r(u)2 = 0 (7)

is a rational offset surface with rational lines of curvature. The Dupin cyclides
of order four will appear as surfaces Φ for planar center curves M , see Fig. 1(b).
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(a) Anticaustic mapping

m

Φ

(b) Dupin cyclide of degree four

Fig. 1. Anticaustic construction and Dupin cyclide

2.1 Parameterization of the Surfaces

The spheres S(u) touch the plane E : z = 0 along the cross section curve
C : c(u) = (cosλ(u), sin λ(u), 0). The characteristic circles S(u) ∩ Ṡ(u) of Φ are
the u-lines of the final parameterization f(u, v) and touch E : z = 0 in points of
C. Φ is constructed as anticaustic by reflection with respect to light rays parallel
to z. To perform this construction, we reflect points c(u) of C at the pencils
of planes passing through the tangent lines of M , see Fig. 1(a). Here and in
the following the derivatives of functions x(u) are denoted by ẋ whereas partial
derivatives of bivariate functions x(u, v) are denoted by xu and xv. Derivatives
of functions x(v) are denoted by xv.

Let ṁ(u) = (−λ̇ sinλ, λ̇ cosλ, ṙ)(u) be a tangent vector of m(u). To perform
the mentioned reflection one needs to parameterize the pencil of planes through
the tangent line m + tṁ. A normal vector of a plane of the pencil is a linear
combination of two vectors orthogonal to ṁ, for instance

a(u) = (− cosλ,− sinλ, 0)(u), and
b(u) = ṁ× a = (ṙ sinλ,−ṙ cosλ, λ̇)(u).

Thus these normal vectors are parameterized by y(u, v) = γ(u, v)a(u) + b(u),
with some function γ(u, v) to be determined. The reflection of c(u) at planes
through the tangent lines of M is consequently given by

f(u, v) = c + 2
y · (m− c)

‖y‖2
y. (8)

We still have to find a suitable function γ(u, v) for the parameterization of
y(u, v). The function f(u, v) is a parameterization with respect to lines of cur-
vature if and only if the function γ(u, v) satisfies

ṙλ̇2 − γuλ̇+ λ̈γ = 0. (9)
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One obtains the solution γ(u, v) = λ̇(u)(r(u) + g(v)), with some function g(v).
Using the abbreviation α = ṙ2 + λ̇2(1 + (g + r)2), a representation of the canal
surface Φ with respect to lines of curvature is

f(u, v) =
1
α

⎛⎝ (ṙ2 + λ̇2(1 + g2 − r2)) cosλ+ 2rṙλ̇ sinλ
(ṙ2 + λ̇2(1 + g2 − r2)) sinλ− 2rṙλ̇ cosλ

2rλ̇2

⎞⎠ . (10)

Consider rational functions r(u), f(u) and g(v). The substitution (5) implies
that (10) is a rational parameterization of Φ with respect to its rational lines
of curvature. The corresponding rational unit normal vector n(u, v) of f(u, v)
satisfying nu · nv = 0 is explicitly given by

n(u, v) =
1
α

⎛⎝2λ̇(λ̇(r + g) cosλ− ṙ sinλ)
2λ̇(λ̇(r + g) sinλ+ ṙ cosλ)
(ṙ2 + λ̇2(−1 + (r + g)2)

⎞⎠ . (11)

Corollary 1. Let Z be a rotational cylinder and let E be a plane perpendicular
to the generating lines of Z. Consider a rational curve M ⊂ Z and the family of
spheres S(u) centered at M and touching E. Then the canal surface Φ enveloped
by the spheres S(u) is a rational offset surface with rational lines of curvature,
explicitly represented by (10).

m(u) Z

Φ

c(u)
(a) Canal surface Φ with center curve m on
a rotational cylinder Z

Φ
p1(u)

(b) Parabolic curve p1 on Φ

Fig. 2. Canal surfaces with cylindrical center curve and parabolic line

Remark: The function g(v) in y(u, v) = λ̇(u)(r(u) + g(v))a(u) + b(u) is re-
sponsible for the parameterization of the v-lines of f(u, v). We might set g(v) =
v. By this simple choice the parameterization f(u, v) misses the cross section
c(u) = (cosu, sinu, 0). This can be corrected by replacing g(v) by the quotient
g(v)/h(v). We omitted this here to keep the formulas as simple as possible,
but we will return to this idea when computing the parabolic lines of Φ in
equation (16).
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2.2 Fundamental Forms and Curvatures

Since f(u, v) is a parameterization with respect to lines of curvature, the first and
second fundamental form are both represented by diagonal matrices. With the
abbreviations α = ṙ2+λ̇2(1+(r+g)2) and β = λ̇3(1+g2−r2)+λ̇ṙ2+2r(ṙλ̈−r̈λ̇),
these matrices are

I(f) =
1
α2

(
β2 0
0 4λ̇4r2g2

v

)
, and

II(f) =
1
α2

(
2(ṙλ̈− r̈λ̇− λ̇3(r + g))β 0

0 4λ̇4rg2
v

)
. (12)

The characteristic circles S ∩ Ṡ of Φ are the v-lines of f(u, v) and are thus con-
tained in the planes Ṡ : −xλ̇ sinλ+yλ̇ cosu+zṙ = 0. These planes lie in a bundle
with vertex (0, 0, 0) and thus they envelope a rational cone. The eigenvalues of
II with respect to I are the principal curvatures

κ1 =
1
r
, κ2 =

2(ṙλ̈− r̈λ̇− λ̇3(r + g))
β

. (13)

It is clear that κ1 does not depend on v and is simply the reciprocal value of the
radius r(u) of the spheres S(u), since one family of principal curvature centers
is the center curve m(u) itself. In case of Dupin cyclides of order four, m(u) is
an ellipse.

The product and the mean of the principal curvatures are known to be the
Gaussian curvature and the mean curvature, and are given by

K = κ1κ2 =
2(ṙλ̈− r̈λ̇− λ̇3(r + g))

rβ
, (14)

H =
κ1 + κ2

2
=
β + 2r(ṙλ̈− r̈λ̇− λ̇3(r + g))

2rβ
.

The set of principal curvature centers of a surface typically forms two surfaces,
the focal surfaces Q1 and Q2. These focal surfaces are obtained by measuring
the reciprocal values of κ1 and κ2 on the surface normals f + tn, with ‖n‖ = 1.
In case of a canal surface Φ, one focal surface becomes the center curve m(u).
If both focal surfaces degenerate to curves, Φ is a Dupin cyclide, thus a canal
surface in a twofold way. For canal surfaces Φ, parameterized by (10) we thus
obtain the center curve q1(u) = f(u, v)− r(u)n(u, v) = (cosλ, sin λ, r)(u) as first
component and a typically two-dimensional surface Q2 as second component
parameterized by

q2(u, v) = f(u, v)− 1
κ2(u, v)

n(u, v) (15)

=
1

ṙλ̈− r̈λ̇− λ̇3(g + r)

⎛⎝ (ṙλ̈− r̈λ̇) cosλ− ṙλ̇2 sinλ
(ṙλ̈− r̈λ̇) cosλ+ ṙλ̇2 cosλ
1
2 (λ̇3(−1 + g2 − r2) + λ̇ṙ2 + 2r(ṙλ̈− r̈λ̇))

⎞⎠ .
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A point on a surface is called parabolic if one of its principal curvatures
vanishes. The parabolic points typically form the parabolic curves which sep-
arate regions with elliptic and hyperbolic surface points. Since κ1(u) only van-
ishes at the poles of r(u) we investigate the parabolic lines corresponding to
the zeros of κ2(u, v). For g = (ṙλ̈ − r̈λ̇ − rλ̇3)/λ̇3, and with the abbreviation
δ = λ̇4(ṙ2 + λ̇2) + (r̈λ̇− ṙλ̈)2 − 2rλ̇3(r̈λ̇− ṙλ̈) we obtain the parameterization

p1(u) =
1

λ̇4(ṙ2 + λ̇2) + (ṙλ̈− r̈λ̇)2

⎛⎝ δ cosλ+ 2rṙλ̇5 sinλ
δ sinλ− 2rṙλ̇5 cosλ

2rλ̇6

⎞⎠ (16)

of a parabolic line on Φ, see Fig. 2(b). We obviously have lost the solution
p2(u) = c(u) = (cosu, sinu, 0). This is corrected by replacing g(v) by g(v)/h(v)
in κ2(u, v). Its numerator becomes 2h(h(ṙλ̈− r̈λ̇)− λ̇3(rh+ g)) and the second
parabolic line c(u) is obtained for h = 0.

Theorem 1. Let Φ be a rational canal surface given by equation (10). Φ is a ra-
tional offset surface with rational lines of curvature and the principal curvatures
as well as the focal surfaces are rational. These surfaces carry two parabolic
curves, the cross section C and the curve given by equation (16). The Dupin
cyclides of order four are obtained for planar center curves.

3 Canal Surfaces with Planar Center Curve

As the last section generalizes Dupin cyclides of order four, we now deal with
generalizations of Dupin cyclides of order three. These cyclides are canal surfaces
in a twofold way as the previous ones, but their focal curves or center curves of
the families of spheres are a pair of confocal parabolas.

Consider a rational curve M in the plane Z. Without loss of generality we
assume Z : y = 0 and let M be parameterized by

m(u) = (q(u), 0, r(u)), (17)

with rational functions q(u) and r(u). The construction of the family of surfaces
generalizing the cubic Dupin cyclides follows similar lines as the construction
presented in Section 2.

3.1 Parameterization of the Surfaces

These surfaces Φ are constructed as envelopes of a one-parameter family of
spheres

S(u) : ‖x−m(u)‖2 − r(u)2 = 0, (18)

with center curve M and radius function r. To construct Φ as anticaustic of
reflection at M with respect to light rays parallel to z, one needs to span the
normal plane of ṁ by two independent vectors

a(u) = (0, 1, 0), and
b(u) = ṁ× a = (ṙ, 0,−q̇).
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The general normal vector of the center curve is thus found by y(u, v) = γ(u, v)a
+ b, with a rational function γ(u, v). To obtain a parameterization f(u, v) of Φ,
one performs a reflection of c(u) = (q(u), 0, 0) at all planes passing through the
tangents of M , which is realized by

f(u, v) = c(u) + 2
y · (m− c)

‖y‖2
y. (19)

This parameterization is a representation of Φ with respect to lines of curvature
if and only if γ(u, v) = g(v)q̇(u). The explicit parameterization reads

f(u, v) =
1

ṙ2 + q̇2(1 + g2)

⎛⎝ (ṙ2 + q̇2(1 + g2))q − 2rṙq̇
−2rgq̇2

2rq̇2

⎞⎠ , (20)

and it is not difficult to see that these surfaces have planar lines of curvature,
where one family is contained in the planes y+gz = 0. The second family are the
characteristic circles S(u)∩ Ṡ(u) and these are contained in Ṡ(u) : q̇x+ ṙz = qq̇.

As in the previous section, g(v) realizes the parameterization of the character-
istic circles. Since we set y(u, v) = g(v)q̇(u)a(u)+b(u) we miss the line (q(u), 0, 0)
in f(u, v). This can be corrected by replacing g(v) by a quotient g(v)/h(v). We
omit this here to keep formulas simple but apply it later for the computation of
the parabolic line.

The unit normals of f(u, v) are

n(u, v) =
1

ṙ2 + q̇2(g2 + 1)

⎛⎝ 2q̇ṙ
2gq̇2

ṙ2 + q̇2(g2 − 1)

⎞⎠ (21)

This parameterization of S2 is also obtained by applying a stereographic projec-
tion σ : R2 → S2 with center (0, 0, 1) to the parameterization (ṙ/q̇, g) of R2. The
normal vectors n(u, v) form an orthogonal net of circles in S2, passing through
the common point (0, 0, 1) and having orthogonal tangents there. The following
result is also contained in [12] which gives a full classification of rational offset
surfaces with planar rational lines of curvature.

Corollary 2. Let Φ be a rational canal surface parameterized by (20), whose
center curve M is a plane rational curve (q(u), 0, r(u)) and whose spheres touch
a line c(u) = (q(u), 0, 0). Then Φ is a rational offset surface with rational planar
lines of curvature.

3.2 Fundamental Forms and Curvatures

Analogously to Section 2, the first and second fundamental forms are both rep-
resented by diagonal matrices. Using the abbreviations α = (ṙ2 + q̇(g2 +1))2 and
β = (−q̇3(1 + g2)− q̇ṙ2 + 2r(q̇r̈ − q̈ṙ), these matrices are
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Φ
m

(a) Dupin cyclide of degree three

Φ

m

(b) Canal surface Φ with nodal
cubic m as center curve

Fig. 3. Dupin cyclide of degree three and canal surface with planar center curve

I(f) =
1
α

(
β2 0
0 4r2g2

v q̇
4

)
, and II(f) =

1
α

(
2(q̇r̈ − q̈ṙ)β 0

0 4rg2
v q̇

4

)
. (22)

The principal curvatures, the Gaussian and the mean curvature of Φ are

κ1 =
1
r
, κ2 =

2(q̇r̈ − q̈ṙ)
β

, K =
2(q̇r̈ − q̈ṙ)

rβ
, and H =

β + 2r(q̇r̈ − q̈ṙ)
2rβ

. (23)

The set of focal points contains the curve Q1 = M and the two-parametric
surface Q2 which is parameterized by

q2(u, v) = f− 1
κ2

n =
1

(q̇r̈ − q̈ṙ)

⎛⎝ q(q̇r̈ − q̈ṙ)− ṙq̇2
−gq̇3
1
2 (q̇3(1− g2)− q̇ṙ2 + 2r(q̇r̈ − q̈ṙ))

⎞⎠ . (24)

Through the simple choice g(v) for the parameterization of the characteristic
circles we have lost the parabolic line c(u) = (q(u), 0, 0). By replacing g(v)
by g(v)/h(v) in κ2(u, v), its numerator becomes −2h2(q̇r̈ − q̈ṙ) and thus the
parabolic line c(u) is obtained for h = 0.

Theorem 2. Let Φ be a canal surface given by equation (20). Φ is a rational
offset surface with rational lines of curvature and the principal curvatures as well
as the focal surfaces are rational. The x-axis c(u) appears as parabolic line on
Φ. The Dupin cyclides of order three are obtained for parabolas with z-parallel
axes as center curves m(u) in equation (17).

4 Conclusion

We studied particular rational canal surfaces with rational lines of curvature.
These properties are invariant with respect to Möbius transformations, for in-
stance the inversion g : x′ = x/‖x‖2. Möbius transformations are conformal and
preserve spheres, where planes in R3 are also counting as spheres (with infinite
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radius). Applying g to the first family of canal surfaces, one obtains canal sur-
faces g(Φ) with rational center curve g(M) on a Dupin cyclide g(Z), where the
spheres g(S) generating g(Φ) touch a fixed sphere g(E) which is perpendicular
to g(Z).

Canal surfaces Φ of the second family are mapped under g to canal surfaces
g(Φ) with rational spherical center curve g(M) since g(Z) is a sphere. The spheres
g(S) defining g(Z) touch a fixed sphere g(E) being perpendicular to g(Z).
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Abstract. The use of trivariate NURBS in isogeometric analysis has
put the quality of parametrization of NURBS volumes on the agenda.
Sometimes a NURBS volume needs a better parametrization to meet re-
quirements regarding smoothness, approximation or periodicity. In this
paper we generalize various smoothing methods that already exist for
bivariate parametric spline surfaces to trivariate parametric spline vol-
umes. We will also address how rational and polynomial spline volumes
create different challenges and solutions in the algorithms.

Keywords: isogeometric analysis, spline volumes, trivariate, smooth-
ing, approximation.

1 Introduction

Trivariate spline volumes have gained a particular interest the recent years, as
they are central in isogeometric analysis, a new computational approach that
integrates finite element analysis and spline objects. Isogeometric analysis was
introduced by Hughes et al. [4] in order to unify the geometrical representation
and analysis of new designs.

Suppose we have a spline volume, created as a Coons patch from its boundary
surfaces. This approach can create unwanted effects in the volume if the shape
and parametrization of these surfaces are not well adapted to this purpose. The
interior control points can get a rather nasty distribution. It could even happen
that the interior intersects the boundary of the volume, or that the volume has
self-intersections in the interior. Also other ways to create spline volumes can
result in bad volume parametrizations. If we have a volume that is closed or
almost closed in a parameter direction, we may want to improve the continuity
over the seam. We may also want to improve the coefficient distribution of a
volume without changing it drastically, or we may want to enforce a certain
parameterization on points inside a volume. The latter can occur if we want
particular features in the volume to align along a constant parameter surface.

In order to find the best solution to a weighted combination of some of the
above requirements, we can use spline volume fairing techniques. We construct
a functional combining least squares approximations, smoothing terms and pos-
sibly some other terms depending on the purpose of the operation. The spline
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spaces and denominator in the rational volume function are kept fixed. Also
some control points may be kept fixed, for instance at the boundaries. The re-
maining control points are determined by minimizing the functional. This is
achieved when the gradient of the expression is zero, thus we need to solve a
linear equation system. The equation system is sparse.

Fairing techniques have been used extensively on corresponding problems with
spline surfaces. Several authors have published methods for surface design and
surface editing based on minimizing a functional. See for instance [1,2] and [5]
for methods with integration in parameter directions only, or [8] for integration
in arbitrary directions in parameter space. The work in this paper is a trivariate
version of [8] as we look at all directions. In addition, we lift the method to apply
also to rational B-spline volumes.

In the isogeometric analysis context, volume smoothing corresponds to a mesh
reparameterization. Related problems have been studied extensively within the
mesh generation field. Also some CAGD related examples of volume approxi-
mation and smoothing can be found. In [3], a trilinear spline volume is defined
to have an isosurface approximating a given point cloud. A shape optimization
method for optimal parametrization of the computational domain for an isogeo-
metric analysis problem with known exact solution is presented in [9]. Variational
volumetric mesh grid generation with maximized smoothness is described in [6],
and [7] describes a method to generate volumetric B-splines based on triangle
meshes in the interior and at the boundary.

Section 2 describes the difference between NURBS and polynomial spline vol-
umes, and presents the minimizing approach. Then we look at some specific uses
of the fairing technique. Section 3 looks at point approximation, while Section 4
deals with volume smoothing where the purpose is to get the volume as smooth
as possible in all parameter domain directions. We also look at how NURBS
and polynomial splines give different computational orders and exactness. Some
other applications, like periodicity and approximation to a default volume, are
discussed in Section 5.

2 The Fairing Expression

Consider a trivariate tensor product spline volume, represented as

V (u1, u2, u3) =
∑
i∈I

Vi(u1, u2, u3)ci, (1)

where the ci = (c1i , . . . , c
n
i ) ∈ Rn are the control points of V , and Vi are the

spline basis functions. We use the index set I to denote the set of triple indices

I = {i = (i1, i2, i3) : 1 ≤ ik ≤ nk}, (2)

where n1, n2 and n3 are the dimensions of the spline spaces in the three param-
eter directions. For NURBS, the rational basis functions are given as

Vi1i2i3(u1, u2, u3) =
Bi1,d1,t1(u1)Bi2,d2,t2(u2)Bi3,d3,t3(u3)∑

j1,j2,j3
hj1j2j3Bj1,d1,t1(u1)Bj2,d2,t2(u2)Bj3,d3,t3(u3)

, (3)
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where the Bik,dk,tk
are the B-spline bases of the kth parameter direction spline

space, defined by the degree dk and the knot vector tk. The weights hi are
all positive, ensuring the denominator function to be positive in the parameter
domain. A special case occurs if all hi = 1, then the denominator function is 1,
giving the polynomial spline volume expression

V (u1, u2, u3) =
∑
i1

∑
i2

∑
i3

Bi1,d1,t1(u1)Bi2,d2,t2(u2)Bi3,d3,t3(u3)cijk . (4)

In the volume fairing process, we try to find the ci, i ∈ I0 for some subset I0 ⊂ I
that minimize a weighted expression of a least squares approximation and a
smoothing term. The spline spaces, denominator weights, and remaining control
points cj, j ∈ I \I0 will be kept fixed. The square distance expression to minimize
will be of the form

E =
∑
i,j∈I0

αijcicj + 2
∑
i∈I0

pici + δ =
n∑
d=1

⎛⎝ ∑
i,j∈I0

αijc
d
i c
d
j + 2

∑
i∈I0

pdi c
d
i

⎞⎠ + δ (5)

with αij = αji for all i, j. The values of ci that minimize E are the zeros of the
gradient of E, so we need to solve the linear system ∂E/∂cdi = 0 for all 1 ≤ d ≤ n
and i ∈ I0:

C = A−1P (6)

where C is the column matrix of all ci, P is the column matrix of all −pi and
A is the square symmetric matrix of all αij for all i, j ∈ I0.

In our fairing process, we will typically have several contributions to the min-
imizing expression:

E =
∑
k

ωkEk (7)

for weights ωk > 0. The matrices in (6) split to

A =
∑
k

ωkAk , P =
∑
k

ωkPk . (8)

The matrices Ak and A will be sparse as [Ak]ij = 0 when the supports of Vi and
Vj do not overlap (with some exceptions in the case of periodicity). In the next
sections, we will look for the contributions Ak and Pk for different terms in the
fairing expression.

3 Point Approximations

One typical use of fairing techniques is to find an approximation to a set of
points. We are given a finite collection

{φr,ur,qr}Nr=1 (9)
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of weights φr, parameter values ur = (u1,r, u2,r, u3,r) and points qr in the geom-
etry space of the volume. The task is to minimize the square distance between
the points and the volume evaluation for the parameters, where we might weight
the approximation importance at each point. The contribution to the minimizing
expression (7) is

Ek =
N∑
r=1

φr(V (ur)− qr)2 , (10)

which in turn gives us the matrices Ak and Pk in (8) by

[Ak]ij = ψij and (11)

[Pk]i =
N∑
r=1

φrVi(ur)qr −
∑

j∈I\I0

ψijcj (12)

where

ψij =
N∑
r=1

φrVi(ur)Vj(ur) (13)

for all i, j ∈ I.

4 Smoothing

The most important use of volume fairing is to smoothen a volume. This is done
by minimizing some derivative orders in all directions and parameter points. We
will normally only be interested in derivations up to third order. A minimization
of the first order derivatives tries to lower the size of the volume, and is not
very relevant when the geometry space is R3, and the volume boundary control
points are fixed. The most useful smoothing approach is related to second order
derivatives. It can be compared to keeping the curvature as stable as possible
for images of lines and planes in the parameter space, though it is not exactly
the same; see Fig. 1. In the same way, smoothing the third order derivatives can
be compared to stabilizing the change of curvature.

We want to develop the formulas by looking at derivatives in all directions
and for all points, and then integrate. For a given parameter point u and a
direction s ∈ S2 on the unit sphere, we define the kth order derivative of V at u
in direction s by

∂kV

(∂s)k
(u) =

dk

(dt)k
V (u + ts)|t=0 ; (14)

see Fig. 2. For u = (u1, u2, u3) and s = (s1, s2, s3) this becomes

∂kV

(∂s)k
(u) =

∑
k1,k2,k3≥0
k1+k2+k3=k

(
k

k1, k2, k3

)
sk11 s

k2
2 s

k3
3

∂kV

(∂u1)k1(∂u2)k2(∂u3)k3
(u) . (15)
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Fig. 1. To the left, a volume with an isosurface with isocurves and colors visualizing
the surface curvatures before smoothing. To the right, the volume and surface after
smoothing.

Fig. 2. The map V sends the line through u in direction s into the geometry space
where its derivative at V (u) is given as ∂V (u)/∂s

To get the term Ek in the minimization functorial (7) for the kth order deriva-
tive, we square and integrate

Ek =
1
4π

∫∫∫
u

∫∫
s

(
∂kV

(∂s)k
(u)

)2

ds du (16)

over a uniform distribution of the points u in the parameter space and s on the
unit sphere. The factor 1/4π is the division by the unit sphere surface area to
average the sphere integration and to make the formulas simpler.

To get the contributions to the linear system, we need to simplify the expres-
sions. For a triple index m = (m1,m2,m3) of nonnegative integers we define

Sm =
1
4π

∫∫
(s1,s2,s3)∈S2

sm1
1 sm2

2 sm3
3 d(s1, s2, s3) (17)

and for triple indices l,m such that l1 + l2 + l3 = m1 + m2 +m3 = k and for
i, j ∈ I we define
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V l,m
i,j =

∫
u1

∫
u2

∫
u3

∂kVi(u1, u2, u3)
(∂u1)l1(∂u2)l2(∂u3)l3

· ∂kVj(u1, u2, u3)
(∂u1)m1(∂u2)m2(∂u3)m3

du3 du2 du1 .

(18)
The matrices Ak and Pk in (8) are then given as

[Ak]ij = ψij,k and [Pk]i = −
∑

j∈I\I0

ψij,kcj (19)

where

ψij,k =
∑
l,m

l1+l2+l3=
m1+m2+m3=k

(
k

l1, l2, l3

)(
k

m1,m2,m3

)
Sl+mV l,m

i,j (20)

for all i, j ∈ I. We now investigate the expressions Sl+m and V l,m
i,j further.

There exists a well-known uniform distribution on the unit sphere by the
parametrization

(
√

1− h2 cosφ,
√

1− h2 sinφ, h) for h ∈ [−1, 1] and φ ∈ [0, 2π) . (21)

We use this to get

Sl+m =
1
4π

∫ 2π

0

cosl1+m1 φ sinl2+m2 φdφ

∫ 1

−1

hl3+m3(1− h2)
l1+l2+m1+m2

2 dh .

(22)
This is only non-zero when li and mi have the same parity for i = 1, 2, 3.

By symmetry, we can simplify further: Let V
l,m

i,j denote the sum of V l′,m′
i,j

for all different pairs (l′,m′) given as l′ = σl, m′ = σm for some three-point
permutation σ (example: V

100,100

ij = V 100,100
ij +V 010,010

ij +V 001,001
ij ). For the first,

second and third order derivatives, we calculate

ψij,1 =
1
3
V

100,100

ij (23)

ψij,2 =
1
5
V

200,200

ij +
1
15
V

200,020

ij +
4
15
V

110,110

ij (24)

ψij,3 =
1
7
V

300,300

ij +
3
35
V

300,120

ij +
9
35
V

210,210

ij +
3
35
V

210,012

ij +
12
35
V

111,111

ij . (25)

Finally we need to look at how to determine V l,m
i,j . This is done differently for

general NURBS volumes and polynomial spline volumes. The first case involves
integration of piecewise rational functions, and must be done numerically, typ-
ically by Gaussian quadrature. The integration is not numerically exact, and
gives an error depending on the number of sample points. For polynomial spline
volumes, however, the computations can be done more efficiently and precisely
by factoring the triple integral into univariate B-spline product integrals

V l,m
i,j =

3∏
r=1

∫
ur

dlr

(dur)lr
Bir ,dr,tr (ur)

dmr

(dur)mr
Bjr ,dr,tr(ur) dur . (26)
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These factors are integrals over piecewise polynomial functions. They can be
precalculated, and the result is numerically exact if we use numerical integration
with enough sample points.

The calculation of the linear system matrices is in general faster in the case
of polynomial splines compared to NURBS. If we assume di � ni, the num-
ber of pairs (Vi, Vj) of spline basis functions with common support is of order
O(

∏
(nidi)). For each such pair the number of V l,m

i,j calculations is of order D5

where D is the derivation depth. For polynomial splines, the B-spline product
integrals are precalculated, thus the entire computation is of order

O(n1n2n3d1d2d3D
5) . (27)

For general NURBS, we perform Gaussian quadrature with ρi sample points in
parameter direction i inside each Bézier segment. We first precalculate Vi(uk)
and all its relevant derivatives for each spline basis function and each sample
point within the support of Vi. The average number of common sample points
for two overlapping spline basis function is of order O(

∏
(diρi)). The entire

computation for NURBS is of order

O(n1n2n3d
2
1d

2
2d

2
3ρ1ρ2ρ3D

5) . (28)

5 Other Terms

For spline surfaces, the fairing process often starts with an input surface. We
might want to modify the control points slightly to get a better parametrization
without altering them too much. This can be controlled by adding an extra term
that minimizes the distance between the original and derived surface. Though
this is more relevant for surfaces, the method can be generalized to spline vol-
umes. If our original volume is V0(u) =

∑
i ci,0Vi(u), the minimizing term is

Ek =
∫∫∫

u

(∑
i∈I

Vi(u)(ci − ci,0)

)2

du . (29)

The matrix contributions in (8) are given as

[Ak]ij = ψij (30)

[Pk]i =
∑
j∈I

ψijcj,0 −
∑

j∈I\I0

ψijcj, (31)

where
ψij =

∫∫∫
u

Vi(u)Vj(u) du (32)

for all i, j ∈ I.
It is also possible to modify the volume to achieve periodicity over one or two

seams. A C0 gluing constraint in first parameter direction is given as
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V (u1,min, u2, u3) = V (u1,max, u2, u3) for all u2, u3. This is satisfied by the simple
linear constraints c1,i2,i3 = cn1,i2,i3 for all i2, i3 for polynomial splines, and also
for NURBS in general if the input denominator weights satisfy h1,i2,i3 = hn1,i2,i3

for all i2, i3.
There are several ways to get higher Cn continuity at the seam. One solution

is to use periodic splines and require equality of corresponding control points.
Another alternative is to use linear constraints, but this has its drawbacks. The
constraints are handled by Lagrangian multipliers. This gives a saddle point
problem which requires extra care if an iterative linear equation solver is used. In
the case of NURBS, we also put more constraints on the weights which makes the
process very inconvenient. There are methods for spline curve reparametrization
to achieve a pair of equal weights at each end, see [10]. This can in some cases
be generalized to surfaces and volumes, but not in general.

Instead, we choose to approximate Cn continuity at the seam by minimizing
n∑
k=1

ωk

∫
u2

∫
u3

(
∂kV

(∂u1)k
(u1,max, u2, u3)− ∂kV

(∂u1)k
(u1,min, u2, u3)

)2

du2 du3 .

(33)
As we only approximate, we are not guaranteed an exact Cn-continuity, but the
method gives a more stable behavior in the equation solver than using exact
constraints. We could let the weights ωk be dominating, while we add a weaker
overall smoothing constraint to ensure that nothing happens to the volume away
from the gluing boundaries. This often gives Cn-continuity within a satisfactory
tolerance.

As for general volume smoothing, the Ak and Pk matrix entries are given
as inner product integrals of derivatives of basis spline volume functions. Again
the computation is inaccurate for general NURBS, while the polynomial case
simplifies to univariate integrals of polynomial B-spline products, being more
accurate and efficient.

6 Conclusion

When we construct trivariate spline volumes, there is a risk that we end up
with a bad distribution of the control points. In order to improve the result,
we need a tool for reparametrization. In this paper, we have presented a way to
address this issue, by using volume fairing, which is a natural extension of already
existing solutions to corresponding problems for spline surfaces. A combination
of least squares approximations and smoothing terms create a measure on how
far away we are from an optimal solution. We minimize this measure by setting
its gradient to be zero, which gives us a linear system. The solution of this system
is the new set of control points.

We can use least squares approximations with respect to a finite set of points
or to a given input volume V0. In the latter case, we integrate the squared
distance (V − V0)2 over the entire parameter domain of the volume.

Smoothing terms are used to minimize the derivatives of first, second or third
order. We have chosen to do so in arbitratry directions in the parameter domain,
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by looking at ∂kV/(∂s)k, the derivative of kth order in any direction s, and
integrate over all directions and the entire parameter domain. The direction
integrals are easy to compute when using a uniform distribution on the unit
sphere. The parameter domain integrals can also be computed numerically exact
for polynomial spline volumes, but in general not for NURBS. We have also
described briefly how the fairing technique can be used to achieve periodicity.

We will apply these methods in our software for building models for isoge-
moetric analysis. However, the methods presented in this paper are independent
of this specific application, and can be a useful tool for many spline volume
approximation and smoothing tasks.

References

1. Greiner, G., Seidel, H.-P.: Curvature Continuous Blend Surfaces. In: Proceedings
of Modeling in Computer Graphics. Springer, Heidelberg (1993)

2. Hagen, H., Santarelli, P.: Variational Design of Smooth B-Spline Surfaces. Topics
in Surface Modelling. SIAM, Philadelphia (1992)

3. Huang, A., Nielson, G.M.: Surface Approximation to Point Cload Data Using Vol-
ume Modeling, Data Visualization: The State of the Art, pp. 333–334. Kluwer
Academic Publishers, Dordrecht (2003)

4. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry, and mesh refinement. Computer Methods in
Applied Mechanics and Engineering 194, 4135–4195 (2005)

5. Kallay, M.: Constrained Optimization in Surface Design. In: Proceedings of Mod-
eling in Computer Graphics. Springer, Heidelberg (1993)

6. Knupp, P., Steinberg, S.: Fundamentals of grid generation. CRC Press, Boca Raton
(1993)

7. Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate
B-spline fitting using harmonic functions. Computer Aided Geometric Design 26,
648–664 (2009)

8. Mehlum, E., Skytt, V.: Surface Editing, Numerical Methods and Software Tools in
Industrial Mathematics, pp. 381–396. Birkhäuser, Basel (1997)
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Abstract. EEG/MEG devices record external signals which are gen-
erated by the neuronal electric activity of the brain. The localization
of the neuronal sources requires the solution of the neuroelectromag-
netic inverse problem which is highly ill-posed and ill-conditioned. We
provide an iterative thresholding algorithm for recovering neuroeletric
current densities within the brain through combined EEG/MEG data.
We use a joint sparsity constraint to promote solutions localized in small
brain area, assuming that the vector components of the current den-
sities possess the same sparse spatial pattern. At each iteration step,
the EEG/MEG forward problem is numerically solved by a Galerkin
boundary element method. Some numerical experiments on the local-
ization of current dipole sources are also given. The numerical results
show that joint sparsity constraints outperform classical regularization
methods based on quadratic constraints.

Keywords: Source reconstruction, Sparse representation, Thresholded
iteration, Galerkin boundary element method.

1 Introduction

Functional neuroimaging aims at understanding human brain functionality
through the localization of the active regions of the brain, for instance, dur-
ing specific tasks or even during rest. Commonly used neuroimaging techniques,
such as single-photon emission computed tomography (SPECT) and positron-
emission tomography (PET), make use of invasive devices which expose the sub-
ject to x rays and radioactive tracers, respectively. Moreover, these techniques,
being related to the chemical reactions that take place inside the brain, are not
able to follow rapid changes occurring in neuronal activity. For this reason, in
neuroscience studies there is a great effort in developing imaging techniques with
higher temporal resolution.

In recent years, magnetoencephalography (MEG) has gained an important
role in the field of neuroscience research since it is completely noninvasive and
has a high temporal resolution. MEG aims at identifying the active area of the
brain by localizing inner electric current sources through the measurements of
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the tiny magnetic field generated externally of the head by neuronal electric
activity (see the review papers [10,20] for details). MEG is not a proper imaging
technique since to recover the current distribution underlying the magnetic data
an inverse problem has to be solved. It is known that the solution of the magnetic
inverse problem is nonunique, since there exists silent sources which do not
produce any external magnetic field [22]. Moreover, the magnetometers are just
a few hundreds, while in the localization a high spatial resolution is required,
and the measurements are affected by high noise. Thus, the MEG localization
problem results in an highly ill-posed and ill-conditioned inverse problem and it
is mandatory to use suitable regularization methods for its numerical solution
[4,13,22].

Since neuronal sources are localized in small regions, the electric current flow-
ing in the brain can be assumed to have a sparse spatial representation, i.e. it
can be represented as a sum of weighted basic currents, encoded by the position
and the spatial scale, in which just few terms are relevant. To promote sparse
solutions, regularization methods based on sparsity constraints look promising
[8,11]. In particular, since the electric current density is a vector-valued func-
tion, it makes sense to assume that all its three components have the same
sparse spatial structure and to promote the same sparsity pattern on all of
them. To this end, joint sparsity constraints to reconstruct multichannel signals
were considered in [15,16] where an iterative thresholding algorithm to recover
sparse vector-valued functions is also given. Following the same strategy, in [14]
an iterative thresholding algorithm especially designed to solve the MEG in-
verse problem was proposed. Several numerical tests [5,25] have shown that this
algorithm outperforms classical regularization methods based on quadratic con-
straints [4,13] in localizing current dipole sources, which are usually used to
model neuroelectric currents.

In [14] just the magnetic inverse problem was considered. However, the neu-
ronal activity generating the external magnetic field is responsible for the elec-
tric potential differences on the scalp, too. Thus, a strategy to gain some further
information on neuroelectric current distributions inside the brain consists in
measuring also the electric potential differences by carrying out standard (nonin-
vasive) electroencephalografic (EEG) records during MEG measurements. More-
over, the electric and magnetic field are mutually orthogonal so that combined
EEG/MEG measurements allows to detect sources which would be silent w.r.t.
EEG or MEG alone. For instance, neuroelectric sources radially oriented w.r.t.
the skull surface are magnetically silent but can be detected by electric measure-
ments. On the other hand, current loops are electrically silent but produce an
external magnetic field. Thus, EEG and MEG data are complementary and best
results in recovering brain functionality are obtained by integrating information
from both techniques [2].

In this paper we present a numerical method to solve the neuroelectromag-
netic inverse problem, i.e. the reconstruction of a neuroelectric current distri-
bution from combined EEG/MEG data, using a joint sparsity constraints as
a regularization technique. The neuroelectromagnetic field can be described by
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the quasistatic Maxwell’s equations which give rise to a boundary integral equa-
tion for the electric potential and to the Ampère-Laplace law for the magnetic
field [18,19]. The integral operator equations describing the EEG/MEG forward
problem will be carried out in Sec. 2. In Sec. 3 we will set the EEG/MEG in-
verse problem with a joint sparsity constraint and we will provide an iterative
thresholding algorithm for its numerical solution that generalizes to the com-
bined EEG/MEG inverse problem the algorithm developed in [14].

At each iteration step, we need to solve the EEG/MEG forward problem,
i.e. the evaluation of the electric potential difference and the magnetic field
once the neuroelectric current distribution in the brain is given. In neuroscience
literature, the EEG forward problem is usually solved by a collocation boundary
element method (BEM) in which the electric current density is modeled as a
sum of current dipoles with given positions [2,17]. Here, we will follow a different
approach: we will present a Galerkin boundary element method where we do not
limit ourselves to a specific form of the current density. In this way we expect to
be able to resolve not only dipole sources, but also electric current densities with
different pattern, for instance, current loop that in recent studies are assumed to
connect different brain regions. Details on the Galerkin BEM for the solution of
the EEG/MEG forward problem will be given in Sec. 4. Finally, in Sec. 5 some
numerical results on a simple test problem will be displayed and some conclusion
and perspectives will be given.

2 The EEG/MEG Forward Problem

The neuroelectromagnetic field, i.e. the electromagnetic field generated by neu-
ronal electric activity, can be describe by the Maxwell’s equations. Actually,
focusing on biological conductors some simplifying assumptions can be taken
into account. Firstly, the permeability of the tissues in the head (scalp, skull,
cerebrospinal fluid and brain) is the same as the permeability in the free space,
say μ0. Moreover, there are no electric charges in the conducting medium. Fi-
nally, due to the low frequencies of bioelectric phenomena, we may neglect the
time derivatives of the electric and the magnetic fields.

Thus, the quasistatic Maxwell’s equations in a tissue with electric permittivity
ε0 and magnetic permeability μ0 read

∇ ·E = 0 , ∇ ·B = 0 , (1)

∇×E = 0 , ∇×B = μ0J , (2)

where E and B are the electric and magnetic field, respectively, and J is the elec-
tric current density inside the tissue. As usual, we may express the irrotational
electric field with a scalar potential, i.e.

E = −∇V . (3)

The EEG/MEG forward problem is to evaluate the neuroelectric potential V
and the neuromagnetic field B once the electric current sources are given. It
results in solving (2)-(3) once J is given.
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The current density J flowing in the brain has two components. The primary
current Jp, generated by neuronal activity, flows inside or in the vicinity of the
neurons. The volume current Jv(r) = σ(r)E(r) flows passively everywhere in the
medium that is assumed to have macroscopic conductivity σ(r). Thus,

J(r) = Jp(r) + σ(r)E(r) = Jp(r)− σ(r)∇V (r) . (4)

Following [18],[19] we model the head as a conductor consisting of homogeneous
nested regions, each one having constant conductivity. Let Gi, i = 0, . . . ,m, be
the regions and σi, i = 0, . . . ,m, be the constant conductivity inside Gi. Let us
denote by Si, i = 0, . . . ,m, the interfaces between Gi and Gi+1 with ni(r) being
the unit vector perpendicular to ∂Gi in r and pointing at Gi+1. We assume the
regions are nested with G0 being the innermost region, i.e.

G0 ⊂ G1 ⊂ · · · ⊂ Gm ,

and the interfaces Si, i = 0, . . . ,m, are not intersecting. The primary current Jp

flows just inside G0.
From the Maxwell’s equations (see [20] for details) it follows that the electric

current density (4) and the external magnetic field are related by the Ampère-
Laplace law that reads

B(r) = B0(r)− μ0

4π

m∑
i=1

σi

∫
Gi\Gi−1

∇V (r′)× r− r′

|r− r′|3 dr
′ , (5)

where

B0(r) =
μ0

4π

∫
G0

Jp(r′)× (r− r′)
|r− r′|3 dr′ (6)

is the magnetic field produced by Jp in an infinite homogeneous medium. The
volume integrals in (5) can be transformed into surface integrals on the interfaces
[19] obtaining

B(r) = B0(r)− μ0

4π

m∑
i=0

(σi+1 − σi)
∫
Si

V (r′)
r− r′

|r− r′|3 × ni(r′) dSi(r′) , (7)

(in the sum we may assume σm+1 = 0).
It can be shown [20] that the electric potential V satisfies a surface integral

equation which involves V at the interfaces only:

(σl+1 + σl)

2
V (r) = σ0V0(r) +

1

4π

m∑
i=1

(σi+1 − σi)

∫
Si

V (r′)
r− r′

|r − r′ |3 · ni(r
′) dSi(r

′) ,

r ∈ Sl, l = 0, . . . , m,
(8)

where
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V0(r) =
1

4πσ0

∫
G0

Jp(r′) · (r− r′)
|r− r′|3 dr′ (9)

is the electric potential produced by Jp in an infinite homogeneous medium [18].
Equations (6)-(9) can be solved analytically for a few simple current distribu-

tions and conductor geometry. For instance, an analytical solution of the forward
problem can be obtained when the sources are modeled as current dipoles in a
homogeneous conducting sphere [26]. More realistic head models require numer-
ical methods to solve the integral equation (8) and to evaluate (7). This will be
addressed in Sec. 4.

3 The EEG/MEG Inverse Problem

In order to gain information on brain functionality we need to reconstruct the
primary current density Jp from the measured data. This results in an inverse
problem, known as neuroelectromagnetic inverse problem, which is to estimate
the brain current sources underlying the measurements of the scalp electric po-
tential and the external magnetic field [10,20].

Let qi, i = 1, . . . ,M , and pi, i = 1, . . . , N , be the magnetometer and elec-
trode sites, respectively. The sites qi, i = 1, . . . ,M , belong to a surface Σ
with dist(Σ,Gm) > 0, and each magnetometer measures the magnetic field Bi,
i = 1, . . . ,M , along the direction e(qi) (usually the normal to the magnetometer
coil). The sites pi, i = 1, . . . , N , belong to the surface Gm (the scalp), and each
electrode measures the potential difference Vi, i = 1, . . . , N , w.r.t. a reference
electrode.

Now, let Be(r,Jp) := B(r)·e(r) and V(r,Jp) := V (r) be the integral operators
representing the solution of the forward problem (7)-(8). We note that both
Be(r,Jp) and V(r,Jp) are linearly related to Jp. Thus, the neuroelectromagnetic
inverse problem is to minimize the discrepancy

Δ(Jp) =
M∑
i=1

(
Bi − Be(qi,Jp)

)2 +
N∑
i=1

(
Vi − V(pi,Jp)

)2 (10)

w.r.t. to the primary current distribution Jp.
We recall that a current distribution inside a conductor cannot be retrieved

uniquely from knowledge of the electromagnetic field outside (see, for instance,
[20,22]). There are primary current distributions that are either magnetically,
or electrically silent, or both, i.e. there may exist neuronal currents that do not
produce any external magnetic field or electric potential differences on the head.
Thus, we must add some further constraints in order to confine ourselves to find
a solution among a limited class of source configurations [4,13].

The regularization methods based on quadratic constraints lead to over
smoothed source estimations [8,12]. In particular, minimum �2-norm estimates,
i.e. minimizers of the functional

Δ(Jp) + α ‖Jp‖2
2 , α > 0 , (11)
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are not appropriate for the localization of epileptic foci, which are known to
be confined in small brain regions. This allows us to assume that the primary
current has a sparse representation w.r.t. a suitable basis of compactly supported
functions (ψλ)λ∈Λ, i.e.

Jp = (J1, J2, J3) ∈ L2(G0; R3) , J� =
∑
λ∈Λ

j�λ ψλ , � = 1, 2, 3 , (12)

where only few coefficients (j�λ) for each component are non-vanishing [11].
We note that multiscale basis are successfully used in medical signal processing

and image analysis since scale adaptivity allows to detect spikes and discontinu-
ities appearing in biological signals or inhomogeneous structures characterizing
biological tissues [1]. Thus, we may assume (ψλ)λ∈Λ be a multiscale basis, i.e. a
wavelet basis or a frame [23].

Since all the components J�, � = 1, 2, 3, are related to the same neurophys-
iological phenomenon, it makes sense to assume the subset of non-vanishing
coefficients being the same for all the three components. This is equivalent to
require that Jp has a sparse representation w.r.t. the joint �q-norm, defined as

‖(jλ)λ∈Λ‖q :=

(∑
λ∈Λ

(‖jλ‖R3

)q)1/q

, q ≥ 1 , (13)

where jλ = (j1λ, j
2
λ, j

3
λ)
T [15].

Let j = (jλ)λ∈Λ. Following [15], it can be shown that the solution of the
EEG/MEG inverse problem with a joint sparsity constraint is the minimizer of
the functional

J (q)
θ,ρ,ω(j, v) := Δ(j)+

(∑
λ∈Λ

vλ ‖jλ‖q +
∑
λ∈Λ

ωλ ‖jλ‖2
2 +

∑
λ∈Λ

θλ(ρλ − vλ)2
)
, (14)

restricted to vλ ≥ 0. Here, (θλ)λ∈Λ, (ρλ)λ∈Λ, and (ωλ)λ∈Λ are some suitable
positive parameter sequences. The discrepancyΔ(j) can be obtained by inserting
in (10) the current density representation (12) so that

Δ(j) = ‖F − Tψ j‖2
2 , (15)

where F = [(Vi)i=1,...,N , (Bi)i=1,...,M ]T denotes the measurement vector, while
Tψ denotes the matrix whose entries are the coefficients of the operators V(r,Jp)
and Be(r,Jp) w.r.t. (j�λ)(λ∈Λ)(�=1,2,3) (see Sec. 4 for details).

The task is to minimize Jθ,ρ,ω(j, v) jointly with respect to both the variables
j and v. The first belongs to the space of signals (current densities) to be re-
constructed, the second belongs to the space of sparsity indicator weights (see
[15,16] for details).

The minimizer (j∗, v∗) of the functional J (q)
θ,ρ,ω subject to the joint sparsity

constraints can be approximated by the following iterative algorithm, deduced
from [16] (see also [14]).
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Vector Iterative Thresholding Algorithm⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Let γ be a suitable relaxation parameter

Choose an arbitrary j(0) ∈ �2(Λ; IR3)

For 0 ≤ k ≤ K do j(k+1) = S(q)
θ,ρ,ω

(
j(k) + γ T ∗

ψ(F − Tψ j(k))
) (16)

The operator S(q)
θ,ρ,ω : �2(Λ; IR3) → �2(Λ; IR3) is the vector-valued thresholding

operator introduced in [15] and can be efficiently evaluated by the algorithm
given in [16].

The convergence of the algorithm above can be proved as in [14], nevertheless
we expect a slow convergence rate, as already put in evidence in some numerical
tests on the solution of a magnetic bidimensional inverse problem [25]. More effi-
cient algorithms can be obtained by choosing an adaptive relaxation parameter.
Some strategies to speed-up the convergence rate of Alg. (16) can be found in
[3],[5],[9].

4 Discretization of the Forward Problem

In order to implement Alg. (16) we need to solve efficiently the integral equation
for V (r) at each iteration step. In neuroscience literature the forward problem is
usually solved by a collocation BEM assuming that the primary current Jp can
be represented by a sum of current dipoles (see, for instance, [2,17]). Here, we
discretize the boundary integral equations (8) by a Galerkin BEM [21] assuming
Jp has the sparse representation (12).

To formulate the Galerkin BEM for the EEG/MEG problem let us introduce
the integral operators:

(LBJp)(r) :=
μ0

4π

∫
G0

Jp(r′)× (r− r′)
|r− r′|3 · e(r) dr′

= −μ0

4π

∫
G0

e(r)× (r− r′)
|r− r′|3 · Jp(r′) dr′ ,

(SBV )(r) := −μ0

4π

m∑
i=0

(σi+1 − σi)
∫
Si

V (r′)
r− r′

|r− r′|3 × ni(r′) · e(r) dSi(r′) ,

(LEJp)(r) :=
σ0

4π(σl+1 + σl)

∫
G0

Jp(r′) · (r− r′)
|r− r′| dr′ ,

(SEV )(r) :=
1
4π

m∑
i=0

(σi+1 − σi)
(σl+1 + σl)

∫
Si

V (r′)
r− r′

|r− r′|3 · ni(r
′) dSi(r′) .

(17)
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From (8)-(9) it follows that the unknown function V (r) ∈ H = L2(∪mi=0∂Gi)
satisfies the Fredholm integral equation of the second kind(

[
1
2
I − SE ]V

)
(r) = (LEJp)(r) , r ∈ ∂Gl , l = 0, . . . ,m . (18)

The integral operator for the component of the magnetic field along the direction
e(r) can be deduced from (6)-(7),

B(r) = B(r) · e(r) = (LBJp)(r) + (SB V )(r) , r ∈ R3\ ∪mi=0 Gi . (19)

The Galerkin BEM consists in finding an element

VHλ
(r) =

∑
λ∈Λ

vλ ψλ(r) , (20)

belonging to the space

Hλ = span
(
(ψλ)λ∈Λ

) ⊂ H ,
such that ∑

λ∈Λ
vλ 〈(1

2
I − SE)ψλ, ψμ〉 = 〈LEJp, ψμ〉 , (21)

for all ψμ, μ ∈ Λ. Classical results on boundary element methods (see [21]) allow
us to conclude that the Galerkin equations (21) have a unique solution. Moreover,
the numerical solution is quasi-optimal, i.e. the following error estimate holds

‖V − VHλ
‖H ≤ c inf

VHλ
∈Hλ

‖V − VHλ
‖H . (22)

The unknown coefficient vector Y = [vλ]λ∈Λ is the solution to the linear system

AE Y = BE , (23)

where
AE =

[〈(1
2
I − SE)ψλ, ψμ〉

]
μ,λ∈Λ , (24)

and
BE =

[〈LEJp, ψμ〉
]
μ∈Λ . (25)

For later use it is more convenient to factorize BE as

BE = LE J , (26)

where
LE =

[〈LEe� ψλ, ψμ〉
]
(μ,λ∈Λ)(�=1,2,3)

, (27)

with e�, � = 1, 2, 3, being the unitary versors of the coordinate system, and

J =
[
j�λ

]
(λ∈Λ)(�=1,2,3)

. (28)
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Once the approximation VHλ
is evaluated, the magnetic field can be approxi-

mated by
BHλ

(r) = (LBJp)(r) + (SB VHλ
)(r) . (29)

The entries of the matrix Tψ in Alg. (16) are the coefficients of BHλ
(r) and

VHλ
(r) w.r.t. j = (jλ)(λ∈Λ)(�=1,2,3). To give the explicit expression of Tψ, let us

write VHλ
and BHλ

as a function of j. From (20), (23) and (26) it follows that

VHλ
(r) =

∑
λ∈Λ

∑
μ∈Λ

3∑
�=1

(A−1
E LE)�μλ j

�
μ ψλ (r) . (30)

Now, inserting (12) and (30) in (29) we get

BHλ
(r) =

∑
λ∈Λ

3∑
�=1

(LB(r))�λ j
�
λ +

∑
λ∈Λ

∑
μ∈Λ

3∑
�=1

(A−1
E LE)�λμ j

�
μ (SBψλ) (r) , (31)

where
LB(r) =

[
(LBe� ψλ)(r)

]
(λ∈Λ)(�=1,2,3)

. (32)

Let

TE =

⎡⎣∑
μ∈Λ

(A−1
E LE)�μλ ψμ (pi)

⎤⎦
(i=1,...,N)(λ∈Λ,�=1,2,3)

(33)

and

TB =

⎡⎣(LB(qi))�λ ψλ (qi) +
∑
μ∈Λ

(A−1
E LE)�μλ (SBψμ) (qi)

⎤⎦
(i=1,...,M)(λ∈Λ,�=1,2,3)

,

(34)
by (30) and (31) we obtain

Tψ =
[
TE
TB

]
(35)

We note that Alg. (16) can be implemented efficiently if the matrix T ∗
ψTψ can

be approximated by a sparse finite matrix. Sparse representations of the integral
operators (17) can be obtained by using multiscale bases [6],[7],[24].

5 Numerical Tests

To give an idea of the behavior of Alg. (16) we consider a simple test problem, i.e.
the localization of current dipole sources in a homogeneous spherical conductor
G0 with radius R = 10cm. In this case the surface integrals in (29) vanish and the
magnetic and electric problems decouple. Nevertheless, the integration of electric
and magnetic data allows us to improve the source localization accuracy.

In these tests, the synthetic electromagnetic data are generated by three cur-
rent dipoles located at a depth of 0.1R below the surface of the sphere. One
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Fig. 1. Synthetic electric potential (left) and magnetic field (right)

Fig. 2. Synthetic noisy electric potential (left) and magnetic field (right). The sensor
sites are displayed as black points.

dipole is radially oriented, so that it does not produce any external magnetic
field. The behavior of the electric potential and the radial component of the
magnetic field is shown in Fig. 1. To obtain the synthetic measurements, the
radial component of the magnetic field has been sampled on M = 400 sites, dis-
tributed on a sphere of radius 1.1R concentric to G0, while the electric potential
has been sampled on N = 100 sites, located on the sphere surface. The electric
and magnetic data are scaled in order to have the same norm. Finally, a white
noise with linear snr equal to 1 has been added. The synthetic noisy data and
the sensor distribution are shown in Fig. 2.

The spherical conductor has been parametrized in a spherical coordinate sys-
tem and a linear finite element space with 643 degrees of freedom has been used
as approximation space. The inverse problem has been solved by the iterative
thresholding algorithm (16) with 20 iteration steps. Finally, the acceleration
strategy proposed in [3] has been used to speed-up the convergence rate.

In Fig. 3 (left) the intensity of the current density reconstructed by Al-
gorithm (16) is displayed. For comparison, the results obtained by classical
Tikhonov regularization are also shown (Fig. 3, right). A qualitative analysis
of the figures show that the proposed algorithm allows us to better focus the
current sources, while Tikhonov regularization produces a more blurred image
with fictitious sources.
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Fig. 3. The intensity of the reconstructed current density obtained by Alg. (16) (left)
and by Tikhonov regolarization (right) when using the noisy data

Fig. 4. The intensity of the reconstructed current density obtained by using just mag-
netic (left) or electric (right) noisy data in Alg. (16)

In Tab. 1 the localization error (LE) and the spatial dispersion (SD) are shown
for each dipole source. Let σ be the source location and I(r) be the intensity
of the reconstructed current density. The LE is the distance between σ and the
location of the maximum of I(r) in the neighborhood of the source; the SD is
evaluated as ‖d(r)I(r)‖2/‖I(r)‖2. Smaller the values of LDE and SD, the higher
accuracy and smaller spread.

It is interesting to observe that magnetic data or electric data give rise to
inaccurate localization when used uncoupled (see Fig. 4).

Even if this preliminary experiment has a very simple geometry and uses a
single approximation scale, the results show that both integration of electric and
magnetic data and joint sparsity allow to improve localization accuracy. Next
step will be to implement the algorithm on a real head geometry and to solve
the EEG/MEG problem using real high-level noisy data. When we deal with
real-life applications, we face some difficulties that require more sophisticated
numerical techniques. First of all spherical coordinate system may present sin-
gularities, so that we need more efficient parametrization of the head. Moreover,
it would be useful to dispose of multiscale bases especially designed for repre-
senting neuroelectric currents. Finally, the processing of high noise electro- and
magneto-encephalographic signals require suitable estimator.
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Table 1. Localization error (LE) and spatial dispersion (SD)

Alg. (16) Tikhonov
method

LDE (first source) 2.5 mm 3.4 mm

SD (first source) 0.06 mm 0.48 mm

LDE (second source) 1.9 mm 3.5 mm

SD (second source) 0.15 mm 0.22 mm

LDE (third source) 8.0 mm 9.7 mm

SD (third source) 0.18 mm 0.31 mm

References

1. Aldoubi, A., Unser, M., Laine, A. (eds.): Wavelets in Biomedical Imaging. IEEE
Trans. on Medical Imaging 22, 285–288 (2003)

2. Babiloni, F., Carducci, F., Cincotti, F., Del Gratta, C., Pizzella, V., Romani,
G.L., Rossini, P.M., Tecchio, F., Babiloni, C.: Linear Inverse Source Estimate of
Combined EEG and MEG Data Related to Voluntary Movements. Hum. Brain
Mapp. 14, 197–209 (2001)

3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute
of Physics, Bristol (2002)

5. Bretti, G., Fornasier, M., Pitolli, F.: Electric current density imaging via an acceler-
ated iterative algorithm with joint sparsity constraints. In: SPARS 2009, St-Malo,
France (2009), http://hal.inria.fr/SPARS09/en

6. Cohen, A., Hoffmann, M., Reiss, M.: Adaptive wavelet Galerkin methods for linear
inverse problems. SIAM J. Numer. Anal. 42, 1479–1501 (2004)

7. Dahmen, W., Harbrecht, H., Schneider, R.: Adaptive methods for boundary inte-
gral equations: complexity and convergence estimates. Math. Comp. 76, 1243–1274
(2007)

8. Daubechies, I., Defrise, M., De Mol, C.: An Iterative Thresholding Algorithm
for Linear Inverse Problems with a Sparsity Constraint. Commun. Pure Appl.
Math. 57, 1413–1457 (2004)

9. Daubechies, I., Fornasier, M., Loris, I.: Accelerated Projected Gradient Method
for Linear Inverse Problems with Sparsity Constraints. J. Fourier Anal. Appl. 14,
764–792 (2008)

10. Del Gratta, C., Pizzella, V., Tecchio, F., Romani, G.L.: Magnetoencephalography
- A Noninvasive Brain Imaging Method with 1ms Time Resolution. Rep. Prog.
Phys. 64, 1759–1814 (2001)

11. Donoho, D.L.: Superresolution via Sparsity Constraints. SIAM J. Math. Anal. 23,
1309–1331 (1992)

12. Donoho, D.L.: De-noising by Soft-Thresholding. IEEE Trans. Inform. Theory 41,
613–627 (1995)

13. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer,
Dordrecht (2000)

14. Fornasier, M., Pitolli, F.: Adaptive Iterative Thresholding Algorithms for
Magnetoencephalography (MEG). J. Comput. Appl. Math. 221, 386–395 (2008)

http://hal.inria.fr/SPARS09/en


574 F. Pitolli

15. Fornasier, M., Rauhut, H.: Iterative Thresholding Algorithms. Appl. Comput. Har-
mon. Anal. 25, 187–208 (2008)

16. Fornasier, M., Rauhut, H.: Recovery Algorithms for Vector Valued Data with Joint
Sparsity Constraints. SIAM J. Numer. Anal. 46, 577–613 (2008)

17. Fuchs, M., Wagner, M., Kastner, J.: Boundary Element Method Volume Conductor
Models for EEG Source Reconstruction. Clin. Neurophysiol. 112, 1400–1407 (2001)

18. Geselowitz, D.B.: On bioelectric potentials in an inhomogeneous volume conductor.
Biophys. J. 7, 1–11 (1967)

19. Geselowitz, D.B.: On the magnetic field generated outside an inhomogeneous vol-
ume conductor by internal current sources. IEEE Trans. Magn. 6, 346–347 (1970)

20. Hamalainen, M.S., Hari, R., Ilmoniemi, R.J., Knuuttila, J., Lounasmaa, O.V.: Mag-
netoencephalography - Theory, Instrumentation and Applications to Non Invasive
Studies of the Working Buman brain. Rev. Mod. Phys. 65, 413–497 (1993)

21. Hsiao, G.C., Wendland, W.L.: Boundary Element Methods: Foundation and Er-
ror Analysis. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of
Computational Mechanics, pp. 339–373. John Wiley & Sons, New York (2004)

22. Kaipio, J., Somersalo, E.: Statistical and computational inverse problems. In: Ap-
plied Mathematical Sciences, vol. 160. Springer, New York (2005)

23. Mallat, S.: A Wavelet Tour on Signal Processing. The Sparse Way, 3rd edn. Else-
vier/Academic Press (2009)

24. von Petersdorff, T., Schwab, C., Schneider, R.: Multiwavelets for second-kind in-
tegral equations. SIAM J. Numer. Anal. 34, 2212–2227 (1997)

25. Pitolli, F., Bretti, G.: An Iterative Algorithm with Joint Sparsity Constraints for
Magnetic Tomography. In: Dæhlen, M., Floater, M., Lyche, T., Merrien, J.-L.,
Mørken, K., Schumaker, L.L. (eds.) MMCS 2008. LNCS, vol. 5862, pp. 316–328.
Springer, Heidelberg (2010)

26. Sarvas, J.: Basic Mathematical and Electromagnetic Concepts of the Biomagnetic
Inverse Problem. Phys. Med. Biol. 32, 11–22 (1987)



Bootstrap-Based Normal Reconstruction

Ahmad Ramli and Ioannis Ivrissimtzis

School of Engineering and Computing Sciences, Durham University, UK

Abstract. We propose a bootstrap-based method for normal estimation
on an unorganised point set. Experimental results show that the accu-
racy of the method is comparable with the accuracy of the widely used
Principal Component Analysis. The main advantage of our approach is
that the variance of the normals over the bootstrap samples can be used
as a confidence value for the estimated normal. In a proposed applica-
tion, we use the confidence values to construct a bilateral Gaussian filter
for normal smoothing.

Keywords: bootstrap, normal reconstruction, bilateral filter, normal
smoothing.

1 Introduction

The geometric modelling of a natural object starts with the data acquisition
stage, where geometric data are obtained, usually in the form of unorganised
3D point sets. After the registration of the data, and possibly some preprocess-
ing for outlier removal and denoising, a mathematical model of the object is
reconstructed, usually in the form of a polygonal mesh or an implicit surface.
At this stage, several of the state-of-the-art surface reconstruction algorithms
require accurate estimations of normal vectors associated with the points of the
set. The process of estimating such normals is known as normal reconstruction.

In this paper we propose a method for normal reconstruction based on boot-
strap. Bootstrap is a general statistical technique widely used for model fitting
and assessment. The bootstrap process first randomly subsamples the input data
set, creating several subsets, called bootstrap samples. Then, a model is fitted to
each of the bootstrap samples and finally, properties of the input data are inferred
from statistical aspects of the bootstrap models. Statistics can be computed for
model features or characteristics.

In our context of normal reconstruction, the initial data set is the k near-
est neighborhood of a point di of the point set. The model fitted in each boot-
strap sample is an estimated tangent plane computed with Principal Component
Analysis (PCA). From each tangent plane we compute a normal vector and the
average of these normals is our normal estimate at di. The variance of the angles
of the bootstrap normals is also computed and treated as a confidence value for
the normal at di.

Our experiments show that the bootstrap normals are comparable with the
commonly used PCA normals and thus their main advantage lies in the confi-
dence values associated with them. As an application of these confidence values,
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we construct a bilateral Gaussian filter for normal smoothing. In this filter, the
influence of di on dj depends not only on the distance between di and dj , but
on the normal bootstrap variance at di as well.

Summarising, the main contributions of the paper are:

– A bootstrap-based method for normal reconstruction which produces nor-
mals with confidence values.

– A bilateral Gaussian filter for normal smoothing utilising the confidence
values of the bootstrap normals.

1.1 Related Work

As reliable normal estimations are essential for many geometry processing and
rendering algorithms, the literature on normal reconstruction is extensive. The
classic method proposed in [7] applies PCA on the k-neighbourhood of a point.
The result of is equivalent to computing the normal of the minimum least square
fitting plane for the same neighbourhood. Due to its simplicity and robustness,
[7] is still widely used and considered to be part of the state-of-the-art. [13] im-
proves on PCA by computing a weighted least square fitting plane, with weights
given by sigmoidal functions. [5] uses Singular Value Decomposition to com-
pute a normal that minimises the variance of the dot products between itself
and the vectors from the considered point to its nearest neighbours. [12] applies
least square fitting on the points inside a sphere of fixed radius. [8] combines
several estimates obtained at different sampling rates to compute a more reli-
able normal. [4] computes the normal as the vector pointing to the centre of
the largest Delaunay sphere passing through the considered point. [11] creates
several random subsamples of the neighbourhood and uses them to estimate the
local noise; then it uses the local noise estimate to compute a kernel function
which is minimised by the tangent plane.

A bilateral filter for normal smoothing was proposed in [9]. There, the influ-
ence of the normal at dj on the normal at di depends on the distance between
dj and dj and also on the distance from di to the tangent plane at dj . Most of
the point set smoothing algorithms proposed in the literature focus on updating
the positions of the points, while the normals are only implicitly updated. [15]
uses a filter in the spatial domain, [14] filters in the frequency domain, [10] uses
anisotropic diffusion, while [17] optimises simultaneously the point set and its
parametrisation by minimising an energy function.

Bootstrap methods are rarely used in geometric modelling problems, probably
because they are considered computationally expensive. [3] uses bootstrap to
fit ellipses on 2D data. [1] uses bootstrap for polynomial surface fitting with
overfitting control. The ensemble technique, which similarly to the bootstrap
generates and processes several random subsamples of the input data, was used
in [16] for normal reconstruction.

Tackling a problem similar to ours, [2] computes confidence values for the
normals of a point set and then uses them to find neighbourhoods of optimal size.
However, the computations there rely on the knowledge of scanner parameters,
while our input is an unorganised point set only.
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1.2 Overview

The rest of the paper is organised as follows. Section 2 describes the proposed
bootstrap-based method for normal reconstruction. Section 3 presents exper-
imental results supporting our claim that bootstrap variance can be used as
confidence value. Section 4 uses the bootstrap variance to construct a bilateral
filter for normal smoothing and Section 5 briefly concludes the paper.

2 Bootstrap Methods for Normal Reconstruction

We first give a brief general description of bootstrap methods, following mainly
[6]. Let D = {d1, d2, . . . , dN} be a set of input data. We randomly sample D
with replacement to draw a bootstrap sample Sb with the same size as D. As we
sample with replacement, the expected number of distinct elements in Sb is lower
than N . In fact, we can easily calculate that the expectation for the number of
distinct elements in Sb is

N · (1 − 1
e
) ≈ N · 0.632 (1)

The sampling procedure is repeated B times and the bootstrap samples

S1, S2, . . . , SB (2)

are generated. In our experiments, we typically use B = 50.
If f(D) is any quantity computed from the data D, we can use the bootstrap

samples in (2) to estimate any aspect of the distribution of f(D). In particular
we can estimate its mean by

f̄(D) =
1
B

B∑
b=1

f(Sb) (3)

and its variance by

V̂ ar[f(D)] =
1

B − 1

B∑
b=1

(f(Sb)− f̄(D))2. (4)

Given a sufficiently large number of bootstrap samplesB, the bootstrap statistics
in (3) and (4) are good approximations of the true mean and variance of f(D)
because the distribution of the f(Sb)’s follows the distribution of f(D) under
non-informative priors, see [6].

2.1 Normal Reconstruction

Applying the bootstrap method to the problem of normal reconstruction, let the
input of the algorithm be an unorganised 3D point set D = {d1, d2, . . . , dN}. For
a given point di ∈ D we find its k-neighbourhood

Ni = {p1, p2, . . . , pk}, pi ∈ D, i = 1, 2, . . . , k. (5)
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Following the bootstrap sampling procedure, we generate a set of bootstrap
samples {S1, S2, . . . , SB} consisting of B subsets of Ni. On each of the Si’s we
apply PCA and compute a tangent plane. For a consistent orientation of the
normals of these planes, we first apply PCA on the whole dataset D and by
choosing an arbitrary orientation we compute a normal nD. Then, we obtain
the bootstrap normals {n1,n2, . . . ,nB} by choosing for ni the orientation that
minimises the angle between nD and ni.

Our final estimate for the normal at di is the average of the bootstrap normals
computed on Ni:

n(di) = (
B∑
b=1

nb)/|
B∑
b=1

nb|. (6)

This statistic can be seen as the result of (3), where the function f defined on
the subsets of Ni returns the PCA normal of a subset.

The second bootstrap statistic we compute on di is the variance of the angles
between the bootstrap normals and the normal of the first bootstrap sample.
That is, we compute the variance

νi = V̂ ar{< n1,ni > |i = 1, . . . , B} (7)

whereas < n1,ni > is the angle between n1 and ni. This statistic can be seen as
the result of (4), where the function f defined on the subsets of Ni returns the
angle between the PCA normal of a subset and n1.

This second statistic will be used as a confidence value for our normal estimate
n(di). Notice that other bootstrap statistics could also be treated as confidence
values for the normal estimates. In particular, one could treat the PCA tangent
planes as the fitted models, compute distances between points in Ni and these
tangent planes and use them to compute one of the several bootstrap error
estimates proposed in the literature, see [6]. However, we think that processing
angles between normal vectors, rather than distances between data points and
tangent planes, is a more direct approach and thus more likely to give reliable
confidence values.

3 Experimental Results

We tested the proposed normal reconstruction method on synthetic and natural
data. Starting from two smooth triangle meshes, the Sphere and the Bunny,
we used their connectivity to compute reliable normals at the vertices. These
normals were used as the ground truth against which we measure the error of
the estimated normals.

Next, we created the test point sets by stripping the mesh connectivity, and as
a way of simulating raw data, by adding to each point a random displacement in
the direction of the previously computed normals. A noise level equal to γ refers
to displacements of magnitude uniformly randomly sampled from the interval
[0, γh], where h is the average, all over the model, of the distance between a
point and its nearest neighbour. Fig. 1 shows the Sphere model at various levels
of noise.
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Fig. 1. From left to right: the noise level is 0.25, 0.5, 1.0 and 1.5

3.1 Normal Reconstruction

Table 1 summarises the results of the bootstrap normal reconstruction. The
Sphere and the Bunny models were tested at noise levels of 0.25, 0.5, 1.0 and
1.5, and with neighbourhood sizes of 15 and 30. The reported numbers are the av-
erage angle differences (in radians) with the ground truth normals. We conclude
that the bootstrap normal reconstruction and the PCA normal reconstruction
produce comparable results. We also note that the bootstrap method is compu-
tationally more intensive, taking 529 seconds to process the 11146 vertices of the
Bunny model on a low-end commodity PC.

Table 1. Average angle difference between the ground truth normals and the estimated
normals in radians. The number of bootstrap samples is always B = 50.

Sphere k=15 k=30

Noise PCA Bootst. PCA Bootst.

0.25 0.0546 0.0547 0.0296 0.0297

0.50 0.1141 0.1151 0.0586 0.0591

1.00 0.2818 0.2847 0.1306 0.1311

1.50 0.4881 0.4949 0.2601 0.2599

Bunny k=15 k=30

Noise PCA Bootst. PCA Bootst.

0.25 0.1388 0.1397 0.1732 0.1739

0.50 0.1754 0.1748 0.1880 0.1882

1.00 0.3175 0.3152 0.2471 0.2463

1.50 0.4660 0.4670 0.3278 0.3264

3.2 The Normal Orientation Problem

The bootstrap normals are computed by (6) as averages of B normals. As PCA
gives unoriented vectors, the orientations of these B normals were computed
separately. Table 2 shows the error of the bootstrap normal estimation when
different normal orientation methods are used.

The columns under Bootst.(1) show the results when an orientation that is
consistent with the ground truth normal is selected. In this case, the boot-
strap normal estimation outperforms PCA. Of course, as the ground truth nor-
mal is not known, the method cannot be used for normal estimation, however,
the result shows that bootstrap normal estimation combined with an accurate
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Table 2. Average angle difference between the ground truth normals and the estimated
normals in radians. In Bootst.(1), the normals generated from the bootstrap samples
were oriented consistently with the ground truth normal. In Bootst.(2) the orientation
was random. The number of bootstrap samples was always B = 50.

Sphere k=15 k=30

Noise PCA Bootst.(1) Bootst.(2) PCA Bootst.(1) Bootst.(2)

0.25 0.0546 0.0545 0.1644 0.0296 0.0296 0.1403

0.50 0.1141 0.1137 0.2348 0.0586 0.0591 0.1664

1.00 0.2818 0.2456 0.4633 0.1306 0.1290 0.2665

1.50 0.4881 0.3752 0.6582 0.2601 0.2242 0.4178

Bunny k=15 k=30

Noise PCA Bootst.(1) Bootst.(2) PCA Bootst.(1) Bootst.(2)

0.25 0.1388 0.1370 0.2100 0.1732 0.1696 0.2331

0.50 0.1754 0.1664 0.2600 0.1880 0.1817 0.2547

1.00 0.3175 0.2776 0.4172 0.2471 0.2330 0.3206

1.50 0.4660 0.3826 0.5781 0.3278 0.2970 0.4066

vector orientation algorithm could potentially outperform PCA. The columns
under Bootst.(2) show the results when a random orientation is chosen for each
normal. In this case the results are clearly worse than PCA, showing that a
good normal orientation algorithm is essential for accurate bootstrap normal
estimations.

Finally, we notice that the consistent orientation of a set of normal estimates
corresponding to the same data point is a problem that has attracted consid-
erably less research interest than the problem of consistent normal orientation
over a point set, see for example [7].

3.3 Bootstrap Variance

In a second experiment, we examine the claim that normals with higher boot-
strap variance are generally less accurate. Working on the Bunny and Fandisk
models at various noise levels, we split the set of vertices into a high variance sub-
set, containing the vertices with the highest 15% variances, and a low variance
subset, containing the rest of the vertices. We compute and report the average
normal error of the two sets separately. The results are summarised in Table 3.

Table 3. The average normal error on the high and low variance subsets of the Bunny
and the Fandisk models

Bunny 0.25 0.50 1.00 1.50

Low Var. 0.1707 0.1768 0.2082 0.2489

High Var. 0.4731 0.4920 0.5168 0.5927

Fandisk 0.25 0.50 1.00 1.50

Low Var. 0.0590 0.0745 0.1146 0.1818

High Var. 0.5813 0.5746 0.5850 0.5911
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We notice that, as expected, the high variance set has normal estimates with
significantly higher average error. Moreover, this is the case at all noise levels,
meaning that the method can handle error from both sources, that is, the model
features and the added noise. As a limitation of the approach, we note that in all
comparisons we used the same neighbourhood size of k = 50 because higher or
lower values of k would respectively naturally decrease or increase the variance,
without necessarily changing the accuracy of the normal estimates.

Fig. 2 shows colourmaps of the bootstrap variance for the Bunny and Fandisk
models at various levels of noise. We notice that the high variance areas con-
centrated on the features of the mesh. We also notice that this pattern degrades
slowly as the added noise increases.

Fig. 2. From left to right: Colourmaps of the bootstrap variance at noise levels 0.25,
0.5, 1.0 and 1.5, respectively. The darker colours signify higher variance.

4 Bilateral Gaussian Filter for Normal Smoothing

In Section 3 we showed that normal estimates with lower bootstrap variance are
generally more reliable than those with higher variance. In this section, we will
use the bootstrap variance as a confidence value and propose a bilateral Gaussian
filter for normal smoothing. In each filtering iteration, the normal at a point di
is updated as a distance weighted average of the normals at the neighborhood
of di, while the confidence values are used to reduce the influence of the less
reliable normals.

4.1 Bilateral Gaussian Filter

One iteration of the proposed filter updates the normal n(di) at a data point
di ∈ D by
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n(di) → (1− α)n(di) +
α

c(di)

∑
p∈Ni

G(νj , σν)G(||di − p||, σd)n(p) (8)

In (8), G(a, b) is the Gaussian function with zero mean G(a, b) = e−a
2/b2 , || · ||

denotes Euclidean distance, and c(di) is a normalisation factor that makes the
sum of the weights equal to 1, that is

c(di) =
∑
p∈Ni

G(νj , σν)G(||di − p||, σd) (9)

The variances σν and σd of the two Gaussians in (8) are user defined parameters.
A smaller value of σν would mean normals with high variance, that is, less reliable
normals, will have smaller influenced on the smoothing process. A smaller value
of σd would mean that the influence of a point decays more rapidly with the
distance. In our experiments, we used a σd equal to the average, all over the
model, of the distance between a point and its nearest neighbour. Finally, α is
a user defined parameter controlling the strength of the filtering operation.

4.2 Evaluation

We tested the algorithm on the Cube and the Fandisk point sets with 0.5 level
of added noise, σν = 10−12 and 1.1 × 10−12, respectively, and α = 0.1. As in
Section 3, we used the normals obtained from the underlying meshes before the
addition of noise as the ground truth.

The results and a comparison with the single Gaussian filter corresponding to
σν = ∞ are shown in Fig. 3. The computed normal errors are shown separately
for the feature areas where νi ≥ 0.04 (left), and the non-feature areas (right).
In all cases, the proposed bilateral filter outperforms the single Gaussian filter.
We also notice that in the non-feature areas the normal error increases from
the very first iteration of the single Gaussian filter. The reason is that the bad
normal estimates in the feature areas corrupt the more reliable estimates in the
smoother areas. This is a serious limitation of the single Gaussian filter, which
is overcome by the proposed bilateral filter.

Fig. 4 shows the normals of the Cube model after applying the bilateral filter
and after applying the simple Gaussian filter. We conclude that the superiority
of the bilateral filter, as demonstrated by the graphs in Fig. 3 (top), is visually
significant.

Notice that the above validation of the filtering algorithm is mainly concerned
with the accuracy of the bootstrap normals compared to a ground truth, here the
normals obtained from a smooth triangle mesh whose vertices were used in the
construction of the test data sets. On the other hand, as one of the primary uses
of point sets is the fast, high quality rendering of 3D models, qualitative, visual
evaluations of normal smoothing algorithms are also common in the literature,
see for example [9].
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Fig. 3. Comparison between the single Gaussian filter (blue dotted line) and the pro-
posed bilateral filter (green crossed line). Top: Cube with 0.5 noise level. Bottom:
Fandisk with 0.5 noise level. Left: Feature areas. Right: Non-feature areas.

Fig. 4. Left: The proposed bilateral filter. Right: Simple Gaussian filter. In both
figures, the angle of view is centered at the circle.
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5 Conclusion

We proposed a bootstrap-based method for normal reconstruction. The experi-
mental evaluation of the proposed method showed that although it does not sig-
nificantly improve the accuracy of the normal estimates, it can provide reliable
confidence values for them. The utility of such confidence values was demon-
strated by the construction of a bilateral Gaussian filter for normal smoothing.

In the future, we plan to investigate further applications of the confidence val-
ues of the normal estimates. In particular, we plan to use the information about
the quality of the normals to adaptively select optimally sizes neighbourhoods
for normal estimation. We notice that in the flat parts of the surface simple PCA
gives reliable estimates, while in the high curvature areas normal estimation is
an inherently ill-posed problem. Thus, the focus will be on improving the normal
estimations in the in between areas, that is, flat areas close to high curvature ar-
eas. The main challenge will be to choose neighborhoods that will be sufficiently
small not to include high curvature points, but sufficiently large to give stable
normal estimates.
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Abstract. We introduce the concept of couple points as a global feature
of surfaces. Couple points are pairs of points (x1,x2) on a surface with
the property that the vector x2−x1 is parallel to the surface normals both
at x1 and x2. In order to detect and classify them, we use higher order
local feature detection methods, namely a Morse theoretic approach on
a 4D scalar field. We apply couple points to a number of problems in
Computer Graphics: the detection of maximal and minimal distances of
surfaces, a fast approximation of the shortest geodesic path between two
surface points, and the creation of stabilizing connections of a surface.

Keywords: surface features, double normals, Morse theory, triangular
meshes, geodesic paths.

1 Introduction

Size, complexity and number of surfaces considered in Computer Graphics are
continuously growing. One popular approach to deal with this is the extraction
of characteristic features of a surface. Feature extraction has a variety of appli-
cations such as segmentation, shape matching, reverse engineering, compression
and simplification of surfaces.

Generally, two kinds of surface features can be distinguished: local and global
features. For local features it can be decided entirely by a local analysis whether
or not a point on the surface belongs to the feature. For global features, this
decision can be made only by a global analysis of the surface.

Examples for detecting local features on surfaces are the estimation of the
curvature tensor (see, e.g., [1,8,19,22] or the survey [11]), the estimation of sur-
face normals, or the detection of sharp edges. Examples for global features are
the detection of medial axes [3,23], the shortest distance between a point and a
surface [9], and the detection of the shortest geodesic path between two points on
a surface. This is an interesting and well-studied problem which leads to solving
the associated PDE by propagating wave fronts [15] or to unfolding a polyhedral
surface [2,24,26] (see also [17] for a general survey). While such algorithms are
efficient for single-source approximations of shortest paths, they may be rather
expensive if paths between arbitrary point pairs have to be computed. Alter-
native methods apply energy (arc-length) minimization [10,13,20] for a curve in
a manifold, where a reasonable initial guess is required, e.g., from searching a
discrete shortest path. In contrast to the point-point problem which imposes a
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boundary value problem, the construction of a straightest geodesic path starting
from a point and proceeding into a given direction is much simpler: such initial
value problem depends entirely on a local analysis [21].

A combination of local and global features is the extraction of Morse com-
plexes on a surface [4,5,18]. Given a smooth function m on a surface, Morse
complexes divide the surface into areas of similar behavior of the gradient flow
of m. To do so, critical points — i.e., points with a vanishing gradient of m —
are extracted and classified into sources, sinks, and saddles. Then certain sepa-
ration curves are integrated from the saddles in forward and backward gradient
direction. Once the scalar field m is given, the extraction of the critical points is
a local process. However, the integrated separation lines reveal a global feature:
local changes ofm can cause potential changes of the separation lines everywhere
on the surface. Also note that the underlying Morse function may be obtained
by a local or a global [12] analysis of the surface.

This paper introduces a new global feature of the surface called couple points.
These are pairs of points (x1,x2) on the surface with the property that the
vector x2 − x1 is parallel to the surface normals both at x1 and x2. In order
to extract and classify them, we do not apply a global analysis of the surface
but a local feature analysis on pairs of surfaces instead. This way we are able to
apply standard local analysis tools to achieve a global analysis of the surfaces.
We show that in general there exists a finite number of isolated couple points.
We believe that number, location, and classification of couple points reveals a
relevant information about the global shape of surfaces.

We remark that the general concept of couple points is not new. In fact, the
definition of double normals is equivalent to couple points, and there a number
of interesting problems in geometry related to them, e.g., finding their minimum
number for convex bodies in En [14] or for smooth curves [7] of certain topology.
We are interested in the detection of couple points and applications in computer
graphics.

The remainder of this article paper is organized as follows: Section 2 gives
the definition of couple points and shows a first simple example. Section 3 col-
lects properties of couple points on smooth surfaces. To do so, we apply Morse
theoretic approaches to an appropriate 4D scalar field and show that the couple
points correspond to the critical points of this 4D Morse complex. Section 4
shows how to extract and classify couple points on triangular meshes. In Sec-
tion 5 we apply couple points to the following problems: first, we detect minimal
(or maximal) distances between two surfaces (a problem which is far more com-
plicated than the problem of finding the shortest distance between a point and
a surface). Second, we use couple points to compute a fast approximation of the
shortest geodesic path between two points on a surface. And third, we use couple
points to find stabilizing connectors on surfaces in order to increase the surface
stability. Finally, Section 6 draws conclusions and mentions future research.
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Fig. 1. Three applications of couple points. Left: a fast approximation of the shortest
path between two surface points (yellow) passing trough five couple points. Middle:
shortest (green) and largest (red) distance between two surfaces. Right: stabilizing
connectors between parts of a surface.

2 Motivation and Definition of Couple Points

To introduce the idea of couple points, we start with a simple 2D example. Given
are two closed differentiable curves x1,x2 which do not intersect each other. We
search for the minimal and maximal Euclidean distance of x1 and x2, i.e., for a
pair of points (xmin1 ,xmin2 ) ∈ (x1,x2) and (xmax1 ,xmax2 ) ∈ (x1,x2) with

∀(xi1,xi2) ∈ (x1,x2) : ‖xmin2 − xmin1 ‖ ≤ ‖xi2 − xi1‖ ≤ ‖xmax2 − xmax1 ‖.
Figure 2a gives an illustration. In this picture we can also observe a property of

a) b) c)
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c

Fig. 2. a) Pair of points (xmin
1 ,xmin

2 ) and (xmax
1 ,xmax

2 ) with minimal and maximal
distance. b) A couple point. c) Classification of couple points in sink (red), source
(green) and saddle (blue).

(xmin1 ,xmin2 ) (which will be proved later in Section 3): the vector xmin2 − xmin1

is perpendicular to the tangent direction of x1 in xmin1 and of x2 in xmin2 . A
similar statement holds for (xmax1 ,xmax2 ). The transformation of this observation
to surfaces gives reason for the following definition of couple points:.

Definition 1. Given two differentiable surfaces x1,x2 together with their nor-
mal maps n(x1),n(x2), a couple point xc = (xc1,x

c
2) is a pair of points with



Couple Points – A Local Approach to Global Surface Analysis 589

xc1 ∈ x1, xc2 ∈ x2, and n(xc1) × (xc2 − xc1) = n(xc2) × (xc2 − xc1) = (0, 0, 0)T .
Furthermore, let C(x1,x2) be the set of all couple points between x1 and x2.

Figure 2b illustrates a couple point. Given two surfaces x1 and x2, there is
in general a finite number of isolated couple points between them. This paper
is devoted to studying their properties and their applicability to a number of
problems in Computer Graphics. Couple points can also be computed on a single
surface, i.e., for instance C(x1,x1) can be extracted.

3 Properties of Couple Points

In order to capture useful properties of couple points, we first assume x1 and x2

to be parametric surfaces. Then we apply a Morse theoretical approach to the
4D domain of x1 and x2 and show that our derived properties of couple points
are independent of the particular parametrization of the surfaces.

Given two regularly parametrized surfaces x1(u, v) over a 2D domain D1 and
x2(s, t) over a 2D domain D2, we define a double surface xd as

xd(u, v, s, t) = (x1(u, v),x2(s, t)). (1)

This means that xd is a map from D = D1×D2 to IR3×IR3. A point on a double
surface is called a double point. Furthermore, we define the double normal

nd(u, v, s, t) = (n1,n2) =
(

x1u × x1v

‖x1u × x1v‖
,

x2s × x2t

‖x2s × x2t‖
)
. (2)

where x1u,x1v,x2s,x2t are the first order partials of x1 and x2, respectively. We
consider the 4D Morse function

m(u, v, s, t) = ‖x2(u, v)− x1(s, t)‖2 (3)

which describes the (squared) Euclidean distance of x1 and x2. Its gradient
grad(m) = (mu,mv,ms,mt) is a 4D vector field on D, its map onto xd gives the
gradient double vector

vd(u, v, s, t) = (v1(u, v, s, t) , v2(u, v, s, t)) (4)

=
(
mu

x1v × n1

‖x1u × x1v‖
+ mv

n1 × x1u

‖x1u × x1v‖
,

ms
x2t × n2

‖x2s × x2t‖
+ mt

n2 × x2t

‖x2s × x2t‖
)
.

vd points into the direction of steepest ascent of the Euclidean distance of x1

and x2. Figure 3a illustrates xd, nd and vd.
The following theorem will provide the foundation of our further treatment

of couple points.
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a) b) c) d)

x1

x2

n1

n2

v1

v2

Fig. 3. a) A double point xd = (x1,x2) with double normal nd = (n1, n2) and gradient
double vector vd = (v1,v2). b)-e) Zero importance couple points: diametric on a sphere,
opposite on a cylinder, opposite on parallel planes.

Theorem 1. Given xd, nd, vd as defined in (1) - (4), the following equation
holds.

vd = ( 2((x2 − x1)× n1)× n1 , 2((x1 − x2)× n2)× n2 ) .

The proof is a straightforward exercise in algebra from (1)-(4). Theorem 1 shows
that v is a geometric measure on x1 and x2, i.e., it is independent of the par-
ticular parametrization of x1 and x2. In fact, vd can directly be computed from
xd and nd. Also from Theorem 1 follows directly

Theorem 2. Given xd, nd, vd as defined from (1) - (4), the following three
statements are equivalent:

• xd(u, v, s, t) is a couple point concerning definition 1.
• grad(m) = (0, 0, 0, 0)T .
• vd = ((0, 0, 0)T , (0, 0, 0)T ) = 0d, i.e. xd is a critical (double) point w.r.t. vd.

Let xc = xd(uc, vc, sc, tc) be a couple point. We apply a local reparametrization
of x1 and x2 such that x1u(uc, vc) and x1v(uc, vc) are orthonormalized, and that
x2s(uc, vc) and x2t(uc, vc) are orthonormalized as well. This can easily be done
by locally computing normal and principal directions and using these vectors as
the bases of a local coordinate system. Then we can further classify xc by an
eigen-analysis of the Hessian matrix

Hm(u, v, s, t) =

⎛⎜⎜⎝
muu muv mus mut

mvu mvv mvs mvt

msu msv mss mst

mtu mtv mts mtt

⎞⎟⎟⎠
at (uc, vc, sc, tc). Let λi (i = 1, .., 4) be the eigenvalues of Hm(uc, vc, sc, tc). We
call xc a source iff all eigenvalues of Hm(uc, vc, sc, tc) are positive. In this case,
m has a local minimum at (uc, vc, sc, tc): all double points on xd in a small
neighborhood of xc have Euclidean distance smaller than ‖x2(sc, tc)−x1(uc, vc)‖.
xc is a sink iff all eigenvalues of Hm are negative, i.e., m has a local maximum
at (uc, vc, sc, tc). xc is a saddle iff it has both positive and negative eigenvalues.
Figure 2c illustrates source, sink, and saddle couple points for 2D curves. There,
as well as in the remaining figures, we represent a source couple point with a
green line, a sink with a red line, and a saddle with a blue line.



Couple Points – A Local Approach to Global Surface Analysis 591

If we consider the couple points of only one surface x (i.e. we consider C(x,x)),
and if x is a closed manifold, then a couple point xc = (xc1,x

c
2) ∈ (x,x) can be

further classified as

• direct inside if the line segment xc1,x
c
2 is completely inside the surface.

• direct outside if the line segment xc1,x
c
2 is completely outside the surface.

• indirect else.

This distinction is useful for applications which connect couple points by a
straight line which should not have intersections with the surface, e.g., stabiliz-
ing connectors (see Section 5.3). Figure 4 illustrates this for a closed 2D curve.

a) b) c)

Fig. 4. Classification of couple points: a) direct inside, b) direct outside, c) indirect

As we will see later, there may be a rather large or even infinite number of
couple points in a surface. For instance in 2D curves of constant width, e.g.,
circle or Reuleaux triangle, have infinitely many couple points. To deal with
this, i.e., to discard the unimportant ones, we also need to equip a couple point
with an importance. Couple points which tend to disappear after slight changes
of the surface should have a low importance. Also, couple points which are not
isolated should have a zero importance. Here we assume a sufficiently smooth
surface and use imp(xd) = det(Hm) which fulfills the requirements mentioned
above. Figure 3b-e shows some examples of non-isolated couple points with a zero
importance, i.e., they are degenerate and are not considered here. We remark
that this simple definition of importance is a local property. In particular, this
local importance is not necessarily stable under perturbation of the shape or its
parametrization by adding noise.

Let ei (i = 1, .., 4) be the eigenvectors of Hm(uc, vc, sc, tc). Then ei can be
transformed to double eigenvectors on xd by

eci = ( ai x1u(uc, vc) + bi x1v(uc, vc) , ci x2s(sc, tc) + di x2t(sc, tc) )

for i = 1, .., 4. Note that eci are uniquely defined by xc and the curvature tensors
at x1(uc, vc) and x2(sc, tc). Then we can compute the separation double line
from xc by applying a double stream line integration of vd starting in xc in the
directions ±eci . The integration direction (either forward or backward) is given
by the signs of λi. This way, 8 separation double stream lines are created by a
couple point xc. Figure 5 gives an illustration.

The set of all couple points together with all integrated double separation
curves gives the topological skeleton of the Morse function. Figure 6 shows an
example of a test surface containing 370 couple points. The close-up shows that
the separation double curves cover the surface in a rather dense way.
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Fig. 5. A couple point xc = (xc
1,x

c
2) and its 4 double eigenvectors ec

i = (ec
1i, e

c
2i). Each

double eigenvector creates two double stream lines by integrating vd. Here, they end
in double points (yellow) when one of the components reaches the boundary of the
surface.

Fig. 6. a) Test surface with 370 couple points. b) All separation double curves.

4 Couple Points for Triangular Meshes

Up to now we treated couple points for smooth surfaces. In this section we
show how to apply the concept to piecewise linear approximations of smooth
surfaces, i.e. to triangular meshes, as this is the standard surface representation
in Computer Graphics. Here, we assume that each vertex is equipped with an
either exact or estimated normal. Then the basic approach is to test each pair
of triangles for couple points: given a triangle t with the vertices p1, p2, p3 and
their assigned normals n1, n2, n3, and given a triangle t̃ with the vertices p̃1,
p̃2, p̃3 and the normals ñ1, ñ2, ñ3, we search for couple points as barycentric
combinations (α, β, γ) and (α̃, β̃, γ̃) by solving the system

(x̃− x)× n = (x̃− x)× ñ = (0, 0, 0)T

with x = (αp1 +β p2 +γ p3), x̃ = (α̃ p̃1 + β̃ p̃2 + γ̃ p̃3), n = (αn1 +β n2 +γ n3),
ñ = (α̃ ñ1 + β̃ ñ2 + γ̃ ñ3), α + β + γ = 1, α̃ + β̃ + γ̃ = 1 for the unknowns
(α, β, γ, α̃, β̃, γ̃). This ends up in finding the roots of a 6th order polynomial if
the intersection line of the two triangle planes is excluded as a solution. This in
turn means that two triangles which do not intersect each other can have up to
6 isolated couple points. Figure 7a gives an illustration.

In order to find the couple points between two triangles, we apply a subdi-
vision approach. We test whether or not t can ”see” t̃, i.e., whether there are
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Fig. 7. a) A couple point between two triangles. b) The planes εij .

barycentric coordinates (α, β, γ) such that the line x + μn intersects t̃. There-
fore, we introduce the 6 planes εij (i, j ∈ {1, 2, 3}, i �= j) by demanding that
εij contains the line ri and the vector ni. Here, r1 is the line through p2 and
p3, r2 passes through p3 and p1, and r3 passes through p1 and p2. Figure 7b
illustrates the planes εij . Now the test is done by checking on which side of the
planes the vertices p̃1, p̃2, p̃3 are located. We use the notation opp(p, ε,q) if the
points p and q are located on opposite sides of the plane ε. Then we check the
following conditions:

• If opp(p̃i, ε12,p1) ∧ opp(p̃i, ε13,p1) for all i ∈ {1, 2, 3}, then t cannot see t̃.
• If opp(p̃i, ε21,p2) ∧ opp(p̃i, ε23,p2) for all i ∈ {1, 2, 3}, then t cannot see t̃.
• If opp(p̃i, ε31,p3) ∧ opp(p̃i, ε32,p3) for all i ∈ {1, 2, 3}, then t cannot see t̃.

If none of these three conditions applies, we assume that t can ”see” t̃. In a
similar way we check whether t̃ can ”see” t. If either t cannot ”see” t̃ or t̃
cannot ”see” t, no couple point exists between t and t̃. Otherwise we subdivide
t and t̃ and apply our test recursively again until the size of t and t̃ is beyond
a certain accuracy threshold.

As presented above, our algorithm for finding all couple points tests every
pair of triangles for couple points and consequently has quadratic complexity
in terms of the number of triangles. At this point, (hierarchical) space partition
techniques can be applied to drastically improve on efficiency. Even simpler is a
partition of normal directions which allows the fast enumeration of all candidates
which eventually ”see” a given triangle.

Once we have detected all couple points of a mesh, we are left with classifying
them as sources, sinks, and saddles as well as to compute their eigenvalues and
eigenvectors. All we need to have is an estimation of the curvature tensors of
the surfaces at x1c and x2c. Most existing algorithms to estimate the curvature
tensor on a mesh do so per vertex. We follow [25] to estimate the curvature
tensor at every inner point of a triangle as a smooth function over the triangle.
This is done by considering both the linear interpolation of the vertices and the
normals. This allows us to compute a classification of couple points as described
in Section 3.
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5 Results and Applications

In this section we demonstrate the extraction of couple points to a number of
test data sets. Then we describe three areas of applications for couple points.

For the camel data set in Figure 8 (consisting of 78,144 triangles) we detected

Fig. 8. Camel: a) all direct inside couple points, b) longest direct inside and direct
outside couple points

2,721 couple points. Figure 8a shows all detected direct inside couple points.
In Figure 8b, we picked two particular couple points: the longest one (i.e., the
one with the largest Euclidean distance between its components) direct outside
(located between ear and toe), and the longest direct inside.

For the feline data set (99,732 triangles) shown in Figure 9, we detected 12,398
couple points. Figure 9a shows all detected direct inside couple points, Figure 9b
does so for all direct outside couple points. Note that we filtered out couple points
which are very close to each other for visualization. Figure 9c shows the three
longest direct outside couple points, the largest direct inside couple point is
shown in Figure 9d.

The ”Freezing Old Woman” data set shown in Figure 10 consists of 9,995
triangles. Figure 10b shows the most important direct inside couple points, while
Figure 10c shows the longest direct inside couple point.

5.1 Computing the Maximal/Minimal Distance of Surfaces

Given two surfaces, the computation of the minimal distance between them
is a relevant problem in computer graphics and can be used for instance for
collision detection or 3D path planning. This problem is far more complicated
than the computation of the shortest distance between a point and a surface.
If the surfaces are given as simple triangular meshes (i.e., without considering
interpolated normals), the shortest distance may appear between two vertices,
between a vertex and an inner point of a triangle, or between inner points of
two edges. In the following, we consider piecewise linear surfaces with piecewise
linear normals, a surface model often used in computer graphics as a compromise
between simplicity and efficiency on the one side and (often visual) smoothness
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Fig. 9. Couple points of feline: a) all direct inside, b) direct outside, c) longest direct
outside, d) longest direct inside

on the other side. For them, the solution generally appears at inner points of
two triangles.

Theorem 2 states that the shortest distance between two surfaces is given
by a couple point. Hence, to get the shortest distance between two surfaces
x1 and x2, we can use C(x1,x2) and select the couple point with the shortest
Euclidean distance of its components. In a similar way we can compute the
largest distance between two surfaces. Considering a single surface, we can also
compute the shortest and largest distance as the distance of the components of
couple points which are completely inside or outside the surface.

Figure 11a shows all detected direct outside couple points between the camel
and the feline model for a certain relative position between them. (Note that
in this picture we filtered out couple points which are very close to each other
in both components.) Among them, the shortest couple point gives the shortest
distance between the surfaces, as shown Figure 1 (middle). Figures 11b and 10c
show the detected largest distance for the feline and the Freezing Old Woman
data set, respectively.

Using our algorithm to compute the shortest distances between surfaces, the
computing time is essentially the time necessary to extract all couple points (see
Section 5). We are not aware of timings of any pre-existing solutions when the
considered meshes contain normals at the vertices.
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Fig. 10. a) Freezing Old Woman, b) most important direct inside couple points, c)
longest direct inside couple point

5.2 Approximations of the Shortest Geodesic Paths between Two
Points

Given two points x1, x2 on a surface, the computation of the shortest geodesic
path connecting them is a rather expensive process which requests a global
analysis of the surface. Here, couple points provide a way of computing a fast
approximation of the shortest geodesic path. The basic idea is to apply a back-
ward integration of vd starting from the double point (x1,x2). The motivation
behind this approach is that vd points into the direction of steepest ascent of
the Euclidean distance of the components of a double point. Hence, a backward
integration of vd can be considered as a Greedy algorithm to obtain the shortest
path between x1 and x2: at every integration step the integrator tries to reduce
the Euclidean distance as much as possible.

Doing a backward integration of vd starting from (x1,x2), two cases are pos-
sible

• The components of the double points collapse to a single point (xe,xe).
Figure 12a gives an illustration.

• The integration gets stuck in a couple point (x1
c,x2

c). Figure 12b illustrates
this.

In the first case the algorithm stops, and the shortest path is the union of the
two components of the integrated double curve. In the second case we need an
algorithm to ”get out” of the couple point, i.e., we need a shortest path between
x1
c and x2

c. Then the path between x1 and x2 is the union of the components
of the backward integration from (x1,x2) to (x1

c,x2
c) and the shortest path

between x1
c and x2

c. Figure 12c illustrates this.
In order to get the shortest path between the components of a couple point

(x1
c,x2

c), we apply a pre-process to get the shortest paths between the compo-
nents of all detected couple points. We integrate the separating double curves
from each couple point as introduced in Section 3. This way, 8 double stream
lines are emanating from a couple point. Among them, we consider all that col-
lapse into a single point. The shortest path of them is the solution for (x1

c,x2
c).
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Fig. 11. a) all direct outside couple points between feline and camel, b) longest distance
of feline

Figure 13a illustrates an example where 6 of the 8 double stream lines collapse to
a single point, while the remaining two get stuck in couple points. In case that all
8 separation double lines get stuck in couple points (x1i

c,x2i
c), we recursively

compute the shortest path as the union of the components of the integration
double curve from (x1

c,x2
c) to (x1i

c,x2i
c) and the shortest path between x1i

c

and x2i
c. This algorithm is recursively carried out in a breadth first manner until

a path for all couple points is found. Figure 13b gives an illustration.
The resulting data structure of our pre-processing is a distance-weighted

sparse graph where each node represents a couple point. From each node, 8
edges are leaving which represent the integrated double separation lines. These
edges end either in the same node (in case that the integrated double line col-
lapses into a point) or in another node (representing the couple point in which
the integration gets stuck). If each edge is assigned with the path length of the
corresponding double stream line, the problem of finding a shortest path between
(x1

c and (x2
c is equivalent to finding a short loop in the graph. This way, we

found solutions for all couple points for very few iteration steps.
Once the pre-process for a surface is done, the algorithm to detect a shortest

path for a pair of surface points has just the cost of a numerical double stream line
integration. Obviously, the cost of this depends on step size and accuracy of the
chosen integration technique. Nevertheless it has a linear worst case complexity
and is easily possible at interactive frame rates on standard personal computers.

Figure 14 shows two examples of computing the approximation of the shortest
path between two surface points (yellow). In both examples, the backward in-
tegration of vd collapsed into a single point without touching a couple point.
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Fig. 12. a) Backward integration of vd starting from (x1,x2): the components of the
double points collapse to a single point xe. b) Integration of vd gets stuck in a couple
point (x1

c,x2
c). c) The shortest path is completed by adding the shortest path between

x1
c and x2

c.

Fig. 13. a) The 8 separation double lines starting from a couple point (x1
c,x2

c) (blue):
6 collapse to single points. b) All separation lines from (x1

c,x2
c) (green) get stuck in

a couple point: the shortest path is computed as the union of the components of the
integrated double line from (x1

c,x2
c) to (x1i

c,x2i
c) and the shortest path between

x1i
c and x2i

c.

Figure 1 (left) shows an example where the found shortest path is passing
through 5 couple points.

Generally, our approach to get a shortest path between two surface points
shares the advantages and disadvantages of all Greedy algorithms. It is fast,
but is always possible to construct extreme examples in which the algorithm
produces solutions far way from the globally optimal one. Figure 15 compares
examples of our solutions (yellow lines) with the perfect geodesics (white lines).
Figure 15a shows the coincidence between the lines while a certain difference
can be observed in Figure 15b. However, the advantage of our approach is that
it computes a path between two surface points only by a univariate numerical
integration where estimators of real geodesics between two points have a higher
complexity.
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Fig. 14. Fast approximation of the shortest path between two surface points

Fig. 15. Comparison between real geodesics (white lines) and our solution (yellow
lines)

5.3 Computing Stabilizing Connectors between Parts of a Surface

Quite a number of classical statues and sculptures have lost parts because they
got broken (see Figure 16a for an example). To prevent these accidents for

Fig. 16. a) A (real) statue with broken parts. b) A stabilizing connector for a real
statue. c) A candidate couple point to be a stabilizing connector: the Euclidean distance
between the points is rather short in comparison to the shortest path on the surface.

instance during a transportation, stabilizing connectors can be included. These
are static sticks which are connected to certain parts of the surface to prevent
the breaking of parts. Figure 16b illustrates an example. Although the stability
of a surface is a well-studied feature [6,16], couple points provide a heuristic
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approach to find optimal stabilizing connectors. An “optimal” stabilizing con-
nector should be a compromise between size, visual appearance and impact. It
should be as small as possible in order to not disturb the visual impression of the
sculpture, but it should stabilize the sculpture as much as possible. We believe
that direct outside couple points are good candidates for stabilizing connectors
because they touch the surface parallel to the normals and hence have a maximal
effect of the stabilizing forces onto the surface.

Our approach to find the optimal couple points to be used as stabilizing
connectors is to consider the ratio between ‖x2

c − x1
c‖ and the length of the

shortest path between x1
c and x2

c for all outside direct couple points (x2
c,x1

c).
The smaller this ratio, the better the couple point is suited to be a stabilizing
connector. A small value of ‖x2

c−x1
c‖ ensures a small disturbance in the visual

impression, while a relatively long path between x1
c and x2

c gives a good impact
of the connector. As an example, consider the components of an outside direct
couple point (x2

c,x1
c) to be located on the two legs of a human statue where

the position of the legs is rather parallel. Then the Euclidean distance between
x1
c and x2

c is rather small in comparison to the shortest path between x1
c and

x2
c, hence the couple point is a good candidate for being a stabilizing connector.

Figure 16c gives an illustration.
Figure 17 shows the 7 best suited couple points to be stabilizing connectors

Fig. 17. Best couple points to serve as stabilizing connectors

for the camel data set and the best 11 connectors for the feline data set, a front
view is shown in Figure 1 (right).

6 Conclusions

In this paper we have made the following contributions: We introduced the con-
cept of couple points as a new global feature on surfaces. We applied local feature
extracting techniques, namely a Morse theoretic approach on a 4D scalar field, to
extract and classify couple points. We proposed a recursive algorithm to extract
couple points for triangular meshes where the vertices are equipped with a nor-
mal. We applied couple points to compute the minimal and maximal distance
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between surfaces. We applied couple points to compute a fast approximation
of the shortest geodesic path between two surface points. Finally, we proposed
stabilizing connectors of a surface as appropriate couple points.

Nevertheless there is a number of open problems concerning couple points
which are subject to future research. An interesting direction would be persis-
tence of couple points under surface perturbation or surface deformation. For
instance, we do not yet have control over the changes of couple points when the
surfaces are continuously moved or deformed. In this case, couple points may
drift on the surfaces, and they may appear and disappear at certain events. A
careful study of these effects may make couple points applicable also to dynamic
surfaces.
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Chordal Cubic Spline Quasi Interpolation
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Abstract. This paper studies cubic spline quasi-interpolation of para-
metric curves through sequences of points in any space dimension. We
show that if the parameter values are chosen by chord length, the order
of accuracy is four. We also use this chordal cubic spline quasi inter-
polant to approximate the arc length derivatives and the length of the
parametric curve.

Keywords: Chordal parametrization, Spline quasi interpolant.

1 Introduction

Fitting a smooth curve through a sequence of points p0,p1, . . . ,pn, in Rd, with
d ≥ 2, is a basic problem in geometric modelling and computer graphics. The
usual approach is, firstly, choosing parameter values t0 < t1 < · · · < tn, and
secondly finding a parametric curve c : [t0, tn] → Rd such that

c(ti) = pi, i = 0, 1, . . . , n.

Popular examples of c are polynomial curves of degree at most n for n small,
and spline curves for larger n.

This method was proposed as early as 1967 by Ahlberg, Nilson, and Walsh
[1]. But recently, M. S. Floater has investigated more deeply the problem and
has explained what has often been observed empirically. Indeed, in [5] he proves
that the chord length parameter values yield full approximation order when c
is a polynomial curve of degree at most three, and he develops an algorithm for
obtaining full approximation order for arbitrary degree. This study is continued
in [6] in the case of cubic spline interpolation, it is proved that if the parameter
values are chosen by chord length, the order of accuracy is four. Moreover, it is
shown that the derivatives and the length of the original curve are approximated
respectively by the arc-length derivatives and the length of the cubic spline
interpolant.

Assume that the points pi are samples, pi = f(si), from a parametric curve
f : [a, b] → Rd, d ≥ 2, with a ≤ s0 < · · · < sn ≤ b and f is supposed to be
parameterized with respect to arc length, i.e., f is a continuously differentiable
function such that |f ′(s)| = 1, for all s ∈ [a, b], where |.| is the Euclidean norm in
Rd. Then instead of using cubic spline interpolation as in [6], we propose here to
� Research supported by AI MA/08/182.
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choose the parametric curve c as a C2 cubic spline quasi interpolant (abbr. QI)
based on discrete values of f . The interest of such an operator is that it needs
neither the solution of a system of linear equations nor derivative values.

More explicitly, we are interested in choosing parameter values

t0 < t1 < · · · < tn,

such that a cubic spline quasi interpolant Qp given by

Qpf(x) =
n+3∑
i=1

μi,p(f)Bi(x),

where μi,p(f) are linear combinations of the values pi = f(si), and Bi are the cu-
bic B-splines on the interval [t0, tn] endowed with the partition {ti, i = 0, . . . , n},
has full approximation order, i.e., for all f ∈ C4([a, b])

dP (f , Qpf) = O(h4
s) as hs → 0. (1)

Here, hs := max0≤i≤n−1(si+1 − si), and dp is the metric

dP (f , Qpf) = inf
φ
||foφ −Qpf ||,

where ||.|| is the maximum norm, and the infimum is taken over strictly increasing
C1 functions φ : [t0, tn] → [s0, sn] with φ(t0) = s0 and φ(tn) = sn. It is shown in
[8] that, for a pair of regular curves f1 and f2, there holds dP (f1, f2) ≥ dH(f1, f2)
where dH is the Hausdorff metric.

The main result of the paper is to show that under the chord length parame-
terization

ti+1 − ti = |f(si+1)− f(si)|, i = 0, 1, . . . , n− 1,

the full approximation order (1) is guaranteed for all f ∈ C4[a, b], i.e., cubic spline
quasi interpolant have fourth order accuracy. Later we show that the length of f
is approximated by the length of Qpf with fourth order accuracy. We also show
that the derivatives of f are approximated by the arc-length derivatives of Qpf
to the same accuracy as for functions. Finally, we give some numerical examples
illustrating these results.

2 Cubic Quasi-Interpolant

In this section we recall some definitions and properties of a cubic spline
quasi-interpolant based on discrete function values, see e.g. [2,3,7,10]. Let X =
{x0, x1, . . . , xn} be a partition of a bounded interval I = [x0, xn]. For 1 ≤ i ≤ n,
let hi = xi − xi−1 be the length of the subinterval Ii = [xi−1, xi]. Let S3(X) be
the n+ 3-dimensional space of cubic splines of class C2 on this partition.

A basis of this space is formed by B-splines {Bj , j ∈ J}, J = {1, 2, . . . , n+3}.
With these notations, supp(Bj) = [xj−4, xj ], and Nj = {xj−3, . . . , xj−1} is the
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set of the three interior knots in the support of Bj . As usual, we add multiple
knots at the endpoints: a = x0 = · · · = x−3 and b = xn = · · · = xn+3.

The C2 cubic spline quasi interpolant used here is the spline operator given
by :

Q3g =
∑
J

μj(g)Bj , (2)

where the coefficient functionals μj(g) are determined by solving a linear system
of equations given by the exactness of Q3 on P3, the space of cubic polynomials
functions, see e.g. [2,7,9,10], for more details. More precisely, setting gi = g(xi),
i = 0 . . . , n, we have

μ1(g) = g0, μn+3(g) = gn,

μ2(g) = −2h2(h2 + h3) + h1(2h2 + h3)
3(h1 + h2)(h1 + h2 + h3)

g0 +
(h1 + h2)(h1 + h2 + h3)

3h2(h2 + h3)
g1

− h2
1(h1 + h2 + h3)
3h2(h1 + h2)h3

g2 +
h2

1(h1 + h2)
3h3(h2 + h3)(h1 + h2 + h3)

g3,

μn+2(g) = −2hn−1(hn−1+hn−2)+hn(2hn−1+hn−2)
3(hn+hn−1)(hn+hn−1+hn−2)

gn

+
(hn+hn−1)(hn+hn−1+hn−2)

3hn−1(hn−1+hn−2)
gn−1 − h2

n(hn + hn−1 + hn−2)
3hn−1(hn + hn−1)hn−2

gn−2

+
h2
n(hn + hn−1)

3hn−2(hn−1 + hn−2)(hn + hn−1 + hn−2)
gn−3,

μj(g) = − h2
j−1

3hj−2(hj−2 + hj−1)
gj−3 +

(hj−2 + hj−1)2

3hj−2hj−1
gj−2

− h2
j−2

3hj−1(hj−2 + hj−1)
gj−1, for 3 ≤ j ≤ n+ 1.

(3)

Actually, it is well known (see e.g. [4], chapter 5) that there exists constants
Ck, k = 0, 1, 2, 3, such that, for any function g ∈ C4(I),

||g(k) −Q3g
(k)||I ≤ Ckh

4−k||g(4−k)||I , k = 0, 1, 2, 3, (4)

where h = max1≤j≤n hj and ||g||I = maxx∈I |g(x)|.

3 Chord Length Parameterization

We consider the chord length parameterization

ti+1 − ti = |pi+1 − pi|
= |f(si+1)− f(si)|, i = 0, . . . , n− 1. (5)

It was established in [5] that if f ∈ C2[a, b] then for i = 0, . . . , n− 1,

|Δti −Δsi| = O((Δsi)3), as hs → 0. (6)
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This implies that for hs small enough, Δsi/2 ≤ Δti ≤ Δsi, and therefore hs/2 ≤
ht ≤ hs, where ht = max1≤j≤n(tj − tj−1).

Let Qp be the operator defined by

Qpf =
∑
J

μj,p(f)Bj , (7)

where {Bi, i ∈ J} is the basis of the cubic spline space S3(T ) on the interval
[t0, tn] endowed with the partition T = {ti, i = 0, . . . , n}, and μj,p are the
coefficient functionals given in (3) but using the values pi = f(si).

Theorem 1. Suppose that Qp is given by (7) based on the chord length pa-
rameterization (5). Further, suppose that hs/min0≤i≤n−1Δsi is bounded. If
f ∈ C4[a, b] then

dP (f , Qpf) = O(h4
s) as hs → 0. (8)

The main idea of the proof is to study the reparameterization

g(t) = f(φ(t)), t ∈ [t0, tn],

where φ : [t0, tn] → R is given by the C2 cubic spline function satisfying

φ(ti) = si, i = 0, . . . , n,
φ′(ti) = 1, i = 0, n. (9)

We begin by giving some bounds on the derivatives of φ. We denote by C a
generic constant independent of ht.

Lemma 1. Let φ be the function given by (9) and {ti, i = 0, . . . , n} are given
by (5). Then, for i = 0, 1, . . . , n− 1

||φ′ − 1||[ti,ti+1] ≤ Ch2
t ; ||φ

′′ ||[ti,ti+1] ≤ Cht; ||φ′′′ ||[ti,ti+1] ≤ C
ht
Δti

. (10)

Proof. The proof is given in [4].

Proof (of Theorem 1). The equation of φ′ in (10) shows that φ is increasing
when hs is small enough, which guarantees that g is well-defined. On the other
hand we have

Qpf =
∑
J

μj,p(f)Bj ,

where μj,p(f) are the coefficient functionals in (3) based on values f(si). From
(9) we deduce that they use the values of g at {ti, i = 0, . . . , n}. Thus

Qpf ≡ Q3g,

and by taking k = 0 in (4), we deduce that for i = 1, . . . , n− 1,

||g −Qpf ||[t0,tn] ≤ C0h4
t ||g(4)||[t0,tn],
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which clearly establishes (8) as long as g(4) is bounded as hs → 0 (we recall that
ht ≤ hs). To show this we use the formula of Faà di Bruno,

g(j)(t) =
∑

k1+···+jkj=j

j!
k1!..kj !

f (k1+···+kj)(φ(t))
(
φ′(t)
1!

)k1
. . .

(
φ(j)(t)
j!

)kj

, (11)

and since f ′, f ′′, . . . , f (4) are bounded by assumption, it suffices that the deriva-
tives φ′, φ′′, . . . , φ(4) are bounded, which is a direct consequence of Lemma 1 and
the fact that hs/min0≤i≤n−1Δsi is bounded. This completes the proof. �

4 Estimating Curve Length

In this section we approximate the length of f by the length of Qpf . We notice
that the length of f is the same as the length of g and so it is sufficient to
compare the lengths of Qpf and g. Henceforth, we will denote by σ the function
Qpf . In the following theorem we show that we get the same order accuracy as
for functions, namely O(h4

s).

Theorem 2. If f ∈ C4[a, b], then

L(σ)− L(f) = O(h4
s), hs → 0. (12)

Proof. From inequality (4),

||e||[t0,tn] = O(h4
s), ||e′||[t0,tn] = O(h3

s), as hs → 0, (13)

where e(t) = g(t)− σ(t). It is easy to see that

|σ′| − |g′| = −2
e′g′

|σ′|+ |g′| +
e′.e′

|σ′|+ |g′| ,

then by using |g′| = φ′ and equation (13) we deduce that |g′| and |σ′| are
bounded away from zero as hs → 0, thus

L(σ)− L(f) =
∫ tn

t0

|σ′(t)| − |g′(t)|dt

= −2
∫ tn

t0

e′(t)g′(t)
|σ′(t)| + |g′(t)|dt+O(h6

s).

On the other hand, the quasi interpolant Qp is an interpolant at the end points,
which gives e(t0) = e(tn) = 0, then an integration by parts implies

−
∫ tn

t0

e′(t)g′(t)
|σ′(t)| + |g′(t)|dt =

∫ tn

t0

e(t)
∂

∂t

(
g′(t)

|σ′(t)|+ |g′(t)|
)
dt.

The right-hand side in this equality is the error of the quadrature formula based
on the cubic quasi interpolantQp, with weight function w(t) = ∂

∂t

(
g′(t)

|σ′(t)|+|g′(t)|

)
.

With the help of (4) and (11), that this error is in O(h4
t ) and also in O(h4

s), which
proves (12). �
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5 Estimating Arc Length Derivatives

From (4), we show that for f ∈ C4[a, b] we have

||g(k) − σ(k)|| = O(h4−k), k = 0, . . . , 3. (14)

Thus the derivatives of σ approximate the derivatives of g. Furthermore, we
observe that the derivatives of f , being arc length, are the same as the arc
length derivatives of g. Thus it is enough to look at the error between the arc
length derivatives of σ and those of g. Let us denote the arc length derivatives
by

ġ(t) =
g′(t)
|g′(t)| , σ̇(t) =

σ′(t)
|σ′(t)| .

It is easy to see that

ġ− σ̇ =
g′ − σ′

|g′| +
σ′

|σ′||g′| (|σ
′| − |g′|) .

Since |g′| and |σ′| are bounded as hs → 0, equation (14) implies that

||f ′ ◦ φ− σ̇||[t0,tn] = ||ġ − σ̇|| = O(h3
s).

Similarly, for the second and the third derivatives, using (14) we find that

||f ′′ ◦ φ− σ̈||[t0,tn] = ||g̈− σ̈|| = O(h2
s),

||f ′′′ ◦ φ− ...
σ ||[t0,tn] = ||...g − ...

σ || = O(hs).

Specializing to the interpolation points gives estimates that are independent of
φ.

Theorem 3. if f ∈ C4[a, b] we have

f ′(si)− σ̇(ti) = O(h3
s), f

′′(si)− σ̈(ti) = O(h2
s), f

′′′(si)− ...
σ(ti) = O(hs).

Note that the second equation implies that the curvature of ...
σ at ti approximates

the curvature of f at si to order O(h2
s).

6 Numerical Results

We have implemented algorithms for the construction of the chordal cubic QI
Qp approximating smooth curves through a sequence of points in Rd, d = 2, 3.

Example 1: We consider data-points in R2 sampled from a curve with arc-length
parametric representation:

f(s) =

√
2
17

(
s√
2

+ 1
)(

cos
(

4 log
[
s√
2

+ 1
])

, sin
(

4 log
[
s√
2

+ 1
]))

,
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Table 1. Errors and orders of σ

k dp(f , σ) Order |L(σ) − L(f)| Order

1 6.58E-02 1.77E-01
2 5.47E-03 3.59 2.05E-02 3.12
3 5.29E-04 3.37 1.58E-03 3.70
4 4.51E-05 3.56 1.07E-04 3.88
5 3.61E-06 3.64 6.97E-06 3.95

Fig. 1. Chordal C2 cubic QI for k = 1, (left), and chordal C2 cubic QI for k = 2,
(right)

at the values sk = {ski , i = 0, . . . , 2k+3} for each k = 0, . . . , 5, where the points
s0 = {−1.3,−1.1,−0.8, 0, 1.2, 1.5, 2.1, 3.1, 6} are chosen deliberately to be non-
uniform, and for k ≥ 1, ski for i = 0, . . . , 2k+3 are given by{

ski = sk−1
m , for i = 2m

ski =
sk−1

m +sk−1
m+1

2 , for i = 2m+ 1.
(15)

For each k ≥ 1, the QI Qp was computed using the chord length parameteri-
zation. The distance between σ and f was computed numerically by taking the
maximum distance form σ to f over 100 uniformly sampled points, and the ob-
tained results are shown in Column 2 of Table 1. Further, we give in Column 4 of
the same table, the error between the length of σ and the length of f . Numerical
approximated orders are given in columns 3 and 5.

Figure 1 shows the curves σ based on chordal parameter values for k = 1, 2,
with the original curve f . In this figure the continuous curve is the original and
the dashed one is its approximation.

Example 2: We consider data-points in R3 sampled from a curve with arc-length
parametric representation :

f(s) =
5√
26

(
cos(x), sin(x),

x

5

)
,
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Table 2. Errors and orders of σ

k dp(f , σ) order |L(σ) − L(f)| order

1 2.11E-01 –
2 1.94E-02 3.45 1.01E-01 –
3 1.32E-03 3.87 7.21E-03 3.80
4 8.47E-05 3.96 4.74E-04 3.92
5 5.31E-06 3.99 2.87E-05 4.04

Fig. 2. Chordal C2 cubic QI for k = 1, (left), and chordal C2 cubic QI for k = 2,
(right)

at the values sk = {ski , i = 0, . . . , 2k+3} for each k = 0, . . . , 5, where
s0 = {0, 2.1, 3.3, 5.7, 8.4, 12.1, 13.5, 16.3, 18} are chosen deliberately to be non-
uniform, and for k ≥ 1, ski for i = 0, . . . , 2k+3 are chosen as in (15). Column
2 in Table 2 shows the distance between σ and f , for different values of k,
computed numerically as in Example 1, while in Column 4 of this table we give
the error |L(σ) − L(f)|. We list numerical approximated orders in columns 3
and 5. Figure 2 shows the curves σ (dashed curve) based on chordal parameter
values for k = 1, 2, with the original curve f (continuous curve).

From the above examples and other numerical experiments, the numerical
approximated orders agree with the theoretical ones. Further we see, as in Fig-
ures 1,2, that the original curve is well approximated by the spline curve σ.

7 Conclusion

By using chord length parameterization we have obtained full approximation
order for C2 cubic spline quasi interpolation, and we have given estimations for
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length and arc length derivatives for curves in Rd, d ≥ 2. We have illustrated
the theory with numerical examples and we think that the results obtained here
are comparable to those obtained by using cubic spline interpolation.
One perspective of this work is, by using the same ideas given by Floater for the
interpolants, to find a parameterization that guaranties the full approximation
order for spline quasi interpolation of degree m, m > 3.
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Abstract. Motivated by the concept of directionally adapted subdivi-
sion for the definition of shearlet multiresolution, the paper considers a
generalized class of multivariate stationary subdivision schemes, where
in each iteration step a scheme and a dilation matrix can be chosen from
a given finite set. The standard questions of convergence and refinability
will be answered as well as the continuous dependence of the resulting
limit functions from the selection process. In addition, the concept of
a canonical factor for multivariate subdivision schemes is introduced,
which follows in a straightforward fashion from algebraic properties of
the scaling matrix and takes the role of a smoothing factor for symbols.

1 Introduction

Stationary subdivision is a well–studied subject ever since and even quite before
the fundamental monograph [1]. In its most general form, a (scalar) stationary
subdivision scheme associates to a multiinfinite sequence c : Zs → R another
sequence

c′ = Sac =
∑
α∈Zs

a (· −Ξα) c(α), (1)

where the mask a : Zs → R is a finitely supported sequence and Ξ is a so–
called expanding matrix, i.e., a matrix all whose eigenvalues are larger than 1
in modulus. The sequence c′ is then interpreted as a function on the finer grid
Ξ−1Zs and by iteration of the subdivision operator one obtains a process that
eventually approaches a limit function defined on the continuum Rs (or not –
convergence of subdivision schemes is always an issue).

In this paper, we consider a slightly more general case of stationary subdivision
where at any level of iteration there is a finite set of subdivision schemes, i.e.,
a finite family of masks and scaling matrices to choose from. Nevertheless, any
individual step is stationary in the sense of (1): whatever happens at a certain
position of c′ depends only on the behavior in a certain neighborhood of c, hence
what happens is independent of where it happens. Of course, the subdivision
process and in particular the resulting limit now depend on which choice of
subdivision scheme is made in each step.
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The reason for such a construction is not a generalization for the sake of
generalization, it occured naturally in the context of shearlets, cf. [8], where
two subdivision schemes where introduced that were basedon scaling matrices
which used the same scaling component but a different shear content. Based on
properties of such a multiple subdivision scheme, a variation of multiresolution
analysis can be constructed that allows for a filter bank treatment of discrete
shearlets.

The paper first treats the basic aspects of multiple subdivision, like conver-
gence and the associated concept of refinability. In Section 4, we take a slight
distraction from the path and consider canonical factors which allow for a partic-
ularly simple construction of convergent schemes and can be considered a natural
generalization of the B–splines in the univariate case. What is more interesting,
however, is the fact that these objects follow quite straightforward from purely
algebraic considerations of the masks in terms of classical matrix factorizations.

2 Multiple Subdivision and Refinability

We consider subdivision with limit functions in Lp (Rs) based on sequences from
�p (Zs), both equipped with the standard norms for 1 ≤ p <∞,

‖f‖p = ‖f‖Lp(Rs) =
(∫

Rs

|f(x)|p dx
)1/p

,

‖c‖p = ‖c‖�p(Zs) =

( ∑
α∈Zs

|c(α)|p
)1/p

.

For p = ∞, we replace, as usually, L∞ (Rs) by Cu (Rs), the space of uniformly
continuous functions, and use the standard ∞–norms

‖f‖∞ = sup
x∈Rs

|f(x)| , ‖c‖∞ = sup
α∈Zs

|f(α)| .

Instead of introducing a different symbol for these spaces, “L∞ (Rs)” will al-
ways have to be understood as Cu (Rs) in the context of this paper. In addition,
�00 (Zs) will stand for the finitely supported sequences. Finally, the “semidis-
crete” convolution between a function and a sequence is defined like usually
as

f ∗ c =
∑
α∈Zs

f (· − α) c(α).

To extend the concept of stationary subdivision to the interaction of multiple
subdivision schemes, we fix m ∈ N and consider m masks aj ∈ �00 (Zs), and
scaling matrices Ξj ∈ Zs×s, j ∈ Zm := {0, 1, . . . ,m− 1}. As usual, masks are
supposed to have finite support and, for simplicity, we choose N large enough
such that the support of all masks aj is contained in Ω := [−N,N ]s, i.e.,

aj (Zs \Ω) = {0}, j ∈ Zm. (2)
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Scaling matrices are supposed to be expanding ones, hence, all eigenvalues of any
Ξj are strictly larger than 1 in modulus Another way to express this property is
to demand that

lim
k→∞

∥∥Ξ−k
j

∥∥ = 0, j ∈ Zm,

which means that the spectral radius of each inverse Ξ−1
j is less than one.

The basic subdivision operators Sj are still the usual ones,

Sjc :=
∑
α∈Zs

aj (· −Ξjα) c(α), j ∈ Zm, (3)

but the subdivision scheme now consists of arbitrary interactions of these oper-
ators, so that we have

Sη := Sηr · · ·Sη1 , η = (η1, . . . , ηr) ∈ Zrm, r ∈ N. (4)

The result of such an operator is related to the grid Ξ−1
η Zs, where

Ξη = Ξηr · · ·Ξη1 , η ∈ Zrm,

is again a scaling matrix if
∥∥Ξ−1

η

∥∥ → 0 for r → ∞, independently of η. This in
turn is the case if the joint spectral radius of the family Ξ = (Ξj : j ∈ Zm) of
matrices,

ρ
(
Ξ−1

)
= lim sup

r→∞
max
η∈Zr

m

∥∥Ξ−1
η

∥∥1/r
,

satisfies ρ
(
Ξ−1

)
< 1. Any family of matrices that satisfies this condition will

be called jointly expanding and in the sequel we will always tacitly assume that
“our” Ξ is jointly expanding. For convenient abbreviation, we also define the
sets

H =
⋃
r∈N

Zrm, H∞ = ZN

m := {η = (ηj : j ∈ N) : ηj ∈ Zm}

of finite and infinite index sequences with values in Zm. The projection operators
Pr : H∞ → Zrm compute the canonical projection by means of truncation, i.e.,

Prη = (η1, . . . , ηr) , η ∈ H∞.

For a matrix Θ ∈ Zs×s we define the average sequences

μp (f,Θ) :=

(
|detΘ|

∫
Θ−1(α+[0,1]s)

f(t) dt : α ∈ Zs

)
, 1 ≤ p <∞ (5)

and
μ∞ (f,Θ) :=

(
f
(
Θ−1α

)
: α ∈ Zs

)
, (6)

respectively. There are various equivalent ways to define the convergence of
stationary subdivision schemes in Rs, see [3,6], but the concept can be
extended naturally by saying that the multiple subdivision scheme based on
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a := (aj : j ∈ Zm) and Ξ := (Ξj : j ∈ Zm) is p–convergent if for any η ∈ H∞
there exists a basic limit function fη such that

lim
r→∞

(detΞPrη)
−1/p ‖μp (fη, ΞPrη)− SPrηδ‖�p(Zs) = 0. (7)

An alternative but of course equivalent definition of convergence uses the concept
of test functions, cf. [3]. A function ϕ ∈ Lp (Rs) is called a test function, if it is a
compactly supported stable partition of unity, that is, if ϕ∗1 =

∑
α ϕ(·−α) = 1

and there exist constants 0 < A ≤ B ≤ ∞ such that A ‖c‖�p ≤ ‖ϕ ∗ c‖Lp
≤

B ‖c‖�p . Then convergence is also described by

lim
r→∞

‖fη − (ϕ ∗ SPrηδ) (ΞPrη·)‖ = 0 (8)

for either one or any test function. Recall that it has been shown in [3] that if
(8) holds for a particular test function, then it holds for any test function.

Since the subdivision schemes are all linear, (7) and (8) are equivalent to the
convergence of SPrηc to a limit fη,c for any initial sequence c ∈ �p (Zs) with

fη,c = fη ∗ c =
∑
α∈Zs

fη (· − α) c(α).

Choosing η = (j, j, . . .) ∈ H∞, j ∈ Zm, we immediately get the following obvious
observation, cf. [3,14].

Lemma 1. If a and Ξ define a convergent subdivision scheme, then so does
each of the pairs aj , Ξj, j ∈ Zm. Consequently, Sj1 = 1 or, equivalently,∑

α∈Zs

aj (Ξjα+ ξ) = 1, ξ ∈ Xj := Zs/ΞjZ
s, j ∈ Zm. (9)

In addition, we also have that fη ∗ 1 = 1, η ∈ H∞.

Moreover, a simple inductive argument yields for η ∈ Zrm that

Sηc =
∑
α∈Zs

aη (· −Ξηα) c(α), aη = SηraPr−1η. (10)

Indeed,

Sηc = SηrSPr−1ηc =
∑
α∈Zs

aηr (· −Ξηrα)SPr−1ηc(α)

=
∑
α∈Zs

aηr (· −Ξηrα)
∑
β∈Zs

aPr−1η

(
α−ΞPr−1ηβ

)
c(β)

=
∑
β∈Zs

c(β)
∑
α∈Zs

aηr (· −Ξηβ −Ξηrα) aPr−1η(α)

=
∑
β∈Zs

(
SηraPr−1

)
(· −Ξηβ) c(β)

=
∑
α∈Zs

aη (· −Ξηα) c(α) =: aη ∗η c,
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where

aη ∗η c := aη∗ ↑Ξη c, ↑Ξ c(α) =
{
c(β), α = Ξβ,
0, otherwise, (11)

denotes the upsampled convolution with upsampling matrix Ξη.
All aη, η ∈ H , are of finite support as well and their support is contained in

Ωη where

Ωη := Ω ∪
r⋃
s=1

Ξηr · · ·ΞηsΩ, η = (η1, . . . , ηr) . (12)

This fact is easily observed by noting that, if η = (η̂, j), η̂ ∈ H , j ∈ Zm, then

aη(α) =
∑
β∈Zs

aj (α−Ξη̂) aη̂ (β) =
∑
β∈Ωη̂

aj (α−Ξjβ) aη̂ (β)

is zero if α − ΞjΩη̂ ∩ Ω = {0}, that is, if α �∈ Ω + ΞjΩη̂, and (12) follows by a
simple induction. Since all the matrices in Ξ are strictly expanding, there exists
ρ ∈ (0, 1) such that

∥∥Ξ−1
j

∥∥
∞ ≤ ρ and therefore

Ξ−1
η Ωη = Ξ−1

η Ω∪
r⋃
s=1

Ξη1 · · ·Ξηs−1Ω ⊆ 1
1− ρΩ =: Ω∗, η = (η1, . . . , ηr) ∈ H,

(13)
that is, the sets Ξ−1

η Ωη are bounded uniformly with respect to η, where we can
also assume that the bounding Ω∗ is symmetric: Ω∗ = −Ω∗. As usually, this
also implies that all basic limit functions have compact support contained in Ω∗,
though, of course, theses supports can be significantly smaller than Ω∗.

Next, we observe that all the basic limit functions of a convergent scheme are
refinable, though not necessarily individually.

Theorem 1. If a and Ξ define a convergent subdivision scheme, then, for any
η ∈ H∞,

fη = fη̂ ∗ aη1 (Ξη1 ·) =
∑
α∈Zs

aη1(α) fη̂ (Ξη1 · −α) , η̂ = (η2, η3, · · ·) . (14)

Proof. The proof is a straightforward extension of the one from [8], but will be
given here for the sake of completeness. It makes use of the transition operators

Tη := Tη1 · · ·Tηr , Tjf :=
∑
α∈Zs

aj (α) f (Ξj · −α) , j ∈ Zm,

which are closely related to the subdivision operators by means of

Tjf ∗ c =
∑
β∈Zs

∑
α∈Zs

aj (α) f (Ξj (· − β)− α) c(β)

=
∑
α∈Zs

f (Ξj · −α)
∑
β∈Zs

aj (α−Ξjβ) c(β) = (f ∗ Sjc) (Ξj·)
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hence, by iterating this identity, we get that Tη and Sη are essentially adjoints
with respect to convolution:

Tηf ∗ c = (f ∗ Sηc) (Ξη·) , η ∈ H. (15)

For r ∈ N, η = (η1, η̂) ∈ H∞, and any test function ϕ we then have

Tη1fη̂ = (fη̂ ∗ Sη1δ) (Ξη1)
=

((
fη̂ −

(
ϕ ∗ SPr−1η̂δ

) (
ΞPr−1η̂

)) ∗ Sη1δ) (Ξη1) + (ϕ ∗ SPrηδ) (ΞPrη)

so that

‖Tη1fη̂ − fη‖p ≤ ‖Sη1‖p
∥∥fη̂ − (

ϕ ∗ SPr−1η̂δ
) (
ΞPr−1η̂

)∥∥
p

+ ‖fη − (ϕ ∗ SPrηδ) (ΞPrη)‖p
Since for any j ∈ Zm the operator norm ‖Sj‖p is bounded and since the sub-
division scheme is convergent, the right side of this inequality converges to zero
for r →∞ while the left hand side is even independent of r. Hence, Tη1fη̂ = fη
as claimed in (14). 	

The refinement equation (14) can be easily iterated into the form

f(η,θ) = fθ ∗ aη (Ξη) =
∑
α∈Zs

aη(α) fθ (Ξη · −α) , η ∈ H, θ ∈ H∞, (16)

where aη := Sηδ is the mask from (10). In particular, this implies that

fθ ∗ Sηc = f(η,θ) ∗ c
(
Ξ−1
η ·) . (17)

Next, we consider the convergence of multiple subdivision schemes. To that end,
we first note that as an immediate consequence of the definition (8) standard
methods, cf. [16,17], give us the following reformulation of Lemma 1.

Lemma 2. If the subdivision scheme based on Ξ and a converges then

a∗j (z) ∈
〈
zΞj − 1

〉
: 〈z − 1〉 , j ∈ Zm. (18)

Let us recall the algebraic notation used in (18). The symbol a∗ associated to
the sequence a ∈ �00

(
Z2

)
is the Laurent polynomial

a∗(z) =
∑
α∈Zs

a(α) zα, z ∈ (C \ {0})s ,

the (Laurent) ideals to be considered are

〈
zΞ − 1

〉
:=

⎧⎨⎩
s∑
j=1

fj(z)
(
zξj − 1

)
: fj ∈ Λ

⎫⎬⎭ , 〈z − 1〉 =
〈
zI − 1

〉
,



618 T. Sauer

where Λ denotes the ring of Laurent polynomials. Finally, for (Laurent) ideals
I,J ⊂ Λ, the quotient ideal is defined as

I : J = {f ∈ Λ : f · J ⊆ I} ,

cf. [2]. After that little bit of well–known classical concepts, it is worthwhile to
remember that for s = 1 and Ξ = kI, (18) means that the symbol has a factor
of the form 1 + x+ · · ·+ xk−1, so that it is nothing but the natural counterpart
of the “zero at π” condition so well known from wavelet theory.

Polynomial reproduction of the subdivision operators, aka “sum rules”, on the
other hand, is equivalent to polynomial reproduction of the individual subdivi-
sion operators which can most conveniently be expressed in terms of the quotient
ideals as well. Indeed, all subdivision operators preserve polynomials of (total)
degree up to n if and only if

a∗j (z) ∈
〈
zΞj − 1

〉n+1
: 〈z − 1〉n+1

. (19)

3 Convergence

Like in the usual stationary case, the convergence of multiple subdivision schemes
will be characterized by the existence and joint contractivity of so called differ-
ence schemes which satisfy the interlacing relationship

∇Saj = SBj∇, ∇c :=

⎡⎢⎣c (· − ε1)− c
...

c (· − εs)− c

⎤⎥⎦ , j ∈ Zm. (20)

with the backwards difference operator ∇ whose symbol is

∇∗ =

⎡⎢⎣ z1 − 1
...

zs − 1

⎤⎥⎦ =: [z − 1] .

Defining, in the same spirit, the vectors[
zΘ − 1

]
=

[
zθj − 1 : j = 1, . . . , s

]
, Θ = [θ1, . . . , θs] ∈ Zs×s,

with [z − 1] =
[
zI − 1

]
, the algebraic equivalent of (20) is

[z − 1] a∗j (z) = B∗
j (z)

[
zΞj − 1

]
, j ∈ Zm. (21)

In addition, it is well–known that (9) implies, for any j ∈ Zm, that there exists
a Laurent polynomial B∗

j that satisfies (21), or, equivalently, a finitely supported
mask Bj ∈ �00 (Zs) such that (20) holds true.
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The masks Bj , j ∈ Zm, also define a multiple subdivision scheme (B,Ξ), now
acting on vector valued data. The normalized p–joint spectral radius of these
subdivision operators is naturally defined as

ρp (B,Ξ) := lim sup
r→∞

sup
η∈Zr

m

(
(detΞη)

−1/p sup
c∈∇�p(Zs)\{0}

‖SB,ηc‖p
‖c‖p

)1/r

. (22)

Note that, as usual in the multivariate case, the norm in (22) is only taken
as an operator norm over ∇�p (Zs), which is a proper subspace of �s (Rs) for
s > 1. Moreover, the normalization term (detΞη)

−1/p is now integrated into
the definition of ρp in (22) since in the case of multiple subdivision it obviously
depends on η.

Theorem 2. The subdivision scheme based on (a,Ξ) converges if and only if
there exist difference schemes (B,Ξ) such that ρp (B,Ξ) < 1.

We split the proof of Theorem 2 into several parts, starting with the necessary
condition.

Proposition 1. If the subdivision scheme based on (a,Ξ) converges then there
exists a difference scheme (B,Ξ) such that ρp (B,Ξ) < 1.

Proof. By Lemma 1, convergence implies (9), the sum rule of order 0, hence
a∗j (z) ∈

〈
zΞj − 1

〉
: 〈z − 1〉, and thus there exist s× s–matrix valued masks Bj ,

j ∈ Zm, such that

∇Sa,j = SB,j∇, hence, ∇Sa,η = SB,η∇, η ∈ H. (23)

Then, for any c ∈ �p (Zs), any η ∈ H∞ and r ∈ N we have that

‖SB,Prη∇c‖p = ‖∇Sa,Prηc‖p
≤ ‖∇ (μp (fη ∗ c, ΞPrη)− SPrηc)‖p + ‖∇μp (fη ∗ c, ΞPrη)‖p
≤ 2 ‖μp (fη ∗ c, ΞPrη)− SPrηc‖p + ‖∇μp (fη ∗ c, ΞPrη)‖p .

A simple direct computation gives

μp (fη ∗ c, ΞPrη) = μp (fη, ΞPrη) ∗Prη c (24)

with the upsampled convolution from (11), and thus we can apply Lemma 3,
which will be proved immediately, to find that

‖μp (fη ∗ c, ΞPrη)− SPrηc‖p
= ‖(μp (fη, ΞPrη)− aPrη) ∗Prη c‖p ≤ C ‖μp (fη, ΞPrη)− SPrηδ‖p ‖∇c‖p .

Another (componentwise) application of Lemma 3 and the fact that

‖∇μ (f,Ξ)‖p ≤ (s detΞ)1/p ωp
(
f,

∥∥Ξ−1
∥∥)
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yield

‖∇μp (fη ∗ c, ΞPrη)‖p
≤ C ‖∇μp (fη, ΞPrη)‖p ‖∇c‖p ≤ C (s detΞPrη)

1/p ωp

(
fη,

∥∥∥Ξ−1
Prη

∥∥∥) ‖∇c‖p ,
so that

(detΞPrη)
−1/p ‖SB,Prη∇c‖p

≤
(
(detΞPrη)

−1/p ‖μp (fη, ΞPrη)− SPrηδ‖p + s1/pωp

(
fη,

∥∥∥Ξ−1
Prη

∥∥∥)) ‖∇c‖p
and since the terms in the parentheses on the right hand side tends to zero for
r →∞, the claim follows by the standards arguments, cf. [3,11]. 	

Lemma 3. Suppose that a ∈ �00 (Zs) is supported on Ωη and satisfies a∗η 1 = 0.
Then there exists a constant C > 0 such that for any c ∈ �p (Zs)

‖a ∗η c‖p ≤ C ‖a‖p ‖∇c‖p . (25)

Proof. In order to estimate

‖a ∗η c‖pp =
∑
α∈Zs

∣∣∣∣∣∣
∑
β∈Zs

a (α−Ξηβ) c(β)

∣∣∣∣∣∣
p

, (26)

we first note that the inner sum only runs over β ∈ Ξ−1
η (α+Ωη) ⊆ Ξ−1

η α+Ω∗.
Choose any β∗ ∈ Ξ−1

η α+Ω∗ and write c(β) as the telescoping sum

c(β) = c (β∗) +
s∑

k=1

βk−β∗
k−1∑

jk=0

c (β∗ + (jk + 1) εk)− c (β∗ + jkεk)

= c (β∗) +
s∑

k=1

βk−β∗
k−1∑

jk=0

εTk∇c (β∗ + jkεk) ,

where the sums have to be understood in the sense that
∑k

0 :=
∑0
k whenever

k < 0. This can be rewritten in slightly fancier way as

c(β) = c (β∗) +
∑
γ∈Ω∗

yTγ∇c (β + γ) , yγ ∈ {0, ε1, . . . , εs} . (27)

Now we substitute (27) into (26), take into account the fact that a ∗η 1 = 0 and
perform the usual routine estimates based on Hölder’s inequality for 1 ≤ p <∞
and q =

(
1− p−1

)−1

‖a ∗η c‖pp =
∑
α∈Zs

∣∣∣∣∣∣
∑

β∈Ξ−1
η α+Ω∗

a (α−Ξηβ)

⎛⎝c (β∗) +
∑
γ∈Ω∗

yTγ∇c (β + γ)

⎞⎠∣∣∣∣∣∣
p
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≤ (#Ω∗)2q
∑
α∈Zs

∑
β∈Ξ−1

η α+Ω∗

∑
γ∈Ω∗

|a (α−Ξηβ)|p ∣∣yTγ∇c (β + γ)
∣∣p

≤ (#Ω∗)2q
∑
γ∈Zs

∑
β∈Zs

∑
α∈Zs

|a (α)|p ‖yγ‖qp ‖∇c (β + γ)‖pp

≤ (#Ω∗)2q+1 ‖a‖pp ‖∇c‖pp ,
to obtain (25). The estimate for p = ∞ is even simpler, cf. [12]. 	

The converse of Proposition 1 can be formulated as follows.

Proposition 2. If for (a,Ξ) there exists a difference scheme (B,Ξ) such that
ρp (B,Ξ) < 1, then (a,Ξ) admits a convergent subdivision scheme.

Proof. The proof relies on a result to be found in [4,5], where it is shown that for
any expanding matrix Θ there exists a uniformly continuous cardinal function
ψ that is refinable with respect to Θ, that is, there exists a finitely supported
mask g ∈ �00 (Zs) such that ψ = (ψ ∗ g) (Θ·). Moreover, these functions – which
are closely connected B–splines – can be normalized such that ψ ∗ 1 = 1. Let ψj
denote such functions that are refinable with respect to Ξj and mask pj , j ∈ Zm.

We fix a test function g and consider, for given η ∈ H∞, the sequence

g(r) := g ∗ Sa,Prηc (ΞPrη·)
of functions. Now, with j := ηr+1,∥∥∥g(r+1) − g(r)

∥∥∥
p
≤ ∥∥ψj ∗ (

Saj − Spj

)
SPrηc

∥∥
p

+ ‖(g − ψj) ∗ SPrηc‖p +
∥∥(g − ψj) ∗ SPr+1ηc

∥∥
p
.

As usual, the fact that
(
Saj − Spj

)
1 = 0 implies that there exists a matrix mask

Hj ∈ �s×s (Zs) such that Saj − Spj = SHj∇, while [8, Lemma 4.19] also ensures
the existence of a uniformly continuous, compactly supported matrix function
G such that (g − ψj) ∗ c = Gj ∗ ∇c. Hence, with

C := max
j∈Zm

(
‖ψj‖∞

∥∥SHj

∥∥
p

+
(
1 +

∥∥SBj

∥∥
p

)
‖Gj‖p

)
we get that ∥∥∥g(r+1) − g(r)

∥∥∥
p
≤ C detΞ−1/p

Prη
‖SB,Prη∇c‖p , (28)

where the bound on the right hand side is independent of j = ηr+1 and tends
to zero for r → ∞. Hence, g(r) is a Cauchy sequence whose limit function is
fη,c = fη ∗ c. This is nothing but the convergence of the subdivision scheme. 	

On H∞ we define the natural metric by setting

[0, 1] # d (η, η′) := |η − η′| :=
∞∑
j=1

m−j ∣∣ηj − η′j∣∣ , η, η′ ∈ H∞. (29)
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Note that if η and η′ are interpreted as m–adic expansions of numbers x, x′ ∈
[0, 1], then |x− x′| is small if d (η, η′) is small, but not vice versa. With (29) in
hand, we can state that the basic limit functions depend in a “reasonable” way
on the index η ∈ H∞.

Corollary 1. If (a,Ξ) admits a convergent subdivision scheme then the map-
ping η �→ fη is continuous.

Proof. We have already shown that if (a,Ξ) admits a convergent subdivision
scheme, then

‖fη − g ∗ SPrηδ (ΞPrη)‖ ≤ C ρr

for some ρ < 1 and a constant C independent of η and r. Now, given η ∈ H∞
and ε > 0, we get for any η′ such that |η − η′| < m−r with r > logρ

ε
2C that

Prη = Prη
′ and hence

‖fη − fη′‖ ≤ ‖fη − g ∗ SPrηδ (ΞPrη)‖+ ‖fη′ − g ∗ SPrη′δ (ΞPrη)‖ ≤ 2C ρr = ε,

so that fη depends continuously on η. 	

Another well–known sufficient condition for convergence is existence and stability
of the refinable function. Recall that a function f ∈ Lp (Rs) is called stable if
there exist constants 0 < A ≤ B <∞ such that

A ‖c‖p ≤ ‖f ∗ c‖p ≤ B ‖c‖p, c ∈ �p (Zs) .

Then we have the following result.

Proposition 3. If for some 1 ≤ p ≤ ∞ the refinement equation (14) has, for
any η, a stable solution in Lp (Rs), then (a,Ξ) is Lp–convergent.

Proof. Fix η. For r ∈ N let η̂ ∈ H∞ be such that η = (Prη, η̂). Then the stability
of fη̂ and (17) with c = δ yield

(detΞPrη)
−1/p ‖μp (fη, ΞPrη)− SPrηδ‖�p

≤ A−1 (detΞPrη)
−1/p ‖fη̂ ∗ μp (fη, ΞPrη)− fη̂ ∗ SPrηδ‖Lp

= A−1 (detΞPrη)
−1/p

∥∥∥fη̂ ∗ μp (fη, ΞPrη)− fη
(
Ξ−1
Prη

)
δ
∥∥∥
p

= A−1 ‖fη̂ ∗ μp (fη, ΞPrη) (ΞPrη)− fη‖p ,

and it has been shown, for example in [3], that the term on the right hand side
of this expression converges to zero for r → ∞ since the matrices are jointly
expanding. 	


4 Canonical Factors and Further Convergence Issues

As mentioned before in Lemma 1, containment of a∗j (z) in the quotient ideal〈
zΞj − 1

〉
: 〈z − 1〉 is equivalent to Sj1 = 1, i.e., to the existence of the difference
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mask and hence a fundamental necessary condition for the convergence of a
subdivision scheme. We will consider this issue first for the case m = 1, hence
Ξ now stands for a one–element family of expanding matrices, that is, a generic
expanding matrix.

For given Ξ ∈ Zs×s, there is a simple canonical representation of this quotient
ideal. To that end, recall the Smith factorization of any integer matrix, cf. [9],
which is a decomposition Ξ = ΘΣΛ into integer matrices such that Θ,Λ are
unimodular, i.e. |detΘ| = |detΛ| = 1, and Σ is diagonal with positive entries.

Proposition 4. If Ξ = ΘΣΛ is a Smith factorization, then〈
zΞ − 1

〉
: 〈z − 1〉 =

〈
zΞ − 1, ψΞ(z)

〉
, (30)

where

ψΞ(z) :=
s∏
j=1

σj−1∑
k=0

zkθj =
s∏
j=1

zσjθj − 1
zθj − 1

, (31)

and where θj are the column vectors of Θ and σj the diagonal elements of Σ.

The proof of Proposition 4 is based on the following simple observation.

Lemma 4. If p is any s–vector of (Laurent) polynomials and Θ a unimodular
matrix, then

〈
pΘ(z)− 1

〉
= 〈p(z)− 1〉.

Proof. We consider the associated varieties Z = {z : p(z) = 1} and ZΘ ={
z : pΘ(z) = 1

}
where in the case of Laurent polynomials we would have to

replace Z and ZΘ by their intersections with (C \ {0})s, cf. [13]. For z ∈ Z we
take Θth powers of both sides of p(z) = 1 to obtain 1 = 1Θ = pΘ(z), hence
z ∈ ZΘ. Conversely, for z ∈ ZΘ we have 1 = pΘ(z) and therefore

1 = 1Θ
−1

=
(
pΘ(z)

)Θ−1

= pΘΘ
−1

(z) = p(z),

so that also z ∈ Z. Hence, the varieties agree and so do the ideals. 	

Proof. (of Proposition 4) Using the substitution y = zΘ we get〈

zΞ − 1
〉

: 〈z − 1〉 =
〈
zΘΣΛ − 1

〉
: 〈z − 1〉 =

〈
yΣΛ − 1

〉
:
〈
yΘ

−1 − 1
〉

and two applications of Lemma 4 yield〈
zΞ − 1

〉
: 〈z − 1〉 =

〈
yΣ − 1

〉
: 〈y − 1〉 . (32)

The polynomials yσj − 1, j = 1, . . . , s, form a universal Gröbner basis for the
ideal

〈
yΣ − 1

〉
, cf. [15], and since the canonical factor

ψΞ(y) =
s∏
j=1

y
σj

j − 1
yj − 1

=
s∏
j=1

σj−1∑
k=0

yk
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belongs to the quotient ideal
〈
yΣ − 1

〉
: 〈y − 1〉 and is reduced with respect to

the Gröbner (and H-) basis
{
yΣ − 1

}
, cf. [2], it follows easily that〈

yΣ − 1
〉

: 〈y − 1〉 =
〈
yΣ − 1, ψΞ(y)

〉
.

Replacing yj by zθj , this yields (31). 	


Like in the standard case with scaling matrix 2I, the presence canonical factor
ensures the convergence of the associated subdivision scheme.

Theorem 3. The subdivision scheme (a,Ξ) with a∗j = ψΞj converges in L1.

In addition, since the auto-convolution of finitely supported L1–functions is con-
tinuous, we immediately have convergence to (uniformly) continuous functions
that can be considered the counterpart of B–splines.

Corollary 2. The subdivision scheme (a,Ξ) with a∗j = ψ2
Ξj

converges to a con-
tinuous limit function.

Proof. (of Theorem 3) We first consider the case of a∗ = ψΞ for some fixed Ξ.
Since for j = 1, . . . , s

(zj − 1)ψΞ(z) =
(
zθjσj − 1

) ∏
k �=j

σk−1∑
�=0

z�θk ,

we can choose the difference symbol B for a∗ = ψΞ diagonal with

B∗
jj(z) =

∏
k �=j

σk−1∑
�=0

z�θk =
∑

α≤σ−1
αj=0

zΘα.

Since Θ is unimodular, hence nonsingular, Θα = Θβ can happen if and only if
α = β and therefore all nonzero coefficients of Bjj have value 1, hence ‖SB‖1 =
1 < detΞ.

This also implies that ‖SB,η‖1 ≤ 1 for all η ∈ H and thus the conditions of
Theorem 2 are met which allows us to conclude that (a,Ξ) indeed converges in
L1. 	


We close these observations on the canonical factors by mentioning that the
exponents in the canonical factors are representers for Zs/ΞZs. Since Λ and
Λ−1 are unimodular, and thus Zs = ΛZs = Λ−1 we have that Zs/ΞZs =(
Λ−1Zs

)
/
(
ΞΛ−1Zs

)
. In addition, the set ΞΛ−1[0, 1)s ∩ Zs = ΞΛ−1[0, 1)s ∩

Λ−1Zs contains as many integer elements as Ξ[0, 1)s∩Zs, namely |detΞ|. Hence,
the exponents

s∑
j=1

αj θj = Θα, α ≤ σ − 1,
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form a set X∗ of representers for ΞZs/Zs. Consequently, the canonical factors
can also be written as the simplest form of a mask that satisfies (9) by having
only the nonzero coefficients a(ξ) = 1, ξ ∈ X∗.

Next, we generalize the already mentioned result by Han [5] that ensures the
existence of convergent interpolatory refinable functions for arbitrary scaling
matrices to multiple subdivision, returning to general m ∈ N again. To that end,
we define

âj (ω) :=
1

detΞj
a∗

(
e−iω

)
, j ∈ Zm, (33)

so that the refinement equation (14) can be rewritten in Fourier transformed
form as

f̂η(ω) = âη1
(
Ξ−T
η1

)
f̂η̂

(
Ξ−T
η1 ω

)
, η = (η1, η̂) ,

or, more generally,

f̂(θ,η)(ω) =
�(θ)∏
j=1

âθj

(
Ξ−T
Pjθ

ω
)
f̂
(
Ξ−T
θ ω

)
, θ ∈ H, η ∈ H∞, (34)

so that the Fourier transform of the refinable function results as the infinite
product

f̂η =
∞∏
j=1

âηj

(
Ξ−T
Pjη

·
)
. (35)

The subdivision scheme (a,Ξ) is called interpolatory if all the schemes (aj , Ξj)
are interpolatory, that is

aj (0) = 1, aj (Ξj ·) = 0, j ∈ Zm. (36)

This implies that Sajc (Ξj ·) = c and thus

Sηc (Ξη·) = c. (37)

Theorem 4. Suppose that the masks (a,Ξ) satisfy the following properties:

1.
∑

α aj (·+Ξjα) = 1, j ∈ Zm,
2. âj(ω) ≥ 0, ω ∈ Rs,
3. (a,Ξ) is interpolatory,
4. âj(ω) = 0 if and only if ω ∈ 2πΞ−T

j Zs \ 2πZs.

Then there exists, for any η ∈ H∞, a finitely supported continuous refinable
function fη which is, in addition, cardinal, i.e. f(α) = δα,0, α ∈ Zs.

Recall that [5] proves the existence of masks that satisfy the assumptions of
Theorem 4 and even gives an explicit construction for these cardinal functions.

Proof. The proof is a rather straightforward extension of the one from [5] which
in turn relies on ideas from [10] and is based on studying the infinite product
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(35). We first note that any ω such that f̂η(ω) = 0 must satisfy âηj

(
Ξ−T
Pjη

ω
)

= 0

for some j, hence Ξ−T
Pjη
ω ∈ 2πΞ−T

ηj
Zs \ 2πZs. Since Ξ−T

Pjη
= Ξ−T

ηj
Ξ−T
Pj−1η

, this is

equivalent to ω ∈ 2πZs and since the normalization yields f̂η(0) = 1, we have
f̂η(ω) = 0 if and only if ω ∈ 2πZs \ {0}. Now, one proceeds as in [10] and shows
that the sequence

gn := χΞPnη [−π,π)d

n∏
j=1

âηj

(
Ξ−T
Pjη

·
)
, n ∈ N,

satisfies ĝn ≥ 0, converges to the L1–function f̂θ, and the continuous inverse
Fourier transform fθ is cardinal since f̂θ > 0 on [−π, π]s.

The final step to show that the subdivision scheme converges is also a standard
argument: Since fη is a compactly supported continuous cardinal function, it
is stable, and since therefore all refinable functions are stable, the subdivision
scheme has to converge. 	


5 Geometric Choice of Scaling Matrices

So far, the theory was general in the choice of scaling matrices and masks, and we
have already seen that there exists a variety of convergent subdivision schemes
and thus of multiply refinable functions for any choice of such scaling matrices.
We will now restrict the choice of scaling matrices to more geometric considera-
tions where we fix Ξ0 and construct Ξj, j ∈ Zm−1+1 accordingly. The basic idea
from the 2D shearlet setting, cf. [7,8], was to express the subdivision schemes
based on Ξj as the subdivision scheme for Ξ0 but with a suitable transformation
of the data before and afterwards. To that end, note that any unimodular matrix
Θ defines an invertible dilation operator DΘ on Zs by DΘc = c (Θ·). Clearly,
D−1
Θ = DΘ−1 . Now we choose a family Θj , j ∈ Zm, of such unimodular matrices

with, for simplicity, Θ0 = I, and consider the subdivision operators

Saj ,Ξjc = DΘjSãj ,Ξ0DΘ−1
j
c =

∑
α∈Zs

ãj (Θj · −Ξ0α) c
(
Θ−1
j α

)
=

∑
α∈Zs

ãj
(
Θj

(· −Θ−1
j Ξ0Θj

)
α
)
c(α)

so that Ξj := Θ−1
j Ξ0Θj and aj = DΘj ãj = ãj (Θj ·), j ∈ Zm. For example,

in the shearlet case Ξ0 was an anisotropic scaling matrix (with 4 and 2 on the
diagonal) and the unimodular transformation was set to be the shear matrix

Θ1 =
[

1 −2
0 1

]
so that Ξ1 =

[
4 −4
0 2

]
.

This particular choice allowed for a very useful property, namely that the matrix
Ξη could be always decomposed into a scaling part and a unimodular transfor-
mation part, that is

Ξη = Ξr0Γ
′
η = ΓηΞ

r
0 , η ∈ Hr, r > 0, (38)
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such that Γη and Γ ′
η are unimodular matrices. Such a system Ξ of scaling matri-

ces will be called a uniform scaling system. For the special case η = εj we thus
get

Θ−1
j Ξ0Θj = ΓjΞ0 = Ξ0Γ

′
j ,

hence
Γj = Θ−1

j Ξ0ΘjΞ
−1
0 , Γ ′

j = Ξ−1
0 Θ−1

j Ξ0Θj , j ∈ Zm. (39)

Example 1. In the shearlet case we have

Γ1 =
[
1 2
0 1

] [
4 0
0 2

] [
1 −2
0 1

] [
1
4 0
0 1

2

]
=

[
1 2
0 1

] [
1 −4
0 1

]
=

[
1 −2
0 1

]
and

Γ ′
1 =

[
1
4 0
0 1

2

] [
1 2
0 1

] [
4 0
0 2

] [
1 −2
0 1

]
=

[
1 1
0 1

] [
1 −2
0 1

]
=

[
1 −1
0 1

]
.
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Abstract. We consider the problem of finding (possibly non connected)
discrete surfaces spanning a finite set of discrete boundary curves in the
three-dimensional space and minimizing (globally) a discrete energy in-
volving mean curvature. Although we consider a fairly general class of
energies, our main focus is on the Willmore energy, i.e. the total squared
mean curvature. Most works in the literature have been devoted to the
approximation of a surface evolving by the Willmore flow and, in par-
ticular, to the approximation of the so-called Willmore surfaces, i.e., the
critical points of the Willmore energy. Our purpose is to address the deli-
cate task of approximating global minimizers of the energy under bound-
ary constraints. The main contribution of this work is to translate the
nonlinear boundary value problem into an integer linear program, using
a natural formulation involving pairs of elementary triangles chosen in
a pre-specified dictionary and allowing self-intersection. The reason for
such strategy is the well-known existence of algorithms that can compute
global minimizers of a large class of linear optimization problems, how-
ever at a significant computational and memory cost. The case of integer
linear programming is particularly delicate and usual strategies consist
in relaxing the integral constraint x ∈ {0, 1} into x ∈ [0, 1] which is easier
to handle. Our work focuses essentially on the connection between the
integer linear program and its relaxation. We prove that:

– One cannot guarantee the total unimodularity of the constraint ma-
trix, which is a sufficient condition for the global solution of the
relaxed linear program to be always integral, and therefore to be a
solution of the integer program as well;

– Furthermore, there are actually experimental evidences that, in some
cases, solving the relaxed problem yields a fractional solution.

These facts indicate that the problem cannot be tackled with classical
linear programming solvers, but only with pure integer linear solvers.
Nevertheless, due to the very specific structure of the constraint matrix
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here, we strongly believe that it should be possible in the future to de-
sign ad-hoc integer solvers that yield high-definition approximations to
solutions of several boundary value problems involving mean curvature,
in particular the Willmore boundary value problem.

Keywords: mean curvature, Willmore functional, integer linear pro-
gramming, relaxation, total unimodularity.

1 Introduction

The Willmore energy of an immersed compact oriented surface f : Σ → RN

with boundary ∂Σ is defined as

W(f) =
∫
Σ

|H |2dA+
∫
∂Σ

κ ds

where H is the mean curvature vector on Σ, κ the geodesic curvature on ∂Σ,
and dA, ds the induced area and length metrics on Σ, ∂Σ. The Willmore en-
ergy of surfaces with or without boundary plays an important role in geom-
etry, elastic membranes theory, strings theory, and image processing. Among
the many concrete optimization problems where the Willmore functional ap-
pears, let us mention for instance the modeling of biological membranes, the
design of glasses, and the smoothing of meshed surfaces in computer graphics.
The Willmore energy is the subject of a long-standing research not only due to
its relevance to some physical situations but also due to its fundamental prop-
erty of being conformal invariant, which makes it an interesting substitute to
the area functional in conformal geometry. Critical points of W with respect to
interior variations are called Willmore surfaces. They are solutions of the Euler-
Lagrange equation δW = 0 whose expression is particularly simple when N = 3:
ΔH+2H(H2−K) = 0, being K the Gauss curvature. It is known since Blaschke
and Thomsen [23] that stereographic projections of compact minimal surfaces in
S3 ⊂ R4 are always Willmore surfaces in R3. However, Pinkall exhibited in [22]
an infinite series of compact embedded Willmore surfaces that are not stereo-
graphic projections of compact embedded minimal surfaces in S3. Yet Kusner
conjectured [17] that stereographic projections of Lawson’s g-holed tori in S3

should be global minimizers of W among all genus g surfaces. This conjecture is
still open, except of course for the case g = 0 where the round sphere is known
to be the unique global minimizer.

The existence of smooth surfaces that minimize the Willmore energy spanning
a given boundary and a conormal field has been proved by Schätzle in [27].
Following the notations in [27], we consider a smooth embedded closed oriented
curve Γ ⊂ RN together with a smooth unit normal field nΓ ∈ NΓ and we denote
as ±Γ and ±nΓ their possible orientations. We assume that there exist oriented
extensions of ±Γ , ±nΓ , that is, there are compact oriented surfaces Σ−, Σ+ ⊂
RN with boundary ∂Σ± = ±Γ and conormal vector field coΣ± = ±nΓ on ∂Σ±.
We also assume that there exists a bounded open set B ⊃ Γ such that the set
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{Σ± oriented extensions of (Γ, nΓ ), Σ+ connected ,
Σ+ ∪Σ− ⊂ B, W(Σ+ ∪Σ−) < 8π}

is not empty. The condition on energy ensures that Σ+ ∪Σ− is an embedding.
It follows from [27], Corollary 1.2, that the Willmore boundary problem as-

sociated with (Γ, nΓ ) in B has a solution, i.e., there exists a compact, oriented,
connected, smooth surface Σ ⊂ B with ∂Σ = Γ , coΣ = nΓ on ∂Σ, and

W (Σ) = min{W (Σ̃), Σ̃ smooth, Σ̃ ⊂ B, ∂Σ̃ = Γ, coΣ̃ = nΓ on ∂Σ̃}
There have been many contributions to the numerical simulation of Willmore
surfaces in space dimension N = 3. Among them, Hsu, Kusner and Sullivan
have tested experimentally in [16] the validity of Kusner’s conjecture: starting
from a triangulated polyhedron in R3 that is close to a Lawson’s surface of
genus g, they let it evolve by a discrete Willmore flow using Brakke’s Surface
Evolver [6] and check that the solution obtained after convergence is W-stable.
Recent updates that Brakke brought to its program give now the possibility to
test the flow with various discrete definitions of the mean curvature. Mayer and
Simonett [19] introduce a finite difference scheme to approximate axisymmet-
ric solutions of the Willmore flow. Rusu [26] and Clarenz et al. [8] use a finite
elements approximation of the flow to compute the evolution of surfaces with
or without boundary. In both works, position and mean curvature vector are
taken as independent variables, which is also the case of the contribution by
Verdera et al. [33], where a triangulated surface with a hole in it is restored
using the following approach: by the coarea formula, the Willmore energy (actu-
ally a generalization to other curvature exponents) is replaced with the energy
of an implicit and smooth representation of the surface, and the mean curvature
term is replaced by the divergence of an unknown field that aims to represent
the normal field. Droske and Rumpf [9] propose a finite element approach to
the Willmore flow but replace the standard flow equation by its level set for-
mulation. The contribution of Dziuk [10] is twofold: it provides a finite element
approximation to the Willmore flow with or without boundary conditions that
can handle as well embedded or immersed surfaces (turning the surface problem
into a quasi-planar problem), and a consistency result showing the convergence
of both the discrete surface and the discrete Willmore energy to the continuous
surface and its energy when the approximated surface has enough regularity.
Bobenko and Schröder [4] use a difference strategy: they introduce a discrete
notion of mean curvature for triangulated surfaces computed from the circles
circumscribed to each triangle that shares with the continuous definition a few
properties, in particular the invariance with respect to the full Möbius group in
R3. This discrete definition is vertex-based and a discrete flow can be derived.
Based also on several axiomatic constraints but using a finite elements frame-
work, Wardetzky et al. [34] introduce an edge-based discrete Willmore energy
for triangulated surfaces. Olischläger and Rumpf [21] introduce a two step time
discretization of the Willmore flow that extends to the Willmore case, at least
formally, the discrete time approximation of the mean curvature motion due
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to Almgren, Taylor, and Wang [2], and Luckhaus and Sturzenhecker [18]. The
strategy consists in using the mean curvature flow to compute an approxima-
tion of the mean curvature and plugging it in a time discrete approximation of
the Willmore flow. Grzibovskis and Heintz [14], and Esedoglu et al. [11] discuss
how 4th order flows can be approximated by iterative convolution with suitable
kernels and thresholding.

While all the previous approaches yield approximations of critical points of
the Willmore energy, our motivation in this paper is to approximate global min-
imizers. This is an obviously nontrivial task due to the high nonlinearity and
nonconvexity of the energy. Yet, for the simpler area functional, Sullivan [31]
has shown with a calibration argument that the task of finding minimal surfaces
can be turned into a linear problem. Even more, when a discrete solution is
seeked among surfaces that are union of faces in a cubic grid partition of R3,
he proved that the minimization of the linear program is equivalent to solving a
minimum-cost circulation network flow problem, for which efficient codes have
been developed by Boykov and Kolmogorov [5] after Ford and Fulkerson [12].
Sullivan [31] did not provide experiments in his paper but this was done recently
by Grady [13], with applications to the segmentation of medical images.

The linear formulation that we propose here is based on two key ideas: the con-
cept of surface continuation constraints that has been pioneered by Sullivan [31]
and Grady [13], and the representation of a triangular surface using pairs of
triangles. With this representation and a suitable definition of discrete mean
curvature, we are able to turn into a linear formulation the task of minimizing
discrete representations of any functional of the form

Wϕ(Σ) =
∫
Σ

ϕ(x, n,H)dA

among discrete immersed surfaces with boundary constraints:

∂Σ = Γ, coΣ̃ = nΓ on ∂Σ.

In the expression of Wϕ(Σ), x denotes the space variable, n the normal vector
field on Σ and H the mean curvature vector. The linear problem we obtain
involves integer-valued unknowns and does not seem to admit any simple graph-
based equivalent. We will therefore discuss whether classical strategies for linear
optimization can be used.

The paper is organized as follows: in Section 2 we discuss both the chosen rep-
resentation of surfaces and the definition of discrete mean curvature. In Section 3
we present a first possible approach yielding a quadratic energy. We present in
Section 4 our linear formulation and discuss whether it can be tackled by classical
linear optimization techniques.

2 Discrete Framework

2.1 Triangular Meshes from a Set of Pre-defined Triangles

The equivalence shown by Sullivan between finding minimal surfaces and solving
a flow problem holds true for discrete surfaces defined as a connected set of cell
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faces in a cellular complex discrete representation of the space. We will consider
here polyhedral surfaces defined as union of triangles with vertices in (a finite
subset of) the cubic lattice εZ3 where ε = 1

n is the resolution scale. Not all
possible triangles are allowed but only those respecting a specified limit on the
maximal edge length. We assume that each triangle, as well as each triangle edge,
is represented twice, once for each orientation. We let I denote the collection of
oriented triangles,N = |I| its cardinality, andM the number of oriented triangle
edges. The constrained boundary is given as a contiguous oriented set of triangle
edges. The orientation of the boundary constrains the spanning surfaces since
we will allow only spanning triangles whose orientation is compatible.

In this framework, one can represent a triangular mesh as a binary indicator
vector x = {0, 1}N where 1 means that the respective triangle is present in
the mesh, 0 that it is not. Obviously, not all binary indicator vectors can be
associated with a triangular surface since the corresponding triangles may not
be contiguous. However, as discussed by Grady [13] and, in a slightly different
setting, by Sullivan [30,31], it is possible to write in a linear form the constraint
that only binary vectors that correspond to surfaces spanning the given boundary
are considered. We will see that using the same approach here turns the initial
boundary value problem into a quadratic program. Another formulation will be
necessary to get a linear problem.

2.2 Admissible Indicator Vectors: A First Attempt

To define the set of admissible indicator vectors, we first consider a relationship
between oriented triangles and oriented edges which is called incidence: a triangle
is positive incident to an edge if the edge is one of its borders and the two agree
in orientation. It is negative incident if the edge is one of its borders, but in the
opposite orientation. Otherwise it is not incident to the edge. For example, the
triangle in Figure 1 is positive incident to the edge e1, negative incident to e2
and e3 and not incident to e4.

e4
e3

e2

e1

Fig. 1. Incidence of oriented triangles and edges. e1 is positively incident to the oriented
triangle, e2 and e3 are negatively incident, and e4 is not incident to the triangle.

Being defined as above the set of N oriented triangles and their M oriented
edges, we introduce the matrix B = (bij)i∈{1,··· ,N}

j∈{1,··· ,M}
whose element bij gives

account of the incidence between triangle i and edge j. More precisely
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bij =

⎧⎪⎨⎪⎩
1 if edge i is an edge of triangle j with same orientation
−1 if edge i is an edge of triangle j with opposite orientation
0 otherwise.

The knowledge of which edges are present in the set of prescribed boundary
segments is expressed as a vector r ∈ {−1, 0, 1}M with

rj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if the oriented boundary contains the edge j
with agreeing orientation

−1 if the oriented boundary contains the edge −j
with opposing orientation

0 otherwise.

With these notations, we can now describe the equation system defining that a
vector x ∈ {0, 1}N encodes an oriented triangular mesh with the pre-specified
oriented boundary. This system has one equation for each edge. If the edge
is not contained in the given boundary, this equation expresses that, among
all triangles indicated by x that contain the edge, there are as many triangles
with same orientation as the edge as triangles with opposite orientation. If the
edge is contained in the boundary with coherent orientation, there must be
one more positive incident triangle than negative incident. If it is contained with
opposite orientation, there is one less positive than negative incident. Altogether
the constraint for edge j can be expressed as the linear equation∑

i

bij xi = rj

and the entire system as
B x = r. (1)

So far, we did not incorporate the conormal constraint. Actually not all conormal
constraints are possible, exactly like not all discrete curves can be spanned in
our framework but only union of edges of dictionary triangles, i.e. the collection
of triangles defined in the previous section that determine the possible surfaces.
For the conormal constraint, only the conormal vectors that are tangent to dic-
tionary triangles sharing an edge with the boundary curve are allowed. Then
the conormal constraint can be easily plugged into our formulation by simply
imposing the corresponding triangles to be part of the surface, see Figure 2, and
by defining accordingly a new boundary indicator vector r̃.

Denoting as J the collection of those additional triangles, the complete con-
straint reads {

B x = r̃
xj = 1, j ∈ J (2)

We discuss in the next section how discrete mean curvature can be evaluated in
this framework.
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Fig. 2. The boundary and conormal constraints can be imposed by pre-specifying suit-
able triangles to be part of the surface

2.3 Discrete Mean Curvature on Triangular Meshes

The various definitions of discrete mean curvature that have been proposed in the
literature obviously depend on the chosen discrete representations of surfaces.
Presenting and discussing all possible definitions is out of the scope of the present
paper. The important thing to know is that there is no fully consistent definition:
the pointwise convergence of mean curvature cannot be guaranteed in general
but only in specific situations [15,20]. Among the many possible definitions,
we will use the edge-based one proposed by Polthier [24] for it suits with our
framework. Recalling that, in the smooth case but also for generalized surfaces
like varifolds [29], the first variation of the area can be written in terms of the
mean curvature, the definition due to Polthier of the mean curvature vector at
an interior edge e of a simplicial surface reads

H(e) = |e| cos
θe
2
Ne (3)

where |e| is the edge-length, θe is the dihedral angle between the two triangles
adjacent to e, and Ne is the angle bisecting unit normal vector, i.e., the unit
vector collinear to the half sum of the two unit vectors normal to the adjacent
triangles (see Figure 3). We remark that this formula is a discrete counterpart
of the continuous H = κ1 + κ2 depending on the principal curvatures, which is
used in many papers for simplicity as definition of mean curvature. When the
correct continuous definition H = 1

2 (κ1 + κ2) is used, the formulas above and
hereafter should be adapted. The justification of formula (3) by Polthier [24,25]
is as follows: it is exactly the gradient at any point m ∈ e of the area of the
two triangles T1 and T2 adjacent to e, and this gradient does not depend on
the exact position of m. Indeed, one can subdivide T1, T2 in four triangles T ′

i ,
i ∈ {1, · · · , 4} having m ∈ e as a vertex and such that T1 = T ′

1 ∪ T ′
2 and

T2 = T ′
3∪T ′

4. The area of each triangle is half the product of the opposite edge’s
length and the height. Therefore, if ei is the positively oriented edge opposite to
m in the triangle T ′

i and J1, J2 the rotations in the planes of T1, T2 by π
2 , the

area gradients of T ′
i , i ∈ {1, · · · , 4} at m are 1

2J1e1, 1
2J1e2, 1

2J2e3, 1
2J2e4. The

sum is the total area gradient of T1 ∪ T2 at m and equals 1
2 (J1e + J2e), which

coincides with the formula above.
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θe

Ne

e

Fig. 3. The edge-based definition of a discrete mean curvature vector due to Polth-
ier [24] depends on the dihedral angle θe and the angle bisecting unit normal
vector Ne

As discussed by Wardetsky et al. using the Galerkin theory of approximation,
this discrete mean curvature is an integrated quantity: it scales as λ when each
space dimension is rescaled by λ. A pointwise discrete mean curvature rescaling
as 1

λ is given by (see [34])

Hpw(e) =
3|e|
Ae

cos
θe
2
Ne,

where Ae denotes the total area of the two triangles adjacent to e. The factor
3 comes from the fact that, when the mean curvatures are summed up over all
edges, the area of each triangle is counted three times, once for each edge. Then

a discrete counterpart of the energy
∫
Σ

ϕ(H) dA is given by

∑
edges e

Ae
3
ϕ(

3|e|
Ae

cos
θe
2
Ne). (4)

In particular, the edge-based total squared mean curvature is∑
edges e

3|e|2
Ae

(cos
θe
2

)2. (5)

3 A Quadratic Program for the Minimization of the
Discrete willmore Energy

Ultimately we are aiming at casting the optimization problem in a form that can
be handled by standard linear optimization software. Having in mind the frame-
work described above where a discrete surface spanning the prescribed discrete
boundary is given as a collection of oriented triangles satisfying equation (2) and
chosen among a pre-specified collection of triangles, a somewhat natural direc-
tion at first glance seems to be solving a quadratic program. Like in Section 2.1,
let us indeed denote as (xi) the collection of binary variables associated to the
“dictionary” of triangles (Ti) and define

– eij the common edge to two adjacent triangles Ti and Tj ;
– θij the corresponding dihedral angle;
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– Nij the angle bisecting unit normal;
– Aij the total area of both triangles.

Then a continuous energy of the form
∫
Σ

ϕ(x, n,H)dA can be discretized as

∑
i,j

qij xi xj (6)

with qij =

⎧⎪⎪⎨⎪⎪⎩
1
2
Aij
3
ϕ(eij , Nij ,

3|eij |
Aij

cos
θij
2
Nij) if i �= j are adjacent

ϕ̃(Ti, Ni) if i = j

0 otherwise,
where ϕ̃ allows to incorporate dependences on each triangle Ti’s position and
unit normal Ni. In particular, the discrete Willmore energy is∑

i,j

qwijxi xj (7)

with

qwij =

⎧⎨⎩
3|eij|2
2Aij

(cos
θij
2

)2 if i �= j are adjacent

0 otherwise.

Assuming that the maps ϕ and ϕ̃ are positive-valued, both energy matrices Q =
(qij) and Qw = (qwij) are symmetric matrices in R+N×N , and the minimization
of either (6) or (7) with boundary constraints turns out to be the following
quadratic program with linear and integrality constraints:

min
x

〈Qx, x〉
such that B x = r

xi = 1 ∀i ∈ J
x ∈ {0, 1}N .

We know of no solution to solve this problem efficiently due to the integrality
constraint. What is worse, even the relaxed problem where one optimizes over
x ∈ [0, 1]N is very hard to solve: terms of the form xixj with i �= j are indefinite,
so (unless Q has a dominant diagonal) the objective function is a non-convex
one.

Moreover, a solution to the relaxed problem would not be of practical use:
already for the 2D-problem of optimizing curvature energies over curves in the
plane, the respective quadratic program favors fractional solutions. The relax-
ation would therefore not be useful for solving the integer program. However, in
this case Amini et al. [3] showed that one can solve a linear program instead.
This inspired us for the major contribution of this work: to cast the problem as
an integer linear program.
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4 An Integer Linear Programming Approach

4.1 Augmented Indicator Vectors

The key idea of the proposed integer linear program is to consider additional
indicator vectors. Aside from the indicator variables xi for basic triangles, one
now also considers entries xij corresponding to pairs of adjacent triangles1. Such
a pair is called quadrangle in the following. We will denote x̂ the augmented
vector (x1, · · · , xN , · · · , xij , · · · ) where i �= j run over all indices of adjacent
triangles. The cost function can be easily written in a linear form with this
augmented vector, i.e. it reads ∑

wkx̂k

with (see the notations of the previous section)

wk =
{
qii if x̂k = xi
qij if x̂k = xij .

The major problem to overcome is how to set up a system of constraints that
guarantees consistency of the augmented vector: the indicator variable xij for
the pair of triangles i and j should be 1 if and only if both the variables xi and
xj are 1. Otherwise it should be 0. In addition, one again wants to optimize only
over indicator vectors that correspond to a triangular mesh.

To encode this in a linear constraint system, a couple of changes are necessary.
First of all, we will now have a constraint for each pair of triangle and adjacent
edge. Secondly, edges are no longer oriented. Still, the set of pre-specified indices
J implies that the orientation of the border is fixed - we still require that for
each edge of the boundary an adjacent (oriented) triangle is fixed to constrain
the conormal information.

To encode the constraint system we introduce a modified notion of incidence.
We are no longer interested in incidence of triangles and edges. Instead we now
consider the incidence of both triangles and quadrangles to pairs of triangles and
(adjacent) edges.

For convenience, we define that triangles are positive incident to a pair of edge
and triangle, whereas all quadrangles are negative incident.

We propose an incidence matrix where lines correspond to pairs (triangle,
edge) and columns to either triangles or quadrangles. The entries of this inci-
dence matrix are either the incidence of a pair (triangle, edge) with a triangle,
defined as

d((triangle k, edge e), triangle i) =

{
1 if i = k, e is an edge of triangle i
0 otherwise,

1 This strategy of doubling the variables shares some similarity with techniques in
semi-definite programming.
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or the incidence of a pair (triangle, edge) with a quadrangle, defined as

d((triangle k, edge e), quadrangle ij) =

{
−1 if i=k or j=k and i, j share e
0 otherwise.

The columns of this incidence matrix are of two types: either with only 0’s and
exactly three 1 (a column corresponding to a triangle T , whose three edges are
found at lines (T, e1), (T, e2), (T, e3)), or with only 0’s and exactly two (−1)’s (a
column corresponding to a quadrangle (T1, T2) that matches with lines (T1, e12)
and (T2, e12)).

Again, both the conormal constraints and the boundary edges can be imposed
by imposing additional triangles indexed by a collection J of indices. The general
constraint has the form∑

i

d((xk, e), xi) +
∑
i,j

d((xk, e), xij) = r′(k,e),

where the right-hand side depends whether the edge e is shared by two triangles
of the surface (and even several quadrangles in case of self-intersection), or be-
longs to the new boundary indicated by the additional triangles. If e is an inner
edge, then the sum must be zero due to our definition of d, otherwise there is
an adjacent triangle, but no adjacent quadrangle, so the right-hand side should
be 1:

r′(k,e) =

{
1 if k ∈ J , e is part of the modified boundary
0 otherwise.

To sum up, we get the following integer linear program:

min
x̂

〈w, x̂〉 (8)

such that D x̂ = r′

x̂j = 1 ∀j ∈ J
x̂i ∈ {0, 1} ∀i ∈ {1, . . . , N̂}

where N̂ is the total number of entries in x̂, namely all triangles plus all pairs
of adjacent triangles. It is worth noticing that such formulation allows triangle
surfaces with self-intersection.

4.2 On the Linear Programming Relaxation

Solving integer linear programs is an NP-complete problem, see e.g. [28, Chapter
18.1]. This implies that, to the noticeable exception of a few particular prob-
lems [28], no efficient solutions are known. As a consequence one often resorts
to solving the corresponding linear programming (LP) relaxation, i.e. one drops
the integrality constraints. In our case this means to solve the problem:
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min
x̂

〈w, x̂〉 (9)

such that D x̂ = r′

x̂j = 1 ∀j ∈ J
0 ≤ x̂i ≤ 1 ∀i ∈ {1, . . . , N̂}

or, equivalently, by suitably augmenting D and r′ in order to incorporate the
second constraint x̂j = 1, ∀j ∈ J :

min
x̂

〈w, x̂〉 such that D̂x̂ = r̂

0 ≤ x̂i ≤ 1 ∀i ∈ {1, . . . , N̂}
(10)

There are various algorithms for solving this problem, the most classical being
the simplex algorithm and several interior point algorithms. Let us now discuss
the conditions under which these relaxed solutions are also solutions of the orig-
inal integer linear program. Recalling the basics of LP-relaxation [28], the set of
admissible solutions

P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x ≤ 1}

is a polyhedron, i.e. a finite intersection of half-spaces in RN̂ . A classical result
states that minimizing solutions for the linear objective functions can be sought
among the extremal points of P only, i.e. its vertices. Denoting Pe the integral
envelope of P , that is the convex envelope of P ∩ ZN̂ , another classical result
states that P has integral vertices only (i.e. vertices with integral coordinates)
if and only if P = Pe

Since P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x̂ ≤ 1}, according to Theorem 19.3 in [28],
a sufficient condition for having P = Pe is the property of B being totally
unimodular, i.e. any square submatrix has determinant either 0, −1 or 1. Under
this condition, any extremal point of P that is a solution of

min
D̂x̂=r̂, x̂i∈[0,1]

〈w, x̂〉

has integral coordinates therefore is a solution of the original integer linear pro-
gram

min
D̂x̂=r̂, x̂i∈{0,1}

〈w, x̂〉.

Theorem 19.3 in [28] mentions an interesting characterization of total unimodu-
larity due to Paul Camion [7]: a matrix is totally unimodular if, and only if, the
sum of the entries of every Eulerian square submatrix (i.e. with even rows and
columns) is divisible by four.

Unfortunately, we can prove that, as soon as the triangle space is rich enough,
the incidence matrix D̂ does not satisfy Camion’s criterion, therefore is not
totally unimodular, and neither are the matrices for richer triangles spaces. As
a consequence, there are choices of the triangle space for which the polyhedron
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Fig. 4. A configuration in a triangle space with sufficient resolution. The associated
incidence matrix is Eulerian (see text) but does not satisfy Camion’s criterion, thus is
not totally unimodular.

P = {x̂ ∈ RN̂ , D̂x̂ = r̂, 0 ≤ x̂ ≤ 1} may have not only integral vertices, or more
precisely one cannot guarantee this property thanks to total unimodularity. This
is summarized in the following theorem.

Theorem 1. The incidence matrix associated with any triangle space where
each triangle has a large enough number of adjacent neighbors is not totally
unimodular.

Proof. We show in Figure 4 a configuration and, in Table 1, an associated square
submatrix of the incidence matrix. The sum of entries over each line and the
sum over each column are even, though the total sum of the matrix entries is
not divisible by four. By a result of Camion [7], the incidence matrix is not
totally unimodular which yields the conclusion according to Theorem 19.3 in
[28]. Clearly, any triangle space for which this configuration can occur is also
associated to an incidence matrix that is not totally unimodular. �

It is worth noticing that the previous theorem does not imply that the extremal
points of the polyhedron P are necessarily not all integral. It only states that
this cannot be guaranteed as usual by the criterion of total unimodularity.

For the sake of completeness, let us mention that there actually exist neces-
sary and sufficient conditions of integrality due to Truemper [32], or sufficient
conditions different from above due to Grady [13], but we have not been able to
exploit them so far.

We will discuss in the next section what additional informations about inte-
grality can be obtained from a few experiments that we have done using classical
solvers for addressing the relaxed linear problem.
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4.3 Testing the Relaxed Linear Problem

We have tested the relaxed formulation on a few examples at low-resolution
using the dual simplex method implemented in the CLP solver. The main reason
for using low-resolution is that the number of triangles becomes significantly
important as the resolution increases, and both the computational cost and
the memory requirements tend to become large. Another reason for working
at low-resolution is that there is no need to go high before finding a case of
non-integrality. Indeed, consider the examples in Figure 5: integral solutions are
obtained when the resolution is very low (i.e. when there is no risk to have
configurations like in Figure 4). In the last configuration, however, the optimal
solution of the relaxed problem has fractional entries. This confirms that our
initial problem cannot be addressed though the classical techniques of relaxation,
and with usual LP solvers.

4.4 On Integer Linear Programming

Our results above indicate that, necessarily, integer linear solvers [28,1] should
be used. These commonly start with solving the linear programming relaxations,
then derive further valid inequalities (called cuts) and/or apply a branch-and-
bound scheme. Due to the small number of fractional values that we have ob-
served in our experiments, it is quite likely that the derivation of a few cuts only
would give integral solutions. However, we did not test this so far because of
the running times of this approach: in cases where we get fractional solutions
the dual simplex method often needs as long as two weeks and up to 12 GB
memory! From experience with other linear programming problems we consider
it likely that the interior point methods implemented in commercial solvers will
be much faster here (we expect less than a day). At the same time, we expect
the memory consumption to be considerably higher, so the method would most
probably be unusable in practice.

We strongly believe that a specific integer linear solver should be developed
rather than using general implementations. It is well known that, for a few prob-
lems like the knapsack problem, see Chapter 24.6 of [28], their specific structure
gives rise to ad-hoc efficient approaches. Recalling that our incidence matrix is
very sparse and well structured (the nonzero entries of each column are either
exactly two (−1), or exactly three 1) we strongly believe that an efficient integer
solver can be developed and our approach can be amenable to higher-resolution
results in the near future.

5 Conclusion

We have shown that the minimization under boundary constraints of mean cur-
vature based energies over surfaces, and in particular the Willmore energy, can
be cast as an integer linear program. Unfortunately, this integer program is
not equivalent to its relaxation so the classical LP algorithms offer no warranty
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Fig. 5. A series of experiments (the result and the mesh edges) with increasing resolu-
tion of the triangle space (and various boundary constraints). An integral solution of the
relaxed problem is obtained by a standard LP-solver in both top cases. As for the last
case, the triangle space resolution is now large enough for having configurations similar to
the counterexample of Figure 4. And indeed, an optimal solution is found for the relaxed
problem that is not integral. The mesh on the bottom-right shows actually two nested
semi-spheres whose triangles have, at least for a few of them, non binary labels.
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that the integer optimal solution will be found. This implies that pure integer
linear algorithms must be used, which are in general much more involved. We
believe however that the particular structure of the problem paves the way to a
dedicated algorithm that would provide high-resolution global minimizers of the
Willmore boundary problem and generalizations. This is the purpose of future
research.
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Abstract. The main aim of this paper is to construct a new genera-
ting function for the generalized q-Bernstein-type basis polynomials and
to derive fundamental properties of these polynomials. We establish re-
lations between the generalized q-Bernstein-type basis polynomials, the
Bernoulli polynomials of higher-order and the generalized Stirling num-
bers of the second kind. By applying Mellin transform to this generating
function, we also construct an interpolating function, which interpolates
the generalized q-Bernstein-type basis polynomials at negative integers.
Furthermore, we give applications on the generalized q-Bernstein-type
basis polynomials and the Bézier curves.

Keywords: Bernstein basis polynomials, Generating function, q- Bern-
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numbers of the second kind, interpolating function, Mellin transform,
Gamma function, beta function, Bézier curves.

1 Introduction

The Bernstein basis polynomials have many applications in computer-aided geo-
metric design, in approximations of functions, in statistics, in numerical analysis,
in q-analysis and in the solution of differential equations and in the other fields.
The q-Bernstein basis polynomials were introduced by Phillips [21] and also by
Lewanowicz and Woźny [15,16]. Recently, many papers have been published on
the (q-) Bernstein basis polynomials and other related subjects, cf. [1]-[34], and
see also the references cited in each of these earlier works.

It is also very well known that many kinds of the Bernstein-type basis polyno-
mials have been defined in various different ways. Many of the known identities
for the Bernstein basis polynomials are currently derived in the usual way, using
either the binomial theorem, the binomial distribution and tricky algebraic ma-
nipulations. In this paper, our main motivations are to introduce a generating
function for the q-Bernstein basis polynomials and to give main properties of
these polynomials. We find functional equations and differential equations for
the generating functions of the Stirling numbers of the second kind and the q-
Bernstein basis polynomials. Using these equations, we give some properties for
these numbers and polynomials.
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We summarize our paper results as follows. In Section 2, we give basic prop-
erties for the Bernstein basis polynomials and Bernoulli polynomials. In Section
3, we give some relations related to the Stirling numbers of the second kind
and their generating function. In Section 4, we define generating function for
the q-Bernstein-type basis polynomials. We give fundamental properties of these
polynomials. In Section 5, by using the partial derivative of the generating func-
tion, we give a recursive relation and the derivative of the q-Bernstein-type basis
polynomials. In Section 6, we give relations between the generalized Bernoulli
polynomials, the generalized Stirling numbers of the second kind and the q-
Bernstein-type basis polynomials. In Section 7, we integral representation of
the q-Bernstein-type basis polynomials. In Section 8, by applying Mellin trans-
form to the generating function of the q-Bernstein-type basis polynomials, we
construct a complex rational function, related to q-calculus, beta function, and
gamma function, which interpolates the q-Bernstein-type polynomials at nega-
tive integers. These values are given explicitly in Theorem 12. In Section 9, we
propose a modified version of the Bézier curves based on the q-Bernstein-type
basis polynomials.

2 Basic Properties of the Classical Bernstein Basis
Polynomials, Bernoulli Polynomials and Stirling
Numbers of the Second Kind

Here, we collect some well-known definitions and formulas for the Bernstein basis
polynomials and the Bernoulli polynomials. It is well known that the Bernstein
polynomials play very important role in theory of the Bézier curves, which are
of fundamental importance for computer aided geometric design.

Let n be a natural number. Let f be a function on [0, 1]. The Bernstein
operator Tnf is defined by

Tnf(x) =
n∑
j=0

f

(
j

n

)
Bnj (x),

where 0 ≤ x ≤ 1 and Bnj (x) denotes the Bernstein basis polynomials of degree
n, which are defined by

Bnj (x) =
(
n
j

)
xj(1− x)n−j , (1)

where (
n
j

)
=

n!
j! (n− j)! .

If f : [0, 1] → C is a continuous function, the sequence of the Bernstein basis
polynomials Tnf(x) converges uniformly to f on [0, 1], cf. ([1]-[31]), and see also
the references cited in each of these earlier works.
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The Bernstein polynomials are symmetric in the sense that

Bnj (x) = Bnn−j(1 − x).
These basis polynomials also satisfy

Bnj (0) = δj,0

and

Bnj (1) = δj,n,

where δj,n is a Kronecker delta. For 0 ≤ x ≤ 1, the Bernstein basis polynomials
are bounded on the interval [0, 1]:

0 ≤ Bnj (x) ≤ 1.

The Bernoulli polynomials of higher-order, B
(k)
n (x) are defined by means of the

following generating function

f(k)(x, t) = etx
(

t

et − 1

)k
=

∞∑
n=0

B(k)
n (x)

tn

n!
. (2)

The polynomials B
(k)
n (x) are used for many branches of Mathematics, for exam-

ple in finite differences, in number theory, and as the coefficients in all the usual
central difference formulas for interpolation.

Note that taking k = 1 in (2), B
(1)
n (x) denote the usual Bernoulli polynomials,

see [17,25,27].
The Stirling numbers of the second kind, S(n, k) are defined by means of the

generating function cf. ([5,19,26])

FS(t, k) =
(−1)k

k!
(1− et)k =

∞∑
n=0

S(n, k)
tn

n!
. (3)

These numbers play an important role in many branches of Mathematics, for
example, in combinatorics, in number theory, in discrete probability distribu-
tions for finding higher order moments. In [12], Joarder et al. demonstrated the
application of the Stirling numbers of the second kind in calculating moments of
some discrete distributions, which are the binomial distribution, the geometric
distribution and the negative binomial distribution. These numbers satisfy the
following relations:

Let n be a nonnegative integer. Let An = {1, 2, · · · , n}. S(n, k) denotes the
number of partitions of An into k blocks. For positive integer n,

S(n, 0) = 0.

For nonnegative integer n,

S(n, 1) = S(n, n) = 1,

and

S(n, n− 1) =
(
n
2

)
.
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3 Some Properties of the Generalized Stirling Numbers
of the Second Kind

Because of many applications of the Stirling numbers, for example in combina-
torics, statistics and many branches of Applied Mathematics and Mathematical
Physics, there are many generalizations and extensions of these numbers.

Toscano [33], and also Cakic at al. [5] defined the generalized Stirling numbers
of the second kind, S(n, k; y) by means of the generating function

FS(y, t, k) =
(−1)k

k!
eyt(1− et)k =

∞∑
n=0

S(n, k; y)
tn

n!
. (4)

Observe that if y = 0, then it is easy to see that (4) reduces to (3).
Using equation (4), we obtain

(−1)k

k!

( ∞∑
n=0

yn
tn

n!

)⎛⎝ k∑
j=0

(
k
j

)
(−1)k−j

∞∑
n=0

jn
tn

n!

⎞⎠ =
∞∑
n=0

S(n, k; y)
tn

n!
.

By using the Cauchy product in the above equation, after some elementary
calculations, we arrive at the following theorem:

Theorem 1. The following identity holds:

S(n, k; y) =
1
k!

n∑
m=0

(
n
m

)
yn

k∑
j=0

(
k
j

)
(−1)j

(
j

y

)m
,

where

0m =
{

0 if m �= 0,
1 if m = 0.

Remark 1. Substituting y = 0 into Theorem 1, we have

S(n, k; 0) = S (n, k) .

By (4) and (3), we get the following functional equation:

FS(y, t, k) = eytFS(t, k). (5)

By the above functional equation, we obtain( ∞∑
n=0

S(n, k)
tn

n!

)( ∞∑
n=0

yn
tn

n!

)
=

∞∑
n=0

S(n, k; y)
tn

n!
.

By using Cauchy product in the above equation, we arrive at the following result.



Interpolation Function of Generalized q−Bernstein-Type Basis Polynomials 651

Theorem 2. The following identity holds:

S(n, k; y) =
n∑
j=0

(
n
j

)
yn−jS(j, k).

Remark 2. S(n, k; y) is a polynomial of degree n.

Differentiating (4) with respect to x and t, we obtain the following partial dif-
ferential equations:

∂

∂y
FS(y, t, k) = tFS(y, t, k),

and

∂

∂t
FS(y, t, k) = yFS(y, t, k) + FS(y + 1, t, k − 1).

By using the above equations, we obtain the following theorem:

Theorem 3. The following derivative and recurrence relation hold, respectively:

d

dy
S(n, k; y) = nS(n− 1, k; y),

and

S(n, k; y) = yS(n− 1, k; y) + S(n− 1, k − 1; y + 1).

The Cauchy-type integral of the S(n, k; y) is given by

S(n, k; y) =
n!
k!

1
2πi

∫
C
eyt(et − 1)k

dt

tn+1
, (6)

where C is a small circle around the origin and the integration is in positive
direction.

Remark 3. Substituting y = 0 into (6), we have integral representation of the
Stirling numbers of the second kind. Our method is similar to that of Temme’s
[32].

4 A Generating Function for the Generalized
q-Bernstein-Type Basis Polynomials

The aim of this section is to construct a generating function for the q-Bernstein-
type basis polynomials. We use the following notation:

[x : q] =
1− qx
1− q .



652 Y. Simsek

Observe that

lim
q→1

[x : q] = x.

If q ∈ C, we assume that | q |< 1. If q ∈ R, we assume that 0 < q < 1.
We define a generating function for the generalized q-Bernstein-type basis

polynomials, bnk(x + y; q) as follows:

Fk,q(t, x; y) =
1
k!
tk[x : q]ke[1−x+y:q]t =

∞∑
n=0

bnk(x + y; q)
tn

n!
, (7)

where x, y ∈ [0, 1] and k is a nonnegative integer.
By using the Taylor series for e[1−x+y:q]t in (7), we obtain

1
k!

∞∑
n=0

[x : q]k [1− x+ y : q]n
tn+k

n!
=

∞∑
n=0

bnk (x+ y; q)
tn

n!
.

By comparing the coefficients of tn on the both sides of the above equation, we
deduce one of the main theorems of this paper as follows:

Theorem 4. Let x, y ∈ [0, 1]. Let k and n be nonnegative integers. If n ≥ k,
then

bnk (x+ y; q) =
(
n
k

)
[x : q]k [1− x+ y : q]n−k .

Remark 4. The polynomials bnk (x + y; q) are called the q-Bernstein-type basis
polynomials.

lim
q→1

Fk,q(t, x; y) = Fk(t, x)eyt =
∞∑
n=0

bnk (x+ y; 1)
tn

n!
, (8)

where

lim
q→1

bnk (x+ y; q) =
(
n
k

)
xk(1− x+ y)n−k.

If we set y = 0 in (7), we obtain a result given by Simsek at al. [30, Eq-(3.8)]:

Fk,q(t, x) =
1
k!
tk[x : q]ke[1−x:q]t =

∞∑
n=0

Yn(k, x; q)
tn

n!
(9)

so that obviously (cf. [1,30]).

lim
q→1

Fk,q(t, x) =
1
k!
tkxke(1−x)t =

∞∑
n=k

Bnk (x)
tn

n!
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That is

lim
q → 1
y = 0

bnk(x + y; q) = Bnk (x) ,

where Bnk (x) denotes the Bernstein basis polynomials, cf. [1,3,4], [6]-[16],
[13]-[24], [28]-[31], [34].

By using (7) and (9), we obtain the following functional equation:

Fk,q(t, x; y) = e(q
1−x[y:q]t)Fk,q(t, x). (10)

By using the Taylor series for e[1−x+y:q]t in (10), we get

∞∑
n=0

bnk (x+ y; q)
tn

n!
=

∞∑
n=0

Yn(k, x; q)
tn

n!

∞∑
n=0

(
q1−x [y : q]

)n
tn

n!
.

By using the Cauchy product in the above equation, we deduce in the next
theorem a relationship between bnk (x+ y; q) and Yn(k, x; q).

Theorem 5. Let x, y ∈ [0, 1]. Let k and n be nonnegative integers with n ≥ k.
Then

bnk (x+ y; q) =
n∑
j=0

(
n
j

)(
q1−x [y : q]

)n−j
Yj(k, x; q),

where

0n =
{

0 if n �= 0,
1 if n = 0.

Let f be a continuous function on [0, 1]. Then we define q-Bernstein-type oper-
ator, Tn,q (f(x)) as follows:

Tn,q (f(x)) =
n∑
k=0

f

(
k

n

)
bnk (x+ y; q), (11)

where x, y ∈ [0, 1], k and n are positive integers with n ≥ k.
Setting f(x) = x in (11), then we have

Tn,q (x) =
n∑
k=0

k

n

(
n
k

)
[x : q]k [1− x+ y : q]n−k .

From the above, we get

Tn,q (x) = [x : q]
n∑
k=0

bn−1
k−1(x+ y; q).
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Setting f(x) = x2 in (11), we get

Tn,q

(
x2

)
=

[x : q]
n

n∑
k=0

kbn−1
k−1(x + y; q).

We define the following functional equation, which is a fundamental in subdi-
vision property for the q-Bernstein basis functions:

Fk,q(t, zx; y) = Fk,q([z] t, x; y)e[1−z+y]t,
where x, y, z ∈ [0, 1].

By using the above equation and (7), after some calculations, we arrive at the
following theorem:

Theorem 6. The following identity holds:

bnj (xz + y; q) =
n∑
k=j

bkj (x+ y; q)bnk (z + y; q).

Remark 5. We note that our method is similar to that of [29]. Substituting y = 0,
and q → 1 into Theorem 6, we have

Bnj (xz) =
n∑
k=j

Bkj (x)B
n
k (z). (12)

The above identity is fundamental in subdivision property for the Bernstein basis
functions, cf. [29,7,8,9].

5 Recurrence Relations

By using the partial derivative of a function Fk,q(t, x; y) in (7) with respect to
t, we have the following partial derivative equation:

∂

∂t
Fk,q(t, x; y) = [x : q]Fk−1,q(t, x; y) + [1− x+ y : q]Fk,q(t, x; y). (13)

We are now ready to give a recurrence relation on the q-Bernstein-type basis
polynomials by (13) and (7).

Theorem 7. Let x, y ∈ [0, 1]. Let k and n be nonnegative integers with n ≥ k.
The following recurrence relation holds:

bnk (x+ y; q) = [x : q]bn−1
k−1(x + y; q) + [1− x+ y : q] bn−1

k (x+ y; q). (14)

By using the partial derivative of a function Fk,q(t, x; y) in (7) with respect to
x, we have

∂

∂x
Fk,q(t, x; y) =

t log(q)
1− q

(
q1−x+yFk,q(t, x; y)− qxFk−1,q(t, x; y)

)
.

By using the above differential equation, we arrive at the following theorem.
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Theorem 8. Let x, y ∈ [0, 1]. Let k and n be nonnegative integers with n ≥ k.
We have

∂

∂x
bnk (x+ y; q) =

log(qn)
q − 1

(
qxbn−1

k−1(x+ y; q)− q1−x+ybn−1
k (x+ y; q)

)
. (15)

Remark 6. If q → 1 and y = 0, then (14) reduces to a recursive relation on the
Bernstein basis polynomials

Bnk (x) = (1− x)Bn−1
k (x) + xBn−1

k−1 (x)

and (15) reduces to derivative of the Bernstein basis polynomials

d

dx
Bnk (x) = n

(
Bn−1
k−1 (x)− Bn−1

k (x)
)
.

By the umbral calculus convention in (7), we get

([x : q] t)k

k!
= e(bk(x+y;q)−[1−x+y:q])t,

where (bk(x+ y; q))n is replaced by bnk (x+ y; q). Thus we have

([x : q] t)k

k!
=

∞∑
n=0

(bk(x+ y; q)− [1− x+ y : q])n
tn

n!
.

From the above equation, we deduce the following theorem.

Theorem 9. Let x, y ∈ [0, 1]. Let k and n be nonnegative integers. If n = k,
then

[x : q]n =
n∑
j=0

(
n
j

)
(−1)n−j [1− x+ y : q]n−j bjk(x+ y; q).

If n > k, then
n∑

j=k+1

(
n
j

)
(−1)n−j [1− x+ y : q]n−j bjk(x+ y; q) = 0.

6 Relations between the Polynomials bn
k(x + y; q),

B(v)
n (x) and S(n, k; y)

By using equations (2), (4) and (8), we obtain the following functional equations:

Fk,1(t, x; y) = xkf(k)(1− x, t)FS(y, t, k).

By using the above equation, we have
∞∑
n=0

bnk (x+ y; 1)
tn

n!
= xk

∞∑
n=0

B(k)
n (1− x) t

n

n!

∞∑
n=0

S(n, k; y)
tn

n!
.
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By using the Cauchy product in the above equation, after some calculations, we
find a relation between bnk (x+y; 1), B

(k)
n (x), and S(n, k; y) given in the following

theorem:

Theorem 10. The following identity holds:

bnk (x+ y; 1) = xk
n∑
j=k

(
n
j

)
S(j, k; y)B(k)

n−j(1− x),

where B
(k)
j (x) and S(n, k) denote the classical higher-order Bernoulli polynomi-

als and the Stirling numbers of the second kind, respectively.

Remark 7. The generating function Fk,q(t, x; y) is related to the generalized
Bernoulli polynomials and the generalized Stirling numbers of the second kind.

Theorem 11. The following identity holds:
n∑
j=k

(
n
j

)
q(1−x)j [y : q]j Yn−j(k, x; q)

= [x : q]k
n∑
j=k

(
n
j

)
B

(k)
n−j ([1− x : q])S(j, k; y),

where

0j =
{

0 if j �= 0,
1 if j = 0.

Remark 8. Substituting y = 0 into Theorem 11, then we obtain

Yn(k, x; q) = [x : q]k
n∑
j=k

(
n
j

)
B

(k)
n−j ([1− x : q])S(j, k)

cf. [30, Theorem 4.1].

Proof (of Theorem 11). By using equations (2), (3), (10) and Theorem 5, we
obtain

∞∑
n=0

Yn(k, x; q)
tn

n!

∞∑
n=0

(
q1−x [y : q]

)n tn
n!

= [x : q]k
∞∑
n=0

⎛⎝ n∑
j=0

(
n
j

)
B

(k)
n−j ([1− x : q])S(j, k; y)

⎞⎠ tn

n!
.

By using the Cauchy product in the above equation, we get

∞∑
n=0

⎛⎝ n∑
j=0

(
n
j

)(
q1−x [y : q]

)j
Yn−j(k, x; q)

⎞⎠ tn

n!

= [x : q]k
∞∑
n=0

⎛⎝ n∑
j=0

(
n
j

)
B

(k)
n−j ([1− x : q])S(j, k; y)

⎞⎠ tn

n!
.
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By comparing coefficients of tn in the both sides of the above, we arrive at the
result of the theorem. �

We note that recently many researcher have studied on the generating functions
of the special numbers and polynomials, cf. [1]-[34]. Phillips [21] constructed the
q-Bernstein basis polynomials. He gave many applications of these polynomials,
cf. [21,22,23]. Lewanowicz and Woźny [15,16] gave explicitly the dual basis func-
tions for the generalized q-Bernstein basis polynomials in terms of big q-Jacobi
polynomials. They introduced many identities related to the dual generalized
Bernstein basis polynomials and q-Hahn polynomials. Woźny and Lewanowicz
[34] proposed a novel approach to the problem of multi-degree reduction of Bézier
triangular patches with prescribed boundary control points. Their solution can
be given in terms of bivariate dual discrete Bernstein polynomials. Goldman
[7,8,9] gave many applications on the Bernstein basis polynomials and their gen-
erating functions and also Bézier curves. Busé and Goldman [4] gave division
algorithms for Bernstein polynomials. They gave three division algorithms for
the univariate Bernstein polynomials. Gould [10] obtained different relation be-
tween the Bernstein polynomials, generalized Bernoulli polynomials and the sec-
ond kind Stirling numbers. Oruc and Tuncer [19] also found the relation between
the q-Bernstein polynomials and the q-Stirling numbers of the second kind.

7 Integral Representation of the Polynomials bn
k(x + y; q)

By using the same method as Lopez and Temme [17], we give integral represen-
tation of bnk (x+ y; q) as follows:

bnk (x+ y; q) =
n!
2πi

∫
C
Fk,q(t, x; y) dt

tn+1
, (16)

where C is a circle around the origin and the integration is in positive direction.
We note that using (7), (16) and Cauchy residue theorem, integral representation
of the polynomials bnk (x+ y; q) is easily obtained.

8 Interpolation Function of the q-Bernstein-Type Basis
Polynomials

In this section, by applying the Mellin transform to (7), we construct a complex
rational function whose values at negative integers are the polynomials bnk(x +
y; q). These values are given explicitly in Theorem 12. It is known that the
generating function Fk,q(t, x; y), given by (7), depends on integer parameter k,
on real variable x and y and on complex variable q and t. Therefore the properties
of this function are closely related to these variables and parameter. By using
this function, many properties of the q-Bernstein-type basis polynomials have
been given in the above sections.
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Let z ∈ C. By applying the Mellin transform to (7), we get

gq(z, k;x, y) =
1

Γ (z)

∫ ∞

0

tz−1Fk,q(−t, x; y)dt,

where Γ (z) is the Euler gamma function. By using the above equation, we define
interpolation function of the polynomials, bnk (x+ y; q) as follows:

Definition 1. Let z ∈ C and y − x �= 1. Then we define

gq(z, k;x, y) = (−1)k
Γ (z + k)

Γ (k + 1)Γ (z)
[x : q]k

[1− x+ y : q]z+k
, (17)

or for k > 0 and %(z) > 0, we define

gq(z, k;x, y) = (−1)k
1

kB(z, k)
[x : q]k

[1− x+ y : q]z+k
,

where B(z, k) denotes the beta function.

Remark 9. Observe that if y − x = 1, then

gq(z, k; y − 1, y) = ∞.
For x = y − 1, the function gq(z, k;x, y) is not analytic. If y = 0, then (17)
reduces to

lim
q→1

gq(z, k;x, 0) = (−1)k
Γ (z + k)

Γ (k + 1)Γ (z)
xk

(1− x)z+k
,

where z ∈ C and x �= 1. This function gives us an interpolating function for the
Bernstein basis polynomials at negative integers.

Theorem 12. Let n and k be positive integers with k ≤ n and x, y ∈ [0, 1]. The
following identity holds:

gq(−n, k;x, y) = bnk (x+ y; q).

Proof. We assume that n and k are positive integers with k ≤ n. It is well-known
that the Gamma function has simple poles at z = −n = 0,−1,−2,−3, · · ·. The
residue of Γ (z) is

Res(Γ (z),−n) =
(−1)n

n!
. (18)

By substituting z = −n into (17) and using (18), we obtain the desired result. �

Remark 10. If we replace z by negative integers, the meromorphic function
gq(z, k;x, y) interpolates the polynomials bnk (x + y; q). Substituting y = 0 into
Theorem 12, one can obtain the following result:

lim
q→1

gq(−n, k;x, 0) = Bnk (x).
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9 Applications

The Bernstein basis polynomials are used for important applications in many
branches of Mathematics and the other sciences, for instance, in computer-aided
geometric design, in approximation theory, in probability theory, in statistic the-
ory, in number theory, in the solution of the differential equations, in numerical
analysis, constructing Bézier curves, in q-calculus, in operator theory and appli-
cations in computer graphics, cf. [1,3,4], [6]-[16], [13]-[24], [28]-[31], [34].

The Bernstein basis polynomials are used to construct Bézier curves. We now
give some remarks on the Bézier curves. In [14], Laurent and Sablonnière pub-
lished an interesting paper on Pierre Bézier and also on Bézier curvs. According
to Sederberg [24], engineers used the Bézier curves in terms of the center of
mass of a set of point masses. For example, take into consideration the masses
m0, m1, m2, and m3, which are located at points P0, P1, P2 and P3, respectively.
The center of mass of these four point masses is given by

P =
m0P0 +m1P1 +m2P2 +m3P3

m0 +m1 +m2 +m3
,

where each mass varies as a function of x cf. [24]. That is m0 = (1 − x)3,
m1 = 3x(1−x)2, m2 = 3x2(1−x) and m3 = x3. For each value of x, the masses
assume different weights and their center of mass changes continuously. As x
varies between 0 and 1, a curve is swept out by the center of masses. This curve
is a cubic Bézier curve. Observe that, for any value of x, this Bézier curve is
given by the following relation:

P = m0P0 +m1P1 +m2P2 +m3P3,

where m0 +m1 +m2 +m3 ≡ 1 cf. [24]. For k ∈ {0, 1, 2, 3}, the masses mk and
the points Pk are called blending functions and control points (Bézier points),
respectively. The blending functions, in the case of the Bézier curves, are known
as the Bernstein basis polynomials cf. [24]. The Bézier curves are used in com-
puter graphics and related fields and also in the time domain, particularly in
animation and interface design, cf. [4,18,24].

By using control points P0, P1, P2,· · ·, Pn, the Bézier curve of degree n is
defined by

P(x) =
n∑
k=0

PkB
n
k (x), (19)

where x ∈ [0, 1] and Bnk (x) denote the Bernstein basis polynomials, cf. [4,18,24].
In [18], Morin and Goldman studied the Bézier subdivision, generating piece-

wise linear approximations of the Bézier curves that converge to the original
Bézier curve. Discrete derivatives of arbitrary order can be associated with these
piecewise linear functions by divided differences. They established the conver-
gence of these discrete derivatives to the corresponding continuous derivatives of
the initial Bézier curve. They also showed that the control polygons generated by
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subdivision and degree elevation provide not only an approximation to a Bézier
curve, but also approximations of its derivatives of arbitrary order.

Lewanowicz and Woźny [16] constructed a generalized Bézier representation
in terms of the generalized q-Bernstein basis polynomials. They gave many apli-
cations related to these polynomials and the Bézier representation.

We may modify the Bézier curves in (19) by introducing the polynomials
bnk (x+ y; q) as follows:

Pq(x, y) =
n∑
k=0

Pkb
n
k (x+ y; q),

with control points Pk, k ∈ {0, 1, · · · , n}.
For example, for n = 1, then

Pq(x, y) = p0b
1
0(x+ y; q) + p1b

1
1(x+ y; q). (20)

That is,

Pq(x, y) = p0[x : q] + p1 [1− x+ y : q]

is a modified Bézier curve with control points p0 and p1.

Remark 11. If y = 0 and q → 1, then (20) reduces to (19).

Acknowledgement. The author would like to thank the referees for valuable
comments and suggestions which improve this present paper. The author is sup-
ported by the research fund of Akdeniz University.
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Abstract. The aim of our work is to specify and develop a geometric
modeler, based on the formalism of iterated function systems with the
following objectives: access to a new universe of original, various, aes-
thetic shapes, modeling of conventional shapes (smooth surfaces, solids)
and unconventional shapes (rough surfaces, porous solids) by defining
and controlling the relief (surface state) and lacunarity (size and distri-
bution of holes). In this context we intend to develop differential calculus
tools for fractal curves and surfaces defined by IFS. Using local fractional
derivatives, we show that, even if most fractal curves are nowhere dif-
ferentiable, they admit a left and right half-tangents, what gives us an
additional parameter to characterize shapes.

Keywords: fractal curve, fractal surface, iterated function systems, dif-
ferentiability.

1 Introduction

Our long-term goal is to develop a geometric modeler based on iterative process
and fractal geometry to allow designers to access a new universe of shapes.
Special properties of fractal structures have led us to new concepts inexistent
for classical geometric objects. Fractal curves and surfaces, for example, can have
very different aspects and very different kinds of roughness. This vast variety of
shapes is not accessible with polynomial curves and surfaces precisely because
of their differentiability.

To control these aspects we are led to use the concept of “geometric tex-
ture” [2]. This “geometric texture” is very tightly coupled with differentiability
of curves and surfaces. We study and attempt to characterize differential behav-
ior from a geometric point of view by means of local fractional derivative [3].

Of course, other works were performed to study differential properties of frac-
tal curves and surfaces. Kolwankar and Gangal [12,11] applied the fractional

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 663–680, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

dmitry.sokolov@loria.fr
christian.gentil@u-bourgogne.fr
Hicham.Bensoudane@u-bourgogne.fr


664 D. Sokolov, C. Gentil, and H. Bensoudane

calculus to study real-valued functions with few examples of fractal curves. Us-
ing their results the authors are able to describe roughness of a curve with the
Hölder exponent.

Cochran has proposed a method of calculating normals to a fractal surface [6].
Scealy [16] identifies C1 fractal curves. However, these works are applicable in
the cases where derivatives exist and do not permit to characterize rough shapes.

In this paper we present a general approach to study differential properties of
fractal curves and surfaces. We are using BC-IFS (Boundary Controled Iterated
Function System) [19] to construct fractal structures. Then we are using this
representation to study necessary and sufficient conditions of differentiability.

In order to simplify the presentation we show in detail how it can be done for
the family of local corner cutting curves. Differential behaviour of these curves
was studied before by De Boor [5], Gregory [8] and Paluszny [14], the cited
authors have found necessary conditions of differentiability. However, BC-IFS
approach allows to describe a larger family of curves, and therefore while we
find the same necessary conditions for the set of curves given by De Boor, we
also study other regions of the convergence domain. A cartography of domains is
presented in late sections of the paper. Finally, we show that necessary conditions
are also sufficient ones.

The rest of the paper is organized as follows:

– Section 2 provides necessary background needed to introduce BC-IFS in
Section 3.

– Section 4 studies necessary conditions of differentiability and presents car-
tography of the convergence domain

– Section 5 shows that necessary conditions are also sufficient ones
– Section 6 introduces a new descriptor of roughness of a fractal shape.

2 Background

2.1 IFS

Given a complete metric space (E, d), where d is the associated metric, an IFS
(Iterated Function System) is a finite set of contractive operators T = {Ti}N−1

i=0

acting on points of E. Each Ti : E → E induces Ti : H(E) → H(E), i.e. operators
acting in the space H(E) of non-empty compact subsets of E.

Thus it is possible to define so-called Hutchinson operator T : H(E) → H(E)
as a union of operators Ti. The Hutchinson operator maps a non-empty compact

K ⊂ E onto
N−1⋃
i=0

Ti(K). The operators Ti are contractive in the space (E, d),

therefore the induced operators are contracting in the space (H(E), dH(E)),
where dH(E) is the Hausdorff metric [1]. Of course, the Hutchinson operator
is also contractive in (H(E), dH(E)).

The contraction theorem [9] states that there is a unique compact A such as
T(A) = A, namely the fixed point, noted A(T). Moreover, the fixed point A may
be found as a limit A = lim

n→∞
Tn(K), where the limit does not depend on the
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choice of the “seed” compactK. The top line of Figure 2 provides an illustration.
The underlying IFS is composed of four transformations:

T0

(
x
y

)
=

[
0.85 0.04
−0.04 0.85

] [
x
y

]
+

[
0.00
1.60

]
T1

(
x
y

)
=

[−0.15 0.28
0.26 0.24

] [
x
y

]
+

[
0.00
0.44

]
T2

(
x
y

)
=

[
0.20 −0.26
0.23 0.22

] [
x
y

]
+

[
0.00
1.60

]
T3

(
x
y

)
=

[
0.00 0.00
0.00 0.16

] [
x
y

]
We have chosen a square as the seed K. Remember that the final shape is
independent of the choice. Thus, at the first iteration we apply each {Ti}n−1

i=0

to the square to get four deformed quadrilaterals in place of two branches, the
stem and the top of the fern. Then we take a union of the quadrilaterals and
restart the process. In few iterations only, quadrilaterals vanish being almost
imperceptible, but their union being plenty engender the shape of the fern.

2.2 CIFS

In regular IFS we start from a seed, then apply a set of rules (transformations),
and repeat as required. In CIFS (Controlled, or graph-directed IFS) not all rules
need to be applied at each step, a directed graph controls (directs) rules [13,15].
We associate work spaces to the nodes of the graph and the arcs represent the
transformations to be applied at the current state. In such a way it is possible
to blend attractors of different nature.

The left image of Figure 1 represents the control graph (it can be seen as
an automaton) for the regular IFS generating the Barnsley fern, the iteration
process is shown in the top line of Figure 2. But what happens if we modify the
automaton? Let us add three more transformations to the IFS (the corresponding
automaton is shown on the right of Figure 1):

T5

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
T6

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
+

[
1/2
0

]
T7

(
x
y

)
=

[
1/2 0
0 1/2

] [
x
y

]
+

[
0

1/2

]
These three transformations on itself generate the Sierpiński’s triangle. Note
also that the destination of the transformation T2 is changed. Thus, once the
transformation T2 was applied, the subdivision is made according to the rules of
the Sierpiński’s triangle. While the Barnsley’s fern consists of infinite number of
shrunk copies of itself, the attractor shown in the right bottom image of Figure 2
is a fern that consists of infinite number of shrunk Sierpiński’s triangles1.
1 In fact, the arrows of the automaton depict the data flow, or the order of application

of transformations. However actual transformations act in the other direction. That
is so, the right lowest branch of the new fern can be found as the following limit:
T2(A(T5,6,7)), where T5,6,7(K) = T5(K)∪T6(K)∪T7(K). This implies that we have
to choose two seeding compacts for two different spaces, in the images we have chosen
a square and a triangle.
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T2

T1

T3

⇒
T0 ���� ����������

T5

T7

T6

T1

T3

⇒
T0

T2

	��


Fig. 1. Two automatons generating
rules (order) of application of transfor-
mations

Fig. 2. Top line: the Barnsley fern; bottom
line : C-IFS allows to mix up attractors of dif-
ferent nature

2.3 Projected IFS

The notion of projected IFS was introduced by Zäır and Tosan [20]. If one
separates the iteration space from the modelling space, it is possible to create
free-form fractal shapes. The work was inspired by spline curves, which are
created by a projection of basis functions defined in a barycentric space. In the
same way, it is possible to construct an IFS attractor in a barycentric space
(whose dimension is equal to the number of control points) and to project it into
the modelling space. In other words, if we have an attractor A ⊂ BIn = {λ ∈
Rn|∑n−1

i=0 λi = 1}, where n is the number of control points, the projection can
be made just by a matrix multiplication PA = {∑n−1

i=0 Piλi|λi ∈ A}. Here the
matrix P = [P0 P1 · · ·Pn−1] is composed of control points. This construction
imposes that transformations in IFS must act in a barycentric space. For linear
operators expressed in matrix form it means that all columns sum up to 1.

3 Boundary Controlled IFS

Boundary Controlled IFS (BC-IFS) is a graph-controlled IFS with a B-rep struc-
ture introduced by Tosan et al [19]. This is a convenient method to express face-
edge-vertex hierarchies implicitly existing in many fractal attractors [7]. The
notions of B-rep here are a bit more general that in the classical case. Here a
topological cell may be bordered by a fractal object and not only with an edge
(vertex). For example, a “face” may be the Sierpiński’s triangle, an “edge” the
Cantor set. The advantage of this method is its power to express incidence and
adjacency constraints for subdivision processes for a given topology, what results
into constraints in the subdivision matrices.

To define free-form shapes with BC-IFS it is necessary to distinguish different
work spaces:

– the modeling space is where the final shape lives, this is also the space where
we place control points;

– barycentric spaces where we construct attractors corresponding to different
topological entities, and this is where IFS transformations act.

Let us illustrate the approach by constructing a local corner cutting 2D or 3D
curve. This type of curves demands at least 3 control points, and endpoints of
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b0 (
1

2
,

1

2

)
(
0, 1

2
,

1

2

)(
1

2
,

1

2
, 0

) b1

(1, 0, 0)

(0, 1, 0)
(

1

2
,

1

2

)

(0, 0, 1)

(1, 0)

(0, 1)

(1, 0)

(0, 1)

����� vr � BI
2

����� e � BI
3

����� vl � BI
2

Fig. 3. At the left and at the right : barycentric
spaces vl = vr = BI2 corresponding to the ver-
tices (left and right respectively); in the middle:
edge barycentric space e = BI3. The operators
b0 and b1 embed the spaces vl and vr into sub-
spaces of e.

Tvlvl

⇒

T1

P
e

b1

b0

T0

Tvrvr

Fig. 4. General edge-vertex B-rep
BC-IFS automaton

a curve depend on two of them. For a curve the B-rep structure is simple: we
will have edges bounded by vertices, therefore, in general case we will have four
different spaces:

– R2 or R3 where the final curve is to be drawn, the control points are to be
placed here

– a barycentric space of dimension 3 (we construct the simplest case with three
control points), this space is where the attractor of the B-rep “edge” lives

– a barycentric space of “left” endpoint of the edge, the dimension is 2 since
it depends on two control points

– similary a two-dimensional barycentric space for the “right” endpoint.

The edge and vertices are attractors in barycentric space to be projected to the
modeling space, thus we need three IFS to build the attractors. Let us say that
the edge is obtained with an IFS {T0, T1}, where T0 and T1 are 3×3 subdivision
matrices for the edge. The vertices are obtained with IFS {Tvl

} and {Tvr}, and
the matrices are 2 × 2. Figure 4 shows the BC-IFS automaton. First of all we
see four nodes corresponding to four spaces. The matrix P is the projection
matrix composed of control points. The only thing we have not yet defined are
transformations b0 and b1.

In fact, up to this moment we have not imposed any constraints on the IFS
matrices. If we fill them with random coefficients, nothing guarantees any con-
nectivity. However, in B-rep, vertices are boundaries of the edge, so there must
be some relationship between the matrices. To ensure this we need embedding
operators, namely b0 and b1.

Figure 3 illustrates the approach. It shows the basis functions of a uni-
form B-spline quadratic curve drawn in the three-dimensional barycentric space
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e = BI3. Basis functions for endpoints (in fact, these are just points) of the curve
are drawn in corresponding two-dimensional spaces vl = BI2 and vr = BI2.
Then b0 and b1 embed endpoint spaces into the edge space to impose that the
edge has the vertices for its endpoints. Let us find shapes of b0 and b1. The end-

points have coordinates
(

1/2
1/2

)
in the spaces vl and vr. At the same time in the

space e they are

⎛⎝1/2
1/2
0

⎞⎠ and

⎛⎝ 0
1/2
1/2

⎞⎠. Therefore, the mappings b0 =

⎛⎝1 0
0 1
0 0

⎞⎠
and b1 =

⎛⎝0 0
1 0
0 1

⎞⎠ are indeed simple embeddings. In other words, b0 and b1 say

on which control points depend corresponding endpoints.

3.1 Topology Constraints

Incidence and adjacency constraints may be easily obtained by expanding the
control graph. Figure 5 is an unfolded version of Figure 4 which describes the
subdivision process of our example. After the first iteration on the control graph
we pass from the modeling space to the edge space e, where an edge is bounded
by two vertices vl and vr. This situation is shown in the top line of the figure.
After one more iteration (bottom line) the edge is subdivided by T0 and T1 in
two smaller edges along with their own two endpoints.

Adjacency Constraints. Let us say that we want to get C0 continuity. When
an edge is split into two edges, the “left” subdivided edge must be connected to
the “right” one in order to guarantee the topology of a curve. Therefore, we im-
pose the “right” endpoint of the “left” edge to coincide with the “left” endpoint
of the “right” edge and this implies that the “left” and “right” endpoints are
of the same nature and actually live in the same space having common gener-
ating IFS. Otherwise, the connectivity will be broken at following stages of the
subdivision process. So we have Tvl

= Tvr = Tv.
When we say the “right” endpoint of the “left” edge this means that we can

follow the path e T0−→ e
b1−→ v in the control graph. The same holds for the “left”

endpoint of the “right” edge : e T1−→ e
b0−→ v. As mentioned above, the vertices

coincide, thus we can write T0b1 = T1b0.
Let us fill T0 and T1 with some arbitrary coefficients:

T0 =

⎛⎝a0 b0 c0
d0 e0 f0
g0 h0 i0

⎞⎠ , T1 =

⎛⎝a1 b1 c1
d1 e1 f1
g1 h1 i1

⎞⎠ .

Then we rewrite the constraint: T0b1 = T1b0⎛⎝a0 b0 c0
d0 e0 f0
g0 h0 i0

⎞⎠⎛⎝0 0
1 0
0 1

⎞⎠ =

⎛⎝a1 b1 c1
d1 e1 f1
g1 h1 i1

⎞⎠⎛⎝1 0
0 1
0 0

⎞⎠ .
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vrvl

b0 b1

b1e

e

T1T0
Tvl Tvr

vrvl vl = vr

b1Tvr
= T1b1b0Tvl

= T0b0 T0b1 = T1b0

e
b0 b1 b0

Fig. 5. Unfolded version of the control graph. This subdivision must be constrained in
order to get the desired topology (here a curve). Incidence constraints are at the left
and right, while adjacency constraint is in the middle.

This implies that the last two columns of T0 are equal to the first two columns
of T1: ⎛⎝b0 c0e0 f0

h0 i0

⎞⎠ =

⎛⎝a1 b1
d1 e1
g1 h1

⎞⎠ .

Incidence Constraints. In the same manner, incidence constraints may be
deduced from the fact that the subdivision of the endpoints must be in harmony
with endpoints of subdivided edges. Thus, for the left endpoint let us follow the
paths e b0−→ e

Tv−→ v = e
T0−→ e

b0−→ v, what results into the constraint b0Tv = T0b0.
The same holds for the right endpoint: b1Tv = T1b1, the constraints are shown in
Figure 5. If the constraints are not fulfilled we will get a disconnected curve after
two subdivisions. Let us solve the constraints on the matrices. Having denoted

Tv =
(
av bv
dv ev

)
we get⎛⎝1 0

0 1
0 0

⎞⎠(
av bv
dv ev

)
=

⎛⎝a0 b0 c0
d0 e0 f0
g0 h0 i0

⎞⎠⎛⎝1 0
0 1
0 0

⎞⎠
⎛⎝av bvdv ev

0 0

⎞⎠ =

⎛⎝a0 b0
d0 e0
g0 h0

⎞⎠
and ⎛⎝0 0

1 0
0 1

⎞⎠(
av bv
dv ev

)
=

⎛⎝a1 b1 c1
d1 e1 f1
g1 h1 i1

⎞⎠⎛⎝0 0
1 0
0 1

⎞⎠
⎛⎝ 0 0
av bv
dv ev

⎞⎠ =

⎛⎝b1 c1e1 f1
h1 i1

⎞⎠



670 D. Sokolov, C. Gentil, and H. Bensoudane

Then it easy to see that

T0 =

⎛⎝as bs 0
ds es as
0 0 es

⎞⎠ T1 =

⎛⎝bs 0 0
es as bs
0 ds es

⎞⎠ .

Let us add the fact that the matrices are stochastic (all columns sum up to 1)
and we see that for a local corner cutting curve whose points depend on at most
three control points (and on two at least) there are only two degrees of freedom:

T1 =

⎡⎣ b 0 0

1− b 1− a b

0 a 1− b

⎤⎦T0 =

⎡⎣1− a b 0

a 1− b 1− a

0 0 a

⎤⎦

Convergence. The convergence theorem [1] states that in order to get the con-
vergence of an IFS with linear transformations the operators must have eigen-
values strictly less than 1 (in absolute value) with one exception: all stochastic
operators have eigenvalue 1 that correspond to fixed points of the operators. T0

has eigenvalues: (1, a, 1− a− b), while T1 has (1, b, 1− a− b). Thus in our case
the convergence holds if and only if

−1 < a < 1
−1 < b < 1
−1 < 1− a− b < 1

Local corner cutting curves were studied earlier by Gregory, Qu, De Boor et
al [8,5,14]. The notations we use here correspond exactly to their works, however
there is a difference in the domain of definition. In fact, when the cited authors
construct corner cutting curves, they suppose that all vertices of a polygon at
iteration n belong to the polygon from the iteration n−1. Therefore, the studied
domain is shown in horizontal hatching in Figure 6, it corresponds to the domain
with positive eigenvalues a, b and 1 − a− b. Our construction does not use this
assumption, so the domain we study here is all the region of convergence (shown
in vertical hatching).

Parameterization and Self-similarity. Under latter constraints the attrac-
tor of the IFS {T0, T1} is a curve in three-dimensional barycentric space. It is
easy to parameterize the curve with so-called natural parameterization t ∈ [0, 1],
where t = 0 corresponds to the “left” endpoint of the curve, t = 1 is the “right”
endpoint and t = 1

2 corresponds to the junction point in the first level of subdi-
vision.
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-1 0 1

-1

0

1

a

b

1− a− b = 1

1− a− b = −1

Fig. 6. In horizontal hatching: the domain of convergence, in gray: Gregory-Qu domain
of definition

Then if we denote the parameterized curve (in the barycentric space) as
F (t), it is easy to get the parameterized curve in the modelling space C(t) =
PF (t), where P =

(
P0 P1 P2

)
is the vector of control points. Let us rewrite the

self-similarity property of the curve: F
([

0, 1
2

])
= T0F ([0, 1]) and F

([
1
2 , 1

])
=

T1F ([0, 1]). The parameterization is induced by the subdivision of the parameter
space [0, 1] for each iteration.

4 Differentiability

Half-tangent vectors at endpoints are defined for large class of fractal curves [3].
Attractors are self-similar, so if a half-tangent −→v exists for t = 0 then it is
easy to find a half-tangent vector for t = 1

2 : vector T1
−→v is tangent to the

curve F
([

1
2 , 1

])
= T1F ([0, 1]). Therefore, having defined half-tangent vectors

for endpoints of a fractal curve we automatically define it for a set dense in the
parameter domain. In the same way if a fractal curve is not differentiable for an
endpoint the singularity is copied by the self-similarity property.

4.1 Eigenvectors and Eigenvalues

T0 has real eigenvalues λ0
0 = 1, λ0

1 = 1 − a − b, λ0
2 = a and T1 has λ1

0 = 1,
λ1

1 = 1− a− b, λ1
2 = b. Corresponding eigenvectors are:

−→
v0
0 =

⎛⎝ b
a+b
a
a+b

0

⎞⎠ ,
−→
v0
1 =

⎛⎝ 1
−1
0

⎞⎠ ,
−→
v0
2 =

⎛⎝ −b
1− 2a

2a+ b− 1

⎞⎠
and

−→
v1
0 =

⎛⎝ 0
b
a+b
a
a+b

⎞⎠ ,
−→
v1
1 =

⎛⎝ 0
1
−1

⎞⎠ ,
−→
v1
2 =

⎛⎝a+ 2b− 1
1− 2b
−a

⎞⎠ .
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Eigenvectors v0
0 and v1

0 corresponding to the eigenvalue 1 give fixed points of T0

and T1. Note that the fixed points are endpoints of the curve: v0
0 = F (0) and

v1
0 = F (1). It is easy to see that eigenvectors corresponding to the sub-dominant

eigenvalues give half-tangents to the endpoints. Note that sub-dominant eigen-
values of T0 and T1 are non negative.

There are four cases:

1. 1−a−b is the sub-dominant eigenvalue of T0: |1−a−b| ≥ |a| ⇒ 1−2a−b ≥ 0.
In such a case the half-tangent to F (0) is collinear with

(
1 −1 0

)T and the
half-tangent to C(0) is collinear with

−−−−−→
P0 − P1.

2. a is the sub-dominant eigenvalue of T0: |a| > |1 − a − b| ⇒ 1 − 2a − b < 0.
In this case the half-tangent to C(0) is −bP0 + (1− 2a)P1 + (2a+ b− 1)P2.
This vector can have different orientations depending on the values of a and
b.

3. 1−a−b is the sub-dominant eigenvalue of T1: |1−a−b| ≥ |b| ⇒ 1−a−2b ≥ 0.
The half-tangent to C(1) is collinear with

−−−−−→
P1 − P2.

4. b is the sub-dominant eigenvalue of T1: |b| > |1− a− b| ⇒ 1− a− 2b < 0.
The half-tangent to C(1) has direction (a + 2b − 1)P0 + (1 − 2b)P1 − aP2.
Again, the direction depends on a and b.

The most interesting case is when 1 − a − b is the sub-dominant eigenvalue for
both T0 and T1. In such a case half-tangents are given by two control points and
therefore their directions do not depend on a and b.

��

��

��

P0

P1

P2

+
+

++

��

��

��

��

��

��

��

�

�

Q0

Q1

Q2

Q3

T1

−→
t+

−T0

−→
t
−

Fig. 7. Half-tangent vectors at the joining point

4.2 Necessary Conditions for Differentiability

Incidence and adjacency constraints of the BC-IFS guarantee C0 continuity for
the limit curve. To have C1 continuity half-tangents must be collinear at the
junction point. Figure 7 shows an illustration.

Let us suppose that the curve is differentiable, the half-tangents for the point
t = 1

2 may be obtained by the self-similarity property from the half-tangents to
endpoints. If

−→
t− and

−→
t+ are the directions of the half-tangents to endpoints, then

T1
−→
t+ must be equal to T0

−→
t−:
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C([0, 1]) =
(
Q0 Q1 Q2

)
F ([0, 1]) ∪ (

Q1 Q2 Q3

)
F ([0, 1])

= PT0F ([0, 1]) ∪ PT1F ([0, 1])

As we have mentioned previously, vectors
−→
t+ and

−→
t− depend on values of a

and b. To have G1 continuity, it is obvious that T1
−→
t+ and T0

−→
t− must be (at

least) collinear for any configuration of control points
(
Q0 Q1 Q2 Q3

)
. The only

possibility to fulfil the collinearity is when2:

– vector
−→
t− belongs to the subspace corresponding to the two last control points

P1 and P2, i.e. has zero first component. This is the case iff 1− 2a− b > 0.
– vector

−→
t+ belongs to the subspace corresponding to the two first control

points P0 and P1, i.e. has zero third component. This is the case iff 1−a−2b >
0.

Therefore if T1
−→
t− and T0

−→
t+ are collinear, then 1− a− b is sub-dominant eigen-

value for both T0 and T1. The corresponding domain is shown by horizontal and
vertical hatching in Figure 8. However it is a necessary condition: it includes
regions of differentiability (zone 1) as well as regions of cusp points (zones 2 and
2′). Therefore, collinearity is a rough tool and to distinguish the zones we have
to find direction of tangent vectors.

zone of differentiability

a

b

1− a− b ≤ 0

T1

−→
t
−
= β

−−−→
Q1Q2

T0

−→
t+ = α

−−−→
Q1Q2

-1 0 1

-1

0

1

1

2

2
′

3

3
′

4

5

6

6
′

Fig. 8. Cartography of regions according to differential properties

4.3 Cartography of Differential Behaviours

To find direction of half-tangents and to identify differential behaviour of the
other areas in the convergence domain, we use the following property etablished
in [2].
2 Except degenerated cases: if a = 0 or b = 0 or a+b = 1 then the curve is degenerated

(piecewise linear) and therefore differentiable (except at vertices).
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Property 1. Let us find decomposition of
−−−−−−→
F (0)F (1) in the eigenbases of T0 and

T1, respectively:

−−−−−−→
F (0)F (1) = α1

−→
v0
1 + α2

−→
v0
2 =

(−b)(a+ b− 1)
(2a+ b − 1)(a+ b)

−→
v0
1 +

a

(2a+ b − 1)(a+ b)

−→
v0
2

−−−−−−→
F (0)F (1) = β1

−→
v1
1 + β2

−→
v1
2 =

(−a)(a+ b− 1)
(a+ 2b− 1)(a+ b)

−→
v1
1 +

−b
(a+ 2b− 1)(a+ b)

−→
v1
2

Let R,L ∈ {1, 2} such that v0
L and v1

R are the sub-dominant eigenvectors of T 0

and T 1, respectively. Then if F (t) has left and right half-tangents at respectively
F (1) and F (0), their directions

−→
t− and

−→
t+ are given by:

−→
t− = αL

−→
v0
L

−→
t+ = βR

−→
v1
R.

Let us consider the subdivision of the curve :

C([0, 1]) =
(
Q0 Q1 Q2

)
F ([0, 1]) ∪ (

Q1 Q2 Q3

)
F ([0, 1])

Now we focus on the point of junction of the two sub-curves C0(t) =(
Q0 Q1 Q2

)
F (t) and C1(t) =

(
Q1 Q2 Q3

)
F (t). The directions of the half-

tangents at the point are given by
(
Q1 Q2 Q3

)−→
t− for C0 and

(
Q0 Q1 Q2

)−→
t+

for C1.
Depending on sub-dominant eigenvalues of T0 and T1 we can have three main

different cases:

1. 1 − a − b > a and 1 − a − b > b: this case covers three regions in Figure 8,
namely regions 1, 2 and 2’. Here we have R = L = 1 and(

Q0 Q1 Q2

)−→
tr = β1

(
Q0 Q1 Q2

)−→
v1
1 = β1

−−−→
Q1Q2(

Q1 Q2 Q3

)−→
tl = α1

(
Q1 Q2 Q3

)−→
v0
1 = α1

−−−→
Q1Q2

with α1 = (−b)(a+b−1)
(2a+b−1)(a+b) and β1 = (−a)(a+b−1)

(a+2b−1)(a+b) . As was explained in the pre-
vious section, the two half-tangent vectors at the joining point are collinear
in this case. However, the vectors have the same direction if and only if α1

and β1 are of the same sign, and it is the case for the region 1 of Figure 8.
For regions 2 and 2′ half-tangent vectors have opposite directions, resulting
into cusp points.

2. 1− a− b > a or (exclusive) 1− a− b > b:
(
Q1 Q2 Q3

)−→
t+ and

(
Q0 Q1 Q2

)−→
t−

are not collinear in general case. If one of the sub-dominant eigenvalues of
T0 or T1 is 1 − a − b then the corresponding half-tangent vector is colinear
with

−−−→
Q1Q2 (regions 3 and 3′) but the other half-tangent is not.

3. 1 − a − b < a and 1 − a − b < b: this case corresponds to regions 4 and 5
of Figure 8. No half-tangent vector is collinear to

−−−→
Q1Q2 since the eigenvec-

tors have three non-zero components and therefore the half-tangent vectors
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depend on three control points respectively
(
Q1 Q2 Q3

)
and

(
Q0 Q1 Q2

)
.

Regions 4 and 5 differ in the sign of the smallest (in absolute value) eigen-
value 1 − a − b. For the region 5 the eigenvalue is negative, and it forces
the curve to oscillate around the direction of the half-tangent, thus giving a
“fractal” aspect to the curve.

5 Sufficient Conditions

Figure 9 shows the motivation for this section. If we use the natural parame-
terization, then even for differentiable curves, blending functions F (t) are not
differentiable in the sense of Lipschitz. However, under a suitable parameteriza-
tion the blending functions are differentiable. The image is obtained for values
a = 1/20 and b = 1/8.

This is very similar to the situation with Stam’s method [18] of exact evalu-
ation of subdivision surfaces. Having constructed the natural parameterization
it is easy to find points of a curve (surface), however the behaivour of deriva-
tives is erratic and therefore many methods like [10] may fail to work with this
parameterization. There are several works that construct non-singular parame-
terizations, for example, we can cite [4] for Catmull-Clark subdivision surfaces.

In this section we will show how to reparameterize any curve from Gregory
region to garantee C1 blending functions. So instead of subdividing the param-
eter domain in equal halves as the natural parameterization does, we follow the
same subdivision rules as for the control polygon. Figure 10 illustrates the idea.
We start with a control polygon (P0, P1, P2); in order to parameterize it we chose
three real values (t0, t1, t2) such that t0 < t1 < t2. Then we say that the seg-
ments (P0, P1) and (P1, P2) have linear parameter domains (t0, t1) and (t1, t2),
respectively.

Then subdivided polygon (Q0, Q1, Q2, Q3) is parameterized with three seg-
ments (u0, u1), (u1, u2) and (u2, u3), where ui are obtained by the same rules of
subdivision as Qi:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F0(t)

F1(t)

F2(t)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

T = f(t)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

F1(T )

F0(T )

F2(T )

Fig. 9. Left image: The three components of blending function F (t) in the natural
parameterization. In the middle: non-singular parameterization as a functtion of nat-
ural parametrization. Right image: The three components blending function in the
non-singular parameterization.
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u3

P0

P1

P2

t0 t1 t2

Q0

Q1

Q2

Q3

u0 u1 u2 u3

P1

Fig. 10. Left image: original control polygon (P0, P1, P2) and its parameter val-
ues (t0, t1, t2). Right image: parameter domain is subdivided along with the control
polygon.

(
Q0 Q1 Q2

)
=

(
P0 P1 P2

)
T0

(
u0 u1 u2

)
=

(
t0 t1 t2

)
T0(

Q1 Q2 Q3

)
=

(
P0 P1 P2

)
T1

(
u1 u2 u3

)
=

(
t0 t1 t2

)
T1.

The limit of the process gives us a well-parameterized curve. To verify the C1

continuity of the limit curve one may proceed as follows:

– construct a sequence of functions {fi}∞i=0 converging pointwise to the limit
function F (t). Here we start with a vector of blending functions f0 for the
control polygon (P0, P1, P2). Then f1 is the vector of blending functions for
the polygon (Q0, Q1, Q2, Q3) etc.

– construct a sequence of derivatives {f ′i}∞i=0 and show that it converges uni-
formly to a continuous function

– prove that the limit lim
i→∞

f ′i is indeed the derivative of the curve F (t).

In such a way we get sufficient conditions for differentiability, not only necessary
ones. We do not want to overload the presentation with technical questions of
uniform convergence, all the proofs are detailed in a technical report [17]. The
report proves that a curves is C1 continuous if and only if a and b are located
in the Gregory region (magenta zone in Figure 8).

Moreover, we have proved that for any a and b in the convergence domain
limit curves are differentiable almost everywhere, i.e. everywhere except on a set
of measure zero [17]. As a matter of fact, this set consists of the junction point
under all possible finite sequences of applications T0 and T1. In other words, in
the natural parameterization it is the point t = 1

2 , t = 1
4 , t = 3

4 etc (all points of
dyadic parameters). This set is denumerable.

6 Roughness of a Curve

There are few ways to describe roughness of a curve like Hölder exponent and
fractal dimension. All the descriptors are good per se, but a curve may be fully
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�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

Fig. 11. Left image: angle between two half-tangent vectors from 0 (black) to π (white);
right image: the same, but represented as a 3d surface (cut along the symmetry line
x = y to show the interior)

described only by combining descriptors. Here we introduce a new descriptor,
namely angles between half-tangent vectors T0

−→
t− and T1

−→
t+.

So we know that any curve from the Gregory-Qu domain is differentiable,
but if we are not very far from the domain; curves are not very rough either.
These “almost smooth” curves may be a good fit for computer graphics, where
all geometry is discretized anyway. Or if one searches for a really rough curve,
where to look for it in the convergence domain? Angles between half-tangent
vectors are very easy to calculate, and therefore the search is very efficient:

α(a, b) = arccos
< T0

−→
t−, T1

−→
t+ >

‖T0
−→
t−‖‖T1

−→
t+‖

Left image of Figure 11 shows a graph of roughness vs values of a and b. The
domain of Gregory-Qu is marked in black as half-tangent are collinear (note that
degenerate cases a = b, b = 0 and 1 = a + b are also in black). All cusp points
are marked in white.

7 Conclusion

So far we have shown how a curve may be constructed. Constructing a surface
may be done in exactly the same manner. For example, Doo-Sabin subdivision
scheme may be described as a face-edge-vertex B-rep, where a patch (topolog-
ical “face”) is bounded by four “edges”. Then each patch is subdivided into
four smaller sub-patches and all them may be stitched together by implying
adjacency of corresponding borders. Then it is immediate that for a (regular)
Doo-Sabin patch there are three degrees of freedom. Either we set it to classic
values (0.5625, 0.1875, 0.1875) to get the Doo-Sabin subdivision surface, either
we look for other shapes (either smooth and differentiable or not). Figure 12
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Fig. 12. Examples of different “geometric textures” obtained obtained by subdividing
a cube with different subdivision weights

shows six different surfaces obtained by subdividing a cube with different triples
of weights.

In this paper we have presented how to model curves and surfaces by means of
iterative process, namely linear BC-IFS (Boundary Controled Iteratif Function
System). This approach guarantees the required topology of the final shape by
introducing incidence and adjacency constraints on a B-Rep model. For an linear
BC-IFS it implies constraints on underlying matrices representing subdivision
operators.

In this paper we have explicitly constructed local corner cutting curves and
studied the differential behaviour by analyzing eigenvalues and eigenvectors of
the subdivision operators. While we find same necessary conditions as do Gregory
and De Boor, we study a larger family of curves, since by using BC-IFS approach
we are able to enrich the convergence domain, thus introducing new shapes. To
characterize different families of shapes in the convergence domain we study
eigenstructures of subdivision operators and propose a precise cartography of all
the regions.

We have also proved that necessary conditions are also sufficient ones. More-
over, we have proved that stationary local corner cutting curves are differentiable
almost everywhere.

Finally, we have proposed a new roughness descriptor of fractal shapes. With
this descriptor it is immediate to see where in the convergence domain we have
to look for rough or smooth curves. Indeed, even if a curve is not differentiable
it may look very smooth.
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Abstract. Studying convolutions of hypersurfaces (especially of curves
and surfaces) has become an active research area in recent years. The
main characterization from the point of view of convolutions is their con-
volution degree, which is an affine invariant associated to a hypersurface
describing the complexity of the shape with respect to the operation of
convolution. Extending the results from [1], we will focus on the two
simplest classes of planar algebraic curves with respect to the operation
of convolution, namely on the curves with the convolution degree one (so
called LN curves) and two. We will present an algebraic analysis of these
curves, provide their decomposition, and study their properties.

1 Introduction

In Computer Aided Geometric Design, the convolution hypersurface V � W of
two hypersurfaces V , W is introduced as the envelope of copies of V obtained by
the translations along vectors from W . A fundamental characteristic is the so
called convolution degree. This is an affine invariant associated to any hyper-
surface which determines the complexity of the given hypersurface with respect
to the operation of convolution. The higher the convolution degree is, the more
complicated resulting objects can be obtained. Hence, current methods and algo-
rithms use mainly hypersurfaces of low convolution degree, basically one or two.
The former case are well-known LN hypersurfaces (hypersurfaces with Linear
Normals) and the examples of latter hypersurfaces are circles, ellipses, hyper-
bolas, etc. (curve case) and spheres, ellipsoids, hyperboloids, etc. (surface case).
Therefore studying convolutions of hypersurfaces of convolution degree one and
two involves, among others, also studying offsets as special and most promi-
nent cases. Hence, the theory of convolutions is closely related to the theory of
PH/MPH curves and PN/MOS (hyper)surfaces, too. The reader interested in
these topics is kindly referred to [2,3,4,5,6,7,8,9] and references therein.

As concerns convolutions, hypersurfaces with Linear field of Normal vectors
(LN hypersurfaces), introduced in [10], possess the biggest application potential,
as they admit rational convolutions with any arbitrary rational hypersurface (cf.
[11,12]). However, the convolution of two rational hypersurfaces is not rational
in general, cf. [13,14] and references therein for more details. This inconvenience
occurs already for hypersurfaces of convolution degree two where the so-called
RC properties (guaranteeing Rational Convolutions) must be taken into account.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 681–696, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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A novel and very beneficial approach for dealing with convolutions using the so-
called support functions was introduced in [15,16]. In particular, it was shown
in [16] that odd rational support functions correspond to those rational hyper-
surfaces which can be equipped with a linear field of normal vectors.

In this paper, we restrict ourselves to the curve case and develop further the
study which started in [1], where a thorough algebraic analysis of convolutions
was provided and a formula relating the convolution degree and the genus of an
algebraic curve was derived. The ideas presented in [1] extended approaches de-
voted to offsets from [17,18,19]. Recently, it has been showed that many examples
of curves of convolution degree one and two can be found among hypocycloids
and epicycloids (HE-cycloids), cf. [20]. This fact was later used for formulation
of G1 Hermite interpolation algorithm based on HE-splines. We can also find
other interpolation/approximation methods based on LN curves or curves with
convolution degree two (especially PH curves) – see e.g. [21,22,14,23]. Thus, one
can ask what new may be found about these well-known and thoroughly studied
geometric objects.

The main contribution of this paper is a thorough algebraic analysis of planar
algebraic curves of convolution degree one and two. We present their algebraic
and geometric properties and provide their decomposition based on the set of
unique fundamental generators. A main part will be devoted to rational curves
equipped with a quadratic field of normal vectors, for which the possible asso-
ciated RC conditions will be analyzed. This characterization uses the so-called
generalized Blaschke cylinder as a generalization of the well-known concept used
for PH curves. Clearly, this analysis is necessary for formulating potential sub-
sequent algorithms.

2 Preliminaries

The theory presented in this paper is based on fundamentals of algebraic ge-
ometry of planar curves working over the field of complex numbers C; see e.g.
[24,25,26] for more details. On the other hand, problems originating in geometric
modeling work especially over the field of real numbers and thus some difficul-
ties may appear and certain algebraic geometry techniques must be reconsidered
when used in particular applications. However, using the field of complex num-
bers is necessary to obtain global results dealing with convolutions of algebraic
curves.

2.1 Convolution of Algebraic Curves

There is only one tangent direction for all points on the line and this may
cause some troubles when formulating general theorems concerning convolutions.
Nevertheless, constructing convolutions of straight lines with any curve is trivial
(as it can be seen from Definition 2), so we can omit this case. Hence, from now
on if we say a curve we implicitly assume that this is not a line.
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Definition 1. Let V ,W ⊂ C2 be algebraic curves. Then two points v ∈ V and
w ∈ W are said to be coherent, denoted by (v,V) ∼� (w,W) if the following
two conditions are fulfilled:

1. v and w are regular points,
2. TvV ‖TwW, where TxX denotes the tangent line to the curve X at the point

x ∈ X .

Using the notion of coherent points, we can define the convolution of two alge-
braic curves, denoted by �.

Definition 2. The convolution V � W of curves V ,W ⊂ C2 is defined as
the smallest algebraic set containing{

v + w ∈ C2|(v,V) ∼� (w,W)
}

. (1)

According to the previous definition, the convolution of two curves is an alge-
braic set. Nonetheless, it may degenerate to a point (i.e., to a zero-dimensional
algebraic set) in some cases, and moreover it may be reducible despite the fact
that both input curves are irreducible. The following definition describes differ-
ent types of possible components of V � W , see also [17].

Definition 3. An irreducible component U ⊂ V �W is called simple, k-special,
or degenerated, if there exists a dense set with respect to Zariski topology U ⊂ U
such that for all u ∈ U there exist(s) unique, exactly 1 < k < ∞, or infinitely
many pair(s) v ∈ V, w ∈ W such that (v,V) ∼� (w,W), respectively, and
u = v + w.

The construction of the convolution curve of two given curves is shown in Fig. 1
(left), where the dashed component is 2-special and the dotted one is simple. If
there is no danger of confusion, we will use only the notion a special component
instead of k-special. Since (U ∪ V) � W = (U � W) ∪ (V � W) by the definition
of convolution, we will assume throughout the paper that the input curves are
irreducible.

The most important number associated to any curve from the point of view of
convolutions is the so-called convolution degree, which measures the complexity
of a given curve with respect to the operation of convolution.

Definition 4. The convolution degree κV of a planar curve V is equal to
the number of affine regular points on V where the tangent lines are parallel
with a fixed generic direction.

It immediately follows from the definition that the convolution degree is an affine
invariant of the curve.

2.2 Previous Work on Convolutions

Since the curves in CAGD are usually given by its rational representations it
is natural to look for a parameterization of some component of V � W . This
approach leads to the so-called parameter varieties introduced in [27].
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Fig. 1. The construction of the convolution curve in the primal (left) and dual (right)
plane (the dual image is dehomogenized by setting n1 = 1) – the red and blue curves
are the irreducible input curves, their reducible convolution is shown in purple (dotted
simple component and dashed special component)

Definition 5. Two parameterizations v(t) and w(t) are said to be coherent,
written v(t) ∼� w(t), if for a generic t0 ∈ C it holds (v(t0),V) ∼� (w(t0),W).

If v(t) ∼� w(t) then v(t) + w(t) parameterizes some component of V � W .
Of course, two generic parameterizations are not coherent and thus the main
problem of the parametric approach can be formulated as follows: For given
parameterizations v(s) and w(t) find rational functions ϕ, ψ ∈ C(u) such that
v(ϕ(u)) ∼� w(ψ(u)).

Then the parameter variety can be defined as a curve in the space of param-
eters given by the relation

{(s, t) ∈ C × C | (v(s),V) ∼� (w(t),W)}. (2)

The significance of the parameter variety is established by the following propo-
sition which follows immediately from the above definitions.

Proposition 1. Let (ϕ(u), ψ(u)) be a parameterization of a component of the
parameter variety (2) associated to v(s) and w(t). Then v(ϕ(u)) + w(ψ(u))
parameterizes a component of V � W.

Moreover, one can easily obtain a defining equation of the parameter variety.
Let us denote (

p̂1

p̂0
,
p̂2

p̂0

)
=

dv
ds

and
(

q̂1

q̂0
,
q̂2

q̂0

)
=

dw
dt

. (3)

Then
pi :=

p̂i

gcd(p̂1, p̂2)
and qi :=

q̂i

gcd(q̂1, q̂2)
, i = 1, 2, (4)
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are polynomials in s and t, respectively, such that the defining polynomial of the
parameter variety is given by

cv,w(s, t) := p1(s)q2(t) − p2(s)q1(t). (5)

Let us denote that the algebraic degree of cv,w is closely related to the convo-
lution degree of the curves. In particular, if v(s) is a proper parameterization
(i.e., a birational mapping C → V) then we have

κV = degs cv,w(s, t) = max{deg p1(s), deg p2(s)}. (6)

In addition, convolutions have considerably simple descriptions if we apply the
dual approach. Recall that a curve X : f(x) = 0 has the dual representation

X∨ : F∨(n, h) = 0, (7)

where F∨ is a homogeneous polynomial in n = (n1, n2) and h. The set of all
lines {

x ∈ C2|n · x = h and F∨(n, h) = 0
}

(8)

forms a system of tangent lines of X with the normal vectors n, cf. [28].
Let v ∈ V and w ∈ W be two generic coherent points, and TvV and TwW be

the tangent lines at these points given by

n · x = h1, and n · x = h2, (9)

respectively. Then the tangent line at the point v + w ∈ V �W has the equation

n · x = h1 + h2 = h3. (10)

Hence, we arrive at the following. Let the curves V and W have dual defining
polynomials F∨(n, h) and G∨(n, h), respectively. Then we compute the dual
equation of V �W by eliminating (e.g. using Gröbner bases) variables h1 and h2

from the system of equations

F∨(n, h1) = 0, G∨(n, h2) = 0 and h3 − h1 − h2 = 0. (11)

A visualization of the dual approach is demonstrated in Fig. 1 (right), where one
can see the special character of the dashed component better than in the primal
case.

Moreover the convolution degree is naturally involved in the dual approach
as it holds

κV = degh F∨(n, h) (12)

for the curve V given dually by F∨(n, h) = 0, cf. [29,20].
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3 Curves of Convolution Degree One

Clearly, the simplest curves with respect to the operation of convolution are the
curves with convolution degree one. Fundamental facts concerning these curves
were thoroughly studied in [1], see this reference for more details (especially
Theorem 5.4 and Theorem 5.5). In this paper we extend our observations and
provide a decomposition of an arbitrary LN curve into the convolution of a finite
number of suitable fundamental curves.

Definition 6. Any curve V with κV = 1 will be called an LN curve, where LN
stands for linear normals. The set of all LN curves will be denoted by L.

Although this approach is natural when working with convolutions, the original
definition is different. However, one can prove that all LN curves in our meaning
are rational and fulfill the distinguished condition from [10], and vice versa.

For the sake of convenience, we extend the definition by allowing also convo-
lutions with points

p � V = {x ∈ C2 | ∃v ∈ V : x = v + p}, p � q = p + q, (13)

where p,q ∈ C2. Then one can prove that the set of all algebraic sets in C2 of
dimension 0 or 1 along with the operation of convolution forms a commutative
monoid with the neutral element o = (0, 0). In addition, the set of all LN curves
together with one-point sets is its maximal subgroup.

A better insight into the properties of this group can be gained if we describe
the set of its generators. In what follows, we will show that this is equivalent to
a construction of the full decomposition of LN curves into the convolutions of
some fundamental LN curves.

Theorem 1. Any LN curve can be obtained as the convolution of a finite num-
ber of affine images of the canonical curves xk

1 − xk+1
2 = 0.

Proof. By (12), the dual equation of an LN curve has the form

F∨(n, h) = fm−1(n)h + fm(n), (14)

where fi is a homogeneous polynomial of degree i, and hence

h = − fm(n)
fm−1(n)

. (15)

For the sake of simplicity, we assume that n1 divides neither fm−1(n), nor fm(n).
Thus after dehomogenization n = n2/n1 we may write the decomposition of (15)
into the partial fractions

h = h0 + · · · + h�, where hi =
αin

k+1
1

(βin1 + γin2)k
(16)

for some αi, βi, γi ∈ C and k ∈ N. Then the transformation n′
1 = αin1, n′

2 =
βin1 + γin2 and h′ = h induces an affine transformation which maps a curve
described by hi to the desired canonical form. �
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Fig. 2. Fundamental LN curves from Remark 1; k = 2, i = 0, 1, 2 (the black dots
denote real singularities)

Remark 1. Let us emphasize that despite starting with a real LN curve, it may
happen that some of the factors (16) possess non-real coefficients and hence the
induced transformation does, too. So, if we prefer to work over the reals we have
to introduce new real fundamental curves corresponding to irreducible factors.
In particular, these LN curves are given by the dual equations

(n2
1 + n2

2)
kh − ni

1n
2k+1−i
2 = 0, (17)

where k ≥ 1 and 0 ≤ i ≤ k. For instance, for k = 1 and i = 0 we obtain the well-
known hypocycloid called deltoid (or tricuspoid). The fundamental LN curves
for k = 2 are shown in Fig. 2.

4 Curves of Convolution Degree Two

Throughout this section, we consider by V a curve with the convolution de-
gree two. We focus mainly on the subset of rational curves, study thoroughly
their properties and, analogously to the LN curves, provide their decomposition.

4.1 Elementary Properties of Curves with Convolution Degree Two

By (12), the dual equation of curves of the convolution degree 2 is of the form

F∨(n, h) = fm−2(n)h2 + fm−1(n)h + fm(n). (18)

Thus any curve of this type is square-root parameterizable, i.e., it can be param-
eterized in terms of t and

√
P (t), where P (t) is a polynomial in t. This shows

that the curves of convolution degree 2 need not to be rational in general (in
contrast to LN curves studied in the previous section). In particular, it is known
that the only curves which admit square-root parameterizations are rational,
elliptic or hyper-elliptic, cf. [30,31] for further details.

Proposition 2. Any curve with convolution degree 2 is rational, elliptic, or
hyper-elliptic.
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Due to their greater convolution degree, the resulting convolutions are generally
more complicated than convolutions with LN curves. Nevertheless, we can still
find analogous results, see [1] (especially Theorem 5.6 and Theorem 5.7).

Remark 2. Since for two coherent points (v,V) ∼� (w,W) the point v + w ∈
V � W is singular or coherent to both points v and w, see [1], we can easily
compute the convolution degree of the components of V�W . In particular, if V�W
is irreducible we have κV�W = 2κW and in the case of reducible convolution we
arrive at κX = κW for the simple component X and κU = 1

2κW for the 2-special
component U .

A main disadvantage of curves of the convolution degree 2, despite being rational,
is that the convolution V � W is not rational in general. However, the situation
becomes considerably simpler when V � W is reducible, cf. [1, Theorem 5.7].

Theorem 2. If V � W possesses two components then each simple compo-
nent is birationally equivalent to W. Moreover if U ⊂ V � W is special then
g (U) ≤ g (W), where g (X ) stands for the genus of a curve X .

In particular, if the curve W in Theorem 2 is rational then each non-degenerated
component is rational, too. Moreover by Theorem 5.6 in [1] the curve V has
to be also rational and there exists a proper parameterization v(s). Then for
an arbitrary parameterization w(t) there exists a rational function ϕ(t) of degree
1
2κW · degw such that v(ϕ(t)) ∼� w(t).

Moreover, if a proper parameterization w(t) is V-coherent then V � W is
reducible. To show this, consider V � W to be irreducible and choose a generic
point w on W . Then there exist exactly two coherent points v1, v2 on V . Since
V �W is irreducible it is simple (again by Theorem 5.6 in [1]). Hence, to obtain
points v1 + w and v2 + w we have to trace the curve W twice.

Finally, if V is rational then looking at the formula for the convolution degree
of parametric curves, cf. (6), we see that its normal vectors depend on the param-
eter quadratically. This motivates us to the following definition which extends
the similar idea used for the LN curves.

Definition 7. Any rational curve with the convolution degree 2 will be called a
QN curve, where QN stands for quadratic normals. The set of all QN curves
will be denoted by Q.

Clearly, QN curves play among all algebraic curves with the convolution degree
2 the most important role, mainly due to their potential applications in technical
praxis as NURBS curves.

4.2 Rationality of Convolutions with QN Curves

In what follows, we consider V to be a QN curve. Let v(s) : C → V be its proper
parameterization and p1(s), p2(s) ∈ C[s] be the associated polynomials as in (4).
As κV = 2 the maximum of the degrees of pi(s) is 2, see (6). Hence

p1(s)x + p2(s)y = (s2, s, 1) · (p̂1x + p̂2y) = 0 (19)
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is a quadratic equation in s with the coefficients from C[x, y]. The discriminant
of this equation plays a key role in deciding the rationality of convolutions with
the QN curve V . Its fundamental properties are summarized in the next lemma,
proof of which can be easily obtained by a direct computation.

Lemma 1. Let the discriminant of (19) be denoted by Dv(x, y) = Dv(x). Then
it holds

(i) Dv(x) = x · Δ · xT , where the elements of the matrix Δ are computed as

Δij = p̂T
i ·

(
0 0 −2
0 1 0
−2 0 0

)
· p̂j and p̂1, p̂2 are from (19),

(ii) detΔ �= 0,

(iii) Let A ∈ GL2(C) and b ∈ C2. Then DAv+b = x · (A · Δ · AT
) · xT .

(iv) For any ϕ(t) = α1t+α2
β1t+β2

we have Dv◦ϕ(x) = (α1β2 − α2β1)2 · Dv(x).

Remark 3. It follows from Lemma 1 (iv) that for two different proper param-
eterizations of the same curve the corresponding discriminants differ only by
a multiple of some non-zero constant. Hence, the discriminant may be always
normalized using a suitable ϕ such that the leading coefficient with respect to
the lexicographic order equals 1. In what follows, this normalized discriminant
of the quadratic equation (19) will be denoted by DΔ.

It turns out that QN curves with the same DΔ behave similarly with re-
spect to the operation of convolution. Moreover, there is a natural represen-
tative of the set of all QN curves with the same DΔ having the dual equation
DΔ(n) − h2 = 0.

Definition 8. A regular conic section given by the dual representation

DΔ(n) − h2 = 0 (20)

is called a canonical conic section of the class of QN curves characterized by
DΔ. We will denoted it by SΔ. Next, the set of all QN curves with the same DΔ

will be denoted by QΔ.

Example 1. Let T be the Tschirnhausen cubic given parameterically by

t(s) =
(
3(s2 − 3), s(s2 − 3)

)T
. (21)

Then p1(s) = 6s and p2(s) = 3(s2 − 1) and the corresponding discriminant is
equal to Dt(x) = 36(x2 + y2). Next, we arrive at DΔ(x) = x2 + y2 and the
canonical conic section has the dual equation DΔ(n) − h2 = n2

1 + n2
2 − h2 = 0.

Since the primal curve is defined by the equation x2 + y2 − 1 = 0, the class of
QN curves containing the Tschirnhausen cubic is represented by the unit circle.

Taking into account that for any symmetric matrix B ∈ GL2(C) there exists
the matrix A ∈ GL2(C) such that A ·B ·AT is the identity matrix and invoking
Lemma 1 (iii) we obtain the lemma:
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Lemma 2. GL2(C) acts transitively on the set of all classes of QN curves.

Remark 4. Obviously, the classes QΔ are not preserved under affine transforma-
tions. Nonetheless, for any arbitrary curve V ∈ QΔ there exists a linear trans-
formation A such that A(V) is a PH curve. However, let us emphasize that when
working only with real curves, it is not generally ensured that for a real curve V
the curve A(V) is real, too. In particular, any real QN curve can be transformed
either to a real PH curve, or to a real MPH curve (the class of MPH curves is
determined by the canonical conic section x2 − y2 − 1 = 0, cf. [5,6,32]).

In what follows, we will show that all curves from the same class QΔ behave
similarly with respect to the operation of convolution.

Lemma 3. For a curve V ∈ QΔ and an arbitrary rational curve W, it holds
that the parameterization w(t) is V-coherent if and only if DΔ(n(t)) = σ2(t) for
some σ ∈ C(t), where n(t) = (dw(t)/d t)⊥ is the normal vector field of W.

Proof. We choose an arbitrary proper parameterization v(s). Then compar-
ing (5) and (19), it is seen that w(t) is V-coherent if and only if there exists
ϕ(t) ∈ C(t) such that

p1(ϕ(t))n1(t) + p2(ϕ(t))n2(t) ≡ 0. (22)

Hence, for a given V-coherent parameterization w(t) we can find a rational func-
tion ϕ(t) such that for all t0 the corresponding value ϕ(t0) is a root of the
polynomial

p1(s)n1(t0) + p2(s)n2(t0) = c2(n(t0))s2 + c1(n(t0))s + c0(n(t0)). (23)

Thus we obtain

ϕ(t) =
−c1(n(t)) ±√

c2
1(n(t)) − c2(n(t))c0(n(t))
2c2(n(t))

=
−c1(n(t)) ±√

αDV(n(t))
2c2(n(t))

,

(24)
where α is a constant. Since ϕ(t) is a rational function, there has to exist a
rational function σ(t) such that DΔ(n(t)) = σ2(t).

Conversely, if DΔ(n(t)) is a perfect square of some rational function
then (24) defines a rational function ϕ(t) reparameterizing v(s) such that
w(t) ∼� v(ϕ(t)). �

Remark 5. Let us recall, that conditions guaranteeing the rationality of the con-
volution V � W are called RC-conditions in [13]. Thus, DΔ(n(t)) = σ2(t) is the
RC-condition of a QN curve V .

As an immediate consequence of the previous lemma, we obtain that for two
curves V and V ′ in the same class QΔ the parameterization w ∈ W is V-coherent
if and only if it is V ′-coherent. For instance (see Example 1) a parameterization
w(t) is T -coherent and S1-coherent if and only if it holds for the associated
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normal vector field n2
1(t) + n2

2(t) = σ2(t). This is nothing else than the well-
known PH property.

As shown in [8], a parameterized curve fulfills the PH property if and only if
its dual representation can be identified with a rational curve on the Blaschke
cylinder B(n1, n2, h) : n2

1+n2
2 = 1. As we shall see bellow an analogous condition

will be fulfilled for all classes of QN curves, too.

Definition 9. Let us consider DΔ(n1, n2) as a polynomial in C[n1, n2, h]. Then
the surface

BΔ : DΔ(n1, n2) − 1 = 0 (25)

is called a generalized Blaschke cylinder.

Corollary 1. If V ∈ QΔ then there is a correspondence between V-coherent
parameterizations and rational curves on BΔ.

Proof. Let w(t) be a parameterization fulfilling the condition DΔ(n(t)) = σ2(t).
We set h(t) = −w(t) · n(t). Then, W can be considered as the envelope of
one-parameter family of lines given by

n(t)
σ(t)

· x +
h(t)
σ(t)

= 0. (26)

Hence, we arrive at the dual parameterization 1
σ(t) (n(t), h(t)) which is a rational

curve on BΔ.
Conversely let (n(t), h(t)) be an arbitrary rational parameterized curve on

BΔ. Then, we can easily proceed to the representation of a curve as the envelope
of one-parameter family of lines Σ(t) : n(t) · x + h(t) = 0, where DΔ(n(t)) =
σ2(t). Solving the system Σ(t) = 0, Σt(t) = 0, where the subscript denotes
the differentiation with respect to t, we arrive at the corresponding V-coherent
parameterization. �

Remark 6. The above mentioned correspondence is not bijective but one-to-two.
More precisely, both rational curves x(t) : C → BΔ and −x(t) : C → BΔ have
the same image in the set of V-coherent parameterizations, cf. Fig. 3. Hence,
we have got the representation for all classes of QN curves analogous to the
representation described in [8,9] for PH curves.

4.3 Decomposition of QN Curves

Similarly to the case of LN curves we would like to give a description of the set of
QN curves. Since any QN curve lies in a certain class QΔ for some canonical conic
section SΔ, we will work with a fixed class QΔ. Let us denote DΔ = C2∪L∪QΔ.
Then, the following statement is obvious:

Lemma 4. If V ,W ∈ DΔ then V � W ⊂ DΔ.
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Fig. 3. Left: the generalized Blaschke cylinder n2
1 −n2

2 − 1 = 0 (yellow) with the image
of a QN-curve (blue); Right: the construction of the convolution curve (purple) of two
QN-curves (red and blue) solved on the associated generalized Blaschke cylinder

Hence, the set DΔ is closed under the operation of convolution1 and our goal is
to find its generators, as in the case of LN curves. More precisely, we are going
to find a family of fundamental curves {Gλ}λ∈Λ, where Λ is an (infinite) index
set, such that an arbitrary curve V ∈ QΔ is a component of(

�
λ∈Γ

Gλ

)
� L � p, (27)

where L ∈ L, p ∈ C2 and Γ ⊂ Λ is finite.
The dual equation of a general curve with the convolution degree 2 has the

form
F∨(n, h) = fm−2(n)h2 + fm−1(n)h + fm(n) = 0, (28)

where fi(n) are homogeneous polynomials of degree i. It is not difficult to realize
that the set of all curves in QΔ such that fm−1 = 0 is closed under the operation
of convolution. From the geometric point of view, the curves with this special
dual representation are centrally symmetric.

Now, let V ,W ∈ QΔ be two curves with the centers of symmetry c1 and c2,
respectively. Then V �W is decomposed into two curves with the common center
c1 +c2. As these curves play an important role in our further considerations, we
will introduce the notation Q0

Δ for them.

Lemma 5. Any V ∈ Q· can be written uniquely (up to a translation) as V =
L � Q, where L ∈ L and Q ∈ Q0

Δ.

Proof. Let V has the dual equation F∨(n, h) = fm−2(n)h2+fm−1(n)h+fm(n) =
0 and L′ be an LN curve with the dual equation gn−1(n)h + gn(n) = 0. For the

1 For curves V,W ∈ QΔ ⊂ DΔ the convolution can be reducible and hence we have
to write ⊂ instead of ∈ in Lemma 4.
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sake of brevity, we will write fi and gi instead of fi(n) and gi(n). Using (11),
one can compute the dual equation of V � L′

fm−2g
2
n−1h

2 + (2fm−2gn + fm−1gn−1)gn−1h + fm−2g
2
n + fm−1gn−1gn + fmg2

n−1 = 0.
(29)

Hence, V � L′ ∈ Q0
Δ if and only if 2fm−2gn+fm−1gn−1 ≡ 0. Let us write fm−i =

f · f̃m−i, for i = 1, 2, where f = gcd(fm−2, fm−1) and set gn−1 := −2f̃m−2 and
gn := f̃m−1. Then L′ is an LN curve such that Q = V � L′ ∈ Q0

Δ and denoting
L = (L′)− we arrive at V = Q � L.

Next, let V = Q � L = Q̂ � L̂. If L̂ �= L then L � L̂− is a LN curve such that

Q = Q̂ �
(
L � L̂−

)
. (30)

However, it is easy to see that the convolution of a curve in Q0
Δ with an LN curve

cannot lie in Q0
Δ, which is a contradiction. �

By Lemma 5 it is seen that solving the problem stated by (27) can be reduced
to finding generators of the set Q0

Δ. The following lemma shows that the dual
equations of curves from Q0

Δ possess a special form.

Lemma 6. V lies in Q0
Δ if and only if the defining polynomial of V∨ can be

written in the form

F∨(n, h) = d1(n)f2(n)h2 + d2(n)g2(n), (31)

where d1 · d2 = DΔ.

Proof. V ∈ Q0
Δ if and only if it is a rational curve defined dually as V∨ :

fn−2(n)h2 + fn = 0 and its convolution with the corresponding canonical conic
section SΔ is reducible.

First, let us assume that V � SΔ has a degenerated component. Then by
Theorem 5.6 in [1] V = SΔ− = SΔ and hence F∨(n, h) = h2 + DΔ(n, h).

Second, we will show that V �SΔ cannot have a special component. Recalling
again Theorem 5.6 in [1], we get V = SΔ � L, where L has to be an LN curve
since it holds 2 = κV = κSΔ · κL = 2κL. However as mentioned at the end of
the proof of Lemma 5, the convolution of an LN curve and a curve from Q0

Δ is
not in Q0

Δ.
Thus, we may assume that both components of V � SΔ are simple and after

computing the dual equation of the convolution we arrive at

(fn−2(n))2h4 − 2fn−2(n) (fn(n) + DΔ(n) · fn−2(n)) h2 +
+ (fn(n) − DΔ(n) · fn−2(n))2 .

(32)

Next, trying to rewrite (32) as a product of two polynomials quadratic in h we
have to guarantee that the discriminant is a perfect square, which is equivalent
to the condition

DΔ(n) · fn−2(n) · fn(n) = σ2(n). (33)

Finally, under the condition on F∨(n, h) to be irreducible we arrive at (31). �
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Table 1. Some examples of fundamental QN curves. The three columns correspond
to the dual equations DΔf2h2 + g4 = 0, f2h2 + DΔg2 = 0 and δ1f

2h2 + δ2g
3 = 0,

respectively, where g = n1 and δi are nonconstant factors of DΔ. Cross denotes a
non-real fundamental QN curve

DΔ f (DΔ, 1) (1, DΔ) (δ1, δ2)

n2
1 + n2

2

n2

n1 + 2n2

n2
1 − n2

2

n2

n1 + 2n2

In addition, similarly to the case of LN curves we may use the partial fraction
decomposition to obtain

h =

√
−d2(n)

d1(n)
· g(n)
f(n)

= h0 + · · · + h�, (34)

where

hi =

√
−d2(n)

d1(n)
· αin

k+d
1

(βin1 + γin2)k
(35)

for some αi, βi, γi ∈ C, k ∈ N, and d = 0 if d1 = DΔ, d = 2 if d2 = DΔ and
d = 1 otherwise. Hence we arrive at

Proposition 3. Any centrally symmetric QN curve V can be obtained as a com-
ponent of the convolution Q1 � · · · �Q� where the associated dual equations have
the form

Q∨
i : d1(n)(βin1 + γin2)2kh2 + d2(n)α2

i n
2(k+d)
1 . (36)

Remark 7. Surprisingly, we do not need all four types of the dual equations
determined by the decomposition DΔ = d1 · d2. It may be shown that any curve
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in Q0
Δ can be either written dually in the form DΔ(n)f2(n)h2 + g2(n) = 0, or

it is a component of the convolution of two such curves – the decomposition can
be consequently applied only to this class.

5 Conclusion

In this paper we continued the study from [1] and extended the ideas concerning
curves with low convolution degree. As a new result, we have proved that the
so called LN curves (curves with convolution degree one) can be obtained as
the convolution of a finite number of canonical curves. The main contribution
of the paper is in Section 4, where curves of convolution degree two are inves-
tigated. We presented their elementary properties including the fact that these
curves are either rational, elliptic or hyper-elliptic. Next, the notion of QN curves
(rational curves with convolution degree two) was introduced and properties of
these curves were thoroughly studied. Finally, a canonical decomposition of an
arbitrary QN curve was presented.

We believe that the curves with low convolution degree are objects interest-
ing not only from the purely geometric point of view but also as curves which
can serve as primitives for approximate convolution process. These curves com-
prise all conic sections (LN parabolas, and QN ellipses and hyperbolas) and
therefore all interpolation/approximation algorithms based on (arcs of) conic
sections can be immediately used as the first step. In addition, all (M)PH inter-
polation/approximation techniques may be easily modified and then used.

Acknowledgments. The second author was supported by the Research Plan
MSM 4977751301. We thank all referees for their comments, which helped us to
improve the paper.
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A Logistic Model for the Degradation of

Triangle Mesh Normals

Ying Yang and Ioannis Ivrissimtzis

School of Engineering and Computing Sciences, Durham University, UK

Abstract. The performance of shading and ray-tracing algorithms de-
pends heavily on the quality of the surface normal information. As a
result, in many visual applications normal information turns out to be
more important than spatial information. This paper proposes a logis-
tic model for the degradation of the normal information resulting from
the quantisation of the vertex coordinates. The mesh is degraded by the
randomization of each vertex coordinate after its t-th significant bit. The
normal degradation is computed as a weighted average of the angle differ-
ences between the normals of the original triangles and the corresponding
degraded triangles. The proposed model is validated experimentally. As
an application, we use the proposed logistic model to estimate suitable
levels of quantisation for 3D triangle meshes.

Keywords: triangle mesh, model degradation, logistic models.

1 Introduction

In graphics and visualisation applications, triangle mesh is the ubiquitous stan-
dard for surface representation. Triangle meshes also play an important role in
CAD/CAM applications when scans of physical objects are processed into tri-
angle mesh models, or when NURBS surfaces are converted into triangle meshes
for fast interactive visualisations.

A triangle mesh approximates a surface embedded in 3D by a set of 3D points,
called vertices, connected between them with a set of triangles called faces. Each
vertex is described in an orthonormal Cartesian system by its x, y, z coordinates.
As any digital information, the vertex coordinates can be seen as real numbers
quantised at a level l, with typical values l = 32 bits (floats), or l = 64 bits (dou-
bles). Regarding the quantisation method, here we assume that any coordinate
bit after the chosen level of quantisation l has a random value, rather than being
zero.

The choice of the appropriate l is a trade-off between efficiency and quality.
A small l may lead to a significant loss of geometric information while, on the
other hand, a large l may lead to mesh representations with a lot of redundancy,
resulting to unnecessarily large files and consequently, to unnecessarily expensive
computations.

This paper proposes a simple mathematical model for the trade-off between
encoding efficiency and mesh quality. More specifically, it proposes a logistic
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model to predict the degradation of the face normals as the level of quantisation
decreases. We notice that modelling normal degradation can be extremely use-
ful in practical applications because the quality of the mesh renderings is more
dependent on the quality of normal information than the quality of spatial in-
formation. The reason is that most rendering algorithms for triangle meshes use
normals to do the lighting computations and eventually determine the colour of
each pixel on the viewer’s screen.

As an application of the proposed normal degradation model, we will compute
appropriate levels of quantisation, given a tolerance for the average accuracy of
a triangle normal, possibly weighted by geometric characteristics of the triangle,
such as its area, or its dihedral angles. Finally, we will demonstrate by several
examples that the claimed optimisation is visually meaningful.

1.1 Previous Work

Most rendering algorithms, from Gouraud [1] and Phong [2] shading to the
computationally intensive BRDF techniques [3], make use of face or vertex nor-
mal information. Vertex normals are usually computed as weighted averages of
face normals [4], and a similar degradation behaviour is expected. In some ap-
plications, normals are not computed using spatial mesh information, but are
separately obtained at the data acquisition stage and encoded as 3D vectors by
three 32 bit coordinates. [5] studies the quantisation error introduced by such
normal representations and proposes efficient vector encoding methods.

The randomisation of the least significant bits adds a stochastic element to
the mesh geometry. Uncertainty in polygonal meshes has been studied in [6,7].
The retention of the most significant bits of a signal and the substitution of
the least significant bits by random bits is a commonly used technique called
dithering [8]. Dithering is used extensively in digital signal processing to prevent
quantisation artifacts, that is, unwanted regular patterns that may distract the
eye or the ear.

The problem of finding the appropriate level of mesh quantisation has been
encountered in mesh compression. In particular, the appropriate selection of
quantisation level is necessary for the accuracy of the parallelogram prediction
rule [9,10], which is still considered the state-of-the-art of predictive mesh encod-
ing [11]. The importance of removing redundant bits through vertex quantisation
is further magnified by the fact that, typically, the predictions of the least sig-
nificant bits have high entropy and thus, they cannot be efficiently compressed
[12]. However, despite its importance, the problem of choosing appropriate levels
of quantisation has not been systematically studied and all proposed methods
rely on the intuition of the user.

1.2 Contribution and Limitations

The main contributions of the paper are:

– A logistic model describing the degradation of the normal information of a
triangle mesh as the quantisation level decreases.
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– A method for computing an appropriate level of mesh quantisation when a
tolerance for the accuracy of the normals is given.

The main limitation of our approach is the assumption that our meshes have no
significant amount of noise. We make this assumption implicitly, by regarding
the normals at the highest level of quantisation as the most accurate. Thus, even
though geometric noise can be estimated [13], and the effects of noise at different
levels of mesh quantisation have been empirically studied [14], this paper focuses
on the effects of quantisation on clean, high quality meshes.

1.3 Overview

The rest of the paper is organised as follows. In Section 2, we describe a logistic
model for normal degradation and show how it can be empirically computed for a
given triangle mesh. In Section 3, we experimentally validate the proposed model.
In Section 4, we use the degradation model to compute appropriate quantisations
for triangle meshes and experimentally show that the claimed optimisation is
visually meaningful. We briefly conclude in Section 5.

2 A Logistic Model for Normal Degradation

Given a triangle mesh M, we model the quality of its normal information as a
function of the level of quantisation t by

DM(t) = C/(1 + e−a−bt), t ≥ 0. (1)

DM is the expected average change of the triangle normals, possibly weighted
by geometric characteristics of the triangles, when the t most significant bits of
each vertex coordinate are retained and the less significant bits are randomised.
Under our assumption of a clean, high quality original mesh M, DM is seen
as the normal error resulting from the vertex quantisation. We notice that we
can see (1) as an abstract degradation model and think of t as a real number;
however, in practice, t represents bit positions and thus we are interested in the
integer values of t between 0 and 64.

The curve of (1) has an inverse ‘S’ shape. Small values of t correspond to
coarse quantisations and large expected normal error, while large values of t
correspond to fine quantisations and small expected normal error. The exact
shape of the curve depends on the three constants a, b and C. The value of a
represents a quantisation threshold, after which some of the normal information
of the original mesh is retained, and b represents the rate at which normal
information is retained. C is a scaling factor controlling the maximum value of
DM. We notice that the maximum of DM should be obtained at t = 0, that
is, when all spatial information is random, in which case the expected average
normal error should reach its theoretical maximum of π/2. For the usual range
of values of a and t = 0, we have found experimentally that (1 + e−a−bt) ≈ 1
and thus C ≈ π/2.
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Equation (1) is a member of the family of the logistic functions. These func-
tions were initially introduced to model population growth, and have since found
numerous applications in fields ranging from social sciences to engineering. In
some of these applications, logistic functions have been used as degradation mod-
els, describing for example the transition of the state of a machine from working
perfectly to total failure [15].

2.1 Logistic Curve Fitting

For a given mesh M, its degradation model, that is, the values of the constants
a, b and C, is computed empirically. Specifically, for several integer values of t
between 0 and 64, we randomise all vertex coordinates after their t-th bit and
compute the weighted average change of the face normals. This weighted average
is considered a sample from the logistic curve at parameter value t. The curve
itself is computed by applying logistic curve fitting on samples computed at
several values of t.

To describe the above fitting process more formally, let the i-th vertex of a
given triangle mesh M be given in Cartesian coordinates by vi = (xi, yi, zi) (1 ≤
i ≤ N, i ∈ N), where N is the number of vertices of M. As the coordinates are
assumed to be float-point numbers, they can be represented in double precision
format (64-bit long). After this format conversion the mesh vertices have the
form v̂i = (x̂i, ŷi, ẑi), where x̂i, ŷi and ẑi are binary strings of 64 bits.

Next, we randomise the least significant bits. Specifically, for each v̂i =
(x̂i, ŷi, ẑi), we retain the t (0 ≤ t ≤ 64, t ∈ N) most significant bits of each
of x̂i, ŷi and ẑi and replace the 64 − t least significant bits with randomly gen-
erated bits. The result is a new set of coordinates v̌i = (x̌i, y̌i, ži), which are
converted into the floating point coordinates v′i = (x′

i, y
′
i, z

′
i) of the degraded

mesh Mt.
Next, we compare the triangle normals of M and Mt and the normal degra-

dation is measured as the weighted average of the normal distortion

dis(M,Mt) =
∑M

i=1 wi · angle(n̂i, n̂t
i)∑M

i=1 wi

, (2)

where M is the number of triangles in M, n̂i and n̂t
i, are the normals of the i-th

triangle of M and Mt, respectively, angle(n̂i, n̂t
i) is the smaller angle between

n̂i and n̂t
i expressed in radians.

If we put wi = 1 for i = 1, 2, . . . , M we get the mean average of the normal
distortion. Depending on the application, we might want to weight the average
in (2) by the area Ai of the triangles, that is, wi = Ai for i = 1, 2, . . . , M .
In this case, the normal distortion of the larger triangles, which dominate the
rendering process, has a larger weight. A third possibility is to use larger weights
for triangles with small dihedral angles. Such triangles represent the flat areas
of the surface where even very small normal distortions can be immediately
perceived as noise. For a dihedral angle weighted average we used the Gaussian
weights
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wi =
1√

2πσ2
e
−

(xi − μ)2

2σ2 (3)

where xi is the smallest of the three dihedral angles of the i-th triangle. In the
experiments, we fixed μ = 0 and σ = 3.5, which gave reasonable results.

Regarding the properties of dis(M,Mt), from

0 ≤ angle(n̂i, n̂t
i) ≤ π, 0 ≤ t ≤ 64, (4)

we get

0 ≤ dis(M,Mt) ≤ π, 0 ≤ t ≤ 64. (5)

While it seems quite difficult to improve these deterministic bounds, neverthe-
less, regarding the expectations for dis(M,Mt), we can easily see that the expec-
tation E(dis(M,Mt)) is a decreasing function of t and that E(dis(M,M0)) ≈
π/2 as already discussed. Moreover, all our experiments with commonly used
triangle meshes confirm that dis(M,Mt) ≈ 0 as t approaches 64.

Finally, the last step of the process is to use logistic curve fitting and fit the
logistic model of (1) to the samples computed by (2).

2.2 Estimation of Appropriate Quantisation Levels

The proposed logistic model can be used to find the appropriate level of quanti-
sation when a tolerance for the expected normal error is given. Indeed, by solving
(1) we get

t = −
(

ln
C − D(M,Mt)

D(M,Mt)
+ a

)
/b (6)

The parameters a, b and C are experimentally computed as described in Sec-
tion 2.1. Then, we substitute the normal error predicted by the model, i.e.
D(M,Mt), with the given tolerance and compute the appropriate level of quan-
tization t from (6).

Equation (6) can be further simplified by assuming C = π/2 and a fixed
tolerance that would be acceptable for all intended applications. For example,
for a normal error tolerance of ε = 1◦ (≈ 0.01745 radians), which is acceptable
in most visualisation applications, after using the ceiling function to convert t
to an integer, (6) becomes

t = �−(4.489 + a)/b� (7)

Thus, using the proposed logistic model, we are able to figure out the suitable
quantisation level easily, once the normal error D(M,Mt) and the two param-
eters a and b are given.
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Table 1. Mesh details and the results of the logistic model fitting. For each of the
mean average disav(M,Mt), area weighted average disar(M,Mt) and dihedral angle
weighted average disan(M,Mt), the left, middle and right columns show the values
of a, b and C, respectively.

M disav(M,Mt) disar(M,Mt) disan(M,Mt)

Fandisk 12946 22.863 -1.168 1.573 23.108 -1.184 1.573 22.864 -1.168 1.573

Bunny 69666 22.300 -1.154 1.570 22.127 -1.148 1.570 22.315 -1.153 1.570

Dragon 100000 18.865 -0.927 1.571 20.874 -1.077 1.572 19.095 -0.939 1.569

Lucy 525814 23.503 -1.081 1.571 21.887 -1.028 1.571 23.307 -1.071 1.572

MPII Geometry 70761 14.628 -0.685 1.569 11.600 -0.703 1.568 14.624 -0.684 1.571

3 Validation and Quantisation Levels

In this section we experimentally validate the proposed logistic model and com-
pute the appropriate levels of quantisation based on this model. The former is
to test the accuracy of the model, that is, to measure the difference between
the prediction of the model D(M,Mt) and the observed average normal distor-
tion dis(M,Mt). By contrast, the latter is to find out the appropriate level of
quantisation, subject to a given normal degradation.

The validation experiment was conducted on a set of synthetic and natural 3D
triangle mesh models consisting of the Fandisk, Bunny, Dragon, Lucy and MPII
Geometry. The mesh details and the results of the fitting process are summarised
in Table 1. We notice that in all cases the value of the threshold a is relatively
large, meaning that 8-bit or even 12-bit mesh vertex quantisations result to the
loss of almost all normal information. This is in contrast to the resiliency of the
volumetric properties of the corresponding shapes, given that in 12-bit, or even
8-bit voxelisations, the shapes are still clearly recognisable. We also notice that
the large value of a means that C ≈ π/2 for each of the test meshes, as expected.

The comparisons between the predictions of the logistic model D(M,Mt) and
the corresponding experimental observations dis(M,Mt) are shown in Fig.1.
The logistic model fits five data points computed at t = 12, 16, 20, 24 and 28
(see (2)). From Fig.1, we see that the red and blue curves of D(M,Mt) and
dis(M,Mt), respectively, are almost identical. That means that the proposed
logistic model can successfully predict the quality of the triangle normals. The
difference between the two curves are generally small, except at the high slope
part of the curves. We notice that the higher error at the high slope part of the
curve was predictable, given that small misalignments at the horizontal direc-
tion can cause large discrepancies at the vertical direction. We also notice that
quantisations corresponding to that part of the curve are not of direct interest
in practical applications because their normal error is very large.

Fig. 1 shows that the logistic functions fit nicely the data from the five test
models, except for the MPII Geometry model for some values of t for the case of
area weighted average. The problem with the MPII Geometry model is caused
by the high variance of the normal degradation, which as a result cannot be
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Fig. 1. Left: Comparison between the average normal distortion observations
disav(M,Mt) and the logistic model predictions. Middle: Comparison between the
area-weighted average of normal distortion observations disar(M,Mt) and the logistic
model predictions. Right: Comparison between the dihedral angle-weighted average of
normal distortion observations disan(M,Mt) and the logistic model predictions. The
models used here are Fandisk, Bunny Dragon, Lucy and MPII Geometry (from top to
bottom).
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Table 2. Appropriate quantization levels. For each of the mean average
disav(M,Mt), area weighted average disar(M,Mt) and dihedral angle weighted aver-
age disan(M,Mt), the left, middle and right columns correspond to ε = 1◦, ε = 5◦

and ε = 10◦, respectively

disav(M,Mt) disar(M,Mt) disan(M,Mt)

Fandisk 24 22 22 24 22 22 24 22 22

Bunny 24 22 22 24 22 22 24 22 22

Dragon 26 24 23 24 22 22 26 24 23

Lucy 26 25 24 26 25 24 26 25 24

MPII Geometry 28 26 25 23 21 20 28 26 25

modelled effectively. In particular, for some values of t, the normal degradation
variance of the very large triangles is also very large and dominates the area
weighted average. We notice that the MPII model is the only one of our test
models with very large triangles, as it contains triangles spanning whole sides of
the building. Fig. 2 shows the variance computations for the test models.

As mentioned before, the proposed model is quite efficient in estimating the
suitable mesh quantisation level, given a normal degradation. Indeed, the ap-
propriate levels of quantisation t can be yielded by simply rounding t in (6) to
the nearest integers towards infinity. For example, for ε = 1◦, the levels t for the
five models of the validation experiment, computed according to (7), are shown
in Table 2. The appropriate levels of quantisation for ε = 5◦ and 10◦ can be
computed analogously. We notice that, as expected, different models may have
different appropriate level of quantisation. For example, when the tolerance is
ε = 1◦ and we consider the mean average of the normal distortion, the relatively
simple Fandisk model can be represented by 24 bits per vertex coordinate with-
out significant loss of normal information, while the more complex Lucy and
MPII Geometry models require 26 and 28 per vertex coordinate, respectively.
We also notice that, in most models, the appropriate level of quantisation does
not depend on the chosen averaging method. A notable exception is the MPII
Geometry which consists of some extremely large and some extremely small
triangles and the results of the area weighted averaging method diverge.

To judge the visual significance of the claimed optimisation of t, the left col-
umn of Fig. 3 shows renderings of the original meshes quantised at 64 bits per
vertex coordinate and the middle column renderings of their respective appro-
priate quantisations for a small tolerance of ε ≈ 1◦ when the mean averaging
method is used. We notice that in all cases the appropriately quantised meshes
are almost indistinguishable from the originals, and any possible degradation
has been kept to visually acceptable levels.

To further demonstrate the relevance of our results, the right column of Fig. 3
shows renderings of the same meshes quantised at a coarser level correspond-
ing to a tolerance of ε ≈ 10◦. In practice that means that they are quantised
at a level that is 2 or 3 bits coarser than the ones on the middle column. We notice
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Fig. 2. Left: Variances of the average normal distortion observations disav(M,Mt).
Middle: Variances of the area-weighted average of normal distortion observations
disar(M,Mt). Right: Variances of the dihedral angle-weighted average of normal dis-
tortion observations disan(M,Mt). The models used here are Fandisk, Bunny Dragon,
Lucy and MPII Geometry (from top to bottom).
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that in all cases except the Dragon the degradation of the normal information
is visually significant. The only exception is the Dragon model which does not
show significant signs of degradation as a result of the coarser than appropriate
quantisation. The reason is that the original Dragon model is already noisy
and thus, its original normal information has already a large random element
which is not affected by the quantisation. This salient point is further illustrated
in Fig. 4 where close ups of the Fandisk and the Bunny at appropriate and
suboptimal levels of quantisation are shown. Finally, we notice that a given
level of quantisation (t = 24) may be appropriate for one mesh (Fandisk) and
significantly suboptimal for another (Lucy). Fig. 4 shows close-ups of the models
in Fig. 3.

4 Practical Applications

In this section we briefly discuss how the proposed logistic model for mesh degra-
dation can be used to enhance existing mesh steganography/watermarking and
mesh compression algorithms, help to evaluate such algorithms and inform their
further development.

The goal of steganography is to embed a confidential message on a carrier sig-
nal, here a mesh model, in such a way that no one apart from the sender and the
intended recipient can detect the existence of the hidden message. The challenge
in designing a good steganographic algorithm lies in balancing the two conflict-
ing requirements of high embedding capacity and low embedding distortion. That
is, one has to maximise the length of the message that can be embedded on a
given mesh and simultaneously minimise the visual impact of that embedding.

We notice that the proposed logistic model describes a trade-off between em-
bedding capacity, in the form of unused bits in the vertex coordinates, and
distortion, in the form of normal degradation. Therefore, it can directly be used
to inform least significant bit steganographic algorithms about the embedding
capacity of the carrier. More specifically, for a given carrier mesh M, we first
compute the parameters a, b of the logistic degradation model, as described in
Section 2. Then, for a certain distortion tolerance D(M,Mt) we compute the
appropriate level of quantisation t using (6). Finally, the 64− t least significant
bits of each vertex coordinate are replaced with the message bits to be hidden.

The proposed logistic model can also be used in conjunction with mesh com-
pression algorithms, as discussed in the Introduction. In particular, it can be
used to inform the user’s choice of level of quantisation t for the vertex coordi-
nates. After t has been determined, the compression algorithm will only keep the
t most significant bits of each coordinate and the coarse mesh will be compressed
and transmitted. At the receiver end, the coarse mesh will be decoded and 64− t
random bits will be appended to the t most significant bits of each coordinate.
Such a process would be completely analogous to dithering, as used in signal
encoding and compression.
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Fig. 3. Left: The original Fandisk, Bunny, Dragon, Lucy and MPII Geometry meshes
quantised at 64 bits per vertex coordinate. Middle: Finely quantised meshes at 24,
24, 26, 26 and 28 bits per vertex coordinate, respectively (ε ≈ 1◦). Right: Coarsely
quantised meshes at 22, 22, 23, 24 and 25 bits per vertex coordinate, respectively
(ε ≈ 10◦).
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Fig. 4. Close-ups of the models in Fig. 3
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5 Conclusions and Future Work

We proposed a logistic model for estimating the degradation of face normals in
3D triangle meshes caused the quantisation of vertex coordinates. As demon-
strated by the validation experiments, the behaviour of the proposed model is
satisfactory and its predictions for the normal degradation are good approxi-
mations of the respective experimental values. Finally, we discussed how the
proposed model might be utilised in a number of applications, especially those
requiring the estimation of an appropriate quantisation level for vertex coordi-
nates, as for example mesh steganography/watermarking and mesh compression.

In the future, we plan to use the logistic degradation model to study existing
high capacity mesh steganographic algorithms [16] and their counterpart robust
mesh watermarking algorithms [17]. In particular, the algorithms will be tested
and their evaluation will take into account the resilience of the carrier meshes
against distortion, as encapsulated in the parameters a and b of the logistic
model. We believe that this approach can open the way to evaluation method-
ologies for steganographic/watermarking algorithms that will be more rigorous
than the current common practice.

Another direction of our future research is to develop mathematical formula
estimating the parameters a and b from simple mesh characteristics related to
the number, size and shape of the triangles. Such formula will allow the direct
computation of the logistic model, with no need for a computationally expensive
simulation of mesh degradation, as described in Section 2, to collect data for
model fitting.
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Abstract. This paper deals with the single image scale-up problem us-
ing sparse-representation modeling. The goal is to recover an original
image from its blurred and down-scaled noisy version. Since this problem
is highly ill-posed, a prior is needed in order to regularize it. The liter-
ature offers various ways to address this problem, ranging from simple
linear space-invariant interpolation schemes (e.g., bicubic interpolation),
to spatially-adaptive and non-linear filters of various sorts. We embark
from a recently-proposed successful algorithm by Yang et. al. [1,2], and
similarly assume a local Sparse-Land model on image patches, serving as
regularization. Several important modifications to the above-mentioned
solution are introduced, and are shown to lead to improved results. These
modifications include a major simplification of the overall process both in
terms of the computational complexity and the algorithm architecture,
using a different training approach for the dictionary-pair, and introduc-
ing the ability to operate without a training-set by boot-strapping the
scale-up task from the given low-resolution image. We demonstrate the
results on true images, showing both visual and PSNR improvements.

1 Introduction

Many applications require resolution enhancement of images acquired by low-
resolution sensors (e.g. for high-resolution displays), while minimizing visual
artifacts. The single image scale-up1 problem can be formulated as follows: de-
note the original high-resolution image as yh ∈ RNh , represented as a vector
of length Nh pixels. In addition, denote the blur and decimation operators as
H : RNh → RNh and S : RNh → RNl (where Nl < Nh) respectively. It is assumed
hereafter that H applies a known low-pass filter to the image, and S performs
a decimation by an integer factor s, by discarding rows/columns from the input
image. zl ∈ RNl is defined to be the low-resolution noisy version of the original
image as

zl = SHyh + v, (1)

1 This problem is often referred to in the literature as super-resolution. The term
super-resolution may be confusing, as it is also used in the context of fusing several
low-resolution images into one high-resolution result.[3].

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 711–730, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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for an additive i.i.d. white Gaussian noise, denoted by v ∼ N (
0, σ2I

)
.

Given zl, the problem is to find ŷ ∈ RNh such that ŷ ≈ yh. Due to the
Gaussianity of v, the maximum-likelihood estimation is obtained by the mini-
mization of ‖SHŷ − zl‖2. However, since SH is rectangular with more columns
than rows, it cannot be inverted stably, and there are infinitely many solutions
that lead to a zero value in the above-mentioned least-squares term. Existing
single-image scale-up algorithms use various priors on the image in order to sta-
bilize this inversion, ranging from Tikhonov regularization, robust statistics and
Total-Variation, sparsity of transform coefficients, and all the way to example-
based techniques that use training set of images as priors. While we do not
provide a comprehensive review of these techniques, we refer the reader to the
following papers [4,5,6,7,8,9,10,11].

In this work we shall use the Sparse-Land local model, as introduced in
[12,13,14,15], for the scale-up problem. This model assumes that each patch from
the images considered can be well represented using a linear combination of few
atoms from a dictionary. Put differently, each patch is considered to be gener-
ated by multiplying a dictionary by a sparse (mostly zero) vector of coefficients.
This assumption will help us in developing an algorithm for image scale-up. It is
important to note that this is also the path taken by [1,2] and similar to [16,17].
However, our work differs from their solution in several important aspects, as
described in the paper.

This paper is organized as follows: The incorporation of the Sparse-Land
model into the scale-up problem is shown in Section 2. Section 3 describes the
actual implementation details of the algorithm. Experiments and comparative
results are given in Section 4, and conclusions are drawn in Section 5.

Just before we embark to the journey of handling the image scale-up problem
in this work, we should refer to a delicate matter of the involvement of the blur
that operates on the high-resolution image before the sub-sampling. In most
cases, when an image is scaled-down, this process is necessarily accompanied
by some pre-filter that averages local pixels, in order to reduce aliasing effects.
Our work assumes that this is indeed the case, and the role of the scale-up
process we aim to develop is to reverse both degradation steps – blur and sub-
sampling. As such, our work considers a task that is a generalization of the
deblurring problem, and by assuming no sub-sampling, the algorithm we derive
here becomes yet-another deblurring method.2

There exists a different line of work on the image scale-up problem that strive
to separate the treatment of the deblurring and the up-sampling problems. Such
work would assume that there is no blur involved, so that the inversion process
is purely an interpolation task. Alternatively, if there is a blur, the recovery per-
formance would be measured with respect to the blurred high-resolution image.
The rationale of such work is that once the image has been scaled-up in the best
possible way, a deblurring stage should be used to get the final outcome. This

2 In fact, the work reported in [17] does exactly that – developing a deblurring algo-
rithm based on this paradigm.
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is the approach taken, for example, in [18,19], and this explains why we cannot
compare our results to theirs.

We should note that, since scaled-down images are typically blurred prior to
sub-sampling, a separate treatment of the sampling and blur is necessarily sub-
optimal, compared to a joint treatment, as done in [1,2] and our work. Indeed,
after whatever (plain or smart) interpolation scheme, the additive noise in the
resulting high-resolution image cannot be assumed as homogeneous, implying
that off-the-shelf deblurring algorithms may perform poorly.

2 Incorporating the Sparse-Land Prior

In order to avoid the complexities caused by the different resolutions between
zl and yh, and in order to simplify the overall recovery algorithm, it is as-
sumed hereafter that the image zl is scaled-up by a simple interpolation op-
erator Q : RNl → RNh (e.g. bicubic interpolation) that fills-in the missing
rows/columns, returning to the size of yh. This decision will not badly influ-
ence the computational complexity of the algorithm, and in fact, the eventual
scale-up algorithm proposed here is much faster than the one proposed in [1,2,16].
The scaled-up image shall be denoted by yl and it satisfies the relation

yl = Qzl = Q (SHyh + v) = QSHyh + Qv = Lallyh + ṽ. (2)

The goal is to process yl ∈ RNh and produce a result ŷh ∈ RNh , which will get
as close as possible to the original high-resolution image, yh ∈ RNh .

The algorithm we propose operates on patches extracted from yl, aiming to
estimate the corresponding patch from yh. Let pk

h = Rkyh ∈ Rn be a high-
resolution image patch of size

√
n×√

n, extracted by the operator Rk : RNh →
Rn from the image yh in location k. It is assumed that the locations to consider
{k} are only those centered around true pixels in the low-resolution image yl

(as opposed to filled-in pixels due to the interpolation). This set of samples is
referred to hereafter as the set Ω.

It is now time to invoke the Sparse-Land model: it shall be further assumed
that pk

h ∈ Rn can be represented sparsely by qk ∈ Rm over the dictionary
Ah ∈ Rn×m, namely:

pk
h = Ahqk, (3)

where ‖qk‖0 � n, where the �0-pseudo-norm counts the number of non-zeros
in the vector qk. The matrix Ah is the dictionary that characterizes the high-
resolution patches. Its construction will be discussed in details in Section 3.

Consider the corresponding low-resolution patch pk
l = Rkyl, extracted from

yl in the same location (the patches pk
l and pk

h are centered around the same
pixel k), such that its size is

√
n×√

n. Since the operator Lall = QSH transforms
the complete high-resolution image yh to the low-resolution one, yl, it can be
assumed that pk

l = Lpk
h + ṽk, where L is a local operator being a portion of Lall,
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and ṽk is the additive noise in this patch. Note that L is a spatially independent
operator, as only locations k ∈ Ω from yl are considered.3

Since it is assumed that pk
h = Ahqk, multiplication of this equation by L

gives

Lpk
h = LAhqk. (4)

Exploiting the relation between the low-resolution and the high-resolution
patches pk

l = Lpk
h + ṽk, we obtain

LAhqk = Lpk
h = pk

l − ṽk, (5)

implying that

‖pk
l − LAhqk‖2 ≤ ε, (6)

where ε is related to the noise power σ of v.
The key observation from the above derivations is that the low-resolution

patch pk
l can be represented by the same sparse vector qk over the effective

dictionary Al = LAh, with a controlled error ε. This implies that for a given
low-resolution patch pk

l , its sparse representation vector, qk, is found and then
pk

h can be recovered by simply multiplying this representation by the dictionary
Ah. This is the core idea behind the image scale-up algorithm as developed by
Yang et. al, [1,2], and we follow it as well, with important modifications.

We should comment that the above observation is fragile and may become
wrong for some image patches. Even if the dictionary Ah has low-coherence,
the multiplication by L is expected to cause a deterioration (i.e. increase) in the
mutual coherence of Al = LAh . This may lead to the detection of a wrong
sparse representation vector for a low-resolution patch, which does not fit the
high-resolution one [14].

Similar to the approach taken in [1,2], we disregard this problem, with the
hope that such errors are rarely encountered. To our aid come two possible forces:
(i) Even if there is a mistake in the sparse coding of a low-resolution patch, it
is unclear whether such a error reflects an error in the recovered high-resolution
patch (even though we rely on the wrong sparse representation vector) – this
matter calls for deeper theoretical study, which is beyond the scope of this work.
Furthermore, (ii) As we explain in the next section, we work with overlapping
patches that are averaged, and therefore visual artifacts in a high-resolution
recovered patch may be attenuated by nearby patches that get better treatment.
Naturally, the empirical results we show towards the end of this paper should
serve as the ultimate judge, whether our assumptions are justified.

3 The observant reader might be troubled by boundary issues because of the spatial
extent of the operator Lall, and the fact that we have chosen the low-resolution and
the high-resolution patches to be of the same size. However, the developed algorithm
will not make use of the operator L, and bypass this issue - more on this matter is
brought in the next section.
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3 The Proposed Single-Image Scale-Up Algorithm

The scale-up algorithm consists of a training phase (that can be done off-line)
as described in Figure 1 and a reconstruction phase, performing the scale-up on
the test image using the trained model from the previous phase, as described in
Figure 2.

1. Training set construction: A set of high-resolution training images {yj
h}j is

collected, Low-resolution images {yj
l }j are constructed using scale-down op-

erator Lall and pairs of matching patches that form the training database,
P = {pk

h,pk
l }k, are extracted.

2. Each of these patch-pairs undergoes a pre-processing stage that removes the
low-frequencies from pk

h and extracts features from pk
l .

3. Dimensionality reduction is applied on the features of the low-resolution
patches pk

l , making the dictionary training step much faster.
4. A dictionary Al is trained for the low-resolution patches, such that they can

be represented sparsely.
5. A corresponding dictionary Ah is constructed for the high-resolution patches,

such that it matches the low-resolution one.

Fig. 1. Proposed algorithm’s summary: training phase

1. Given a test low-resolution image zl to be scaled-up, it is interpolated to yl

of the destination size, and all that it requires is a spatial non-linear filtering
to sharpen it.

2. Pre-processed patches pk
l are extracted from each location k ∈ Ω, and then

sparse-coded using the trained dictionary Al.
3. The found representations {qk} are then used to recover the high-resolution

patches by multiplying them with Ah.
4. The recovered high-resolution patches {pk

h} are finally merged by averaging
in the overlap area to create the resulting image.

Fig. 2. Proposed algorithm’s summary: reconstruction phase

3.1 Training Set Construction

The training phase starts by collecting several images {yj
h}j, which are consid-

ered to be the high-resolution examples. Each of these images is blurred and
down-scaled by a factor of s. This leads to the formation of the corresponding
low-resolution images {zj

l }j , which are then scaled up back to the original size
using Q, resulting with the set {yj

l }j . Thus,

yj
l = Lally

j
h + ṽj . (7)
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It is important to note that the same operators S, H and Q should be used both
in the training and the reconstruction phases.

3.2 Preprocessing and Feature Extraction

The next step is pre-processing by high-pass filtering, similar to the approach
in [7,1,2,16]. Rather than extracting small image-patches and applying this step
on them, the desired pre-processing is employed directly on the full images, and
only then are the patches extracted. This order avoids boundary problems due
to the small patch size.4

The pre-processing applied to the high-resolution images consists of a re-
moval of their low-frequencies, which is done by computing the difference im-
ages ej

h = yj
h − yj

l . The reason for this step is the desire to focus the training
on characterizing the relation between the low-resolution patches and the edges
and texture content within the corresponding high-resolution ones.

As for the pre-processing of the low-resolution images, these are filtered using
R high-pass filters, in order to extract local features that correspond to their
high-frequency content. Thus, each low-resolution image yj

l results in a set of R

filtered images, {fr∗yj
l }r for r = 1, 2, . . . , R (where ∗ stands for a convolution).

Typical filters to be used may be gradient and Laplacian high-pass filters.
After the two pre-processing steps described above, local patches are extracted

forming the data-set P = {pk
h,pk

l }k. Considering only locations k ∈ Ω, pk
h

patches of size
√

n × √
n pixels are extracted from the high-resolution images

ej
h. The corresponding low-resolution pk

l patches are extracted from the same
locations in the filtered images fk ∗yj

l and using the same size (
√

n×√
n pixels).

Thus, every corresponding R such low-resolution patches are concatenated into
one vector p̃k

l of length nR. Note that the high-resolution patch size should be
at least of size s× s so as to cover the high-resolution image. A larger patch-size
results in overlaps between patches, which improves the reconstruction result
(by reducing errors and discontinuities between reconstructed patches).

3.3 Dimensionality Reduction

The formed low-resolution patches, started as
√

n/s×√
n/s = n/s2 pixel patches

(in the images zj
l ), are now represented as p̃k

l of nR dimensions after an interpo-
lation operator Q and set of R linear filters. As a result, the intrinsic dimension-
ality (n/s2) of the resulting patches should not increase and it is much smaller
than the representation dimension (nR), resulting in superfluous computations.
The advantage of performing a dimensionality reduction is saving computations
in the subsequent training and super-resolution algorithms. Therefore, the last
step before turning to the dictionary learning stage is reducing the dimension

4 A patch of size
√

n×√
n in yl should correspond to a larger patch in yh, because of the

spatial extent of the blur and the scale-up operations. Nevertheless, this additional
“band” of pixels can be disregarded, concentrating on predicting only the center
portions of the destination patch from yh.
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of the input low-resolution patches, {p̃k
l }k. The Principal Component Analysis

(PCA) algorithm is applied on these vectors, seeking a subspace on which these
patches could be projected while preserving 99.9% of their average energy. The
projection operator that transforms the patch p̃k

l ∈ RnR to its reduced feature
vector, pk

l ∈ Rnl , is denoted by B ∈ Rnl×nR, pk
l = Bp̃k

l .

3.4 Dictionary Learning

The starting point of the dictionary learning stage are the low-resolution patches
{pk

l }k ⊆ Rnl . The K-SVD dictionary training procedure [20] is applied to these
patches, resulting in the dictionary Al ∈ Rnl×m:

Al, {qk} = argmin
Al,{qk}

∑
k

‖pk
l − Alqk‖2 s.t. ‖qk‖0 ≤ L ∀k. (8)

A side product of this training is the sparse representation coefficients vectors
{qk}k that correspond to the training patches {pk

l }k.
The next step is the high-resolution dictionary construction. Recall that our

intention is to recover the patch pk
h by approximating it as being pk

h ≈ Ahqk.
Effectively, the found sparse representation vector for the low-resolution patch
is multiplied by the high-resolution dictionary for recovering pk

l . The dictionary
Ah is therefore sought such that this approximation is as exact as possible. Thus,
this dictionary is defined to be the one that minimizes the mean approximation
error, i.e.,

Ah = argmin
Ah

∑
k

‖pk
h − Ahqk‖2

2 (9)

= argmin
Ah

‖Ph − AhQ‖2
F ,

where the matrix Ph is constructed with the high-resolution training patches
{pk

h}k as its columns, and similarly, Q contains {qk}k as its columns. We note
that this is also the approach taken in [16]. The solution of the problem is given
by the following Pseudo-Inverse expression (given that Q has full row rank):

Ah = PhQ+ = PhQT (QQT )−1. (10)

Note that the above approach disregards the fact that the high-resolution patches
overlap. Thus, a better (and more complex) training procedure can be envisioned
for computing Ah. Since the eventual high-resolution image (in the reconstruc-
tion stage) is constructed by positioning high-resolution patches and averaging
them, Ah should be optimized such that the resulting image is as close as possible
to the original one.

Define the operator Rk, which extracts a patch of size n × n from the high
resolution image in location k. The image ŷh should be constructed by the
following formula [12,13]:

ŷh = yl +

[∑
k∈Ω

RT
k Rk

]−1 [∑
k∈Ω

RT
k Ahqk

]
. (11)
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The term RT
k Ahqk builds the high-resolution patch, Ahqk, and then positions

it in the k-th location in the high-resolution image. The term W =
∑

k RT
k Rk ∈

RNh×Nh is a diagonal matrix that weights every pixel in the high-resolution
outcome, based on the number of contributions it gets form the overlapped
patches. Note that yl appears in the error computation, due to the fact that
the patches in Ph are constructed from the difference images eh = yh − yl, and
this means that for the image ŷh to be constructed, the algorithm should return
these low-frequencies.

Based on the above, it is natural to define the best dictionary Ah as the
solution of the optimization task:

Ah = argmin
Ah

‖yh − ŷh‖2
2 (12)

= argmin
Ah

∥∥∥∥∥∥yh − yl −
[∑

k∈Ω

RT
k Rk

]−1 [∑
k∈Ω

RT
k Ahqk

]∥∥∥∥∥∥
2

2

.

Denote Wk = RkW−1 ∈ Rn×Nh and write ŷh = yl +
∑

k WT
k Ahqk. The goal

is to minimize ‖yh − ŷh‖2
2 with respect to Ah. Denote eh = yh − yl, and Ah is

obtained by the minimization of

Ah = argmin
Ah

‖yh − yl −
∑

k

WT
k Ahqk‖2

2 = arg min
Ah

‖eh −
∑

k

WT
k Ahqk‖2

2.(13)

Given X ∈ Rn×m, define x ≡ cs(X) to be the column-stack version of X (us-
ing xi+nj = Xij). Now using the Kronecker product property: cs(BAC) =(
CT ⊗ B

)
cs(A) =

(
C⊗ BT

)T
cs(A), we obtain

cs(eh) = eh =
∑

k

WT
k Ahqk =

(∑
k

qk ⊗ Wk

)T

cs(Ah) = M · cs(Ah),(14)

where M ∈ RNh×mn is defined as MT =
∑

k qk ⊗ Wk. Therefore, one way to
get the optimal Ah is by the direct formula, M†eh.

Since the matrices involved may be too large, we present an alternative, it-
erative, approach. Note that the gradient of f(Ah) = 1

2‖eh − ∑
k WT

k Ahqk‖2
2

with respect to Ah, can be written as

∇Ah
f =

∑
k

Wk

(
eh −

∑
k

WT
k Ahqk

)(
qk

)T
. (15)

An iterative scheme (such as the Conjugate Gradient method) can be used to
find the optimal Ah, using the gradient expression above.

The dictionary resulting from the training process is expected to better re-
construct the output result. In the experiments given below, both ways to derive
Ah are adopted.

The two corresponding dictionaries {Al,Ah} conclude the training phase of
the super-resolution algorithm, that started with the high-resolution training set
{yj

h}j.
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3.5 Reconstruction Phase

The reconstruction phase attempts to magnify a low-resolution image zl. This
image is assumed to have been generated from a high-resolution image yh by
the same blur and scale-down operations as used in the training. The following
steps are performed:

1. The image is scaled up by a factor of s using bicubic interpolation Q, result-
ing with yl ∈ Rnl .

2. The image yl is filtered using the same R high-pass filters that were used
for feature extraction in the training, obtaining fk ∗ yl.

3. Patches are extracted from these R images, each of size
√

n × √
n from

locations k ∈ Ω. Every R such patches that correspond to the same location
are concatenated to form a patch vector p̃k

l . This collection of patches forms
the set {p̃k

l }k.
4. The patches {p̃k

l }k are multiplied by the projection operator B for dimen-
sionality reduction, resulting with the set {pk

l }k, each patch of length nl (for
n = 81 and a scale factor s = 3, our tests lead to nl ≈ 30).

5. The OMP algorithm is applied to {pk
l }k, allocating L atoms to their repre-

sentation, and finding the sparse representation vectors {qk}k.
6. The representation vectors {qk}k are multiplied by the high-resolution dic-

tionary Ah, and the approximated high-resolution patches, {Ahqk}k =
{p̂k

h}k are obtained.
7. The final super-resolved image ŷh is constructed from p̂k

h by solving the
following minimization problem with respect to ŷh:

ŷh = argmin
ŷh

∑
k

∥∥Rk(ŷh − yl) − p̂k
h

∥∥2

2
. (16)

This problem states that extracted patches from the resulting difference
image, ŷh − yl, should be as close as possible to the approximated patches,
p̂k

h. This problem has a closed-form Least-Squares solution, given by

ŷh = yl +

[∑
k

RT
k Rk

]−1 ∑
k

RT
k p̂k

h, (17)

which was already mentioned above. This seemingly complex term is actu-
ally very simple – it is equivalent to putting p̂k

h in their proper locations,
averaging in overlap regions, and adding yl to get the final image ŷh.

3.6 Bootstrapping Approach

If the training process has no access to an external set of images, the algorithm
may be adapted to train and “bootstrap” itself from a single test image, as pro-
posed by [22]. Note that in order to train the dictionaries {Al,Ah}, the proposed
algorithm needs only access to pairs of low-resolution and high-resolution im-
ages. Using the test image zl as the “high-resolution” image and its scaled-down
version zll (by an appropriate choice of S and H), the algorithm can be easily
extended to perform “bootstrapping” from a single image:
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– The training phase is applied to zl (as high-resolution image), zll (as low-
resolution image).

– The trained dictionaries are used to enable reconstruction phase, which scales
up zl into yh.

Thus, it is possible to scale-up a single image by learning the Sparse-Land model
directly from the test image itself, provided that the training process has enough
training data to build a valid Sparse-Land model from.

4 Results

In this section we provide series of tests of the proposed algorithm, and com-
parisons to the results obtained in [1,2]. In all experiments, the dictionary Ah is
trained using the simpler method (that does not take the overlaps into account),
unless mentioned differently.

4.1 Text Scale-Up

The first test contains images showing a printed text. The training image (screen-
grabbed) is shown in Figure 3. Only this image is used for the training, and we
expect that adding more images would lead to improved results. The global oper-
ator Lall in this experiment is implemented by first blurring the high-resolution
images yj

h with a 1D filter [1, 3, 4, 3, 1]/12 both horizontally and vertically, and
then down-sampling it by a factor of s = 3, i.e., the scaled-down image zl is one-
ninth of the original image size. The image yl is created by bicubic interpolation
of zl, returning to the original size.

Extraction of features from the low-resolution images is done exactly as pro-
posed in [1,2] using 4 filters that perform 1-st and 2-nd horizontal and vertical
derivatives: f1 = [1,−1] = fT

2 and f3 = [1,−2, 1] = fT
4 . These filters are applied

such that only sampled pixels are used in the filtering computation5. The patch
size used is n = 81, and the PCA results with a reduction from 4 · 81 = 324
dimensions to nl = 30 dimensions. The dictionary training procedure applied
40 iterations of the K-SVD algorithm, with m = 1, 000 atoms in the dictionary,
and allocating L = 3 atoms for each representation vector.

The test image (a different image, grabbed from a different page, but having
the same scale) is shown in Figure 4. This figure shows the original test image,
and the scaled-down version that should be scaled-up. The scaling-up results are
also shown in Figure 4, and it is evident that the outcome is far better, com-
pared to the bicubic interpolation6, showing Peak-SNR (PSNR) improvement of
5 This means that either zl is filtered and then interpolated, or yl is filtered with zero-

padded filters of the form f1 = [0, 0, 1, 0, 0,−1] = fT
2 and f3 = [1, 0, 0,−2, 0, 0, 1] =

fT
4 .

6 Since bicubic interpolation does not include a deblurring capability, it seems that
comparing our results to it is unfair. However, when trying to deblur the bicubic
interpolation result (using TV-deblurring), we found out that the quality deterio-
rates. This could be explained by the non-homogeneous nature of the noise that is
magnified in an uncontrolled way by the deblurring.
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Fig. 3. Text experiment: The training image for the image scaling-up algorithm. This
image is of size 717 × 717 pixels, and it provides a set of 54, 289 training patch-pairs.

2.27dB, with PSNR computed by

PSNR = 10 log10

(
2552 · N∑
i(ŷi − yi)2

)
, (18)

with y, ŷ ∈ [0, 255]N ⊆ RN .

4.2 PSNR Comparison with Yang et. al. [1,2]

The second experiment aims to give a comprehensive comparison between the
results of our algorithm and the one in [1,2]. The proposed algorithm is im-
plemented in MATLAB using optimized implementation for K-SVD and OMP
algorithms [21], on Intel Core 2 Duo P8600 at 2.4GHz with 4GB of RAM. It is
trained on the same training set used in [1,2], using s = 3 scale-up configuration.
Each training image is blurred using a bicubic filter and decimated by a factor
of s; feature extraction is done as before (using gradient and laplacian filters).

Around 130,000 training patch-pairs are collected and PCA is applied to re-
duce feature dimensions to nl = 30. Low-resolution dictionary learning takes
approximately 12 minutes for 40 iterations of the K-SVD algorithm, with m =
1, 000 atoms in the dictionary, and allocating L = 3 atoms per patch-representa-
tion. Moreover, the high-resolution dictionary training takes just a few seconds,
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Test image zl to be scaled-up Original high-resolution version yh

Bicubic interpolation yl(RMSE=47.06) Proposed algorithm ŷh(RMSE=36.22)

Fig. 4. Text experiment: The image zl is of size 120× 120 pixels, and it provides a set

of 12, 996 patches to operate on. RMSE is computed using 1
N

√∑N
i=1 |yi − ŷi|2 where

y, ŷ ∈ [0, 255]N .

using the pseudo-inverse expression Ah = PhQ+. The proposed training algo-
rithm is much faster than the one used by Yang et. al. [1,2] (taking several hours
to run on the same settings). The reconstruction algorithm is tested on 14 test
images (taking a few seconds on each image, using fully overlapping 3×3 patches
in low-resolution scale) and its results are compared versus bicubic interpolation
and the reconstruction algorithm proposed by Yang et. al. [1,2]. The result-
ing images’ boundary is cropped (to ignore boundary effects of overlap-and-add
method) and Peak-SNR is computed.

The results are summarized in Table 1. A few 100×100 representative windows
from different images are compared at Figure 5. On the left is the original image,
followed by bicubic interpolation, Yang et. al. [1,2] and the proposed algorithm’s
results on the right, at the last column.
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Table 1. PSNR comparison results. (i) corresponds to the simpler high-resolution
dictionary training method, using Pseudo-Inverse expression (see Equation 10). (ii)
corresponds to the more complex method that takes care for overlapping patches.

Name Bicubic Yang et. al [1,2] Proposed (i) Proposed (ii)

baboon 23.2 23.5 23.5 23.5
barbara 26.2 26.4 26.8 26.7
bridge 24.4 24.8 25.0 25.0
coastguard 26.6 27.0 27.1 27.2
comic 23.1 23.9 24.0 24.1
face 32.8 33.1 33.5 33.6
flowers 27.2 28.2 28.4 28.6
foreman 31.2 32.0 33.2 33.6
lenna 31.7 32.6 33.0 33.1
man 27.0 27.8 27.9 28.0
monarch 29.4 30.7 31.1 31.4
pepper 32.4 33.3 34.1 34.2
ppt3 23.7 25.0 25.2 25.6
zebra 26.6 28.0 28.5 28.6

Average 27.5 28.3 28.7 28.8

The proposed algorithm performs visually much better than bicubic interpo-
lation, and on some images considerably better than Yang et. al. [1,2] algorithm,
having less visual artifacts and producing sharper results with improved PSNR.
Moreover, the implementation of the proposed algorithm is much faster (by an
order of magnitude) than Yang et. al. [1,2] implementation, using optimized
K-SVD and OMP implementations by [21].

4.3 Bootstrapping Approach for Single Image Scale-Up

The third experiment is the image Building. Starting from the original image
yh of size 800×800 pixels, the image is filtered with the separable filter [1, 2, 1]/4
(horizontally and vertically), and down-scaled by a factor of s = 2 to obtain zl

of size 400 × 400.
In this experiment, the dictionaries are trained using the very same image,

by further scaling it down by a factor s = 2, resulting with the image zll of
size 200 × 200. The image pair {zl, zll} is used for the training, based on the
expectation that the relation between these two images reflects also the relation
that should be used to up-scale from zl to yh.

Extraction of features from the low-resolution images is done using the same 4
filters, and the dimensionality reduction leads this time from n = 81 to nl = 42.
The training data contains 37, 636 pairs of low- and high-resolution patches to
be modeled. The parameters of the dictionary training all remain the same (40
iterations of the K-SVD algorithm, m = 1000 atoms in the dictionary, and L = 3
atoms per representation).

Figure 6 shows the original image yh, the bicubic scaled-up image yl, and the
result of the scaling up algorithm, ŷh. The difference between the two images is
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Original image Bicubic interpolation Yang et. al. [1,2] Proposed algorithm

Fig. 5. Visual comparison: Portions from various images (from top to bottom: barbara,
comic, face, pepper, zebra). Left to right: the original image, bicubic interpolation,
Yang et. al [1,2] and the proposed algorithm (using the more complex method for
dictionary update). Note that the proposed algorithm produces sharper results, pre-
serves the small details of the image and has less visual artifacts compared with bicubic
interpolation and Yang et. al. [1,2].
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The original Building image yh The difference image |ŷh − yh| magnified
by 5

Bicubic interpolated image yl

(RMSE= 12.78)
Proposed algorithm’s result ŷh

(RMSE= 8.72)

Fig. 6. Bootstrapping experiment

3.32dB, and in order to see where these differences reside, the figure also shows
the difference image |ŷh − yh|. Figure 7 shows two 100× 100 portions extracted
from yh, yl, and ŷh, to better demonstrate the visual gain achieved by the
scaling-up algorithm.

This approach has been tested on several images using various dictionary
sizes, and in many cases the bootstrapped results are visually comparable and
even better, compared to a separate off-line training.

The proposed algorithm results are visually comparable to [22], as demon-
strated in Figure 8. Since [22] provides no “ground-truth” images, it is not pos-
sible to provide PSNR results. It should be noted that the algorithm of [22] is
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Original image Bicubic interpolation Proposed algorithm

Fig. 7. Bootstrapping experiment: Portions from the Building image. Notice that the
original portions show some compression artifacts, which do not appear in the scaled-up
results

also much more computationally demanding than the proposed one (requiring
the solution of many nearest-neighbor problems for the reconstruction phase)
and relies heavily on patch recurrence property. Nevertheless, it does performs
quite well on the testing set of images described in [22], assumably due to the
“coarse-to-fine” approach (where the image is scaled-up n times, each time by
n
√

s factor), especially for large scaling factor s.
When compared to the algorithms [1, 2] and [16], the proposed algorithm uses

the same idea of training phase and reconstruction phase, Sparse-land modeling
of the desired image patches, and a pair of dictionaries that are used to migrate
from the low-resolution domain to the high-resolution one. However, different al-
gorithms are used for the dictionary training: K-SVD for the low-resolution dic-
tionary, and pseudo-inverse for the high-resolution dictionary. Moreover, OMP
is used for sparse-coding, instead of LASSO optimization methods. Other im-
portant modifications in our algorithm are (i) the ability to train on the given
image, (ii) the initial interpolation by Q that simplifies much of the subsequent
work without a computational cost, (iii) the definition of the high-resolution
patches based on the difference yh − yl, and (iv) the dimensionality reduction
we apply on the low-resolution patches.
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It should be noted that the sparsity constraint L = 3 is used, which is much
smaller than the sparsity achieved by [1, 2], while the proposed algorithm’s PSNR
results are better. This may be explained by the better generalization ability
of the proposed model, requiring much less atoms per patch. Moreover, while
[1, 2] suggests training high-resolution and low-resolution dictionaries together
(by concatenating high-resolution and low-resolution patches together into one
vector), the proposed process is split as described above - thus achieving a more
stable reconstruction process having less visual artifacts.

In [1,2] and in [22] it was observed that the result ŷh does not necessarily
conform with the requirement Lallŷh = yl. A back-projection procedure was
suggested in which the result ŷh is projected onto this constraint, by solving the
following optimization problem:

ŷh = argmin
ŷh

‖ŷh − yh‖2 s.t. Lallŷh = yl. (19)

However, our tests show that such a projection procedure is not needed, and in
fact, it may add some artifacts to the image. Thus, our algorithm does not use
this post-processing stage.

5 Summary

There are various ways to scale-up an image while preserving edges and small de-
tails. In this paper we introduced one such algorithm that illustrates how sparse
representation modeling and dictionary learning can be used for this goal. The
algorithm operates by training a pair of low- and high-resolution dictionaries,
using either training images or exploiting a lower-resolution version of the same
image to be handled. The presented algorithm is based on the method proposed
by Yang et. al. [1,2], with several important modifications:

– Numerical shortcuts bring the proposed algorithm to be highly efficient and
much faster (using interpolation of the low-resolution image and dimension-
ality reduction via PCA).

– A different training approach is used for the dictionary-pair: K-SVD for
learning Al from extracted features, and direct-approach (using pseudo-
inverse) for Ah from error patches.

– The OMP algorithm is used as sparse coding algorithm, which is much faster
than �1-optimization-based methods.

– The proposed algorithm is much simplified by removing redundant steps
(e.g. back-projection during post-processing stage).

– The algorithm can operate without a training-set, by boot-strapping the
scale-up task from the given low-resolution image. This idea is similar in
spirit to the concept posed in [22], but the proposed solution is simpler and
yet very effective.

This method is relatively simple, and yet produces a substantial improvement
over bicubic interpolation.

Various further improvements can be considered, and these are likely to im-
prove the algorithm’s output quality:
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Glasner et. al. [22] Proposed algorithm

Fig. 8. Visual comparison of the results. First row: Scale-Up by ×4; Second row: Scale-
Up by ×3

– It is possible to force the overlapping patches p̂k
h to better align with each

other. This can be done by operating sequentially on the incoming patches
pk

l , and when applying the sparse coding stage (to produce qk), a penalty
can be added on the distance between the newly constructed patch, p̂k

h, and
the ones already computed. This has been done in [1,2] and quantifying the
benefit of this idea should be done.
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– Optimization of the feature extraction and dimensionality reduction opera-
tors. Various high-pass filters and thresholds have been tested for the PCA
stage, however there must be more options to investigate and perhaps even
automatically learned.

– The training set can be extended by adding more examples, by applying
simple operators on the input images, e.g. rotation by 90◦, reflection, etc..

– It should be noted that it is assumed that the blur operator H is known for
all the experiments that have been performed. In the case it is not known
(i.e. while bootstrapping from a single image) there is a significant degree of
freedom in choosing H, which obviously will affect the results.

– It is possible to combine the off-line training with the bootstrapping approach
by training a general dictionary pair {Al,Ah} and applying several more
iterations on each new test low-resolution image and its down-scaled version
{zl, zll}. This two stage process will allow the dictionary to “adapt” the
reconstruction process to the specific image to be reconstructed.

– Using more than two scales (the “low” and the “high” ones) in a “coarse-to-
fine” framework, as practiced in [22] may help improve the scale-up process
by building multi-scale sparse-representation for the image.
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Abstract. This paper discusses a special type of T-spline surfaces called
periodic T-splines that are closed in one parameter direction, and their
application in tubular surface fitting. First, a global representation is pro-
posed for representing periodic T-splines. This representation does not
require repeating control points, which facilitates surface fitting process.
Then, an algorithm for adaptively fitting periodic T-splines to a tubular
triangular mesh that has the same topology as a cylinder is presented.
The resulting periodic T-spline is obtained respecting the geometric dis-
tribution of the input mesh. The use of periodic T-splines for tubular
surface fitting has at least two advantages: 1) adaptive fitting is eas-
ily achieved due to the local refinement of T-splines; 2) the algorithm
avoids cutting the mesh to make it a disk topologically for conventional
B-spline fitting due to the periodic representation and this overcomes
the drawback of finding a good cutting path, which is usually difficult.

Keywords: Periodic T-splines, tubular surfaces, adaptive surface fitting.

1 Introduction

Triangular meshes and splines are two typical representations for freeform sur-
faces. In some applications, there is a need to convert a model in triangular mesh
representation into splines. This conversion can be achieved by surface fitting or
reconstruction. Many interesting methods have been developed for reconstruct-
ing spline surfaces from scattered data or meshes [1,2,3,4,5].

This paper considers the problem of converting a tubular triangular mesh
into a spline surface, as depicted in Figure 1 where the left is an input tubular
mesh and the right is an output spline surface. A tubular surface is characterized
by having two boundary loops and one lateral surface between them [6,7]. The
lateral surface is open along one direction (the axis direction) and closed along
the other direction (the sectional direction). A tubular surface can be viewed as
a deformation of a cylinder. The two loops correspond to the upper and lower
boundaries of the cylinder and the lateral surface corresponds to the interior of
the cylinder surface (see Figure 2). Tubular surfaces are still quite common in
many application domains. For example, pipes in mechanical engineering and
blood vessels in medical engineering are tubular surfaces. Although previous
fitting methods can be used to fit spline surface to a tubular mesh, it is required
to cut or segment the tubular mesh into a disk or disks topologically. Finding a
good cutting or segmentation is usually difficult.

J.-D. Boissonnat et al. (Eds.): Curves and Surfaces 2011, LNCS 6920, pp. 731–746, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Converting a tubular mesh (left) to a spline surface (right)

Fig. 2. Correspondence between a tubular surface (left) and a cylinder (right)

Alternatively, in this paper we propose to use periodic T-spline surfaces to
approximate tubular meshes. We choose T-splines because T-splines allow us to
easily implement adaptive fitting. In practice, adaptive fitting is attractive. It
handles complicated models with unevenly distributed details well. Since tensor-
product B-spline surfaces cannot be refined locally, hierarchical B-splines were
used to perform adaptive fitting [4,5]. However, in hierarchical B-splines, hierar-
chy must be taken care of. T-splines are a recently-developed free-form surface
technology that solves most of the limitations inherent in the non-uniform ra-
tional B-spline (NURBS) representation [8,9]. T-splines allow local refinement,
making them a good candidate for adaptive fitting [10,11]. T-splines are forward
and backward compatible with NURBS and thus integrate well into existing
CAD/CAM systems.

We choose periodic surfaces because tubular surfaces are closed in one direc-
tion. Therefore we are interested in a class of T-splines that are closed in one
parameter direction. Such periodic T-splines can be viewed as a generalization
of one-directionally periodic B-spline surfaces by permitting the existence of T-
junction control points in their control grids, thus enabling local refinement.
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They can seamlessly model those surfaces that have the same topology as a
cylinder surface.

To accomplish adaptive fitting using periodic T-splines, we examine two basic
tasks in this paper. The first task is how to appropriately represent periodic T-
splines. A global representation for periodic T-splines is proposed in Section 2,
which facilitates T-spline fitting process. The second task is a fitting algorithm
for converting a mesh represented tubular surface into a periodic T-spline sur-
face. The detailed steps of our adaptive fitting algorithm are described in Sec-
tion 3. Two experimental examples are provided in Section 4 and Section 5
concludes the paper.

2 Periodic T-Splines

In CAGD, periodic curves and surfaces often refer to those curves and surfaces
that are closed, seemingly without beginning or end [12]. In this section, we first
explain why the common process in CAGD for handling periodic B-splines may
not be convenient for periodic T-spline fitting and then propose an alternative
approach to handling periodic T-splines. To simplify the discussion, this paper is
written in terms of cubic B-spline curves and bicubic T-splines. The approaches
can be extended to arbitrary degree B-splines/T-splines.

2.1 Repeating Control Points and Knot Intervals for Periodic
B-Splines

A common approach in CAGD for constructing a periodic B-spline curve is to
treat the periodic curve as a simple special case of an open curve [12]. The open
curve needs some extra control points that overlap the existing ones. We explain
this with an example. Figure 3(a) shows four points forming a polygon. If we
want to define a closed cubic B-spline curve as shown in Figure 3(b), we need
more control points to make the curve consist of several segments. In Figure 3(c),
three control points are added, which makes the shape of the curve is close to
that of Figure 3(b) but not “quite” periodic. If the three new control points
repeat the first three of the input points and the knot intervals for the two new
edges are the same as those for the first two edges, then the curve becomes
periodic as shown in Figure 3(d).

The idea of repeating control points and knot intervals can be extended to B-
spline surfaces. Figure 4 is such an example, where (a) and (b) show the control
mesh in 3D and the parameter domain, respectively, and (c) shows the repeating
of control points and knot intervals.

The advantage of the above repeating approach is that periodic B-splines can
be treated as the “normal” ones and there is no need to write special B-spline
routines for the periodic case. However, the disadvantages are also obvious, es-
pecially for surface fitting where the control points are to be determined. First,
the control point repeating approach imposes constraints on some control points.
Thus not all the control points are treated equally. Second, when the approach is
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(a) (b) (c) (d)

Fig. 3. Repeating control points for a periodic B-spline curve

(a) (b) (c)

Fig. 4. Repeating control points for a periodic B-spline surface

applied to a T-spline, the situation becomes much more complicated because it
may have many different repeating patterns due to the flexibility of the T-spline
control grid. Refer to the example in Figure 5. The T-spline control points of
four rows that are unfolded onto the parameter domain are shown in Figure 5(a),
where the black dash lines are the edges completing the polygons. Without ambi-
guity, we do not display the vertical edges in the T-mesh for clarity. If we choose
the second point of the lowest row to be the local origin with the horizontal pa-
rameter value of 0, then we need add three control points on the right, which are
the same as the first three control points on the left, as depicted in Figure 5(b).
The range of the horizontal parameter is from 0 to 4 and the two vertical dash
lines are drawn to indicate the parameter borders. With this parameter range
of [0,4], the top three rows shall have different repeating patterns of the control
points, as illustrated in Figure 5(c).

2.2 New Construction for Periodic B-Splines

We have seen in the preceding subsection that the approach of repeating control
points and knot intervals for handling periodic B-splines is not convenient for
our periodic T-spline fitting application. This motivates us to search for other
approaches. In this subsection, we describe another way to handle periodic B-
splines. The basic idea is to modify the basis functions, instead of repeating
control points.
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(a) (b) (c)

Fig. 5. Different repeating patterns for a periodic T-spline

(a) N [0, 1, 2, 3, 4](t) (b) Ñ4[0, 1, 2, 3, 4](t) (c) Ñ3[0, 1, 2, 3, 4](t)

Fig. 6. One B-spline basis function N [0, 1, 2, 3, 4](t) and two periodic B-spline functions
Ñ4[0, 1, 2, 3, 4](t) and Ñ3[0, 1, 2, 3, 4](t)

Note that B-spline basis functions are piecewise polynomials with finite sup-
port and by nature they are not periodic. To deal with closed shapes seamlessly,
it seems more appropriate to use periodic functions. In the following we construct
periodic blending functions from B-spline basis functions.

Consider the cubic B-spline basis function N [ti](t) associated with knot vector
ti = [ti−2, ti−1, ti, ti+1, ti+2]. It is a piecewise cubic polynomial within [ti−2, ti+2]
and vanishes for t outside of [ti−2, ti+2]. Given a constant T as a period, we define

ÑT [ti](t) =
+∞∑

j=−∞
N [ti](t + jT ) =

+∞∑
j=−∞

N [ti − jT ](t) (1)

where N [ti](t + jT ) = N [ti − jT ](t) is also a B-spline basis function associated
with knot vector [ti−2 − jT, ti−1 − jT, ti − jT, ti+1 − jT, ti+2 − jT ]. Obviously,
ÑT [ti](t) is a periodic function with period T . When T ≥ ti+2 − ti−2, ÑT [ti](t)
coincides with N [ti − jT ](t) in [ti−2 − jT, ti+2 − jT ] for any integer j. Refer to
Figure 6 for an illustration. N [0, 1, 2, 3, 4](t) is the same as Ñ4[0, 1, 2, 3, 4](t) in
[0, 4]. However, when T = 3, N [0, 1, 2, 3, 4](t) and Ñ3[0, 1, 2, 3, 4](t) are different.

With the periodic function ÑT [ti](t), it is easy to derive an explicit representa-
tion for a periodic B-spline curve. For example, given n+1 points P0, P1, · · · , Pn

forming a closed control polygon and n+2 knots t0, t1, · · · , tn+1 to define a peri-
odic cubic B-spline curve, we define the period T = tn+1− t0. Then the periodic
B-spline curve can be represented by



736 J. Zheng and Y. Wang

C(t) =
n∑

i=0

PiÑT [ti](t), t ∈ (−∞, +∞).

Obviously, for any t, C(t+T ) = C(t). That is, the shape of the curve is completely
determined by C(t) within a finite parameter interval [a, a + T ) for any number
a. In practice, we are always interested in the curve within the domain [t0, tn+1].

It is interesting to note that though ÑT [ti](t) is a sum of an infinite number
of B-spline basis functions, there are only a finite number of terms that do
not vanish in domain [t0, tn+1). In fact, consider ÑT [ti](t) corresponding to the
control point Pi. When the number of the control points is greater than 1 (i.e.,
n > 0), we have ti+2 − ti ≤ T and ti − ti−2 ≤ T for ti = [ti−2, ti−1, ti, ti+1, ti+2].
Then all N [ti − jT ](t) and N [ti + jT ](t) vanish in [t0, tn+1] for j > 1.

Periodic NURBS surfaces can be defined in a similar way.

2.3 Periodic T-Spline Surface Representation

With the periodic function ÑT [ti](t), we can also globally represent periodic
T-spline surfaces that are periodic in one parameter direction (say u). Such
periodic T-spline surfaces are a generalization of periodic tensor-product NURBS
surfaces, the main difference being that periodic T-splines permit partial rows or
columns of control points. The terminal control point in a partial row or column
is called a T-junction. Similar to T-splines [8,9], a control grid for a periodic
T-spline surface is called a T-mesh. All the rules applied to T-splines are also
valid for periodic T-splines. The T-mesh of a periodic T-spline is closed in one
direction. Figure 7 shows a T-mesh and its periodic T-spline surface. If a T-mesh
happens to form a grid with no T-junctions, the corresponding periodic T-spline
surface degenerates to a periodic NURBS surface.

T-mesh Periodic T-spline surface

Fig. 7. A T-mesh and its periodic T-spline surface
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Knot information for periodic T-splines is given by knot intervals assigned to
each edge of the T-mesh. Figure 8 shows the pre-image of a T-mesh in (u, v)
parameter space. Since the T-mesh is closed in the u direction, we arbitrarily
choose a column (for example, c1) as a virtual border and unfold the T-mesh
along the virtual border. Column c2 is a virtual duplicate of column c1. P1

and P ′
1 actually correspond to the same control point in the T-mesh. Both c1

and c2 are called the left and right virtual borders. di and ej denote the knot
intervals. Knot intervals are constrained by the relationship that the sum of all
knot intervals along one side of any face must equal the sum of the knot intervals
on the opposite side [8,9]. For example, for face F in Figure 8, d1 + d6 = d9 and
e6 + e7 = e9 + e10. It can also be seen that the sum of the knot intervals in row
r1 equals the sum of the knot intervals in row r2. Thus this sum is used as the
period T for the u direction.

Fig. 8. Pre-image for a periodic T-spline surface

To introduce knots, we impose a local knot coordinate system on the T-mesh.
This can be done by arbitrarily choosing a control point whose pre-image (say P0

in Figure 8) serve as the origin for the parameter domain (u, v) = (0, 0) and then
assigning a u knot value to each vertical edge and a v value to each horizontal
edge based on the knot interval information. After that, each control point has
knot coordinates. For example, P1, P2 and P3 have knot coordinates (0, e1 + e2),
(d0 + d1 + d7, e1 + e2) and (d0, e1 + e8), respectively.

With the local knot coordinate system and period T , we can write an explicit
formula for the periodic T-spline surface:

S(u, v) =

n∑
i=0

wiPiB
∗
i (u, v)

n∑
i=0

wiB∗
i (u, v)

(2)
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where Pi = (xi, yi, zi) are control points in 3D space, wi are control point weights,
n is the number of the control points, and B∗

i (u, v) are periodic T-spline blending
functions which are given by:

B∗
i (u, v) = ÑT [ui](u) · N [vi](v).

The knot vectors ui = [ui0, ui1, ui2, ui3, ui4] and vi = [vi0, vi1, vi2, vi3, vi4], which
are used to define the cubic B-spline basis functions ÑT [ui](u) and N [vi](v),
are inferred from the T-mesh. The rule used in [8,9] are adapted to handle the
periodic case: Assume (ui2, vi2) are the knot coordinates for Pi. To find ui3 and
ui4, we cast a ray from Pi in the parameter domain: R(t) = (ui2 + t, vi2), t > 0.
Then ui3 and ui4 are defined as the u coordinates of the first two vertical edges
intersected by the ray R(t). Note that when the ray crosses the right virtual
border, it continues from the left virtual border and the period T should be
added to the knot obtained later. Knots ui0 and ui1 in ui are found likewise.
Thus, the u and v knot vectors for P1 are [−(d7 + d8),−d8, 0, d3, d3 + d4] and
[0, e1, e1 + e2, e1 + e2 + e3, e1 + e2 + e3 + e4]. The u and v knot vector for P3 are
[d3, d3 + d4, d0, d0 + d1, d0 + d1 + d2] and [0, e1, e1 + e8, e1 + e5, e1 + e5 + e6 + e7].

It is worth pointing out that the T-mesh of a periodic T-spline surface could
have quite flexible structure as long as it is topologically equivalent to a cylinder.
For example, it could have an arbitrary number of control points along one
periodic row and there is no need for a complete vertical connection in the T-
mesh.

Control Point Insertion. One important feature of T-splines is local refine-
ment. Periodic T-spline surfaces have the same property. The main idea of the
T-spline local refinement algorithm [9] is to maintain the validity of the T-mesh
and to ensure that the B-spline basis functions and the control points are prop-
erly associated. In the periodic T-spline case, each control point may correspond
to several B-spline basis functions. Therefore the original T-spline local refine-
ment algorithm could be adapted to ensure that each control point is properly
associated to each corresponding B-spline basis function. Figure 9 shows an ex-
ample of local knot insertion, where (a) is a periodic T-spline surface together
with its T-mesh and (b) is the same periodic T-spline surface but the T-mesh
changes due to the local insertion of two points.

3 Periodic T-Spline Surface Fitting

Now we discuss how to automatically convert a tubular mesh into a periodic T-
spline surface. As shown in Figure 1, the input is a tubular mesh, comprised of a
number of triangle faces and the output is a smooth periodic T-spline surface that
approximates the tubular mesh. Mathematically, this problem can be formulated
as follows: given a tubular triangular mesh M which is defined by a set of ver-
tices V = {d1,d2, · · · ,dm} and their connectivity information, we want to find
a periodic T-spline surface S(u, v) that approximates each vertex of the tubu-
lar mesh within an error tolerance ε, i.e. dist(di,S(u, v)) ≤ ε, i = 1, 2, · · · , m.
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(a) A periodic T-spline surface and its
T-mesh

(b) The same periodic T-spline surface
and its new T-mesh after local insertion
of two points

Fig. 9. Control point insertion for a periodic T-spline surface

The process involves determining the pre-image of the T-mesh, weights and
geometry of the control points.

Here we present an adaptive algorithm to find the periodic T-spline surface.
The algorithm consists of several steps (see Figure 10): parameterization, ini-
tial placement of the T-mesh, geometry optimization, and error check/T-mesh
refinement. The geometry optimization and T-mesh refinement are carried out
iteratively to improve the fitting result until the approximation error is within
the prescribed tolerance. Since this framework is quite standard for adaptive fit-
ting, our description in the following will emphasize special technical components
due to the use of periodic T-splines.

Fig. 10. The flowchart of periodic T-spline surface fitting

3.1 Parameterization

Parameterization is a process of assigning a pair of parameter values to each
vertex of the input tubular mesh. Since it establishes a mapping between the
tubular mesh and periodic T-spline surfaces, the quality of parameterization af-
fects the fitting results. Many parameterization methods have been proposed,
but most of them assume that the mesh is an open mesh. In our algorithm, we
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use an edge based parameterization method [7], which is designed specifically for
parameterizing tubular meshes. In this method, the edges rather than the vertices
are treated as the target for parameterization. As a result, the method does not
need to cut the mesh into a disk topologically. It thus overcomes the problems of
cutting paths that are the zigzag paths leading to suboptimal parameterizations
and the difficulty in finding good cutting paths.

3.2 Initial Placement of the T-Mesh

In this step, we construct an initial placement of the T-mesh, with which the
adaptive surface fitting process can begin. First, the initial placement of the T-
mesh is chosen to be a regular dimu × dimv grid over the domain [0, 1] × [0, 1]
which corresponds to the result of the parameterization. The knot vectors along
the u− and v−directions associated with the T-mesh are {0, 1

dimu−1 , 2
dimu−1 , · · · ,

dimu−2
dimu−1} and {−0.02,−0.01, 0, 1

dimv−3 , 2
dimv−3 , · · · , 1, 1.01, 1.02}, respectively. For

simplicity, the sizes of the control grid, dimu and dimv, are often set to 4. An
example of the initial placement of a 4×4 periodic T-mesh is shown in Figure 11.
In the right of the figure, the 4 control points in the rightmost column are virtual
duplicates of those in the leftmost column and the domain of the surface is the
region inside of the red bounding box.

Fig. 11. The initial placement (left) and pre-image (right) of a 4 × 4 periodic T-mesh

Second, we let all the control point weights wi be 1. The initial pre-image of
the T-mesh and the weights define a class of periodic T-spline surfaces that have
the same T-mesh topological structure and the same weights. The geometric
coordinates of the control points are to be determined by optimization in the
next step.

3.3 Geometry Optimization

Consider the class of periodic T-splines that are determined by the pre-image of
the T-mesh and the weights. The pre-image of the T-mesh and the weights are
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the ones either set in the step of initial placement of the T-mesh or produced by
the local refinement of the initial placement in the step of T-mesh refinement.
Each individual surface in this class differs from the others only by the geometry
of the control points. We seek to find the control points that define a periodic
T-spline surface best fitting the tubular mesh in the least-squares meaning.

It is important to note that any periodic T-spline surface in the above class
satisfies

∑n
i=0 wiB

∗
i (u, v) ≡ 1. This is because the initial class given in the step of

initial placement consists of only bicubic B-splines that are standard T-splines
and our local refinement algorithm converts a standard T-spline into either a
standard or a semi-standard T-spline [8,9]. Both standard or semi-standard T-
splines are piecewise polynomial. Therefore we only need to focus on the numer-
ator:

S(u, v) =
n∑

i=0

wiPiB
∗
i (u, v) (3)

This simplifies the optimization computation significantly. The optimal control
points Pi are determined such as the following objective function is minimized:

F (P0, P1, · · · , Pn) =
m∑

j=1

‖ S(uj , vj) − dj ‖2 + σJfair(S) (4)

where the first term is fidelity measuring the distances between the vertices of
the mesh and the periodic T-spline surface, the second term is a fairness term,
and σ is a tradeoff factor that balances the approximation and fairness. There
are a few choices for the fairness functions. Considering the low computational
complexity, we choose the simple thin plate energy:

Jfair(S) =
∫∫

(S2
uu(u, v) + 2S2

uv(u, v) + S2
vv(u, v))dudv (5)

where Suu, Suv, Svv are the second order partial derivatives of S(u, v).
This is a typical least-squares problem. To find the solution, we differentiate

the objective function F (P0, P1, · · · , Pn) with respect to each control point Pk

and let the partial derivative equal zero:
∂F

∂Pk
= 0, which leads to

n∑
i=0

wi

⎛⎝ m∑
j=1

B∗
i (uj , vj)B∗

k(uj, vj) + σmik

⎞⎠Pi =
m∑

j=1

djB
∗
k(uj, vj) (6)

for k = 0, · · · , n, where mik is

mik =
∫ T

0

d2ÑT [ui](u)
du2

· d2ÑT [uk](u)
du2

du

∫ 1

0

N [vi](v) · N [vk](v)dv

+2
∫ T

0

dÑT [ui](u)
du

· dÑT [uk](u)
du

du

∫ 1

0

dN [vi](v)
dv

· dN [vk](v)
dv

dv

+
∫ T

0

ÑT [ui](u) · ÑT [uk](u)du

∫ 1

0

d2N [vi](v)
dv2

· d2N [vk](v)
dv2

dv.
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The linear system is then solved using some linear solvers such as the precondi-
tioned complex bi-conjugate gradient (PCBCG) solver.

3.4 T-Mesh Refinement

After a periodic T-spline surface is computed under the current class, we need
to check whether the approximation meets the requirement. The approximation
error, in term of the parametric distance of each vertex di of the mesh to the
T-spline surface: ‖S(ui, vi) − di‖, is evaluated. If all the distances are below
the tolerance ε, the T-spline surface is considered acceptable and the algorithm
outputs the result. Otherwise, we check each face of the pre-image of the T-
mesh in the parameter domain. If it contains the pre-image of violating vertices
at which the approximation error is greater than the tolerance, we call it an
offending face and it needs to be refined.

We refine each offending face by splitting the face into two halves of equal
size. To do this, we simply insert two end points of the edge into the T-mesh
using the local refinement method for periodic T-spline surfaces. The edge could
be either horizontal or vertical, depending on whether the height or the width
of the face is larger.

After the T-mesh is updated, we obtain a new class of periodic T-splines
determined by the new setting of the pre-image of the T-mesh and the new
control point weights. Since the new T-mesh structure and the control point
weights are generated by the T-spline local refinement algorithm, the resulting
class of periodic T-spline surfaces remains to be standard or semi-standard.
Therefore, surfaces in this class are still polynomial. The control points of the
optimal T-spline in this class can be computed using the geometry optimization
step described in the preceding subsection.

4 Examples

This section presents two examples to demonstrate the proposed periodic T-
spline surface fitting algorithm.

The first example is a bumpy model represented by a tubular triangular mesh
(see Figure 12(a)). When we use the fitting algorithm to approximate the bumpy
model, the error tolerance for approximation is set to be 0.5% of the size of the
model and the fairness factor is set to be 0.00001. Figure 12(b) and Figure 12(c)
show two periodic T-spline surfaces which are the intermediate results after 3 and
6 iterations respectively, with the pre-images mapped onto the surfaces. It can
be seen that the structures of the T-meshes are not sufficiently sophisticated
to represent all the geometrical features of the original tubular mesh and the
surfaces are not well approximated. After 10 iterations, a satisfactory result is
obtained, which is shown in Figure 12(d) with the pre-image mapped onto the
surface (a window is also drawn to highlight three T-junction points in red color
illustrating the existence of T-junctions). Figure 12(e) and Figure 12(f) are the
final periodic T-spline surface without and with the T-mesh. Refer to Table 1 for



Periodic T-Splines and Tubular Surface Fitting 743

(a) (b) (c)

(d) (e) (f)

Fig. 12. Adaptively fitting a bumpy model. (a): input model; (b)-(d): results at differ-
ent stages of fitting; (e) and (f): the final T-spline surface and the control mesh

the detailed information about the input mesh and the final periodic T-spline
surface.

The second example is to demonstrate the algorithm in approximating tubular
meshes that have relatively low quality (i.e., the number of vertices is insufficient
compared to the complexity of the geometry they represent). It can be seen
that the algorithm is capable of handling these meshes by choosing a smaller
error tolerance. The model we use in the second example is the Venus shown in
Figure 13(a), which is open at top and bottom and has 710 vertices and 1389

Table 1. Statistics of the first example

Input mesh Number of vertices 5610
Number of faces 11181

Number of knot in the u−direction 33
Output periodic Number of knot in the v−direction 32
T-spline surface Number of control points 570
obtained after Number of control points of an equivalent NURBS 924
10 iterations Maximum approximation error 0.44%

Average approximation error 0.03%
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Table 2. Statistics of the second example

Input mesh Number of vertices 710
Number of faces 1389

Number of knot in the u−direction 20
Output periodic Number of knot in the v−direction 27
T-spline surface Number of control points 243
obtained after Number of control points of an equivalent NURBS 460
10 iterations Maximum approximation error 0.018%

Average approximation error 0.001%

faces. If we choose the error tolerance to be 0.5% of the size of the model, the
fitting periodic T-spline surface can be quickly obtained. However, the resulting
surface (see Figure 13(b)) does not fit the shape of the mesh very well although
the error tolerance of 0.5% is already met at all the vertices. This is because
when the density of the vertices of the model is not sufficiently high and the
approximation tolerance is not sufficiently small, the resulting surface may not
approximate the edges or faces of the mesh very well. The resulting surface
(shown Figure 13(c)) could be improved if the error tolerance is changed to
0.05% of the size of the model, but it is still not good enough. Finally, if we
adjust the error tolerance to be 0.02% of the size of the model, this time we get

(a) (b) (c)

(d) (e) (f)

Fig. 13. Adaptively fitting the Venus model. (a): input model (b)-(d): results at dif-
ferent stages of fitting. (e) and (f): the final T-spline surface and the control mesh.
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a visually satisfactory result (see Figure 13(d)). The final surface has 243 control
points and is obtained in 10 iterations. Figure 13(e) and Figure 13(f) show the
surface with the mapped pre-image and the T-mesh, respectively, and Table 2
provides the detailed information about the Venus model and the final periodic
T-spline surface.

5 Conclusion

This paper has introduced a periodic B-spline basis function, with which
periodic T-spline surfaces can be represented globally without the need of re-
peating the control points. This facilitates the surface fitting process where the
control points are the unknowns. An algorithm of constructing periodic T-spline
surfaces to approximate tubular triangular meshes has been presented. The use
of T-splines promises an adaptive approach in that local refinement is carried
out a the problematic regions. The choice of periodic splines, the special setting
of the initial T-mesh and the use of the T-spline local refinement algorithm make
the fitting process simple and efficient.

Meanwhile we also notice that there are still many venues for further im-
provement of the fitting algorithm. For example, how to incorporate geometric
feature to guide fitting and how fine-tune some heuristic choices in the current
algorithm are interesting questions, warranting further investigation.
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