
Michael Floater · Tom Lyche
Marie-Laurence Mazure · Knut Mørken
Larry L. Schumaker (Eds.)

 123

LN
CS

 1
05

21

9th International Conference, MMCS 2016
Tønsberg, Norway, June 23–28, 2016
Revised Selected Papers

Mathematical Methods
for Curves and Surfaces

Lecture Notes in Computer Science 10521

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Michael Floater • Tom Lyche
Marie-Laurence Mazure • Knut Mørken
Larry L. Schumaker (Eds.)

Mathematical Methods
for Curves and Surfaces
9th International Conference, MMCS 2016
Tønsberg, Norway, June 23–28, 2016
Revised Selected Papers

123

Editors
Michael Floater
University of Oslo
Oslo
Norway

Tom Lyche
University of Oslo
Oslo
Norway

Marie-Laurence Mazure
Université Joseph Fourier
Grenoble
France

Knut Mørken
University of Oslo
Oslo
Norway

Larry L. Schumaker
Vanderbilt University
Nashville, TN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-67884-9 ISBN 978-3-319-67885-6 (eBook)
https://doi.org/10.1007/978-3-319-67885-6

Library of Congress Control Number: 2017956079

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 9th International Conference on Mathematical Methods for Curves and Surfaces
took place during June 23–28, 2016, in Tønsberg, Norway. The earlier conferences in
the series took place in Oslo (1988), Biri (1991), Ulvik (1994), Lillehammer (1997),
Oslo (2000), Tromsø (2004), Tønsberg (2008), and Oslo (2012). This conference series
is integrated with the French conferences Curves and Surfaces organized by
SMAI-SIGMA (Signal-Image-Géométrie-Modélisation-Approximation), and the last
conference in France was in Paris in 2014.

The conference gathered 140 participants from 27 countries who presented a total of
115 talks. This includes nine invited talks and seven mini-symposia. This book con-
tains 17 original articles based on talks presented at the conference. The topics range
from mathematical theory to industrial applications. The papers have been subject to
the usual peer-review process, and we thank both the authors and the reviewers for their
hard work and helpful collaboration. We wish to thank all those who supported and
helped organize the conference. It is a pleasure to acknowledge the generous financial
support from the Research Council of Norway and the Department of Mathematics at
the University of Oslo. We also thank Elisabeth Seland, Espen Sande, and Espen
Lybekk for their help with administrative and technical matters, and Anne Berg Floater
for help with the registration.

June 2017 Michael Floater
Tom Lyche

Marie-Laurence Mazure
Knut Mørken

Larry L. Schumaker

Organization

Organizing Committee

Morten Dæhlen University of Oslo, Norway
Michael Floater University of Oslo, Norway
Tom Lyche University of Oslo, Norway
Marie-Laurence Mazure UJF Grenoble, France
Knut Mørken University of Oslo, Norway
Larry L. Schumaker Vanderbilt University, Nashville, TN, USA

Invited Speakers

Gershon Elber Technion, Israel
Greg Fasshauer Colorado School of Mines, USA
Leif Kobbelt RWTH Aachen University, Germany
Helmut Pottman Technical University Vienna, Austria
Ulrich Reif Technical University of Darmstadt, Germany
Giancarlo Sangalli University of Pavia, Italy
Scott Schaefer Texas A&M University, USA
Hal Schenk University of Illinois, USA
Wenping Wang University of Hong Kong, SAR China

Mini-Symposia Organizers

Heidi Dahl SINTEF, Norway
Carlotta Giannelli University of Florence, Italy
Ying He Nanyang Technological University, Singapore
Gitta Kutyniok Technical University of Berlin, Germany
Jean-Louis Merrien University of Rennes 1, France
Tomas Sauer University of Passau, Germany
Grady Wright Boise State University, USA

Contents

Computational Assessment of Curvatures and Principal Directions
of Implicit Surfaces from 3D Scalar Data . 1

Eric Albin, Ronnie Knikker, Shihe Xin, Christian Oliver Paschereit,
and Yves D’Angelo

Coefficient–Based Spline Data Reduction by Hierarchical Spaces 23
Cesare Bracco, Carlotta Giannelli, and Alessandra Sestini

A Versatile Strategy for the Implementation of Adaptive Splines. 42
Andrea Bressan and Dominik Mokriš

Machinability of Surfaces via Motion Analysis . 74
Robert J. Cripps, Ben Cross, Glen Mullineux, and Mat Hunt

Simplicial Complex Entropy. 96
Stefan Dantchev and Ioannis Ivrissimtzis

Precise Construction of Micro-structures and Porous Geometry
via Functional Composition . 108

Gershon Elber

Partially Nested Hierarchical Refinement of Bivariate Tensor-Product
Splines with Highest Order Smoothness . 126

Nora Engleitner, Bert Jüttler, and Urška Zore

Regression Analysis Using a Blending Type Spline Construction 145
Tatiana Kravetc, Børre Bang, and Rune Dalmo

On the Coupling of Decimation Operator with Subdivision Schemes
for Multi-scale Analysis . 162

Zhiqing Kui, Jean Baccou, and Jacques Liandrat

Translation Surfaces and Isotropic Transport Nets on Rational
Minimal Surfaces . 186

Jan Vršek and Miroslav Lávička

Towards Subdivision Surfaces C2 Everywhere . 202
Malcolm Sabin

http://dx.doi.org/10.1007/978-3-319-67885-6_1
http://dx.doi.org/10.1007/978-3-319-67885-6_1
http://dx.doi.org/10.1007/978-3-319-67885-6_2
http://dx.doi.org/10.1007/978-3-319-67885-6_3
http://dx.doi.org/10.1007/978-3-319-67885-6_4
http://dx.doi.org/10.1007/978-3-319-67885-6_5
http://dx.doi.org/10.1007/978-3-319-67885-6_6
http://dx.doi.org/10.1007/978-3-319-67885-6_6
http://dx.doi.org/10.1007/978-3-319-67885-6_7
http://dx.doi.org/10.1007/978-3-319-67885-6_7
http://dx.doi.org/10.1007/978-3-319-67885-6_8
http://dx.doi.org/10.1007/978-3-319-67885-6_9
http://dx.doi.org/10.1007/978-3-319-67885-6_9
http://dx.doi.org/10.1007/978-3-319-67885-6_10
http://dx.doi.org/10.1007/978-3-319-67885-6_10
http://dx.doi.org/10.1007/978-3-319-67885-6_11

Adaptivity with B-spline Elements . 218
Malcolm Sabin

Reconstructing Sparse Exponential Polynomials from Samples:
Difference Operators, Stirling Numbers and Hermite Interpolation. 233

Tomas Sauer

Reparameterization and Adaptive Quadrature for the Isogeometric
Discontinuous Galerkin Method . 251

Agnes Seiler and Bert Jüttler

Deconfliction and Surface Generation from Bathymetry Data
Using LR B-splines . 270

Vibeke Skytt, Quillon Harpham, Tor Dokken, and Heidi E.I. Dahl

Application of Longest Common Subsequence Algorithms
to Meshing of Planar Domains with Quadrilaterals 296

Petra Surynková and Pavel Surynek

Order-Randomized Laplacian Mesh Smoothing . 312
Ying Yang, Holly Rushmeier, and Ioannis Ivrissimtzis

Author Index . 325

VIII Contents

http://dx.doi.org/10.1007/978-3-319-67885-6_12
http://dx.doi.org/10.1007/978-3-319-67885-6_13
http://dx.doi.org/10.1007/978-3-319-67885-6_13
http://dx.doi.org/10.1007/978-3-319-67885-6_14
http://dx.doi.org/10.1007/978-3-319-67885-6_14
http://dx.doi.org/10.1007/978-3-319-67885-6_15
http://dx.doi.org/10.1007/978-3-319-67885-6_15
http://dx.doi.org/10.1007/978-3-319-67885-6_16
http://dx.doi.org/10.1007/978-3-319-67885-6_16
http://dx.doi.org/10.1007/978-3-319-67885-6_17

Computational Assessment of Curvatures
and Principal Directions of Implicit Surfaces

from 3D Scalar Data

Eric Albin1(B), Ronnie Knikker1, Shihe Xin1, Christian Oliver Paschereit2,
and Yves D’Angelo3

1 Univ. Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1,
CETHIL UMR5008, F-69621 Villeurbanne, France

eric.albin@univ-lyon1.fr
2 Institute of Fluid Dynamics and Technical Acoustics, Hermann-Föttinger-Institut.,

Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany
3 Laboratoire de Mathématiques J.A. Dieudonné, CNRS UMR 7351,
Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice, France

Abstract. An implicit method based on high-order differentiation to
determine the mean, Gaussian and principal curvatures of implicit sur-
faces from a three-dimensional scalar field is presented and assessed. The
method also determines normal vectors and principal directions. Com-
pared to explicit methods, the implicit approach shows robustness and
improved accuracy to measure curvatures of implicit surfaces. This is
evaluated on simple cases where curvature is known in closed-form. The
method is applied to compute the curvatures of wrinkled flames on large
triangular unstructured meshes (namely a 3D isosurface of temperature).

Keywords: Implicit surface · Curvature · Principal directions · Isosur-
face · 3D scalar field · Combustion analysis

Introduction

Curvatures play an important role in many areas of physics where interfaces
are encountered [13,20]. For instance, local curvatures can modify combustion
speed [1,8,9,38], surface tension [4] and evaporation speed [7]. Accurate meth-
ods for determining curvatures can then be of paramount importance for flow
analysis. In the recent study of Yu and Bai [38], local mean and Gaussian curva-
tures are computed to analyse deflagration fronts during an auto-ignition. Strong
saddle front and small sphere front are shown to play an important role during
the auto-ignition process. However, numerical techniques used to estimate curva-
tures are not detailed and plots with curvatures show a large scattering of data.
The present work proposes implicit methods to improve such analyses. These
methods measure curvatures and principal directions of isosurfaces extracted
from 3D data. Many methods use an explicit representation of surfaces, where

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 1–22, 2017.
https://doi.org/10.1007/978-3-319-67885-6_1

2 E. Albin et al.

the surface is discretized by elementary 2D cells like triangles, but very few make
use of values of the scalar function that defines implicitly the surface.

The visualization of implicit surfaces is however commonly encountered in
magnetic resonance, tomography [19] or in the post-processing of three dimen-
sional data of numerical simulation [31]. The implicit description of surfaces is
also used in level set methods [26] where a scalar function φ(x, y, z) is introduced
for computational purpose. The use of such an implicit representation can handle
complex changes of topology that may be encountered e.g. in primary break-up
of sprays [17] or in turbulent flame propagation [36]. The dynamics of explicit
three-dimensional flame surfaces can be computed, but requires complex treat-
ment of intersections (coalescence, break-up) [9]. Whereas the mean curvature
is often deduced from the divergence of ∇φ [26], the Gaussian curvature is usu-
ally not computed. However, a similar expression for the Gaussian curvature
for implicitly defined surfaces, provided in the recent studies of Trott [35] and
Goldman [14], is of interest to deduce minimal and maximal curvatures for flow
analysis. Note that Goldman also extends curvature formulas to higher dimen-
sion than 3D but does not discuss about principal directions. In [18], Lehmann
and Reif detail how to build the curvature tensor. No explicit formulas are given
for principal curvatures or principal directions but their methodology allows to
compute them independently of a given parametrization by searching eigenvalues
and eigenvectors. In our study, a scalar formulation of Goldmann’s expression
and an algorithm derived from [18] are validated through numerical tests with
high order diffuse approximation and Lagrange differentiation schemes.

Implicit surfaces of 3D scalar data are commonly extracted by a marching
cube method to be visualized or analysed. This method has been introduced
by Lorensen and Cline [19] to extract an explicit unstructured mesh of the
isosurface using triangles including topological information. The obtained iso-
contour is a three-dimensional surface. It is for instance used for flow visualiza-
tion in the open-source software ParaView [31] or in the GTS library [29,34].
Various algorithms are available to determine curvatures from a triangle
mesh [10,15,22,24,27,28]. Such algorithms may be used to compute curvatures
of the explicit mesh representing the isosurface. We call them by “explicit meth-
ods” in opposition to “implicit methods” that use 3D scalar data. A comparison
between many usual methods can be found in Gatze et al. [12]. For instance,
local fitting methods of analytical surface with a least square approximation
allow to approximate mean and Gaussian curvatures [12,22]. Meyer et al. [24]
define several discrete operators to compute normal vectors and curvatures. If
discrete methods [11,24] are appealing from a computational point of view com-
pared to fitting methods, they suffer from the noise and regularity issues [12]. In
this paper, we show that the present ‘implicit method’ to determine curvatures
is more accurate and less sensitive to surface discretization errors than these
‘explicit methods’ to analyse isosurfaces from 3D scalar data.

In Sect. 1, we gather some formula of the literature allowing to compute the
principal curvatures of implicit surfaces and propose an algorithm to determine
corresponding principal directions. High order differentiation schemes used in

Computational Assessment of Curvatures and Principal Directions 3

‘implicit methods’ are briefly presented in Sect. 2. The accuracy of the proposed
implicit methods to determine curvatures, normals and principal directions is
assessed in Sect. 3. The method is also tested to measure curvatures of isocon-
tours extracted from 3D scalar fields and compared to ‘explicit methods’ in terms
of accuracy and speed. It is then applied on large data of Direct Numerical Sim-
ulations of expanding and imploding flames in Sect. 4. Concluding remarks end
the paper in Sect. 5.

1 Curvatures and Principal Directions of Implicit
Surfaces

In level set methods, it is common to use a 3D scalar function φ(x, y, z) to
implicitly define an interface. The interface is then a 3D surface defined as the
isocontour φ(x, y, z) = φ0 = cst. Some geometrical properties like normals n and
mean curvatures κH are deduced from φ using formulas (1) and (2):

n =
∇φ

‖∇φ‖ =
∇φ

[(∂φ/∂x)2 + (∂φ/∂y)2 + (∂φ/∂z)2]1/2
(1)

κH =
∇ · n

2
=

φ2
x(φyy + φzz) + φ2

y(φxx + φzz) + φ2
z(φxx + φyy)

2 · (φ2
x + φ2

y + φ2
z)3/2

− φxφyφxy + φxφzφxz + φyφzφyz

(φ2
x + φ2

y + φ2
z)3/2

(2a)

=
φuu + φvv

2 · |φn| (2b)

The two-dimensional version of Eq. (2a) was first used in the context of the level
set method by Chang et al. [6]. The three-dimensional version can be found for
example in Osher and Fedkiw [26, p. 12]. In an orthonormal frame (n, u, v)
where u and v are arbitrary vectors defining the tangent plane to the surface,
the formula (2a) reduces to a simpler expression (2b).

A similar expression for the Gaussian curvature κK is derived in Goldman
(see Eq. (4.1) in [14]) where κK is expressed as a function of the gradient ∇φ,
the Hessian matrix H(φ) and its adjugate matrix. A scalar formulation is also
derived using the Mathematica software in Trott [35, pp. 1285–1286]. The for-
mulation (3a) used in this work is a scalar formulation similar to [35] but slightly
reformulated to prevent a division by zero when φz vanishes:

κK = 2
φxφy(φxzφyz − φxyφzz) + φxφz(φxyφyz − φxzφyy) + φyφz(φxyφxz − φyzφxx)

(φ2
x + φ2

y + φ2
z)

2

+
φ2
x · (φyyφzz − φ2

yz) + φ2
y · (φxxφzz − φ2

xz) + φ2
z · (φxxφyy − φ2

xy)

(φ2
x + φ2

y + φ2
z)

2
(3a)

=
φuuφvv − φ2

uv

φ2
n

(3b)

Expressions (2b) and (3b) are also the eigenvalues of the curvature tensor as
explained in [18] and shown in the annex A. The annex A also shows how to

4 E. Albin et al.

derive expressions in the (x,y,z) basis from φuu, φuv and φvv using change of
basis (15). Since κK = κmin ·κmax and κH = (κmin +κmax)/2, the minimal and
maximal curvatures are then deduced from the mean and Gaussian curvatures:

κmin = κH −
√

|κ2
H − κK | (4a)

κmax = κH +
√

|κ2
H − κK | (4b)

With the chosen convention of orientation, normal vectors point to large values
of φ and curvatures are negative when normals converge towards high φ values.

At umbilical points where κmin = κmax, any direction is a principal direction.
However, directions of the minimal and maximal curvatures of implicit surfaces
are single solutions at non-umbilical points and may be computed by searching
eigenvectors of the curvature tensor, as detailed in Lehmann and Reif [18]. Rather
than using an eigenvector solver, we derive in annex A expressions to directly
compute principal directions t1, t2 corresponding to principal curvatures κ1 =
κH − √|κ2

H − κK | · ζ, κ2 = κH +
√|κ2

H − κK | · ζ:

t1 =

⎡
⎣

0
φuv

κ1φn − φuu

⎤
⎦
n,u,v

=

⎡
⎣

(κ1φn − φuu) · vx + φuvux

(κ1φn − φuu) · vy + φuvuy

(κ1φn − φuu) · vz + φuvuz

⎤
⎦
x,y,z

(5a)

t2 =

⎡
⎣

0
κ2φn − φvv

φuv

⎤
⎦
n,u,v

=

⎡
⎣

(κ2φn − φvv) · ux + φuvvx

(κ2φn − φvv) · uy + φuvvy

(κ2φn − φvv) · uz + φuvvz

⎤
⎦
x,y,z

(5b)

Principal direction coordinates into brackets are given both in the (n,u,v) and
(x,y,z) bases. The subscript notations in (5a) indicate the coordinate system
used for the vector decomposition. These expressions are quite similar to those
found in the literature dealing with the computation of crest lines [5,25,33],
except we introduce a sign function ζ = ±1 to circumvent degeneracies (see
case studies proposed at the end of annex A). Because a wrong choice of u,
v may yield to find t1 = t2 = 0, we propose a criterion on ζ to ensure
that the found vectors are non-null for any arbitrary choice of u, v. Since
Eq. (2b) implies |κminφn − φuu| = |κmaxφn − φvv|, we propose the following
algorithm in order to compute tmin and tmax associated to κmin and κmax:

choose arbitrarily u, v from n;
compute φuu and φvv with system (15);
if |κminφn − φuu| � |κminφn − φvv| then

choose ζ = +1 to avoid κ1φn − φuu = −(κ2φn − φvv) = 0;
compute tmin = t1 and tmax = −t2 with κmin = κ1 and κmax = κ2;

else
choose ζ = −1 since |κmaxφn − φuu| > |κmaxφn − φvv| � 0;
compute tmin = −t2 and tmax = t1 with κmax = κ1 and κmin = κ2;

end

This algorithm requires to arbitrarily choose (u,v) and compute φuu and
φvv to determine κH , κK , t1 and t2 with explicit expressions (2b), (3b), (5a)

Computational Assessment of Curvatures and Principal Directions 5

and (5b). An alternative choice would be to build the curvature tensor in stan-
dard coordinates [18] and use a specific solver for searching eigenvalues and
eigenvectors. If principal directions are not required, curvatures are computed
by the intrinsic formulas (2a) and (3a) that do not require any choice of u,
v or eigen solver. Some exercises are also proposed at the end of annex A to
better understand the following algorithm. This algorithm implies that the basis
(tmin, tmax,n) is direct and:

κmin = κ1
1+ζ
2 + κ2

1−ζ
2 κmax = κ1

1−ζ
2 + κ2

1+ζ
2 (6a)

tmin = t1
1+ζ
2 + t2

1−ζ
2 tmax = t1

1−ζ
2 − t2

1+ζ
2 (6b)

2 High Order Differentiation Schemes for Implicit
Methods

In order to compute curvatures and principal directions using Eqs. (1) to (5),
it is necessary to compute second-order cross derivatives of φ at a given point
P (x, y, z) from neighbor points Pi where φ is discretized. The point P where
curvatures have to be computed is not necessarily lying on one of the nodes Pi.
Figure 1 shows a schematic discretization of φ.

1a non Cartesian stencil 1b Cartesian stencil

P1
φ1

P2 φ2

P3
φ3

P7
φ7 P9

φ9

P6

P4

P (x, y, z)κ

x

y

z

δx1

z
δ

1

δy
1

P
xy

z

b11 b12 b13

b 3
1

b 3
2

b 3
3

P1
φ1,1,1

P3
φ3,1,1

φ3,3,3

Δx

Fig. 1. Schematic representation of a point P where curvatures are computed from a
3D discrete scalar field φj . Coefficients (δxj , δyj , δzj) or bij represent the position of
the neighbor discrete points Pj to P .

2.1 Diffuse Approximation (DA)

Diffuse approximations (DA) allow to compute all derivatives of φ at P from
the values φi known at points Pi of coordinates (x + δxi, y + δyi, z + δzi) with
any kind of mesh [30]. Coefficients δxi, δyi and δzi are then small real numbers
defining the position of the ith neighbor point Pi relatively to P (see Fig. 1a).
The value of the scalar at a point Pi is estimated by a Taylor expansion φ∗

i =∑Nu

j=1 Pijαj . The matrices P and α are given as an example for a second-order

6 E. Albin et al.

Taylor expansion (N = 2, Nu = 10) but can be similarly constructed for a fourth
order N = 4:

P = [Pij] =
[
1, δxi, δyi, δzi, δx2

i , δy2
i , δz2i , δxiδyi, δxiδzi, δyiδzi

]
(7a)

α = [αj] =
[
φ , φx , φy , φz ,

φxx

2
,

φyy

2
,

φzz

2
, φxy , φxz , φyz

]
(7b)

If a number Nn of neighbor nodes are used around P , the method consists in
minimizing the quadratic error I(α) =

∑Nn

i=1 ωi(φi − φ∗
i)

2 weighted by ωi =
e−(δx2

i+δy2
i+δz2

i)/Δx2
. This minimization yields a linear system A · α = B to

solve with:

A = [Akj] =

[
Nn∑
i=1

ωi · Pik · Pij

]
with j ∈ [1;Nu] (8a)

B = [Bk] =

[
Nn∑
i=1

ωi · Pik · φi

]
(8b)

P is a matrix of size Nn×Nu. The searched vector α of size Nu is then computed
after inverting the matrix A of size N2

u . Minimizing the quadratic error with
a Taylor expansion of order N + 1 implies a N th-order accuracy for the first
derivatives and an order N − 1 for the second derivatives.

Note that Marchandise et al. [21], in the context of two-phase flows, already
used a least-squares method (2nd-order DA with no weighting function: ωi = 1)
and equation κH = −∇ · n to compute the mean curvature with a slightly
different two-step procedure. A 2nd-order DA method is also used in the coupled
VOF-level set method proposed by Sussmann et al. [23,32], but only to compute
the normal of the piecewise linear surface reconstructions. In this paper, the
DA method is used directly to compute principal curvatures and directions with
higher order accuracy at any point on the interface.

2.2 Lagrange Differentiation (LD)

High-order differentiation with Lagrange polynomials are also tested to compute
principal curvatures and directions if the implicit function φ is discretized on a
Cartesian grid (Fig. 1b shows a Cartesian stencil as an example with n = 3). First,
second and cross derivatives like φx, φzz and φxy are computed by weighting neigh-
bour values of the implicit function over the Cartesian stencil:

∂φ

∂x1

∣∣∣∣
P

= φx =
n∑

i=1

n∑
j=1

n∑
k=1

β̇1i · β̄2j · β̄3k · φi,j,k (9a)

∂φ

∂x2
3

∣∣∣∣
P

= φzz =
n∑

i=1

n∑
j=1

n∑
k=1

β̄1i · β̄2j · β̈3k · φi,j,k (9b)

∂2φ

∂x1∂x2

∣∣∣∣
P

= φxy =
n∑

i=1

n∑
j=1

n∑
k=1

β̇1i · β̇2j · β̄3k · φi,j,k (9c)

Computational Assessment of Curvatures and Principal Directions 7

Weighting coefficients β̄ij , β̇ij or β̈ij correspond respectively to an interpolation,
a first differentiation or a second differentiation in the xi direction. Their expres-
sion are similar to Lagrange basis polynomials [16] and their derivatives, they
are obtained from the inversion of the Vandermonde matrix [2]:

β̄ij =
(n∏

k=1
k �=j

bik

)
/Aij with Aij =

n∏
k=1
k �=j

(bik − bij) (10a)

β̇ij = −
(n∑

k=1
k �=j

n∏
l=1

l �=j,k

bil

)
/(Aij · Δx) (10b)

β̈ij =
(n∑

k=1
k �=j

n∑
l=1

l �=j,k

n∏
m=1

m �=j,k,l

bim

)
/(Aij · Δx2) (10c)

These coefficients can be directly computed from bij that represents the position
of the point P in the xi direction within the stencil (see Fig. 1b). As an example,
the reader may compute β̄ij , β̇ij or β̈ij for j ∈ [1, 2, n = 3] with bi1 = −Δx,
bi2 = 0, bi3 = Δx to recover well-known coefficients of finite differences.

3 Test of Implicit Methods

3.1 Accuracy Assessment of Implicit Methods

A spherical surface with known curvature is used to test the accuracy of the
method. The radius of this sphere centered at the point C is denoted R and
the parameter δ controls the stiffness of the scalar function using a hyperbolic
tangent profile:

φ(x, y, z) = tanh ((r − R)/δ) (11)

r =
√

(x − xC)2 + (y − yC)2 + (z − zC)2

xC = xO + R sinφ cos θ

yC = yO + R sinφ sin θ

zC = zO + R cos φ

Figure 2 shows a schematic representation of this spherical function around
a cubic stencil of center O. In the present analysis, the stencils are defined on
Cartesian grids, with Nn = n3 points in order to allow comparisons with LD
and DA differentiation schemes. The implicit spherical function is characterized
by its radius R, angles (θ, φ) and stiffness 1/δ in Eq. (11).

The accuracy of the implicit method for computing curvatures is investigated
by varying the surface normal via (θ, φ) and the spherical function via R and δ.
Figure 3a shows the relative error on the mean-curvature ΔκH/κH = κH · R − 1
determined at point O when varying the normal angles (θ ∈ [0; 2π], φ ∈ [0;π],

8 E. Albin et al.

Fig. 2. Representation of a volumetric spherical function with known curvatures.

R/Δx = 10, δ/Δx = 2) with the second-order diffuse approximation method
(N = 2, Nn = 53). Because the expressions (2) and (3) and the stencil present
a symmetry towards planes (O, −→x), (O, −→y) and (O, −→z), the error is periodical
along θ and φ directions and the study of errors could be limited to one eighth
of the domain. The maximal error is obtained at some positions of the curvature
center and can be extracted from these curves; it will be denoted max |ΔκH/κH |.
The maximal error on this domain is subsequently plotted for various radius R
and stiffness 1/δ in Fig. 3b. The error is higher for stiff or highly-curved functions.
The stiffness and the curvature have a similar influence on the error that is then
controlled by the most critical parameter between high curvatures and high
stiffness.

Fig. 3. Measurements of the relative error when computing the mean curvature at the
center O of a stencil of size ±2Δx with a second-order diffuse approximation.

Figure 4 shows the maximum relative errors on the mean curvatures com-
puted at the center of the stencil as a function of the critical parameters (stiff-
ness or curvature) to compare the effect of the numerical schemes on the error.
The obtained error on Gaussian curvatures are really similar to mean curvature
errors and are not shown for brevity. Errors decrease for smooth function and

Computational Assessment of Curvatures and Principal Directions 9

Fig. 4. Relative error on mean curvatures for various stencil sizes (Nn = n3 with
n ∈ {3; 5; 7}) and numerical schemes (accuracy order: N for DA and n for LD schemes).

weakly curved surfaces. Implicit methods with Lagrange differentiation (LD) and
diffuse approximation (DA) present similar accuracies. For a second-order DA
(N = 2) with Nn = 33 points, the error is similar to the 2nd-order LD (n = 3).
However, this error decreases when the stencil is larger with second-order DA
(Nn = 53 or Nn = 73). Accuracies on curvatures increase for high-order LD
or DA numerical schemes. They are similar with 4th order schemes (DA with
N = 4, LD with n = 5). The implicit method with a 6th-order LD scheme for
first-derivatives (n = 7) reaches lowest errors in this test where no interpolation
inside stencils is performed.

3.2 Accuracy Comparison Using a Marching Cube Extraction
of Isocontours

The accuracy of proposed implicit methods is now compared to standard explicit
methods when computing mean and Gaussian curvatures of a sphere with vary-
ing sphere resolution R/Δx. In this test, the initial data is for all cases an implicit
3D spherical function defined by Eq. (11) and centered at xC = yC = zC = 0 in a
cubic box of size [−N

2 Δx; N
2 Δx] large enough to contain the radius R and stencil

points; the stiffness is chosen equal to Δx
R . As shown in Fig. 5a, an explicit irreg-

ular triangulated surface of this sphere of radius R is extracted using a marching
cube method [19]. Figure 5b illustrates how triangle meshes are generated from
linear interpolation on edges of the Cartesian grid with a marching cube method
(cf. edges P1P2, P1P3, P5P6 and P5P7).

Mean and Gaussian curvatures are then computed at the nodes of this spher-
ical isocontour with various implicit and explicit methods for comparisons. The
first explicit method is classical and consists in fitting full quadric [12,22]. Dis-
crete explicit methods implemented in the ParaView software [31] or the GTS
library [29] are also tested. The mean curvature is computed in ParaView from
the length of neighbor edges and dihedral angles between normals of neighbor
facets [11] while it is deduced from the ‘Mean Curvature Normal Operator’ in

10 E. Albin et al.

Fig. 5. Illustration of the marching cube method used to generate an isocontour rep-
resenting the implicit interface contained in 3D data.

GTS [24]. The Gaussian curvature is computed with angle deficit methods both
in ParaView and GTS [24] but with a more complex estimation of the area in
the GTS library to deal with obtuse triangles. The implicit methods are based
on diffuse approximation or Lagrange differentiation, as described in Sect. 2.

Figure 6a plots the maximum error on mean curvatures in log-scale as a
function of the sphere resolution. Once again, relative errors on κK , κmin and
κmax are very similar to mean curvature errors and are not shown for brevity.
The explicit discrete methods of ParaView or GTS present both relative errors
larger than 100% on curvatures. These discrete methods fail in estimating curva-
tures because the marching cube method generates a very irregular mesh of the
sphere with non-uniform triangles (see Fig. 5a and Sect. 3.3). Fitting methods
compute reasonable estimations of curvatures with relative errors about 10%

Fig. 6. Errors when computing mean curvatures of a spherical isocontour extracted
from a 3D implicit function using a marching cube method.

Computational Assessment of Curvatures and Principal Directions 11

with sufficiently refined spheres (R/Δx ≥ 8). Note that increasing the number
of rings of neighbor nodes to fit paraboloids slightly increased the accuracy with
such irregular meshes. Implicit methods significantly improves the accuracy to
estimate curvatures of an isocontour generated with a marching cube method.
The relative error on curvatures is below 1% for sufficiently refined spheres and
about 10% at low resolution (R

Δx or δ
Δx � 1).

The error distributions of the computed curvatures are also plotted for
R/Δx = 8 in Fig. 6b. The large width and flatness of distributions for discrete
methods demonstrate that these methods are inaccurate on a large number of
nodes and not only at an isolated node. The implicit methods with a second-order
diffuse approximation and Lagrange differentiation with higher order (n ≥ 5)
present the narrowest distributions and therefore highest accuracies.

3.3 Accuracy Comparison Using a Regular Triangle Mesh

Compared to the previous test-case, the triangle mesh of the spherical isosurface
is no more extracted by a marching cube method. It is ‘artificially ’ generated
from the subdivision of an icosahedron constituted of N�,0 = 20 equilateral
triangles and 12 nodes. The ith refined icosahedron has N� = 4i·N�,0 equilateral
triangles. In this test, curvatures are then computed at the nodes of a very regular
triangle mesh of a sphere. This regular mesh, constituted of N� equilateral
triangles of side Δx, is artificially positioned at a radius R

Δx = (N�
√

3/16π)1/2

since 4πR2 � N� · A�, with A� =
√

3Δx2/4 being the area of an equilateral
triangle. The implicit spherical function is then defined with a stiffness Δx

δ = Δx
R

to allow comparisons between implicit/explicit methods.
The maximum errors on mean and Gaussian are plotted in log-scale as a

function of the sphere resolution R/Δx in Fig. 7a. All explicit methods exhibit a
better accuracy with such artificially generated regular meshes than with previ-
ous irregular meshes. If the built-in discrete method of ParaView reaches about
10% of accuracy, the GTS discrete method reaches accuracies under 1% and
even under 0.01% for the mean curvatures. The accuracy is also increased for
fitting methods with such regular meshes even if less accurate than the GTS
discrete method. Implicit methods still reach highest accuracies on curvatures
even if nodes of the artificial isosurface are located any-where within the stencil
where φ is discretized, which requires more interpolations than previous test-
cases. Second-order numerical schemes (DA with N = 2 and LD with n = 3)
are 1st-order accurate to compute curvatures whereas 4th-order (LD with n = 5
or DA with N = 4) are 3rd-order accurate. Implicit methods with high order
schemes reach accuracies better than 1% for reasonable resolutions.

The error distributions at a moderate resolution R/Δx � 6.64 are also shown
in Fig. 7b. These distributions confirm that the errors are better bounded with
regular meshes for explicit methods. The explicit discrete GTS methods and
implicit methods are the most accurate since the error distribution is very narrow
and centered around analytical solution. A shift from the analytical solution is
present with the explicit fitting method and the computed curvatures are very
dispersed with the discrete method implemented in ParaView.

12 E. Albin et al.

Fig. 7. Errors when computing mean and Gaussian curvatures of a regular triangle
mesh (equilateral triangles artificially generated to avoid mesh irregularities of the
isosurface).

The two previous test-cases show that explicit methods are really dependent
on the regularity of the isosurface mesh. In opposite, the accuracy of implicit
methods does not depend on the procedure used to extract the isocontour. It
depends only on neighbor 3D scalar values and numerical differentiation schemes.

3.4 Accuracy Assessment to Measure Principal Directions

A donut is a nice geometry to test the proposed algorithm that computes prin-
cipal directions. Indeed, this geometry presents elliptical points where the sur-
face is convex (κK > 0), hyperbolic points where the surface is saddle shaped
(κK < 0) and parabolic points (κK = 0) but does not contain umbillical points
(κmin = κmax) where principal directions are undefined. An implicit function
φ(x, y, z) = tanh({((x2+y2)1/2−R)2+z2}1/2−r

δ) is used to describe the torus with
r = δ = R

2 . Figure 8a illustrates the implicit toric function as a cheese chunk and
principal directions computed on an extracted isocontour with a marching cube
method for a resolution r

Δx = 4.
An error between computed vectors and analytical solutions is then defined

by ‖u∧usol‖ = sin(û,usol) at each point of isocontours. Figure 8b then plots the

Computational Assessment of Curvatures and Principal Directions 13

Fig. 8. Measurement of normals n and principal directions tmin , tmax of a torus with
implicit methods. The maximum angle error of all computed vectors are plotted in
Fig. b for various numerical schemes.

maximum angle error on computed normals and principal directions as a function
of the torus resolution and for various differentiation schemes. The accuracy
of implicit methods increases with the resolution and high order schemes. The
largest angle errors are obtained with the 2nd-order LD implicit method that uses
the smallest stencil. They are below 1◦ with a second order diffuse approximation
and below 0.1◦ with 4th-order LD or DA schemes for sufficiently refined cases

δ
Δx � 4. The algorithm has been tested successfully through other cases that are
not described here to be concise.

3.5 Speed Assessment of the Implicit Method

The CPU time of implicit methods depends on the used numerical scheme (LD,
DA and N) and the stencil size Nn = n3. Lagrange differentiation methods are
faster than diffuse approximation ones for the same stencil size (see Fig. 9a). LD
methods allow to reach high orders with less CPU time.

The speed of the implicit method is also compared to those of discrete and
fitting methods in Fig. 9b. All programs are written in C# for this speed com-
parison. The speed increases linearly with the number of points on the discrete
sphere for all methods. Implicit methods with Lagrange differentiation reach the
highest speeds. The fourth-order LD (n = 5) and 2nd-order DA (Nn = 33) have
comparable speeds to the built-in discrete method of the GTS library and the
two-ring fitting method.

The curvature accuracy of these different methods is compared when com-
puting Gaussian and mean curvatures of a same mesh extracted from a spherical
implicit function with marching cubes like in Sect. 3.2. Figure 10a plots accuracy
vs computation time for a coarse mesh and Fig. 10b for a finer mesh. These dia-
grams show that LD implicit methods reach the best compromises between speed
and accuracy. Discrete method and the 1-ring fitting method fail in predicting

14 E. Albin et al.

Fig. 9. Comparison of the computational speed to compute curvatures for different
methods.

Fig. 10. Comparison diagram of computation time vs accuracy for various implicit and
explicit methods. Curvatures are measured on a coarse and refined mesh generated from
a spherical implicit function with marching cubes.

accurately curvatures at some nodes. DA implicit methods allow to reach higher
accuracies than quadric fitting method but may require an additional cpu cost.

4 Applications

These methods are applied to determine curvatures of expanding and implod-
ing flames. The flame images are obtained from Direct Numerical Simulations
using the H-allegro in-house software [1] on a supercomputing infrastructure
(PRACE).

4.1 Laminar Flames

An unburnt methane-air mixture at Tu = 480 K is ignited at atmospheric pres-
sure with a Gaussian profile in temperature and composition. The adiabatic

Computational Assessment of Curvatures and Principal Directions 15

flame temperature of such a mixture is Tb = 2260 K and the planar thermal
flame thickness is δ0L = 202µm. The computational domain is a cube of 1.5 cm
width discretized with a Cartesian grid of (336)3 points, which implies a sufficient
refinement to solve the flame propagation (δ0L/Δx � 4.5).

Curvatures of the flame front are measured in the simulation results along
the flame propagation with different methods. To determine flame curvatures,
isocontours of a 569 K temperature (progress variable of 5%) are first extracted
with a marching cube method [19]. The ParaView software [31] is used to handle
the multiple-files of the parallel solution (512 files for one time-step) and the
complex topology of isocontours with a triangle mesh. Fifteen quasi-spherical
isocontours are extracted along the flame propagation; the flame evolves from a
small radius RS � 12δ0L to a larger radius RS � 150δ0L.

Figure 11 shows the computed local flame radius RH = 1/κH based on mean
curvatures as a function of the area based flame radius RS =

√
S/(4π). Curves

for the Gaussian curvatures are not shown because too similar. At each flame
radius, the discrete methods of ParaView or GTS are inaccurate, because of
the irregularity of the mesh. The scattering of the local radius is so large that
we did not plot it out for comparisons. With fitting methods, the scattering is
reduced in particular when several rings to fit parabolas are used. Nevertheless,
the dispersion is still very high even with a 4 ring stencil. Implicit methods with
large stencils (Nn � 53 points) points significantly improves the accuracy when
predicting the local flame radius based on the mean or Gaussian curvatures,
which makes curvature analysis in flows possible. The small remaining scattering
at large radii is attributed to the effect of boundary conditions [3,37] and not to
the inaccuracy of the proposed method.

Fig. 11. Comparison of the measured local radii to the global radii based on the whole
surface when the flame propagates for DA implicit and fitting methods.

Probability density functions (PDF) of Gaussian and mean curvatures are
plotted in Fig. 12 at the middle time of the simulation (t = 0.785 ms). At this
stage, the flame is quasi-spherical with a radius R � −0.3 cm. The probability
density function and cumulative function are respectively expected to be close

16 E. Albin et al.

to a Dirac function and a Heaviside function. For the implicit method, the prob-
ability density is as expected a peak centered around κH = 1/R or κK = 1/R2

and the cumulative probability is the stiffest step compared to the fitting and
discrete methods. The absence of peaks on the PDF for fitting and discrete meth-
ods shows that explicit methods are really inaccurate to estimate the curvatures
of this stiff flame (δ0L/Δx � 4.5).

Fig. 12. Probability density function and cumulative distribution function of mea-
sured Gaussian, mean, minimal and maximal curvatures of a quasi-spherical flame
(t = 0.785 ms). Note that only the implicit method has a PDF close to a Dirac func-
tion and a cumulated probability close to a Heaviside function.

4.2 Turbulent Flames

A turbulent imploding hydrogen flame premixed with air diluted with 20% of
steam is ignited by a Gaussian profile of temperature. After a transient, the flame
propagates inward and becomes highly wrinkled. An isocontour of temperature
(corresponding to a progress variable value of 50%) is extracted with a marching
cube method at 1.5 ms after the ignition. The mean, Gaussian, minimum and
maximum curvatures of this isocontour are then computed at every nodes of the
mesh making use of (i) a 2nd-order DA implicit method with Nn = 73, (ii) a
fitting method with a 3 ring patch, (iii) the explicit discrete method of GTS and
(iv) the explicit discrete method of ParaView. Results are compared in Fig. 13.

If all methods seem to compute very similar curvatures, a careful look shows
numerous oscillations for the discrete methods (compare zooms on κH in Fig. 13).
Both the fitting method (with a large stencil) and the DA implicit method show

Computational Assessment of Curvatures and Principal Directions 17

Fig. 13. Test of different methods to compute Gaussian, mean, minimal and maximal
curvatures on a triangular unstructured mesh. Curvatures are plotted in colors from
blue to red (κH , κmin, κmax ∈ [−50; 50 cm−1]). (Color figure online)

very similar results. However, the fitting method fails at some node locations to
fit a parabola; this method also generates visible oscillations near highly curved
surface compared to the implicit method (cf. zooms). However, the similitude
between results confirms the ability of the implicit method to compute mean,
Gaussian, minimum and maximum curvatures, even for complex geometries.
From previous test-cases, it may be expected that the implicit method give the
most accurate estimates of curvatures. Explicit methods show a more acceptable
prediction of curvatures compared to the inaccuracies observed on the laminar
flame, this is attributed to the quality of the isosurface mesh that is better
defined in the turbulent case with a different progress variable (50% vs. 5%) and
a more refined flame (δ0L/Δx � 7.8 > 4.5).

Figure 14 shows some examples of local analyses that may be conducted
to study turbulent flames with implicit methods. Some computed principal
directions of the previous hydrogen imploding flame are shown in Fig. 14a.

18 E. Albin et al.

The implicit method may be used to measure other flame properties from nor-
mals and curvatures. It may for instance be used to measure local consumption
of the gaz mixture, local flame speeds, local flame stretches. Figure 14b shows a
scatter plot of the local consumption speed as a function of mean and principal
curvatures for a turbulent methane-air expanding flame, which highlights a link
between gaz consumption and mean flame curvatures in this case.

Fig. 14. Example of local flame analysis using implicit methods.

5 Conclusion

A computational method has been presented to compute curvatures and prin-
cipal directions of implicit surfaces from 3D scalar data. Curvatures are com-
puted at any vertex within the stencil where the implicit surface is discretized.
This implicit method makes use of high-order Diffuse Approximation (DA) or
Lagrange differentiation (LD) schemes to interpolate/differentiate the 3D scalar
function. Implicit methods are compared to standard explicit methods (surface
fitting, discrete methods) when computing curvatures along isocontours repre-
senting the implicit surface.

It is evidenced through numerous test cases that explicit methods fail in
measuring accurately curvatures of surfaces with irregular meshes. However, the
extraction of surfaces with complex topologies is not trivial and commonly used
techniques like marching-cube methods do not always generate regular meshes.
It is shown that implicit methods do not require regular meshes and may reach
high accuracy, which makes these methods interesting to analyse curvatures of
isosurfaces from 3D data. If the stiffness of the implicit function is known and
not too high, the maximum error on curvatures with implicit methods may be
estimated from Fig. 6a. The implicit method is also found to be competitive
with discrete methods in terms of computational speed. A 2nd-order DA or LD
schemes of higher order are recommended when computing curvatures to reduce
the error without requiring much cpu overhead.

Computational Assessment of Curvatures and Principal Directions 19

The proposed implicit method has been successfully applied to measure prop-
erties of flame surfaces based on normals and curvatures and shows very promis-
ing results to conduct accurate local 3D analysis of wrinkled flames (local con-
sumption speed, displacement speeds, curvatures and stretches of the flame). A
perspective of this work would be to extend this methodology to implicit surfaces
defined by stiffer implicit functions using non-oscillatory schemes for interpola-
tion/differentiation since discontinuous 3D scalar data may be encountered for
instance in multiphase flows or medical images.

A Derivation of Formulas for Principal Directions
of Implicit Surfaces

The methodology of Lehmann et al. [18] is used to build the curvature tensor in
the (u,v,n) frame. In this frame, the orthogonal projector T onto the tangent
space and the Hessian matrix of φ are respectively:

T = Id3 − n · nt =

⎛
⎝

1 0 0
0 1 0
0 0 0

⎞
⎠ and ∇2φ =

⎛
⎝

φuu φuv φuN

φvu φvv φvN

φNu φNv φNN

⎞
⎠

(u,v,n)

The curvature tensor has then a simple expression in the normal frame:

E =
T · ∇2φ · T

|φn| =

⎛
⎜⎝

φuu

|φn|
φuv

|φn| 0
φuv

|φn|
φvv

|φn| 0
0 0 0

⎞
⎟⎠

(u,v,n)

(12)

Its expression is far more complicated in an arbitrary basis (x,y,z) where we
could not find eigenvectors. In the normal frame, main eigenvalues and corre-
sponding eigenvectors of the curvature tensor are then found equal to:

κ1 = Kh −
√

|κ2
h − κk| · ζ κ2 = Kh +

√
|κ2

h − κk| · ζ (13)

t1 =
1

D1

⎡
⎣

φuv

κ1φn − φuu

0

⎤
⎦
u,v,n

t2 =
1

D2

⎡
⎣

κ2φn − φvv

φuv

0

⎤
⎦
u,v,n

(14)

with κk = φuuφvv−φ2
uv

φ2
n

, κh = φuu+φvv

2|φn| , D1 = D2 =
√

φ2
uv + (κ1φn − φuu)2 and

ζ = ±1.
Since derivatives in the (u,v,n) basis are linked to the derivatives in the

default basis (x,y,z) and coordinates of u, v, n:

φn = ∇φ · n = φxnx + φyny + φznz = ‖∇φ‖ = |φn| (15a)
φuv = ut · ∇2φ · v = φxxuxvx + φyyuyvy + φzzuzvz

+ φxy(uxvy + uyvx) + φxz(uxvz + uzvx) + φyz(uyvz + uzvy) (15b)
φuu = ut · ∇2φ · u (15c)
φvv = vt · ∇2φ · v (15d)

20 E. Albin et al.

Replacing φn, φuv, φuv and φuv into curvature expressions (2b), (3b) and making
some formal simplication, we recover the intrinsic expressions of curvatures (2a),
(3a) that are independent on the choice of u,v. To sum up, principal curvatures
do not depend on the choice of (u,v) whereas principal directions depend on
their coordinates. A bad choice of (u,v) may then conduct to null vectors and
then bad estimations. To circumvent bad choices, we then propose a criteria on
ζ to ensure that t1 and t2 are non-null vectors in Sect. 1.

To better understand the role of the parameter ζ in avoiding degeneracies, it
is advised to compute curvatures and principal directions by hand with ζ = ±1
at u = v = 0 and n = |R| for the following case studies:

– φ(u, v, n) = u2 + n2 − R2 ⇒ cylinder of axis v that requires ζ = +1
– φ(u, v, n) = R2 − u2 − n2 ⇒ cylinder of axis v that requires ζ = −1
– φ(u, v, n) = v2 + n2 − R2 ⇒ cylinder of axis u that requires ζ = −1
– φ(u, v, n) = R2 − v2 − n2 ⇒ cylinder of axis u that requires ζ = +1
– φ(u, v, n) = ±u ∗ v + n ⇒ saddle shaped surface (ζ = ±1)

This work was granted access to the HPC resources of the RZG of the Max
Planck Society made available within the Distributed European Computing Ini-
tiative by the PRACE-2IP, receiving funding from the European Community’s
Seventh Framework Programme (FP7/2007–2013) under grant agreement n◦ RI-
283493. The research leading to these results has received funding from the Euro-
pean Research Council under the ERC grant agreement n◦ 247322, GREENEST.
The authors thank Xiang He for his help in code development and Bruno Denet
for his feedback in using the GTS library.

References

1. Albin, E., D’Angelo, Y.: Assessment of the evolution equation modelling app-
roach for three-dimensional expanding wrinkled premixed flames. Combust. Flame
159(5), 1932–1948 (2012)

2. Albin, E., D’Angelo, Y., Vervisch, L.: Using staggered grids with characteristic
boundary conditions when solving compressible reactive Navier-Stokes equations.
Int. J. Numer. Methods Fluids 68(5), 546–563 (2010)

3. Albin, E., D’Angelo, Y., Vervisch, L.: Flow streamline based Navier-Stokes charac-
teristic boundary conditions: modeling for transverse and corner outflows. Comput.
Fluids 51(1), 115–126 (2011)

4. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling sur-
face tension. J. Comput. Phys. 100(2), 335–354 (1992)

5. Cazals, F., Faugère, J.C., Pouget, M., Rouillier, F.: The implicit structure of ridges
of a smooth parametric surface. Comput. Aided Geom. Des. 23(7), 582–598 (2006)

6. Chang, Y.C., Hou, T.Y., Merriman, B., Osher, S.: Level set formulation of Eulerian
interface capturing methods for incompressible fluid flows. J. Comput. Phys.
124(2), 449–464 (1996)

7. Chauveau, C., Birouk, M., Gökalp, I.: An analysis of the d2-law departure during
droplet evaporation in microgravity. Int. J. Multiph. Flow 37(3), 252–259 (2011)

8. D’Angelo, Y., Joulin, G., Boury, G.: On model evolution equations for the whole
surface of three-dimensional expanding wrinkled premixed flames. Combust. Theor.
Model. 4(3), 317–338 (2000)

Computational Assessment of Curvatures and Principal Directions 21

9. Denet, B.: Nonlinear model equation for three-dimensional Bunsen flames. Phys.
Fluids 16(4), 1149–1155 (2004)

10. Douros, I., Buxton, B.F.: Three-dimensional surface curvature estimation using
quadric surface patches. In: Scanning (2002)

11. Dyn, N., Hormann, K., Kim, S.J., Levin, D.: Optimizing 3D triangulations using
discrete curvature analysis. In: Mathematical Methods for Curves and Surfaces,
pp. 135–146 (2001)

12. Gatzke, T., Grimm, C.M.: Estimating curvature on triangular meshes. Int. J. Shape
Model. 12(1), 1–28 (2006)

13. Giuliani, D.: Gaussian curvature: a growth parameter for biological structures.
Math. Comput. Modell. 42(11), 1375–1384 (2005)

14. Goldman, R.: Curvature formulas for implicit curves and surfaces. Comput. Aided
Geom. Des. 22(7), 632–658 (2005)

15. Hameiri, E., Shimshoni, I.: Estimating the principal curvatures and the Darboux
frame from real 3-D range data. IEEE Trans. Syst. Man Cybern. B Cybern. 33(4),
626–637 (2003)

16. Jeffreys, H., Jeffreys, B.S.: Methods of Mathematical Physics, §9.011 Lagrange’s
Interpolation Formula, p. 261. Cambridge University Press, Cambridge (1988)

17. Lebas, R., Menard, T., Beau, P.A., Berlemont, A., Demoulin, F.X.: Numerical
simulation of primary break-up and atomization: DNS and modelling study. Int.
J. Multiph. Flow 35(3), 247–260 (2009)

18. Lehmann, N., Reif, U.: Notes on the curvature tensor. Graph. Models 74, 321–325
(2012)

19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface con-
struction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

20. Macklin, P., Lowengrub, J.: An improved geometry-aware curvature discretization
for level set methods: application to tumor growth. J. Comput. Phys. 215(2),
392–401 (2006)

21. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.F.: A stabilized finite
element method using a discontinuous level set approach for the computation of
bubble dynamics. J. Comput. Phys. 225(1), 949–974 (2007)

22. McIvor, A.M., Valkenburg, R.J.: A comparison of local surface geometry estimation
methods. Mach. Vis. Appl. 10(1), 17–26 (1997)

23. Ménard, T., Tanguy, S., Berlemont, A.: Coupling level set/VOF/ghost fluid meth-
ods: validation and application to 3D simulation of the primary break-up of a liquid
jet. Int. J. Multiph. Flow 33(5), 510–524 (2007)

24. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry
operators for triangulated 2-manifolds. Visual. Math. III, 35–57 (2003)

25. Musuvathy, S., Cohen, E., Damon, J., Seong, J.K.: Principal curvature ridges and
geometrically salient regions of parametric B-spline surfaces. Comput. Aided Des.
43(7), 756–770 (2011)

26. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer,
New York (2003). doi:10.1007/b98879

27. Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting:
crease detection and curvature estimation on large, noisy meshes. Graph. Models
64(3), 199–229 (2002)

28. Peng, J., Li, Q., Kuo, C.C.J., Zhou, M.: Estimating Gaussian curvatures from 3D
meshes. Electron. Imaging 5007, 270–280 (2003)

29. Popinet, S.: The GNU triangulated surface library (2004)
30. Prax, C., Sadat, H., Dabboura, E.: Evaluation of high order versions of the diffuse

approximate meshless method. Appl. Math. Comput. 186(2), 1040–1053 (2007)

http://dx.doi.org/10.1007/b98879

22 E. Albin et al.

31. Squillacote, A.H.: The ParaView Guide: A Parallel Visualization Application. Kit-
ware, New York (2007)

32. Sussman, M., Puckett, E.G.: A coupled level set and volume-of-fluid method for
computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys.
162(2), 301–337 (2000)

33. Thirion, J.P., Gourdon, A.: The 3D marching lines algorithm and its application
to crest lines extraction. Research report (1992)

34. Treece, G.M., Prager, R.W., Gee, A.H.: Regularised marching tetrahedra: improved
iso-surface extraction. Comput. Graph. 23(4), 583–598 (1999)

35. Trott, M.: The Mathematica Guidebook for Graphics. Springer, New York (2004).
doi:10.1007/978-1-4419-8576-7

36. Yan, B., Li, B., Baudoin, E., Liu, C., Sun, Z.W., Li, Z.S., Bai, X.S., Aldén, M.,
Chen, G., Mansour, M.S.: Structures and stabilization of low calorific value gas
turbulent partially premixed flames in a conical burner. Exp. Thermal Fluid Sci.
34(3), 412–419 (2010)

37. Yoo, C.S., Im, H.G.: Characteristic boundary conditions for simulations of com-
pressible reacting flows with multi-dimensional, viscous and reaction effects. Com-
bust. Theor. Model. 11(2), 259–286 (2007)

38. Yu, R., Bai, X.S.: Direct numerical simulation of lean hydrogen/air auto-ignition
in a constant volume enclosure. Combust. Flame 160(9), 1706–1716 (2013)

http://dx.doi.org/10.1007/978-1-4419-8576-7

Coefficient–Based Spline Data Reduction
by Hierarchical Spaces

Cesare Bracco, Carlotta Giannelli(B), and Alessandra Sestini

Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze,
Viale Morgagni 67/A, 50134 Firenze, Italy

{cesare.bracco,carlotta.giannelli,alessandra.sestini}@unifi.it

Abstract. We present a data reduction scheme for efficient surface stor-
age, by introducing a coefficient–based least squares spline operator that
does not require any pointwise evaluation to approximate (in a lower
dimension spline space) a given bivariate B–spline function. In order to
define an accurate approximation of the target spline with a significant
reduction of the space dimension, this operator is subsequently combined
with the hierarchical spline framework to design an adaptive method
that exploits the capabilities of truncated hierarchical B–splines (THB–
splines). The resulting THB–spline simplification approach is validated
by several numerical tests. The target B–spline surfaces include approxi-
mations of functions whose analytical expression is available, reconstruc-
tions of geographic data and parametric surfaces.

Keywords: Data reduction · Quasi–interpolation · Hierarchical
splines · THB–splines

1 Introduction

A general data reduction scheme indicates any process that enables to store a cer-
tain set of information by (strongly) decreasing the amount of data needed for its
reliable reconstruction. For example, an image compression algorithm represents
a data reduction approach for images. A natural choice in this context relies in
considering a reference spline representation that has to be previously generated
in a suitably large spline space in order to guarantee a certain accuracy of the
approximation. The data reduction scheme can then be applied to reduce the
dimension of the spline space while preserving the quality of the approximation.
Examples that consider an initial reference spline in the univariate case may be
found in [3,17,29]. In these schemes the dimension reduction of the spline space
was obtained through simplification of the reference spline by placing/removing
the knots according to the shape of interest.

We here consider the problem of data reduction for efficient surface repre-
sentation, see e.g., [20], by assuming an initial description of the target sur-
face in standard tensor–product B–spline form. We then look for a new spline
data reduction approach for surfaces that can also allow us to deal with com-
plex shapes when extended to multi–patch B–spline descriptions. Obviously,
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 23–41, 2017.
https://doi.org/10.1007/978-3-319-67885-6_2

24 C. Bracco et al.

when combined with a preliminary spline approximation phase, this kind of
data reduction approach can also be applied to different surface representation
formats, as for example gridded sets of space points that define geographic areas
described by scanner acquisitions. In order to design a localized data reduction
algorithm in a multivariate spline setting, different adaptive spline constructions
may be considered. We mention T–splines [22], spline spaces over T–meshes [5]
or locally refined (LR) box–partitions [7], as well as hierarchical splines [8]. In
the bivariate context shape simplification with T–splines and polynomial splines
over hierarchical T–meshes were discussed in [21] and [6], respectively. The use
of LR B–splines for large data sets approximations was recently proposed [23].

Hierarchical B–splines were introduced as one of the first generalizations of
tensor–product B–spline representations by considering a multilevel approach [8].
The idea of exploiting a multi–resolution spline scheme constitutes a powerful
framework for data fitting with local refinements [9,14] and adaptive surface
reconstruction [10,15]. The hierarchical levels are identified in terms of nested
sequences of refined areas that define the domain hierarchy. A basis of hierar-
chical spline spaces may be easily constructed by selecting basis functions from
different refinement levels according to the domain hierarchy [16]. By assuming
mild conditions on the hierarchical mesh configuration, suitable choices of hier-
archical B–spline bases span the entire space of piecewise polynomial functions
of a certain degree and smoothness that are defined on the underlying grids, see
e.g., [1,19]. A renewed interest in this kind of construction has been prompted by
the introduction of the truncated basis for hierarchical splines [12]. Truncated
hierarchical B–splines (THB–splines) slightly modify the selection mechanism
for the hierarchical basis construction to recover the partition of unity prop-
erty and reduce the influence of coarser basis functions in refined areas. Addi-
tional properties of the truncated basis have been derived by also considering a
more general hierarchical setting, not necessarily restricted to the tensor–product
B–spline model [13]. A relevant peculiarity of the truncated basis consists in facil-
itating the construction of hierarchical quasi–interpolants [25]. For example, a
bivariate hierarchical Hermite quasi–interpolation scheme based on THB–splines
was proposed in [2]. Additional results and examples within this approach were
recently discussed [24].

By exploiting the truncated basis for hierarchical splines, we propose a data
reduction approach by combining multilevel spline spaces with a coefficient–
based operator applicable to spline functions. In particular our quasi–interpolant
is based on a local least squares operator which uses only the de Boor coeffi-
cients of the target spline, and, consequently, no pointwise function evaluation
is required. Its formulation in hierarchically refined spline spaces ensures a high
level of data reduction, while simultaneously preserving the shape details of the
given spline.

The structure of the paper is as follows. The coefficient–based spline oper-
ator is introduced in Sect. 2 while the construction and properties of (trun-
cated) hierarchical B–splines are recalled in Sect. 3. Section 4 presents the THB–
spline formulation of the new coefficient–based operator and the related spline

Data Reduction by Hierarchical Spline Spaces 25

simplification scheme. Finally, Sect. 5 provides several examples, including data
reduction for functions whose analytical expression is available, geographic data
approximation and geometric models, and Sect. 6 concludes the paper.

2 Coefficient–Based Data Reduction Operator

Let V be the multivariate tensor–product spline space of degree d =
(d1, d2, ...,dr), r ∈ N and r ≥ 1, defined on a tensor–product mesh G, with
the associated basis of tensor–product B–splines

Bd := {BJ , J ∈ Γd},

for the multi–index set Γd.
Let us consider a spline F ∈ V in the B–spline form

F =
∑

J∈Γd

cJBJ ,

with each cJ ∈ R.
Let V̄ ⊆ V be another space of splines of degree d defined on a tensor–

product mesh Ḡ, and let
B̄d := {B̄J , J ∈ Γ̄d}

be the corresponding B–spline basis.
Since V̄ ⊆ V , we have a linear relation between the basis of the two spaces:

B̄(d) = RT B(d),

where
B(d) := [BJ]J∈Γd

and B̄(d) := [B̄J]J∈Γ̄d

are vectors of length |Γd| and |Γ̄d|, respectively, while R is the matrix of size
|Γd| × |Γ̄d| obtained by using the knot insertion formula to move from V̄ to V
(see, e.g., [4]). We define the operator Q : V → V̄ as follows,

Q(F) :=
∑

J∈Γ̄d

c̄J B̄J , (1)

with each coefficient c̄J obtained by setting c̄J = dJ
J , where dJ

J is the component
of index J of the set of coefficients {dJ

K}K∈L̄J
solution of the local least squares

problem

min
dJ

K :K∈L̄J

∑

H∈LJ

⎡

⎣

⎛

⎝
∑

K∈L̄J

rH,K dJ
K

⎞

⎠ − cH

⎤

⎦
2

, (2)

with rH,K denoting the element of R in the H-th row and K-th column, and

L̄J := K ∈ Γ̄d : supp(B̄K) ∩ supp(B̄J) �= ∅,

(3)
LJ := H ∈ Γd : supp(BH) ∩ supp(B̄J) �= ∅.

26 C. Bracco et al.

Note that, considering (2) and (3), we can state that the coefficient c̄J is the
central coefficient of a local approximation of the restriction of F to the support
of B̄J defined on the analogous restriction of V̄ .

Since V̄ ⊂ V , we are approximating a spline surface with another spline
surface belonging to a coarser space. Moreover, note that the computation of
the coefficients of Q(F) does not require any evaluation of the target spline F
to be approximated. The next Proposition proves that Q is a projector into V̄ .

Proposition 1. For any F ∈ V̄ , Q(F) = F .

Proof. Since F ∈ V̄ , we have

F =
∑

K∈Γ̄d

āK B̄K ,

which can also be written in the form

F =
∑

H∈Γd

cHBH ,

with
cH =

∑

K: rH,K>0

rH,K āK , H ∈ Γd.

Note that for any J ∈ Γ̄d, by the definitions of LJ and L̄J in (3), if H ∈ LJ it is

{K ∈ Γ̄d : rH,K > 0} = {K ∈ L̄J : rH,K > 0}.

Therefore, we get

cH =
∑

K∈L̄J : rH,K>0

rH,K āK =
∑

K∈L̄J

rH,K āK , H ∈ LJ .

This implies that, for any J ∈ Γ̄d, it is

∑

H∈LJ

⎡

⎣

⎛

⎝
∑

K∈L̄J

rH,K āK

⎞

⎠ − cH

⎤

⎦
2

= 0.

Since each coefficient c̄J in (1) is obtained by solving the minimum problem (2),
we must have c̄J = āJ for any J ∈ Γ̄d, and, consequently, Q(F) = F .

3 Hierarchical Spline Spaces

This section briefly reviews (truncated) hierarchical B–spline—(T)HB–spline —
construction and quasi–interpolation in hierarchical spline spaces. For a detailed
introduction to (T)HB–splines and hierarchical quasi–interpolation, we refer to
[12,13] and [2,24,25], respectively.

Data Reduction by Hierarchical Spline Spaces 27

3.1 Hierarchical B–spline Bases

Let V �−1 ⊂ V � and Ω�−1 ⊇ Ω�, � = 1, . . . , M be two nested sequences of
multivariate tensor–product spline spaces and closed domains, respectively. By
starting from an initial tensor–product configuration, each spline space V � is
defined over a grid of level �, obtained through h-refinement of the grid of level
� − 1. The B–spline basis of degree d that spans the space V � is indicated as

B�
d :=

{
B�

J , J ∈ Γ �
d

}
,

for a certain multi–index set Γ �
d. We assume Ω0 = Ω and ΩM = ∅. Each Ω�

is defined as a collection of cells with respect to the tensor–product grid of
level � − 1.

At each level �, the set of B–splines B�
J whose support is completely inside

Ω� but not in successive refined domains is included in the hierarchical B–spline
(HB–spline) basis [16,28].

Definition 1. The hierarchical B–spline basis Hd(GH) of degree d with respect
to the mesh GH is defined as

Hd(GH) :=
{
B�

J ∈ B�
d : J ∈ A�

d, � = 0, ...,M − 1
}

,

where
A�

d := {J ∈ Γ �
d : suppB�

J ⊆ Ω� ∧ suppB�
J �⊆ Ω�+1} ,

is the active set of multi–indices of level �, A�
d ⊆ Γ �

d, and suppB�
J denotes the

intersection of the support of B�
J with Ω0.

In view of the linear independence of hierarchical B–splines, they form a basis
for the space SH := span Hd(GH) associated to the mesh GH.

Definition 2. Let
s =

∑

J∈Γ �+1
d

σ�+1
J B�+1

J ,

be the representation in the B–spline basis of V �+1 ⊃ V � of s ∈ V �. The trunca-
tion operators

trunc�+1 : V � → V �+1 and Trunc�+1 : V � → SH ⊆ V M−1

are defined as

trunc�+1s :=
∑

J∈Γ �+1
d : suppB�+1

J �⊆ Ω�+1

σ�+1
J B�+1

J , � = 0, . . . , M − 1,

and

Trunc�+1 := truncM−1(truncM−2(· · · (trunc�+1(s)) · · ·)) , � = 0, . . . , M − 1,

respectively.

28 C. Bracco et al.

The operators introduced in Definition 2 allow us to define an alternative
basis for the hierarchical spline space SH , known as truncated hierarchical
B–spline (THB–spline) basis [12].

Definition 3. The truncated hierarchical B–spline basis Td(GH) of degree d with
respect to the mesh GH is defined as

Td(GH) :=
{
T �

J : J ∈ A�
d, � = 0, ...,M − 1

}
, with T �

J := Trunc�+1(B�
J) .

In view of the B–spline refinement rule and the non–negativity of HB–splines,
by subtracting from coarser THB–splines the values of B–splines inserted at
subsequent hierarchical levels, the truncated basis forms a convex partition of
unity [12]. The truncation also guarantees the property of coefficient preserva-
tion: THB–splines preserve the coefficients of functions represented with respect
to one of the bases B�

d. This property is stated in [13, Theorem 12] and can
be summarized as follows. Let s|D� be the restriction of s ∈ span Td(GH) to
D� = Ω� \ Ω�+1 and consider its representation with respect to Td(GH) and B�

d,

s|D� =
M−1∑

k=0

∑

I∈Ak
d

dk
IT k

I =
∑

J∈Γ �
d

c�
JB�

J .

The coefficient d�
I of each THB–spline T �

I of level � is equal to the coefficient c�
I

of the B–spline B�
I from which T �

I is originated via truncation, namely d�
I = c�

I ,
I ∈ A�

d. In addition, THB–splines form a strongly stable basis: the constants
arising in the stability analysis of the basis do not depend on the number of
refinement levels, see [13, Theorem 19].

3.2 THB–Spline Quasi–Interpolation

The property of coefficient preservation mentioned at the end of the previous
section directly leads to the generalization of any quasi–interpolation operator
to the hierarchical setting [25]. Let f ∈ C(Ω0) and let

Q�(f) :=
∑

J∈Γ �
d

λ�
J(f)B�

J , � = 0, . . . , M − 1,

be a sequence of quasi–interpolants defined in terms of certain linear functionals
λ�

J(f). Let also the B–spline B�
J related to the truncated basis function T �

J =
Trunc�+1(B�

J) through Definition 3, be the mother B–spline of T �
J . Thanks to the

preservation of coefficients, the hierarchical quasi–interpolant is simply defined
by associating at each THB–spline the linear functional of its mother function,
namely

QH(f) :=
M−1∑

�=0

∑

J∈A�
d

λ�
J(f)T �

J .

Data Reduction by Hierarchical Spline Spaces 29

Note that the property of reproducing polynomials is preserved by the hierar-
chical construction:

Q(p) = p ⇒ QH(p) = p, ∀p ∈ P
d,

where Pd is the space of tensor–product polynomials of degree d. While [25] intro-
duced the general framework for hierarchical quasi–interpolation based on the
truncated basis together with the related properties, the hierarchical Hermite BS
quasi–interpolation scheme was presented in [2]. THB–spline quasi–interpolation
was recently discussed also in [24].

4 THB–Spline Simplification

Given a tensor–product B–spline function, possibly obtained by approximation
of a set of gridded data or by interactive modeling and processing, our data reduc-
tion scheme produces an accurate THB–spline approximation with a strongly
reduced number of degrees of freedom. This result is obtained by locally apply-
ing to the original B–spline function the coefficient–based operator introduced in
Sect. 2 to compute the coefficient associated with each truncated basis function.
Note that, in the case of regular grids, the refinement matrices which express
the relation between the coefficients on different levels of the hierarchy and are
needed by the least–squares operator depend only on the spline degree. Conse-
quently, they can be computed once and for all in the implementation of the
method.

4.1 The Hierarchical Coefficient–Based Operator

Let GH be a hierarchical mesh with M levels, and let V 0 ⊂ · · · ⊂ V M−1 be the
sequence of associated nested tensor–product spline spaces with V M−1 ⊆ V . We
recall from the previous section that B�

d is the B–spline basis of V �, while G� is
the associated tensor-product mesh. For any F ∈ V, of the form

F =
∑

H∈Γd

cHBH , (4)

we define the hierarchical operator

QH(F) :=
M−1∑

�=0

∑

J∈A�
d

c�
J T �

J , (5)

where each c�
J is the coefficient of the corresponding tensor–product operator of

type (1) defined in the space V � and expressed as

Q�(F) :=
∑

J∈Γ �
d

c�
J B�

J .

30 C. Bracco et al.

Analogously to the tensor–product case, each coefficient c�
J is obtained by solving

the local least squares problem

min
c�

K :K∈L̄�
J

∑

H∈L�
J

[(∑

K∈L̄�
J

r�
H,Kc�

K

)
− cH

]2

, (6)

where cH are the coefficients in the tensor–product B–spline representation of F
provided by (4),

L̄�
J := K ∈ Γ �

d : supp(B�
K) ∩ supp(B�

J) �= ∅,

L�
J := H ∈ Γd : supp(BH) ∩ supp(B�

J) �= ∅,

and r�
H,K is the element in the H-th row and K-th column of the matrix R� so

that
B(d,�) = (R�)T B(d), (7)

with
B(d,�) := [B�

J]J∈Γ �
d

and B(d)

representing the B–spline bases of V � and V , respectively. Note that, for given

0 ≤ � ≤ M − 1 and J ∈ A�
d,

only a submatrix of R� is employed for computing the solution of (6), namely

R�
J := [rH,K]H∈L�

J , K∈L̄�
J
.

This matrix can be obtained as the Kronecker product of matrices expressing
the relation between univariate B–splines:

R�
J = R�

J,1 ⊗ R�
J,2 ⊗ · · · ⊗ R�

J,r,

where
B(d,�)

J,h = (R�
J,h)T B(d)

J,h

with B(d)
J,h and B(d,�)

J,h being the vectors containing the univariate B–splines whose
tensor–product gives the r-variate B–splines BH , H ∈ L�

J and BK , K ∈ L̄�
J ,

respectively.

Remark 1. We observe that, when we consider uniform meshes on each level and
V = V M−1, each matrix R�

J,h depends only on the degree d, and on the number

of dyadic refinements needed to pass from B(d,�)
J,h to B(d)

J,h, that is, M − 1− �. For
example, in the case of only single knots at all levels, when r = 2, d = (2, 2) and
M − 1 − � = 1, for any J , we have

R�
J,h =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3/4 1/4 0 0 0
1/4 3/4 0 0 0
0 3/4 1/4 0 0
0 1/4 3/4 0 0
0 0 3/4 1/4 0
0 0 1/4 3/4 0
0 0 0 3/4 1/4
0 0 0 1/4 3/4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, h = 1, ..., r.

Data Reduction by Hierarchical Spline Spaces 31

The following proposition proves that QH reproduces the polynomial space Pd.

Proposition 2. For any q ∈ Pd, QH(q) = q.

Proof. Note that, by Proposition 1 we have

Q�(q) = q for any q ∈ Pd, � = 0, ...,M − 1.

As a consequence, by applying Theorem 3 in [25], we obtain the thesis.

In addition, the hierarchical operator QH reproduces all splines of the sub-
space V 0, as it is proved in Proposition 3 below.

Proposition 3. For any F ∈ V 0, QH(F) = F .

Proof. Let us consider c�
J in (5) determined by solving problem (6). Since F ∈

V 0 ⊆ V � ⊆ ... ⊆ V M−1 ⊆ V , we have

F =
∑

K∈Γ 0
d

a0
K B0

K =
∑

K∈Γ �
d

a�
K B�

K =
∑

H∈Γd

cHBH ,

with
cH =

∑

K: r�
H,K>0

r�
H,Ka�

K , H ∈ Γd,

where each r�
H,K is the element in the H-th row and K-th column of the matrix

R� in (7). Analogously to the proof of Proposition 1, this is enough to prove
that c�

J = a�
J . This in turn, by using the THB–spline property of coefficient

preservation [13], implies that QH(F) = F .

It is clear that the accuracy of the hierarchical approximation QH(F) of
F ∈ V strongly depends on the choice of the hierarchical mesh GH, and a strategy
for its automatic generation is crucial.

4.2 The Adaptive Data Reduction Scheme

Let V be a d–degree tensor–product spline space, d = (d1, d2, ..., dr) , r ∈ N and
r ≥ 1. For simplicity, we assume that V is defined on a grid GMmax−1 obtained
from a coarser grid G0 by applying Mmax − 1 successive dyadic refinements.
Consequently, the mesh G� is obtained by one dyadic refinement of the cells of
G�−1, � = 1, ...,M − 1, with M ≤ Mmax. Let

T := [TK]K∈ΓT
d

with Γ T
d := {(�, I) : I ∈ A�

d , 0 ≤ � ≤ M − 1}

be the set of THB–splines defined by the spline hierarchy. We can then write

T = PT Bd

where the transpose of P is the matrix that expresses the linear relation between
the basis of the hierarchical spline space and the basis of V . We denote by pJ,K

32 C. Bracco et al.

the element of P in the J-th row and K-th column. For subsequent use, we also
rewrite (5) as

QH(F) =
∑

K∈ΓT
d

cT
K TK . (8)

The following ascending algorithm summarizes the main steps to compute
a THB–spline with M ≤ Mmax levels which approximates F ∈ V with knots
in GMmax−1 within a given tolerance ε. As previously mentioned, for simplicity,
we assume that V is a spline space whose mesh can be dyadically simplified
Mmax − 1 times.

Input:

– the set of coefficients {cJ , J ∈ Γd} defining F ∈ V with knots in GMmax−1 ;
– a dyadic coarsening G0 of GMmax−1 ;
– a maximum number of hierarchical levels M ≤ Mmax ;
– the tolerance ε > 0 .

1. initialize GH = G0 and, consequently, Γ T
d and P ;

2. compute the coefficients cT
K , K ∈ Γ T

d , of QH(F) in (8) by solving for each of
them the local least square system in (6);

3. while ∣∣∣∣∣
∑

K: pJ,K>0

pJ,KcT
K − cJ

∣∣∣∣∣ ≤ ε ·
(

max
H∈Γd

cH − min
H∈Γd

cH

)
(9)

is not satisfied for all J ∈ Γd and the current number of levels is less than
M , repeat the following steps:
(a) for all J ∈ Γd which do not satisfy (9), mark the cells which belong to

supp(B�
I) for all K = (�, I) ∈ Γ T

d such that pJ,K > 0 ;
(b) obtain the new mesh GH by dyadically refining each marked cell belonging

to G�, � < M − 1 and update Γ T
d and P ;

(c) compute the new coefficients cT
K , K ∈ Γ T

d , of QH(F) in (8) by solving for
each of them the local least square system in (6).

Output: THB–spline approximation QH(F) with M ≤ Mmax levels of the form
(8) approximating F within the given tolerance ε.

In the stopping criterion, the tolerance ε is compared with the error in the
current hierarchical approximation of cJ , scaled with respect to the data, accord-
ing to (9). The right–hand side of (9) vanishes if all the coefficients cH ,H ∈ Γd,
are equal to a constant. Even if this case is not of practical interest, we may note
that it is still covered by the algorithm since the target spline is just a constant
exactly represented already in V0.

Note that, in step 3(a) of the algorithm, in order to avoid additional compu-
tations, instead of marking the cells in the support of the THB–splines associated
to the coefficients that do not satisfy the desired tolerance, we simply consider
the support of the corresponding B–splines. This is justified since the support of
a THB–spline is contained in the one of its mother function, namely the B–spline
from which the truncated basis functions is obtained by truncation.

Data Reduction by Hierarchical Spline Spaces 33

Remark 1. It is worth to mention that the whole algorithm can be naturally
generalized for applying the data reduction scheme to tensor–product B–spline
parametric surfaces where the coefficients are replaced by control points. Since cH

is now a vector and no more a scalar, the necessary changes consist in replacing
the square brackets in (2) and (6) and the absolute value in (9) with the euclid-
ean norm, and substituting the normalizing factor (maxH∈Γd

cH − minH∈Γd
cH)

in (9) with maxH,K∈Γd
‖cH − cK‖.

Remark 2. Note that, when M = Mmax, the algorithm always succeeds at
meeting any tolerance, at most by producing a hierarchical mesh with Mmax

levels. This is due to the fact that, at each iteration of the algorithm, if (9)
is not satisfied for a certain J ∈ Γd, all the cells belonging to the supports
of the B–splines B�

I , K = (I, �), such that pJ,K > 0 are refined. As a conse-
quence, at each iteration the level � of the indices K = (�, I) such that pJ,K > 0
increases by 1. Eventually, in the worst case we will get � = Mmax − 1 and
{K = (�, I) : pJ,K > 0} = {J}, that is, the obtained hierarchical space is locally a
tensor–product space. Therefore, cMmax−1

J = cJ , which of course implies that (9)
is satisfied for cJ .

5 Numerical Experiments

For testing the proposed hierarchical data reduction scheme, we implemented
the coefficient–based scheme in MATLAB and combined it with THB–splines
by relying on the hierarchical B–spline implementation within the MATLAB
package GeoPDEs, see [11,27]. Open knot vectors are considered for all the
examples.

Example 1. We first consider two test tensor-product B–spline surfaces, Si, i =
1, 2, shown in Fig. 1(a) and (b). Each of them was obtained with a preliminary
spline approximation of a corresponding set of 129×129 uniformly gridded func-
tional data. More precisely, the tensor–product extension of the BS Hermite QI
scheme introduced in [18] was adopted for this aim. The two discrete data sets
used to generate S1 and S2 were defined by uniformly sampling the following two
test functions,

f1(x, y) =
tanh(9y − 9x) + 1

9
, (x, y) ∈ [−1, 1]2,

f2(x, y) =
2

3 exp (10x − 3)2 + (10y + 4)2
, (x, y) ∈ [−1, 1]2.

Example 2. We applied the algorithm to a tensor–product B–spline surface S3

approximating the set of geographic data available at [26] and describing the
terrain elevation in a mountain region of the Hawaii Islands, see Fig. 1(c). The
tensor–product surface was obtained with a modified version of the BS Hermite
QI scheme (mentioned in [18]). Such variant, unlike the basic one, does not
require the values of the first and second–order mixed partial derivatives of the
approximated function on the rectangular mesh defining the spline knots.

34 C. Bracco et al.

(a) S1 (b) S2

(c) S3 (d) S4

Fig. 1. The reference tensor–product spline surfaces Si, i = 1, 2, 3, 4. The spline break-
points are 129 uniformly spaced points in [−1 , 1] with respect to both directions.

Example 3. In this example, we applied the data reduction algorithm to the
“igloo”model S4, defined in a tensor–product B–spline space of degree (3, 3) on
a 128 × 128 uniform grid, see Fig. 1(d). In this case the reference parametric
surface is obtained through control point modification and the control points cJ

belong to R3.

In all the experiments we set M = Mmax. For each test, we report the
spline degree, the number M of levels, the tolerance ε used for generating the
hierarchical mesh and the dimension of the spaces SH and V . In addition, the
last column of the table shows the discrete approximation of the infinity norm
of the error ei

ei := QH(Si) − Si, i = 1, 2, 3, e4 := ‖QH(S4) − S4‖2,

computed by sampling the error at the vertices of the original tensor-product
grid. It is clear that the data reduction approximation error can be controlled by
setting a suitable tolerance for the marking strategy considered in the algorithm.

Data Reduction by Hierarchical Spline Spaces 35

Note that, for any considered test, there is a significative reduction of the number
of degrees of freedom, thanks to the local refinement capabilities of hierarchical
spline spaces.

Table 1 shows the results obtained by applying the hierarchical operator to
the four reference surfaces with different tolerance values (ε=5e-2,1e-2,5e-3).
The adaptive nature of the refinements obtained with the application of the
algorithm is evident from the hierarchical meshes generated by the THB–spline
simplification approach, see Figs. 2, 3 and 4 (right). The comparison between the
approximated surfaces shown in Figs. 2, 3 and 4 (left) and the original surfaces
Si, i = 1, . . . , 4 of Fig. 1 suggests that the shape of the data is also well repro-
duced. The corresponding contour plots are shown in Figs. 5 and 6 which confirm
the good quality of the approximations (only very minor differences between the
original and the approximated contour plot are present). Different experiments
with periodic (rather than open) knot vectors suggest that this choice leads
to more refined meshes near the boundary (and consequently more degrees of
freedom).

Table 1. Numerical results obtained by applying the hierarchical quasi-interpolation
operator QH to the tensor–product splines S1, S2, S3, S4.

S1 (d1 = d2 = 3)

M ε dim(SH) dim(V) ‖e1‖∞
3 5e-2 361 17161 5.519e-3

4 1e-2 973 17161 2.546e-4

4 5e-3 1027 17161 2.546e-4

S2 (d1 = d2 = 3)

M ε dim(SH) dim(V) ‖e2‖∞
4 5e-2 550 17161 9.251e-3

5 1e-2 820 17161 1.609e-3

5 5e-3 928 17161 3.456e-4

S3 (d1 = d2 = 2)

M ε dim(SH) dim(V) ‖e3‖∞
3 5e-2 190 16900 2.125e-2

6 1e-2 2485 16900 4.733e-3

6 5e-3 5718 16900 2.504e-3

S4 (d1 = d2 = 3)

M ε dim(SH) dim(V) ‖e4‖∞
6 5e-2 2848 17161 1.373e-2

6 1e-2 3739 17161 3.835e-3

6 5e-3 3952 17161 3.334e-4

36 C. Bracco et al.

Fig. 2. THB–spline approximations (left) and corresponding hierarchical meshes
(right) obtained by applying QH to the tensor–product splines of Example 1 with
ε=1e-2.

Fig. 3. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 2 with ε=1e-2.

Data Reduction by Hierarchical Spline Spaces 37

Fig. 4. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 3 with ε=1e-2.

Fig. 5. Contour plots of the tensor–product splines (left) of Example 1: S1 (top) and
S2 (bottom) and of their THB–spline approximations (right) obtained with ε=1e-2.

38 C. Bracco et al.

Fig. 6. Contour plots of the tensor–product spline of Example 2 (left) and of its THB–
spline approximation (right) obtained with ε=1e-2.

Table 2. Numerical results obtained by applying the hierarchical quasi-interpolation
operator QH to the tensor–product splines S1, S2, S3, shown in Fig. 1(a), (b) and (c).

test M d1 = d2 ε dim(SH) dim(V) ‖ei‖∞

S1 6 3 5.0e-6 7597 17161 1.702e-7

S2 6 3 5.0e-6 3142 17161 5.157e-7

S3 6 2 5.0e-3 5718 16900 2.504e-3

In order to show that the adaptive scheme can generate approximations with
the same accuracy of the tensor–product case with a reduced number of degrees
of freedom, we also present the results in Table 2. In this case the tolerance
values were chosen of the same order of the error obtained by approximating
the original data with tensor–product B–splines. The corresponding meshes are
shown in Figs. 7 and 8.

Fig. 7. Hierarchical meshes (right) obtained by applying QH to the tensor–product
splines of Example 1 with ε=5e-6.

Data Reduction by Hierarchical Spline Spaces 39

Fig. 8. THB–spline approximation (left) and corresponding hierarchical mesh (right)
obtained by applying QH to the tensor–product spline of Example 2 with ε=5e-3.

6 Conclusions

In order to reduce the computational costs connected with the reconstruction of
large data sets, we introduced a data reduction operator that does not require any
pointwise functional evaluation and its THB–spline generalization. Such operator
can be applied to any initial (highly refined) standard bivariate spline, prelim-
inarily constructed by suitable classical spline approximation, or alternatively
obtained either by control point modification of an initial spline configuration,
or as the result of modeling techniques. The THB–spline simplification algo-
rithm ensures accurate spline representations with a strongly reduced number
of degrees of freedom. The algorithm can also be exploited for interactive design
and model simplification. In principle, the data reduction scheme can also be
applied to other kind of Bernstein/B–spline-type representations, assuming to
start with a target function represented in this alternative form. The analysis of
the influence of the chosen representation on the final approximation is beyond
the scope of this paper.

Acknowledgements. The support by MIUR “Futuro in Ricerca” programme
through the project DREAMS (RBFR13FBI3) and by the Istituto Nazionale di Alta
Matematica (INdAM) through Gruppo Nazionale per il Calcolo Scientifico (GNCS)—
“Finanziamento Giovani Ricercatori” and “Progetti di ricerca” programmes—and
Finanziamenti Premiali SUNRISE are gratefully acknowledged.

References

1. Berdinsky, D., Kim, T.-W., Bracco, C., Cho, D., Mourrain, B., Oh, M.-J., Kiat-
panichgij, S.: Dimensions and bases of hierarchical tensor-product splines. J. Com-
put. Appl. Math. 257, 86–104 (2014)

2. Bracco, C., Giannelli, C., Mazzia, F., Sestini, A.: Bivariate hierarchical Hermite
spline quasi-interpolation. BIT 56, 1165–1188 (2016)

3. Conti, C., Morandi, R., Rabut, C., Sestini, A.: Cubic spline data reduction choosing
the knots from a third derivative criterion. Numer. Algorithms 28, 45–61 (2001)

40 C. Bracco et al.

4. de Boor, C.: A Practical Guide to Splines. Springer, New York (2001). Revised ed
5. Deng, J., Chen, F., Feng, Y.: Dimensions of spline spaces over T-meshes. J. Com-

put. Appl. Math. 194, 267–283 (2006)
6. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y.: Polynomial splines

over hierarchical T-meshes. Graph. Models 70, 76–86 (2008)
7. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined

box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)
8. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graphics

22, 205–212 (1988)
9. Forsey, D.R., Bartels, R.H.: Surface fitting with hierarchical splines. ACM Trans.

Graphics 14, 134–161 (1995)
10. Forsey, D.R., Wong, D.: Multiresolution surface reconstruction for hierarchical B-

splines. In: Graphics, Interface, pp. 57–64 (1998)
11. Garau, E.M., Vázquez, R.: Algorithms for the implementation of adaptive isogeo-

metric methods using hierarchical splines. Appl. Numer. Math. 123, 58–87 (2018)
12. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hier-

archical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)
13. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined

multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)
14. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with

hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker,
L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbilt
University Press, Nashville (1997)

15. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adap-
tive CAD model (re-)construction with THB-splines. Graph. Models 76, 273–288
(2014)

16. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté,
A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods,
pp. 209–218. Vanderbilt University Press, Nashville (1997)

17. Lyche, T., Mørken, K.: A data-reduction strategy for splines with applications to
the approximation of functions and data. IMA J. Numer. Anal. 8, 185–208 (1988)

18. Mazzia, F., Sestini, A.: The BS class of Hermite spline quasi-interpolants on nonuni-
form knot distribution. BIT 49, 611–628 (2009)

19. Mokrǐs, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-
product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)

20. Morandi, R., Sestini, A.: Data reduction in surface approximation. In: Lyche, T.,
Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000,
pp. 315–324. Vanderbilt University Press, Nashville (2001)

21. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.:
T-spline simplification and local refinement. ACM Trans. Graphics 23, 276–283
(2004)

22. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCS.
ACM Trans. Graphics 22, 477–484 (2003)

23. Skytt, V., Barrowclough, O., Dokken, T.: Locally refined spline surfaces for repre-
sentation of terrain data. Comput. Graphics 49, 58–68 (2015)

24. Speleers, H.: Hierarchical spline spaces: quasi-interpolants and local approximation
estimates. Adv. Comput. Math. 43, 235–255 (2017)

25. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces.
Numer. Math. 132, 155–184 (2016)

26. U.S. Geological Survey. https://www.usgs.gov/, http://dds.cr.usgs.gov/pub/data/
nationalatlas/el usa hawaii.bil nt00924.tar.gz

https://www.usgs.gov/
http://dds.cr.usgs.gov/pub/data/nationalatlas/el_usa_hawaii.bil_nt00924.tar.gz
http://dds.cr.usgs.gov/pub/data/nationalatlas/el_usa_hawaii.bil_nt00924.tar.gz

Data Reduction by Hierarchical Spline Spaces 41

27. Vázquez, R.: A new design for the implementation of isogeometric analysis in
Octave and Matlab: GeoPDEs 3.0. Comput. Math. Appl. 72, 523–554 (2016)

28. Vuong, A.-V., Giannelli, C., Jüttler, B., Simeon, B.: A hierarchical approach to
adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech.
Eng. 200, 3554–3567 (2011)

29. Wever, U.A.: Global and local data reduction strategies for cubic splines. Comput.
Aided Des. 23, 127–132 (1991)

A Versatile Strategy for the Implementation
of Adaptive Splines

Andrea Bressan1(B) and Dominik Mokrǐs2

1 Department of Mathematics, University of Oslo, Oslo, Norway
andbres@math.uio.no

2 Institute of Applied Geometry, Johannes Kepler University Linz, Linz, Austria
dominik.mokris@jku.at

Abstract. This paper presents an implementation framework for spline
spaces over T-meshes (and their d-dimensional analogs). The aim is to
share code between the implementations of several spline spaces. This is
achieved by reducing evaluation to a generalized Bézier extraction.

The approach was tested by implementing hierarchical B-splines, trun-
cated hierarchical B-splines, decoupled hierarchical B-splines (a novel
variation presented here), truncated B-splines for partially nested refine-
ment and hierarchical LR-splines.

Keywords: Implementation · Bézier extraction · THB-splines ·
LR-splines

1 Introduction

A common method to represent shapes in Computer-Aided Design (CAD),
Computer-Aided Engineering (CAE) and Computer-Aided Manufacturing
(CAM) is to parametrize the desired geometry (or its boundary) with Non-
Uniform Rational B-Splines (NURBS). B-splines have a global tensor-product
structure, where each d-variate basis function is a product of d univariate basis
functions. This means that changes in spatial resolution cannot be confined to a
small region; they necessarily spread to a union of stripes of the domain (Fig. 1).

Different constructions that allow for local refinement were proposed during
the last two decades and gained support with the introduction of IsoGeometric
Analysis (IGA) [24]. Indeed, IGA pushed the use of splines in numerical simula-
tion where local refinement is a prerequisite of adaptive methods. The following
list includes the best known constructions:

– Hierarchical B-splines (HB) [16]. This is a multiscale approach: each scale is
associated to a different tensor-product B-spline space. Functions from each
scale are selected depending on the locally required resolution and together
they form the hierarchical B-spline basis. There are many variations of HB,
among them: the Truncated Hierarchical B-splines (THB) [17], the Truncated
Decoupled Hierarchical B-splines (TDHB) [32], the Truncated B-splines for
partially nested refinement (TBPN) [43] and Decoupled Hierarchical B-splines
(DHB) introduced here for the first time.

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 42–73, 2017.
https://doi.org/10.1007/978-3-319-67885-6_3

A Versatile Strategy for the Implementation of Adaptive Splines 43

Fig. 1. Limitation of the tensor-product construction. Left: the coarse grid; Middle:
the desired refinement; Right: the coarsest tensor-product grid refined on the grey area.

– T-splines (T) [38,39]. The central notion is the T-mesh: a planar graph with
lengths. A B-spline corresponds to each vertex of the graph and its knot vec-
tors depend on the length of the neighboring edges. These B-splines generate
the space. Unfortunately, they can be linearly dependent. Analysis Suitable
T-splines (AST) avoid linear dependencies by restricting the class of allowed
T-meshes [11,31]. AST spaces can be constructed in 2D [35] and also defined
for 3D domains [34].

– Locally Refined splines (LR) [14]. Their definition is given in terms of mini-
mally supported B-splines contained in a space of piecewise polynomials. The
generators are not always linearly independent. A bivariate construction that
avoids linear dependencies is the hierarchical LR-splines (HLR) [5].

Several other spaces and alternative bases exist, e.g., [6,8,13,27,36]. On the one
hand, the mentioned spaces contain piecewise polynomials over box-shaped sub-
domains and allow for smooth functions. On the other hand, each construction
was defined for a specific application and, as a consequence, described and ana-
lyzed with its own set of tools. Thus it is difficult to make a comparison involving
more than a few spaces and having criteria that are not application-specific. A
comparison of HB, THB and LR based on the conditioning of the mass matrix
is presented in [25]. A similar approach was used in [23].

Our aim is to describe a software framework allowing to implement vari-
ous spline spaces in a systematic way. The main criterion is the versatility of
the code, that is, the possibility to include further spline spaces to this frame-
work with relative ease. In this way we hope to facilitate both the comparison
of different spline spaces and experimenting with alternative definitions. The
proposed method is a generalization of Bézier extraction [2,15,37], which is a
well-established tool in IGA. As a proof of concept, three spline spaces available
in the literature and a newly designed space were implemented. The choice of
the spaces has been based on authors’ personal research interests and contains
only spaces with multilevel structure. Less structured spaces such as LR-splines
or T-splines could be implemented as well, but they would probably require
more effort due to their intrinsic complexity, particularly so when non-dyadic
refinement and knot lines with multiplicities would be considered.

44 A. Bressan and D. Mokrǐs

The framework is presented in Sect. 2 without any reference to specific spline
spaces. Section 3 discusses the space and time complexity of the proposed app-
roach and presents possible optimizations. Section 4 highlights the differences
from Bézier extraction, while Sect. 5 describes how the framework can be applied
to HB, THB, DHB, TBPN and HLR splines. These spaces were implemented
and their implementations are used in Sect. 6 to show how the different spaces
behave in a few selected cases.

The following notation conventions are used throughout the paper.

Style Example Used for

Lowercase Latin letters a, b,. . . Real numbers

Bold lowercase Latin letters a, b,. . . Vectors of real numbers

Lowercase Greek letters α, β,. . . Functions

Bold lowercase Greek letters α, β,. . . Vectors of functions

Uppercase Greek letters Ω, Δ,. . . Subsets of R
d or R

d−1

Uppercase Latin letters A, B,. . . Sets

Bold uppercase Latin letters A, B,. . . Matrices and operators

Calligraphic uppercase Latin letters A, B,. . . Function spaces

2 Implementation Method

The aim of an implementation is to evaluate the generators of a spline space
at a set X of points contained in the domain Ω ⊆ R

d. This is sufficient for the
application to interpolation problems and for the implementation of Galerkin
methods based on numerical quadrature.

The spline spaces of interest are generated by piecewise polynomials on a
partition of Ω into axis-aligned boxes called elements. Thus their restriction to
an element can be expressed in terms of tensor-product Bernstein polynomials.
By doing so it is possible to repurpose Finite Element Method (FEM) codebases
to IGA. This approach was proposed for NURBS in [2] under the name Bézier
extraction and later extended to other spaces [15,37].

The main idea of this paper is to replace the elements with more general
subdomains and the Bernstein basis with an arbitrary local basis, possibly a
different one for each subdomain. This allows the implementations to be closer
to the mathematical definitions of the spline spaces, which are typically described
in terms of B-splines and not of Bernstein polynomials. A detailed comparison
with Bézier extraction is provided in Sect. 4.

2.1 Description

Let G = {γ1, . . . , γn} be the generating set of a spline space and assume that
there exists a partition T = {Δ1, . . . ,Δs} of the domain Ω and a corresponding

A Versatile Strategy for the Implementation of Adaptive Splines 45

set of local bases1 B = {B1, . . . , Bs} such that the restriction of each γ ∈ G to
any Δi admits a representation in span Bi. More precisely,

∀γ ∈ G, ∀s
i=1, ∀x ∈ Δi : γ(x) =

∑

β∈Bi

mβ,γβ(x), (1)

and thus
γ(x) = βi(x)Mi, (2)

where γ(x) and βi(x) are the row vectors

γ(x) =
(
γ1(x), . . . , γn(x)

)
=

(
γ(x)

)
γ∈G

,

βi(x) =
(
β(x)

)
β∈Bi

(3)

and Mi =
(
mβ,γ

)
β∈Bi, γ∈G

is the matrix containing the coefficients from (1).
The matrices Mi can be collected as blocks of the matrix M with

∑s
i=1 #Bi

rows and #G columns as depicted in Fig. 2.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ms

...

M2

M1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

γ ∈ G

β ∈ B2

Fig. 2. Structure of the representation matrix.

The generating set G is uniquely determined by T , B and M through (2).
This suggests an implementation in which T , B and M are provided by the
space-specific code and the evaluation of γ(x) is performed using (2). Note that
different choices of T , B and M can describe the same G and thus there is a
certain freedom to optimize for different scenarios (see Sect. 5).

For such implementation T requires a method findSubdomain that given a
point x ∈ Ω returns the index i of the corresponding subdomain Δi � x. The
implementation of the local bases Bi should contain a method eval that returns
a matrix containing the values of the basis functions β ∈ Bi in a given set of
1 (Or, more generally, generating sets).

46 A. Bressan and D. Mokrǐs

points X ⊂ Ω. For consistency the same interface should be implemented by the
resulting spline space.

Before describing a suggested implementation of the three components T , B
and M it is worth describing the eval interface in more detail. For the expected
applications it is necessary to compute both function values and function deriv-
atives at a set of points X ⊂ Ω. As shown in (2) the values (and also the deriv-
atives) can be transformed by a matrix multiplication. This suggest a format
that allows the transformation of all the data with a single operation.

Let W = {v1, . . . ,vw} be the list of the multiindices corresponding to the
desired derivatives. For instance, in two dimensions, the value corresponds to
(0, 0), the first partial derivative with respect to the first direction to (1, 0) and
the second mixed derivative to (1, 1) and W = {(0, 0), (1, 0), (1, 1)} means that
all these three are computed. Then for a set of functions F = {ϕ1, . . . , ϕf} the
base format can be

EF (x,W) =

⎛

⎜⎝
∂v1ϕ1(x) · · · ∂v1ϕf (x)

...
. . .

...
∂vwϕ1(x) · · · ∂vwϕf (x)

⎞

⎟⎠ .

The values at multiple points can be stored by collecting similar blocks. In
particular, for X = {x1, . . . ,xr} let

Bi(X,W) =

⎛

⎜⎝
EBi

(x1,W)
...

EBi
(xr,W)

⎞

⎟⎠ and G(X,W) =

⎛

⎜⎝
EG(x1,W)

...
EG(xr,W)

⎞

⎟⎠ .

Assuming the above format, a general implementation of eval for G is given
by the following procedure.

Procedure: eval(X,W)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Output: G(X,W)
foreach x ∈ X do

i = findSubdomain(x)
EBi

(x,W) = Bi.eval(x,W)
EG(x,W) = EBi

(x,W)Mi

/* EG(x,W) is directly written into G(X,W) */

end

For the common case when X is contained in one Bézier element of the space
it can be useful to provide the following optimized procedure that accepts the
containing subdomain as an input parameter.

A Versatile Strategy for the Implementation of Adaptive Splines 47

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W)
Bi(X,W) = Bi.eval(X,W)
G(X,W) = Bi(X,W)Mi

Now T , B and M will be described in more detail.
A suitable implementation of T is a binary decision tree (more precisely a

binary space partition, cf. [40,41]). For the spaces of interest it is possible to
assume that the subdomains Δi are polytopes with axis-aligned faces. Each fork
in the tree corresponds to a spatial split along an axis-aligned affine hyperspace,
i.e., to a comparison for a specific coordinate. Each branch corresponds to taking
one of the corresponding half-spaces. Each leaf of the tree corresponds to the
intersection of the taken half-spaces and Ω. Thus T can be represented by a tree
storing in each leaf the index of the subdomain containing the corresponding
box. Figure 3 depicts a partition and a corresponding tree.

Binary space partitions not only provide an efficient implementation of the
method findSubdomain but also offer useful representations of piecewise con-
stant maps Ω → N. They enable efficient computation of binary operations (see
the references above for union and intersection) that can be employed both for
the geometrical computation required by the construction of the different spaces
and by refinement strategies.

For instance, given two trees that assign to each point a refinement level, it
is easy to compute the coarsest common refinement by the pointwise-max oper-
ation. Similarly, the finest common submesh can be computed with a pointwise-
min operation.

Δ1

Δ2

0 1
2

1
0

2
3

1

x1 ≥ 1
2

x ∈ Δ1

false

x2 ≥ 2
3

x ∈ Δ2

false

x ∈ Δ1

tru
e

tru
e

x = (x1, x2)

Fig. 3. A partition of Ω in Δ1 and Δ2 and a decision tree describing it. The darkened
area next to each branch highlights the region corresponding to the branch.

48 A. Bressan and D. Mokrǐs

The collection of local bases B = {B1, . . . , Bs} is simply a list of polymorphic
objects implementing the eval interface. This allows for arbitrary local bases and
thus, for example, Bernstein polynomials as in Bézier extraction, B-splines as in
all the implementations presented here, or enriched spaces such as generalized
B-splines [3] with piecewise trigonometric or exponential functions.

Finally, M is a sparse matrix. However, the initialization of the matrix for a
particular spline space usually requires most of the space-specific code.

2.2 Subspaces and Functions

Consider a subspace span G′ ⊂ span G generated by G′ = {γ′
1, . . . , γ

′
k}. If N =

(nγ,γ′)γ∈G,γ′∈G′ is a matrix that contains in the i-th column the expansion of γ′
i

in γ1, . . . , γn, i.e.,
∀x ∈ Ω, γ′(x) = γ(x)N,

then G′ can be implemented by T,B,M′ with

M′ = MN.

As a consequence, eval is not only a suitable implementation of G, but
also of a single function ϕ ∈ span G. Indeed, this corresponds to M′ having a
single column and N being the column vector of the coefficients of ϕ. Another
application of this method is enforcing homogeneous linear constraints on the
space, such as boundary condition or smoothness constraints.

2.3 Multipatch Domains

The proposed framework can be extended to allow for multipatch domains. Mul-
tipatch domains are used to describe geometries Ω with nontrivial topology and
for which no regular parametrization G : Ω̂ → Ω with a box Ω̂ ⊂ R

d exists. A
simple example is the unit sphere in 3D for which there exists no regular parame-
trization defined on a rectangle. However, it is possible to partition such a domain
Ω into mutually disjoint (except at their boundaries) patches Ω1, . . . , Ωw, each
with its own regular parametrization Gp : Ω̂p ⊂ R

d → Ωp. Then Ω can be
thought of as the image of G : Ω̂ → Ω, where Ω̂ is the disjoint union of
Ω̂1, . . . , Ω̂w and the points with the same image have been identified, i.e.,

Ω̂ =
∐w

p=1 Ω̂p /∼

for a proper ∼. The proposed method can be extended to describe functions
defined on Ω̂ by simply changing findSubdomain to take the different patches
into account. This can be achieved by an optional parameter p. In particular,
evalSubdomain does not need modifications as long as Δi is contained in Ω̂j if
Bi is defined on Ω̂j .

The construction of Ck function spaces on multipatch domains is an active
research topic in IGA [7,10,28]. This corresponds, by the isoparametric app-
roach, to the construction of subspaces of patchwise Ck functions on Ω̂. The rela-
tions that define the subspace depend on G and its derivatives and do not neces-
sarily correspond to smoothness conditions on Ω̂ after simple point identification.

A Versatile Strategy for the Implementation of Adaptive Splines 49

The space of patchwise Ck functions can be described in the proposed frame-
work by a block-diagonal matrix M, where each block represents the space of
Ck functions on each patch. As described in the previous subsection, the rep-
resentation of a subspace is obtained by multiplying M by an appropriate N.
This strategy was used in [7], where, due to a different implementation of the
patch spaces, the multiplication by N is done at a post-processing stage and
thus incurs in an additional cost.

3 Complexity

Delegating the evaluation to a local basis and computing the linear combination
incurs in an additional computational cost. Moreover, storing the coefficients of
M can require a substantial amount of memory.

3.1 Space Complexity

The tested implementation uses a row-compressed format: only the nonzero coef-
ficients are stored in lexicographic order of their indices. The column position
of the nonzero entries is stored in a second vector. The row position is deduced
by storing a pointer to the first nonzero of each row. This means that the total
required memory is proportional to the sum of the number of rows plus the
number of nonzero entries of M.

The number of rows of M equals
∑s

i=1 #Bi and thus there is a memory cost
associated to functions of the local bases even if they are not used in any Δi to
represent G.

The number of nonzero coefficients in M depends on the complexity of the
mesh and on the shape of the generators. The number of nonzero coefficients in
the column corresponding to γ ∈ G is

∑

i:γ|Δi
�=0

#{β : mβ,γ �= 0}. (4)

Thus it is minimized if γ is supported in a single Δi and if γ = β for some
β ∈ Bi. In contrast, the generators γ whose supports intersect many subdomains
or whose shape requires many coefficients to be represented in a subdomain
require more memory.

3.2 Time Complexity

The time cost of the eval procedure is proportional to the cardinality of X and
depends on the cost of the local basis evaluation, which is unknown. Denoting
C(matrix) the cost of the computation of Bi(x,W)Mi, it can be written as

C(eval) = #X
(
C(Bi.eval) + C(matrix) + C(findSubdomain)

)
.

50 A. Bressan and D. Mokrǐs

Remembering that w = #W is the number of rows in the blocks E�,W it is
possible to describe each term in more detail.

The complexity of Bi.eval depends on the specific local basis used and is
clearly bounded from below by the output size w#Bi. For d ≥ 2 tensor-product
B-splines can be implemented in such a way that the cost is quasi-optimal, i.e.,
proportional to the output size with a factor that does not depend on their
degree but which depends on the dimension:

C(Bi.eval) ∼= dw#Bi.

The cost of the matrix-matrix product Bi(x)Mi using standard algorithms
is proportional to the product of the three dimensions of the two matrices:

C(matrix) ∼= w#Bi#G.

The cost of findSubdomain depends on the tree structure and on the com-
plexity of the mesh. For a balanced tree this would be proportional to log2 �,
where � is the number of leaves in T . However, a balanced tree is not necessarily
optimal, as the tree should take the usage pattern into account. For instance, if
we assume a uniform sampling of the domain, then the optimal tree will have
leaves of depth inversely proportional to the measure of the corresponding region.
Already when avoiding unnecessary splits (without any balancing), the cost of
findSubdomain was negligible in the profiling tests.

The total evaluation cost is thus of the following magnitude

C(eval) ∼= #XC(matrix) ∼= w#X#Bi#G. (5)

The same result is obtained for evalSubdomain with the difference that w#X
then means the number of rows in Bi(X).

Comparing this with the output size w#X#G shows that the method is
rather expensive if #Bi is big. The next sections show how this cost can be
reduced.

3.3 Local Basis and Compression

If the functions in G and Bi have small supports, then the number of nonzero
columns in Bi(X,W) and in G(X,W) is small compared to #Bi and #G,
respectively. This suggests the use of a compressed format for Bi(X,W) and
G(X,W), where only the nonzero values and their positions are stored. This is
standard in FEM as well as in other numerical methods and it is used in our
implementation too.

Assume that X ⊂ Δi. Let L be the set of functions in Bi such that the
corresponding columns in Bi(X,W) are not zero and let A be the corresponding
set of functions in G defined by

A = {γ ∈ G : ∃β ∈ L : mβ,γ �= 0}.

A function ϕ is called active on X if ϕ ∈ L or ϕ ∈ A.

A Versatile Strategy for the Implementation of Adaptive Splines 51

Let L(X,W) and A(X,W) be the corresponding submatrices of Bi(X,W)
and G(X,W),

L(X,W) =

⎛

⎜⎝
EL(x1,W)

...
EL(xr,W)

⎞

⎟⎠ , A(X,W) =

⎛

⎜⎝
EA(x1,W)

...
EA(xr,W)

⎞

⎟⎠ .

Then Bi(X,W) can be implemented with the pair (L,L(X,W)) where the
set L is implemented as a list of indices. This reduces the lower bound on
C(Bi.eval) to

C(Bi.eval) ∼= w#X#L.

Similarly, G(X,W) can be implemented by the pair (A,A(X,W)). The coef-
ficients in A are computed by

A(X,W) = L(X,W)ML,A,

where ML,A is the submatrix of M containing the mβ,γ , β ∈ L and γ ∈ A. This
reduces the cost of the linear combination to

C(matrix) ∼= w#X#L#A,

improving (5) by the factor
#L#A

#Bi#G
. (6)

The described compression can be applied both to eval and evalSubdomain.
In eval it is applied to the evaluation at single points. Then either the list
containing the (per point) compressed matrices is returned or all of the matrices
are merged into one matrix. The first approach is faster and simpler, the second
returns a standard matrix.

The application of compression to evalSubdomain is straightforward but it
is important to limit X to points contained in a small region so that (6) is
minimized.

When using compression, the cost of evaluation is proportional to the output
size w#X#A multiplied by #L. For polynomial splines and with X contained in
a single element, #L depends only on the polynomial degree. As a consequence
the cost of the evaluation per unit of output data does not depend on the mesh
(h-refinement) but depends on the degree (p-refinement).

3.4 Tensor Factorization

The tensor-product structure allows to reduce d-variate computations to com-
putations on univariate objects. In our case it allows to replace the computation
of the linear combination of d-variate functions with d linear combinations of

52 A. Bressan and D. Mokrǐs

univariate functions. This is advantageous because the cost of the matrix-matrix
product is roughly proportional to the product of the three involved dimensions.
In the optimal case this optimization reduces one of the dimensions to its d-th
root.

The above strategy can be applied under the weaker assumption that each
γ ∈ G and each β ∈ Bi can be factored into products of univariate functions:

γ(x) =
d∏

c=1

γ(c)(xc), β(x) =
d∏

c=1

β(c)(xc), (7)

where �(c) means the factor of � corresponding to the c-th coordinate. Of the
implemented spaces only HB and HLR satisfy (7), thus this optimization was
not implemented and the following is only a theoretical analysis.

In analogy with (7), the same notation is used to denote the factors corre-
sponding to the coordinate directions of tensors � =

⊗d
c=1 �(c) and of Cartesian

grids of points . This should not be confused with the components
of vectors and tensors that are denoted by subscripts as in x = (x1, x2). In
particular, the following factors are defined:

B
(c)
i = {β(c) : β ∈ Bi};

G(c) = {γ(c) : γ ∈ G};

X(c) = {xc : x = (x1, . . . , xd) ∈ X};

W (c) = {vc : v = (v1, . . . , vd) ∈ W}.

In the following w(c) denotes #W (c), i.e., the number of derivatives of γ(c) that
are required to compute all requested partial derivatives in W .

Necessarily G(c) ⊆ span B
(c)
i , which means that there exists a matrix M(c)

i

such that
∀x ∈ Δi : γ(c)(xc) = β

(c)
i (xc)M

(c)
i .

Here, analogously to (3), γ(c)(xc) and β
(c)
i (xc) denote the vectors having com-

ponents indexed by G(c) and B
(c)
i , respectively, i.e.,

γ(c)(xc) =
(
γ(c)(xc)

)
γ(c)∈G(c) ,

β
(c)
i (xc) =

(
β(c)(xc)

)
β(c)∈B

(c)
i

.

Let S be the set of the multiindices that define G as a subset of
⊗d

c=1 G(c):

G =

{
d∏

c=1

γ(c)
sc

: (s1, . . . , sd) ∈ S, γ(c)
sc

∈ G(c)

}
⊆

d⊗

c=1

G(c).

For simplicity it is assumed that Bi =
⊗d

c=1 B
(c)
i and , but a

proper subset (similarly as for G) can be considered at the expense of a more
involved notation and implementation.

A Versatile Strategy for the Implementation of Adaptive Splines 53

The tensor-product structure propagates to the set of active functions. Here
L contains the multiindices of the functions of Bi corresponding to nonzero
columns of Bi. Similarly, A contains the subset of the multiindices in S, i.e.,
the multiindices of functions in G that correspond to nonzero columns in G.
Analogously to the other symbols, L(c) and A(c) denote the collection of the
entries relative to the c-th coordinate in L and A respectively.

The procedure compose assembles the matrix � out of the matrices of its
factors �(c) and a list of the necessary products P as in the description of S
above.

Procedure: compose(�(1), . . . ,�(d),X,W,P)
Input: the tensor components �(c)

Input: the list of points X
Input: the list of derivatives W
Input: the list of required products P
Output: �
foreach p = (p1, . . . , pd) ∈ P do

foreach x = (x1, . . . , xd) ∈ X do
/* write row block of the derivatives of �p at x */
foreach v = (v1, . . . , vd) ∈ W do

∂v�p(x) =
∏d

c=1 ∂vc�(c)
pc (xc)

/* each value is written in �: the row
corresponds to the pair (x,v), the column to p
*/

end
end

end

If P is omitted, it is assumed that � =
⊗d

c=1 �(c) and thus that P contains
all the Cartesian multiindices.

For a given domain dimension d the cost of the procedure compose is pro-
portional to the size of its output with factor d,

C(compose) = dw#P#X.

Only an application of this optimization to evalSubdomain is presented, but
it can also be applied to eval. By using compose, the evaluation of the local basis
can be split in two steps: evaluation of the components of the local basis and
their composition. The original evalSubdomain can be equivalently rewritten as:

54 A. Bressan and D. Mokrǐs

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W)
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c),W (c)) /* local evaluation */

end
Bi(X) = compose(B(1), . . . ,B(d),X,W) /* composition */
G(X,W) = Bi(X,W)Mi /* linear combination */

As described, the computational cost of the above is determined by the compu-
tation of the matrix-matrix product. This can be reduced by leaving compose as
the last operation and computing d products of smaller matrices as follows:

Procedure: evalSubdomain(X,W,i)
Input: the set of points X = {x1, . . . ,xr} ⊂ Ω
Input: the requested data W = {v1, . . . ,vw}
Input: the index i of the subdomains containing X
Output: G(X,W)
for c = 1, . . . , d do

B(c) = B
(c)
i .eval(X(c),W (c)) /* local evaluation */

G(c) = B(c)M(c)
i /* linear combination */

end
A = S ∩ d

c=1 A(c) /* actives */

G(X,W) = compose(G(1), . . . ,G(d),X,W,A) /* composition */

The cost estimates of each step for the two different versions are reported in
Table 1.

If there exists m such that for c = 1, . . . , d

#L(c)#A(c) ≤ m#A, (8)

then the evaluation cost of the optimized version is proportional to the output
size w#X#A. This result holds independently of the mesh size (h-refinement)
and the polynomial degree (p-refinement). Note however that the output size
depends on the number of active functions #A and on the size of the requested
data, thus on the polynomial degree, on the set of points X and on w.

The assumption in (8) holds in situations that are of interest for the applica-
tions. In particular, it holds for splines of degree p and for points X contained in
a single element if #A(c) ≤ m(p + 1)d−1 for some m independent of the degree.
This is the case for m-admissible HB meshes [9], where #A(c) ≤ m(p + 1), and
for the HLR basis described in [5], for which #A(c) ≤ 2(p + 1).

A Versatile Strategy for the Implementation of Adaptive Splines 55

Table 1. Comparison of the cost for the standard and optimized evaluation for spaces
with tensor-product structure.

Standard Optimized

Linear combination w#X#A#L
d∑

c=1

w(c)#X(c)#A(c)#L(c)

Composition dw#X#L dw#X#A

4 Comparison with Bézier Extraction

Bézier extraction was proposed for NURBS [2] and extended to T-splines [37]
and THB [22]. It is an implementation technique aimed at reusing standard FEM
codebases in IGA by representing the basis functions as linear combinations of
Bernstein polynomials on each element. The extraction operator, i.e., the linear
transformation of the basis, is stored in a combination of a per element matrix
and a global index of the per element active functions called IEN.

The proposed framework reduces to Bézier extraction when the following
choices are made:

T is the partition of the domain into elements;
Bi is the Bernstein basis remapped to the element Δi;
Mi contains the expansion of γj in the Bernstein basis in column j.

Thus all the spaces that can be implemented with Bézier extraction – such as
T-splines or LR-splines – can be also incorporated to the proposed framework.

Even if the underlying concepts are the same, the implementation differs as
the two approaches are optimized for different scenarios. The main differences
are collected in Table 2 and their consequences are described below.

Table 2. Qualitative comparison of the two frameworks.

Bézier extraction Proposed framework

Mesh description List Tree

Expansion in local basis Per element Global matrix

Local basis Bernstein polynomials Any

4.1 Mesh Description

Bézier extraction is based on per element data structures. This reflects the origi-
nal aim: IGA with per element quadrature integration. For such application it is
both simple and efficient. The drawback is that it does not provide a feature-rich
description of regions that can be used in the implementation of different spaces.
Every space must implement its own strategy both for identifying the element
containing a point and for the description of the mesh used in its construction.

56 A. Bressan and D. Mokrǐs

The tree-based description of the subdomains in the proposed framework
provides an efficient tool to describe “arbitrary” regions contained in the domain,
to compute intersections, unions and for testing whether a region contains a
point (see findSubdomain in Sect. 2). This common code is shared by all the
implemented spaces, thus decreasing the per-space code requirements.

Iteration on the elements in this framework is done by nested iteration: the
outer iteration is on the tree leaves and the inner on the elements provided by
the local basis and contained in the region corresponding to the current leaf.
The nested loop is a part of the shared code.

4.2 Expansion in Local Basis

Both approaches store the expansion of the generators with respect to a local
basis. In Bézier extraction the linear operator is represented by submatrices
(the extraction operators) together with their indices (the IEN), whereas in the
proposed framework it is represented by a sparse matrix.

From this point of view Bézier extraction can be seen as a specialized matrix
format. However, avoiding the specialized format makes the implementation of
subspaces and multipatch straightforward, for they correspond to matrix multi-
plication as has been described in Subsects. 2.2 and 2.3 and the code is already
provided and optimized by the linear algebra library. It is true that products
involving submatrices of a sparse matrix are less efficient then products involving
full matrices, but by allowing different generators the total memory requirement
can be lowered as it is discussed in the next subsection.

4.3 Local Basis

While Bézier extraction was only described for spaces of piecewise tensor-product
polynomials with Bernstein polynomials as local generators, there is no practical
issue to extend it to other local bases such as enriched splines spaces as those
from [3]. This means that both techniques are roughly equally applicable. Never-
theless, there are two advantages of the proposed framework compared to Bézier
extraction.

The first is that most of the spaces of interest are defined in terms of collec-
tions of B-splines functions and not Bernstein polynomials. Thus the proposed
code stays closer to the definition of the space and it is easier to write.

The second is that by using B-splines as local generators the coefficients are
shared between many elements and thus the memory requirement is decreased.
Applying (4) shows that the amount of coefficients stored per a generator γ ∈ G
in Bézier extraction equals

eγ dim T,

where eγ is the number of elements contained in support γ and T is the space
of tensor-product polynomials. This is an upper bound for the amount of coeffi-
cients stored using B-splines as local generators. Increasing the number of coef-
ficients does not only increase the memory requirements, but it also increases
the cost of space initialization.

A Versatile Strategy for the Implementation of Adaptive Splines 57

In favor of Bézier extraction stands the fact that in IGA applications it is
not necessary to evaluate the Bernstein polynomials on the quadrature nodes: it
is enough to scale the derivatives computed on a reference element according to
the current element.

Summarizing, the proposed framework permits testing of various definitions
with a reduced development time. Bézier extraction optimizes the matrix assem-
bling in IGA applications for a specific space.

5 Implemented Spaces

The proposed strategy was tested by implementing HB, THB, TBPN, DHB and
HLR splines spaces in the G+Smo object oriented library [26]. The spaces were
coded as templated C++03 classes. They all derive from a common base class
that is the realization of the described approach.

The interested reader can compare with other implementations that are either
available or described in the literature. (T)HB are implemented in the G+Smo
open-source library [19]. The code, as of 2014, is described in [29]. Another
implementation of (T)HB tailored for IGA research is described in [42]. The
source code of bivariate LR-splines is available as a part of the goTools library
[20], but no technical description is available.

The first subsection describes the shared code. The following subsections
specialize to various spaces. The last subsection reports the size of the imple-
mentation measured in lines of code.

5.1 Shared Code

The shared code contains the implementation of the ideas described in Sect. 2
as well as common utilities such as input-output, tensor-product B-splines and
debugging functions.

Part of the required code was already present in the G+Smo library, in
particular, vectors, matrices, sparse matrices (all of them based on the Eigen
library [21]) and tensor-product B-splines. Some parts were coded anew such
as a specialized version of Boehm’s knot-insertion algorithm, the binary tree,
functions for transforming between flat-indices and multiindices of multivariate
B-splines and others to export data in the ParaView format [1].

The implementation of T uses the binary tree as described in Sect. 2 and
includes an interface for performing arbitrary unary and binary operations, pos-
sibly by restricting the operation to a box contained in the domain. This mech-
anism is used in the construction of the spaces: for instance, the Kraft selec-
tion mechanism of (T)HB corresponds to finding the minimum of the indices
of the subdomains intersecting the support of a function, the decoupling pro-
cedure requires methods to compute intersections and unions of polytopes with
axis-aligned faces. The implementation of T automatically removes unnecessary
branches at construction by collapsing equal subtrees.

A component of G+Smo that was developed for smooth multipatch spaces
[7] was reused for M. At its core it is a sparse matrix with additional methods

58 A. Bressan and D. Mokrǐs

for computing A from L and extracting ML,A, see Subsect. 3.3. It also contains
conversion functions to and from other data types related to the implementation
of multipatch geometries and boundary conditions in G+Smo.

The base class of all the implemented spaces contains the reference to T , M
and B, the evaluation procedure, constructors allowing for multipatch domains
and utilities to obtain functions and subspaces as described in Subsect. 2.2.

5.2 (Truncated) Hierarchical B-splines

The hierarchical basis is defined from a sequence P1, . . . , Ps of tensor-product
B-spline bases and a corresponding sequence Ω = Ω1 ⊇ · · · ⊇ Ωs = ∅ of closed
domains. For simplicity it is assumed here that Ω is a box in R

d and that the
bases have clamped knots on its boundary. It is required that the tensor-product
spaces form a hierarchy, i.e.:

i < j ⇒ span Pi ⊂ span Pj . (9)

The hierarchical basis (HB-splines) is defined by Kraft’s selection criteria [30]:

H =
s⋃

i=1

{ψ ∈ Pi : support ψ ⊆ Ωi and support ψ ∩ (Ωi \ Ωi+1) �= ∅}. (10)

The truncated hierarchical basis (THB-splines) described in [17] is defined by
recursive truncation

H ′ = {Ts · · ·Ti+1ψ : ψ ∈ H ∩ Pi}.

The truncation operator Ti : span Pi → span Pi is defined by

Ti(ϕ) =
∑

ψ∈Pi : ψ|Ω\Ωi
�=0

cϕ,ψψ,

where the coefficients cϕ,ψ are taken from the expansion of ϕ in Pi:

ϕ =
∑

ψ∈Pi

cϕ,ψψ.

The matrix representation of Ti with respect to the basis Pi is thus diagonal
with entries

tψ,ψ =

{
1 if ψ|Ω\Ωi

�= 0,

0 otherwise.

The truncation procedure improves the locality of the resulting basis, guaran-
tees that H ′ forms a convex partition of unity and preserves the same coefficients
as Pi for polynomial expansion [18]. The drawback is that it breaks the tensor-
product structure, i.e., the functions ψ′ ∈ H ′ are not tensor-product B-splines.
Thus the optimization described in Sect. 3.4 cannot be applied for H ′.

A Versatile Strategy for the Implementation of Adaptive Splines 59

Note that the composition of the truncation operators differs from the trun-
cation by the finest level: in general if ψ ∈ Pi then for any k ≥ i

Tk · · ·Ti+1ψ|Ωk
�= Tkψ|Ωk

. (11)

The equality in (11) holds if the mesh is sufficiently graded.
Two implementations are described. Both assume that the bases P1, . . . , Ps

have the same degree (i.e., only h-refinement is allowed) and that the subdomains
Ωi are unions of elements of span Pi. The first implementation is closer to the
definition and has actually been coded. The second is described in order to show
that memory requirements can be lowered with more complex code.

Implementation 1. The simplest implementation defines T by:

Δi = Ωi \ Ωi+1, i = 1, . . . , s,

and B by Bi = Pi, i = 1, . . . , s.
Most of the construction ofM is common for HB and THB. In the coded imple-

mentation truncation is controlled by a construction option in order to decrease
code duplication. The procedure constructTHB describes the constructor.

Procedure: constructTHB(Ω1, . . . , Ωs,P1, . . . , Ps, t)
Input: Subdomains Ω1, . . . , Ωs

Input: Bases P1, . . . , Ps

Input: Option t: switch between HB and THB
for � = s to 1 do

L� = {ψ ∈ P� : ψ|Ω�
�= 0}

foreach τ ∈ L� do
�m = minLevelIntersecting(support τ)
if �m == � then /* τ ∈ H due to (10) */

γ = addGenerator()
mτ,γ = 1 /* New column of M with exactly one 1. */
d = (dψ)ψ∈P�

= (0, . . . , 0, dτ = 1, 0, . . . , 0)

for j = � + 1 to �m do
d = refine(d, j) /* Now d = (dψ)ψ∈Pj

. */

if t then /* THB */
foreach ψ ∈ Pj do

if ψ ∈ Lj \ H then /* Save the coeff. */
mψ,τ = dψ

else /* Truncate the coeff. */
dψ = 0

end

end
/* Now

∑
ψ∈Pj

dψψ|Ωj
= Tj . . .Tiτ |Ωj

= γ|Ωj
. */

else /* HB */
foreach ψ ∈ Lj do /* Save the coeff. */

mψ,γ = dψ

end

end

end

end

end

end

60 A. Bressan and D. Mokrǐs

The lists L� are constructed by traversing the leaves of T and
using the implementation of tensor-product B-splines. The procedure
minLevelIntersecting(box) returns the minimum of {i : Δi ∩ box �= ∅} and it
is provided by the shared code. The procedure refine(d, j) uses Boehm’s algo-
rithm to compute the expansion of the following function σ in terms of level j,

∑

ψ∈Pj−1

dψψ = σ =
∑

ϕ∈Pj

cϕ,σϕ,

and returns (cϕ,σ)ϕ∈Pj
.

The levels are iterated from the finest to the coarsest. In this way the differ-
ence Lj \ H can be computed because H ∩ Pj is already known. Consequently
the full construction of the space can be performed in one loop over the levels.
A different solution (used for instance in G+Smo) is to delay the computation
of the expansion after determining the selected functions from all levels.

The fact that only the coefficients mψ,τ with ψ ∈ Lj are saved is a memory
optimization, the same code runs with Pj in place of Lj except for the test for
ψ ∈ Lj \ H that would be modified accordingly.

This strategy was tested against the reference implementation in G+Smo.
The comparison showed both faster evaluation and smaller memory consumption
for selected 2D examples.

Implementation 2. The choices above are the simplest, but they can cause
a very high memory consumption. According to Subsect. 3.1 the memory usage
depends on the total number of rows in M. For dyadic refinement of the Pi the
number of rows grows as 2d(s+1), where d is the domain dimension and s is the
number of levels. Since each row requires a memory pointer, this means that an
empty M for a 3D example with 10 levels exceeds 10 GB in size.

The problem can be solved with slightly more complex code. The main idea
is to remove the rows of M containing only zeros, that is, to define Bi and Δi

so that ψ|Δi
= 0 does not happen for any β ∈ Bi.

Denoting T̃i the set of leaves of the binary partition tree representing the
domains Δ̃i = Ωi \ Ωi+1, define

T =
s⋃

i=1

T̃i.

For each Δk ∈ T there is exactly one j such that Δk ∈ T̃j ; define

Bk = {β ∈ Pj : β|Δk
�= 0}.

Since Δk is a box (a Cartesian product of intervals), Bk is a tensor-product
basis. Note that typically #T > s but all Bk are quite small.

The construction of M is done as in the previous implementation except for
the necessary shifts of indices. This solution is not coded for (T)HB, but the
required machinery was implemented for DHB.

A Versatile Strategy for the Implementation of Adaptive Splines 61

5.3 Truncated B-splines for Partially Nested Refinement

This is a generalization of (T)HB-splines that was proposed in [43]. It allows for
independent refinement in different parts of the domain (see Fig. 4) and can help
for multipatch geometries as shown in Example 3.

The requirement (9) is dropped and the sequence of nested domains is
replaced by a partition of Ω into patches Λ1, . . . , Λs. Note that here the word
“patch” has a different meaning from the context of multipatch domains, cf.
Subsect. 2.3. The construction requires the following compatibility condition: if
Λi and Λj share a (d − 1)-dimensional interface Γi,j = ∂Λi ∩ ∂Λj , then

span Pi ⊂ span Pj or span Pj ⊃ span Pi.

This means that {span Pi : i = 1, . . . , s} is not totally ordered anymore, only
partially ordered. In particular, if the boundaries are disjoint or their intersec-
tion is not (d − 1)-dimensional, the spaces span Pi and span Pj do not have
to be comparable for inclusion. Note that the construction requires “sufficient
separation” of the patches associated to two incomparable spaces. See [43] for
details.

Λi Λj Λi Λj

Fig. 4. Left: TBPN-splines allow to refine the subdomains Λa and Λb independently.
Right: THB-splines require nested knot vectors for any pair of subdomains.

Basis functions are again a subset of
⋃s

i=1 Pi and are selected using a mod-
ification of Kraft’s procedure based on slave functions. A function ψ ∈ Pi

is called a slave if it is active on an (n − 1)-dimensional interface Γi,j with
span Pj ⊂ span Pi. The set of slaves of level i can be written as

Si = {ψ ∈ Pi : ∃j : ψ|Γi,j
�= 0, span Pj ⊂ span Pi, dim Γi,j = d − 1}.

The above can be explained as follow. Slave functions are the generators in Pi

whose coefficient is uniquely determined by the restriction of the function and
its derivatives (up to the smoothness) on the interfaces Γi,j with span Pj ⊂
span Pi. This means that their coefficients are determined by the coefficients of
the functions of coarser bases together by the smoothness on the interfaces.

The selected functions are defined by

M =
s⋃

i=1

Mi,

62 A. Bressan and D. Mokrǐs

where Mi contains the master functions of level i, i.e., the functions of Pi that
are active on Λi and that are not slaves:

Mi = {ψ ∈ Pi : ψ|Λi
�= 0, ψ �∈ Si}. (12)

Truncation is defined in the same way as in the case of THB-splines.
The resulting basis is called truncated B-splines for partially nested refinement
(TBPN). The set M forms a non-negative partition of unity, it is a basis and, sim-
ilarly to THB, it preserves the coefficients of polynomial representation. More-
over, if (9) holds, then TBPN reduces to THB with the same bases and appro-
priate subdomains. See [43] for details.

Implementation. Only the truncated version of the construction was imple-
mented. The partition T can be defined as

Δi = Λi, i = 1, . . . , s

and B by
Bi = Pi, i = 1, . . . , s.

The matrix M is built iteratively while discovering the functions selected by
the modified Kraft procedure. First the bases P1, . . . , Ps are analyzed and the
nesting relations are stored in a matrix Z. Then, as for (T)HB, the lists Li of
the functions in Pi that are active on Δi are computed.

For each function ψ ∈ Li, i = s, . . . , 1, the modified Kraft conditions (12) are
tested. The test requires the computation of the intersections Γi,j ∩ support ψ
that is achieved by computing support ψ∩Λi and then decomposing its boundary
into segments. If dim(Γi,j ∩ support ψ) = d − 1 for some j with span Pj ⊂
span Pi then ψ is a slave and it is saved in the list Si. Otherwise the conditions
(12) are satisfied and a new column is added to M. The coefficients mβ,γ are
computed using a recursive algorithm. For all j such that span Pi ⊂ span Pj and
dim(Γi,j ∩ support ψ) = d−1 the expansion of ψ with respect of Pj is computed
by knot insertion. Then for each functions in Sj with a nonzero coefficient the
procedure is repeated, giving the coefficients of slaves of finer levels. It is possible
that the same β ∈ Bk appears during different recursions while computing the
representation of the same generator γ. In this case the sum of the coefficients
computed from functions of the same coarsest level must be saved in M.

The implementation described has the same problem as the first implemen-
tation of (T)HB: unreasonable memory consumption for the 3D case. This can
be solved by using the same strategy described for (T)HB.

5.4 Decoupled Hierarchical B-splines

Contrarily to tensor-product B-splines, (T)HB do not always span the full space
of piecewise polynomials on their mesh [33]. This observation was the starting
point of the development of TDHB [32]. There decoupling is used in conjunc-
tion with truncation in order to enlarge the space and span the full piecewise

A Versatile Strategy for the Implementation of Adaptive Splines 63

polynomial space for a broader class of meshes. A modification of TDHB called
decoupled hierarchical B-splines was coded and it is presented here for the first
time. The novelty is that truncation is abandoned in favor of recursive decou-
pling. By doing so the spanned space can be further enlarged as showed in
Example 1.

First, decoupling will be introduced in a slightly more general version com-
pared to [32]. Let ϕ ∈ span P be a function, let cϕ,ψ be the coefficients of its
expansion with respect to P ,

ϕ =
∑

ψ∈P

cϕ,ψψ,

and let Θ ⊆ Ω be a domain. The decoupling graph R(ϕ,P,Θ) is the graph whose
vertices are

RV (ϕ,P,Θ) = {ψ ∈ P : cϕ,ψ �= 0} (13)

and the edges are

RE(ϕ,P,Θ) = {(ψ,ψ′) : support ψ ∩ support ψ′ ∩ Θ �= ∅}. (14)

The decoupling operator DP,Θ associates to function ϕ ∈ span P one or more
decoupled functions in span P :

DP,Θ : ϕ �→
⎧
⎨

⎩
∑

ψ∈K

cϕ,ψψ : K is a connected component of R(ϕ,P,Θ)

⎫
⎬

⎭ .

Let P1 ⊂ · · · ⊂ Ps and Ω1 ⊇ · · · ⊇ Ωs ⊃ Ωs+1 = ∅ be as in (T)HB. Denote
Ds = Ps and

Di =
⋃

ψ∈Pi

DDi+1,Ω\Ωi+1(ψ). (15)

Then using Kraft’s method the decoupled hierarchical basis (DHB-splines) D is
defined as

D =
s⋃

i=1

{ϕ ∈ Di : support ϕ ⊆ Ωi and support ϕ ∩ (Ωi \ Ωi+i) �= ∅}.

Given P1, . . . , Ps and Ω1, . . . , Ωs, all of the HB, THB, TDHB and DHB bases
are defined. Denoting Z the TDHB basis from [32], the following inclusions hold

span H = span H ′ ⊆ span Z ⊆ span D.

Recall that H, H ′ and D are the HB, THB and DHB bases, respectively, cf.
Subsect. 5.2. See also Example 1.

64 A. Bressan and D. Mokrǐs

Implementation. For DHB it is not possible to identify the local bases Bi with
the defining bases Pi. This is because a function ψ ∈ Pi can be decoupled in
multiple functions that must be distinguished.

The definitions of T and B are the same as in Implementation 2 in
Subsect. 5.2. The construction of M follows the definition of the space. First,
each Di is constructed: for each function in Di its expansion with respect of
Di+1 and its originating function in Pi are stored. Then the Kraft selection
mechanism is employed and for each selected function a column is inserted in
M. Computing the coefficient mβ,γ for γ ∈ Di and β ∈ Pj (j > i) is performed
by first composing the precomputed change of bases from Di to Dj and then
storing the obtained coefficients according to the subdomain and the originating
function.

5.5 Hierarchical Locally Refined Splines

HLR-splines are a special case of LR-splines. Let K denote a partition of Ω into
boxes and let μ denote a function that assigns each interface between two boxes
a nonnegative integer. To the triplet (K,μ, p) corresponds the spline space S of
the piecewise polynomials of degree p in each variable on K and such that their
smoothness across each interface Γ between two boxes is greater than or equal
to p − μ(Γ).

A B-spline β is nested in a B-spline β′ relatively to S, written as β ≺ β′, if
there exists a sequence of B-splines β = β1, . . . , βn = β′ such that each βi ∈ S
and such that each βi+1 is obtained from βi by knot insertion.

LR-splines are the set of minimal elements for the ordering ≺ that are com-
parable with at least one Bernstein polynomial on Ω. They can be linearly
dependent and do not necessarily span the entire space of piecewise polyno-
mials satisfying the smoothness conditions [5,14]. However, many properties of
the generators are linked together, in particular local linear independence and
partition of unity property are equivalent [4].

HLR-splines are a class of LR-splines enjoying local linear independence and
thus also the partition of unity property. This is achieved by mimicking the HB
approach in constructing K. Take a sequence of tensor-product B-spline spaces
V1 ⊂ . . . ⊂ Vs with Vi = span Pi and a corresponding sequence of subdomains
Ω1 ⊇ . . . ⊇ Ωs ⊃ Ωs+1 = ∅. Then define

K =
s⋃

i=1

{Θ element of the partition corr. to Vi : Θ ⊆ Ωi \ Ωi+1} (16)

and μ that describes the smoothness of the space Vi on Ωi\Ωi+1. Then assuming
that each Vi is obtained from Vi−1 by refining a single tensor-component of Vi−1

(i.e., h-refinement in a single direction denoted by ui) and that the borders of
the subdomains Ωi are sufficiently separated, the generators form a partition of
unity and they are locally linearly independent [5].

A Versatile Strategy for the Implementation of Adaptive Splines 65

Implementation. A simple choice is to define T by:

Δi = Ωi \ Ωi+1, i = 1, . . . , s

and B by
Bi = Pi, i = 1, . . . , s.

The generators in HLR-splines are either function from Pi for some i or
are obtained from a function of Pi by inserting a sequence of knots in ui-th
component of its knot vector. Both types of functions must be active on Ωi. To
find these functions, Pi is projected to a (d− 1)-variate spaces P̄i by ignoring its
ui-th tensor factor. For each function ψ̄ ∈ P̄i the description of the subdomains
T is restricted to support ψ̄×R∩Ω, where R is in direction ui. This information
is used to build a sequence of knot-vectors for the ui-th direction that describes
all the functions in Pi or refinement of functions of Pi that are in LR and have
the same knot vector as ψ̄ in the directions different from ui. For each such
function a column is added to M and filled with the appropriate coefficients.

5.6 Implementation Size

This subsection reports the amount of code that implements the spaces described
above. While this is a debatable metric, it is the standard approximation of the
coding effort and it highlights the amount of code shared between the different
spaces. The data reported is the result of the cloc tool [12] run on appropriate
subsets of the files.

The code is in C++03 standard and contains verbose template parts that
can be avoided. Only the (T)HB space is a complete implementation with ini-
tialization, refinement (with possible coefficient update) and serialization to the
G+Smo xml format. For the other spaces only the initialization is provided.

The line count for the different components can be read in Tables 3 and 4.
As shown, most of the code implements the shared functionality and the space-
specific code amounts to roughly 500 lines per space. The numbers compare
favourably with the size of the reference implementation of HB and THB in
G+Smo that together amount to roughly 6000 lines of code.

Table 3. Lines of the shared code

Files Blank Comment Code

Utils 5 198 96 1008

Domain code (T) 11 352 302 1998

Matrix code (M) 4 133 248 483

Base-class (eval) 2 105 59 443

Total 22 788 705 3932

66 A. Bressan and D. Mokrǐs

Table 4. Lines of code of specific spaces.

Files Blank Comment Code

(T)HB 1 88 73 421

TBPN 1 80 22 396

DHB 1 92 31 548

HLR 1 127 33 550

Total 4 387 159 1915

6 Examples

This section contains selected examples that can be useful to grasp the simi-
larities and the differences between the implemented spline spaces. The basis
functions have been plotted with ParaView [1] using the data produced with
the implementations described in the previous section. The only exception is
Example 1 that has been created in Mathematica, because it involves TDHB
[32], which we did not implement.

0 1 1.5 2 2.25 2.5 2.75 3 4

0.25

0.5

(a) HB-splines

0 1 1.5 2 2.25 2.5 2.75 3 4

0.25

0.5

(b) THB-splines

0 1 1.5 2 2.25 2.5 2.75 3 4

0.25

0.5

(c) TDHB-splines

0 1 1.5 2 2.25 2.5 2.75 3 4

0.25

0.5

(d) DHB-splines

Fig. 5. Comparison of various hierarchical bases. Generators originating from functions
of level 0 in blue, from level 1 in orange and from level 2 in green. (Color figure online)

A Versatile Strategy for the Implementation of Adaptive Splines 67

Example 1. Compare the cubic univariate HB, THB, TDHB and DHB with
dyadic refinement, the level 0 knot vector (. . . ,−1, 0, 1, . . .) and Ω0 = [0, 4],
Ω1 = [1, 3] and Ω2 = [2, 3]. Figure 5 shows all the basis functions of each spline
space and highlights the level of the B-spline from which they where derived by
truncation or decoupling. Table 5 lists the number of generators according to the
level of the original B-spline. Note that DHB is the only space that spans the
entire space of C2 piecewise cubic polynomials on the mesh.

Table 5. Number of generators by the level of the originating function for Example 1.

HB THB TDHB DHB

Level 0 7 7 8 8

Level 1 1 1 1 2

Level 2 1 1 1 1

Total 9 9 10 11

Fig. 6. Hierarchical mesh and a support of a function from Example 2.

Example 2. Consider bivariate hierarchical splines of bi-degree (4, 4) on a mesh
shown in Fig. 6. The function with the knot lines indicated in red is selected in
the hierarchical basis (Fig. 7 left), truncated in the truncated hierarchical basis
(Fig. 7 right) and decoupled into four different functions (that are selected) in
the decoupled hierarchical basis (Fig. 8).

Note that due to properties of DHB the sum of the four functions in Fig. 8
equals the truncated function in Fig. 7 right.

Example 3. The design process often involves several patches. To achieve con-
tinuity between the patches without losing accuracy, it is necessary that the
restrictions of the two spaces are compatible on the interface. That means that
one space has to be a subspace of the other.

68 A. Bressan and D. Mokrǐs

Fig. 7. Function with the support in Fig. 6 as selected into the hierarchical basis (left)
and truncated in the truncated basis (right).

Fig. 8. Decoupled functions stemming from the B-spline with the support indicated in
Fig. 6.

Sometimes a new patch must be introduced to bridge between two given
patches that should not be modified. Thus the restriction of the space of the
bridge patch to each boundary must be a superspace of the restrictions of the
other space. If the two given patches have different knot vectors, THB-splines
would lead to significant refinement. On the other hand, the TBPN space can
achieve interface compatibility without adding unnecessary degrees of freedom.

The bicubic THB basis on the mesh depicted in Fig. 9 has 72 degrees of
freedom, whereas the TBPN basis on the same mesh has only 60.

A Versatile Strategy for the Implementation of Adaptive Splines 69

Fig. 9. Meshes from Example 3. Top: THB mesh; bottom: TBPN mesh.

Fig. 10. Mesh from Example 4.

70 A. Bressan and D. Mokrǐs

Example 4. Cubic HB, THB, DHB and HLR are compared on a mesh shown
in Fig. 10. For each of these spaces all the basis functions are plotted in Fig. 11.
Note that the number of basis function in the middle of the patch is higher for
HLR and DHB. In particular, HB and THB basis have 49 elements each; HLR
and DHB have 53 and are complete, as the meshes fulfill the assumptions from
[5,32].

(a) HB-splines (b) THB-splines

(c) HLR-splines (d) DHB-splines

Fig. 11. Details of the bases from Example 4. Only the basis functions that differ have
been marked in colour. Note that not all the HB basis functions are visible: three are
hidden in the central area. (Color figure online)

A Versatile Strategy for the Implementation of Adaptive Splines 71

7 Conclusions

The effectiveness of the proposed implementation framework is demonstrated
by the implementation of various spline spaces that share the same evaluation
code. The space-specific code is reduced to the initialization of the required data
structures as demonstrated by the implementations of HB, THB, TBPN, DHB
and HLR. Moreover, the proposed approach grants the following advantages:

1. code reduction both by sharing evaluation between different spaces and
between spaces and functions;

2. arbitrary local bases that, in principle, open the way to experimentation with
hierarchical constructions based on generalized splines [3], or to the use of
ad-hoc functions near a priori known singularities;

3. transparent handling of multipatch domains.

Acknowledgments. The authors have been supported by the Austrian Science Fund
(FWF, NFN S117 “Geometry + Simulation”) and by the Seventh Framework Pro-
gramme of the EU (project EXAMPLE, GA No. 324340). This support is gratefully
acknowledged. The authors would also like to thank Dr. Rafael Vázquez for commenting
on an earlier version of this paper and to the reviewers for their valuable suggestions.

References

1. Ayachit, U.: The paraview guide: a parallel visualization application (2015)
2. Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.R.: Isogeometric finite element

data structures based on Bézier extraction of NURBS. Int. J. Numer. Methods Eng.
87(1–5), 15–47 (2011)

3. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: Generalized spline
spaces over T-meshes: dimension formula and locally refined generalized B-splines.
Appl. Math. Comput. 272(part 1), 187–198 (2016)

4. Bressan, A.: Some properties of LR-splines. Comput. Aided. Geom. Des. 30(8),
778–794 (2013)

5. Bressan, A., Jüttler, B.: A hierarchical construction of LR meshes in 2D. Comput.
Aided Geom. Des. 37, 9–24 (2015)

6. Brovka, M., López, J., Escobar, J., Montenegro, R., Cascón, J.: A simple strategy
for defining polynomial spline spaces over hierarchical T-meshes. Comput. Aided
Des. 72, 140–156 (2016)

7. Buchegger, F., Jüttler, B., Mantzaflaris, A.: Adaptively refined multi-patch B-
splines with enhanced smoothness. Appl. Math. Comput. 272(part 1), 159–172
(2016)

8. Buffa, A., Garau, E.M.: Refinable spaces and local approximation estimates for
hierarchical splines. IMA J. Numer. Anal. 37(3), 1125–1149 (2017)

9. Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines:
error estimator and convergence. Math. Models Methods Appl. Sci. 26(1), 1–25
(2016)

10. Collin, A., Sangalli, G., Takacs, T.: Analysis-suitable G1 multi-patch parametriza-
tions for C1 isogeometric spaces. Comput. Aided Geom. Des. 47, 93–113 (2016)

72 A. Bressan and D. Mokrǐs

11. Da Veiga, L.B., Buffa, A., Sangalli, G., Vázquez, R.: Analysis-suitable T-splines
of arbitrary degree: definition, linear independence and approximation properties.
Math. Models Methods Appl. Sci. 23(11), 1979–2003 (2013)

12. Danial, A.: CLOC: Count Lines of Code (2006–2017). https://github.com/
AlDanial/cloc

13. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y.: Polynomial splines
over hierarchical T-meshes. Graph. Models 70(4), 76–86 (2008)

14. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined
box-partitions. Comput. Aided. Geom. Des. 30(3), 331–356 (2013)

15. Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-
suitability, Bézier extraction, and application as an adaptive basis for isogeometric
analysis. Comput. Methods Appl. Mech. Eng. 284, 1–20 (2015)

16. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. In: SIGGRAPH Com-
puter Graphics, vol. 22, no. 4, pp. 205–212 (1988)

17. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hier-
archical splines. Comput. Aided Geom. Des. 29(7), 485–498 (2012)

18. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined
multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014)

19. Geometry + simulation modules (G+Smo): Open source C++ library for isogeo-
metric analysis (2016). http://www.gs.jku.at/gismo

20. GoTools: Collection of C++ libraries connected to geometry (2016). https://
github.com/SINTEF-Geometry/GoTools

21. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
22. Hennig, P., Müller, S., Kästner, M.: Bézier extraction and adaptive refinement of

truncated hierarchical NURBS. Comput. Methods Appl. Mech. Eng. 305, 316–339
(2016)

23. Hennig, P., Kästner, M., Morgenstern, P., Peterseim, D.: Adaptive mesh refinement
strategies in isogeometric analysis-a computational comparison. Comput. Methods
Appl. Mech. Eng. 316, 424–448 (2016)

24. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Eng. 194(39–41), 4135–4195 (2005)

25. Johannessen, K.A., Remonato, F., Kvamsdal, T.: On the similarities and differences
between classical hierarchical, truncated hierarchical and LR B-splines. Comput.
Methods Appl. Mech. Eng. 291, 64–101 (2015)

26. Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S.E., Zulehner, W.: Geometry +
simulation modules: Implementing isogeometric analysis. PAMM 14(1), 961–962
(2014)

27. Kang, H., Xu, J., Chen, F., Deng, J.: A new basis for PHT-splines. Graph. Models
82, 149–159 (2015)

28. Kapl, M., Vitrih, V., Jüttler, B., Birner, K.: Isogeometric analysis with geometri-
cally continuous functions on two-patch geometries. Comput. Math. Appl. 70(7),
1518–1538 (2015)

29. Kiss, G., Giannelli, C., Jüttler, B.: Algorithms and data structures for truncated
hierarchical B-splines. In: Floater, M., Lyche, T., Mazure, M.-L., Mørken, K., Schu-
maker, L.L. (eds.) MMCS 2012. LNCS, vol. 8177, pp. 304–323. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54382-1 18

30. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté,
A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods,
pp. 209–218. Vanderbilt University Press, Nashville (1997)

https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
http://www.gs.jku.at/gismo
https://github.com/SINTEF-Geometry/GoTools
https://github.com/SINTEF-Geometry/GoTools
http://eigen.tuxfamily.org
http://dx.doi.org/10.1007/978-3-642-54382-1_18

A Versatile Strategy for the Implementation of Adaptive Splines 73

31. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear inde-
pendence of T-spline blending functions. Comput. Aided Geom. Des. 29(1), 63–76
(2012)

32. Mokrǐs, D., Jüttler, B.: TDHB-splines: the truncated decoupled basis of hierarchical
tensor-product splines. Comput. Aided Geom. Des. 31(7–8), 531–544 (2014)

33. Mokrǐs, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor
product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)

34. Morgenstern, P.: Globally structured three-dimensional analysis-suitable T-splines:
definition, linear independence and m-graded local refinement. SIAM J. Numer.
Anal. 54(4), 2163–2186 (2016)

35. Morgenstern, P., Peterseim, D.: Analysis-suitable adaptive T-mesh refinement with
linear complexity. Comput. Aided. Geom. Des. 34, 50–66 (2015)

36. Rabut, C.: Locally tensor product functions. Numer. Algorithms 39(1–3), 329–348
(2005)

37. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.:
Isogeometric finite element data structures based on Bézier extraction of T-splines.
Int. J. Numer. Methods Eng. 88(2), 126–156 (2011)

38. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.:
T-spline simplification and local refinement. ACM Trans. Graph. 23(3), 276–283
(2004)

39. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs.
ACM Trans. Graph. 22(3), 477–484 (2003)

40. Thibault, W.C., Naylor, B.F.: Set operations on polyhedra using binary space
partitioning trees. In: Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 153–162. ACM, New
York (1987)

41. Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computa-
tional Geometry. CRC Press, Boca Raton (2004)

42. Vázquez, R., Garau, E.: Algorithms for the implementation of adaptive isogeomet-
ric methods using hierarchical splines. Tech. report 16–08, IMATI-CNR, Pavia,
July 2016

43. Zore, U.: Constructions and properties of adaptively refined multilevel spline
spaces. Dissertation, Johannes Kepler University Linz (2016). http://epub.jku.at/
obvulihs/download/pdf/1273941

http://epub.jku.at/obvulihs/download/pdf/1273941
http://epub.jku.at/obvulihs/download/pdf/1273941

Machinability of Surfaces via Motion Analysis

Robert J. Cripps1(B), Ben Cross1, Glen Mullineux2, and Mat Hunt2

1 Department of Mechanical Engineering, University of Birmingham,
Edgbaston B15 2TT, UK
r.cripps@bham.ac.uk

2 Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Abstract. The machinability of a surface describes its ability to be
machined and the factors which affect this. These are independent of
any material properties or cutting parameters but instead reflect an abil-
ity to replicate a desired tool path motion with sufficient control of the
material removal process. Without this control there is a potential for
surface defects and costly finishing stages.

Five-axis CNC milling machines are commonly used for machining
complex free-form shapes. The processes required to obtain CNC instruc-
tions for a machine tool, starting from a target surface, are presented.
An overview is first given and later formalised with mathematical meth-
ods. Specifically, a moving cutting tool is characterised by a tool path
motion. Interpreting the moving cutter in terms of moving machine axes
provides a diagnostic tool for detecting machining errors.

Examination of two case studies reveals different types of errors,
machine-dependent and machine-independent. The contribution of
geometry to machine-independent errors is discussed and related back
to the machinability of a surface.

Keywords: Machinability · Five-axis machine tool · Tool path motion

1 Introduction

Computer Aided Design and Manufacture (CAD/CAM) provides a highly-
automated process for the machining of components. The term machining is used
to describe a process that begins with some raw material which is gradually
removed via cutting until a desired shape is achieved. The machinability of a part
thus refers to its ability to be machined and the factors which affect this [1]. Five-
axis CNC milling machines are commonly used for machining parts with complex
free-form shape due to their ability to control the position and orientation of a
cutter.

The manufacturing process begins with the design of a part geometry inside
a CAD environment [13]. The end goal is to machine this part geometry as
efficiently as possible and for it to be of a sufficiently high quality. An immediate
measure of quality is the dimensional accuracy of the part to that of the CAD
model. Another consideration, which is decisive in whether or not a part is
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 74–95, 2017.
https://doi.org/10.1007/978-3-319-67885-6_4

Machinability of Surfaces via Motion Analysis 75

deemed acceptable, lies in its visual appearance. Any aesthetic irregularities
on the part surface require costly finishing stages even if the part is within
dimensional tolerance.

An important factor in machining a satisfactory part is sufficient control
of the cutting tool and thus the cutting conditions. This control is governed
by the Computer Numerical Control (CNC) unit of the machine tool. The CNC
controller does not exactly replicate the desired motion due to physical restraints.
The difference between desired and actual motion affects the cutting conditions
and can therefore be used to predict surface defects. Since the tool path motion
is defined from the surface geometry the effect of geometry in causing these
surface defects is important to understand. The machinability of a surface is
used here to describe its ability to be machined independent of any material
properties. In particular it is used here to describe the properties of a tool path
motion generated from the surface and the ability to replicate this motion with
sufficient control of the material removal process.

The CNC controller is able to manipulate the position and orientation of
the cutter with respect to the workpiece by moving the machine axes. These
movements must obey physical constraints in reality, such as limited speed and
acceleration, in accordance with the laws of physics. Constraints on axes speed
and acceleration are hard-coded into the CNC controller. Thus when a motion
does not abide by these constraints an alternative to the desired motion is experi-
enced. Positional tolerance of the cutter is of high priority in the CNC controller
and the most likely effect is a slow down in cutting feed. This affects the surface
integrity of the part, possibly producing dwell marks (Fig. 7). Since these affect
the visual appearance of the part, analysis of the machine axes kinematics can
be used to predict the occurrence of machining flaws.

In this paper two simplified case studies are examined which are based on
real life examples where surface defects have occurred. Analysing irregularities
in the motion of a cutting tool provides an explanation for the occurrence of
these defects. Furthermore, a relationship between part geometry and potential
sources of defects is established via analysis of the tool path motion.

The structure of the paper is described as follows. Section 2 presents an
overview of the machining process with regards to forming tool paths from a part
geometry [2]. Section 3 formalises these processes with the relevant mathematical
preliminaries. Cutter poses are defined with the introduction of the workpiece
coordinate system. The connection to machine axes is presented through the
kinematic chain of the machine tool leading to the machine coordinate system.
A relationship between these coordinate systems for a tool path motion is then
presented via the Jacobian matrix.

Section 4 presents the first case study. A tool path is constructed to demon-
strate machining errors identified as a feature of the machining singularity. The
singularity is shown to correspond to a degenerate Jacobian matrix. Section 5
presents the second case study. The example considers a single tool path used
for machining a simplified turbine blade. The machining errors here are shown
to be linked to the geometry of the tool path motion. Section 6 discusses the link

76 R.J. Cripps et al.

between the geometry and the machine axes’ behaviour. The paper finishes with
some concluding remarks on the two different types of machining errors.

2 Background to the Machining Process and Tool Path
Motion Analysis

This section presents an overview of the procedures involved with the machining
process, beginning from the CAD geometry and finishing with movements of
the machine axes. It is summarised by the flow diagram given in Fig. 1. The
mathematical formalisation of these procedures is presented in Sect. 3.

Fig. 1. Overview of the machining process.

In order to transform raw material (workpiece) into a desired shape, a
machining strategy has to be developed. The first stage involves removing the
bulk of the excess material in what is known as the roughing stage. The final
machining stage traces over the surface geometry of the part removing the excess
material remaining.

This finishing stage can be achieved in a variety of ways but all abide by
the same principle. Given a target geometry to machine, a cutting tool is traced
over the surface forming a sequence of connected tool paths. The envelope of the
moving cutting tool must not intersect with the part geometry else over cutting
(gouging) occurs. Furthermore, the volume represented by the envelope must
remove all excess material leaving only the material coinciding with the part
geometry. Thus the volumetric intersection of the tool path envelope with the
CAD model should theoretically be the boundary surfaces of the part. Note that
in practice the target surface geometry does not exactly coincide with the tool
path envelope but is instead designed to be within a strict dimensional tolerance
of the target shape. The formation of these tool paths is usually computed with
the aid of Computer Aided Manufacturing (CAM) software [3].

The position and orientation of the cutter is referenced with respect to a
coordinate system fixed relative to the workpiece. The combined position and
orientation information is here referred to as a pose. When the cutter removes

Machinability of Surfaces via Motion Analysis 77

material in the finishing stage it touches the target surface at a particular point
on the cutting tool edge. This point is referred to as the cutter contact (CC)
point. However, the position of the cutter must be defined by a fixed point on
the cutter called the cutter location (CL) point. This is usually defined at the
tip of the cutter. Note that the location of the CC is not generally at a fixed
displacement from the CL. Thus CL data is derived from varying offsets of the
target surface which depend upon the orientation and geometry of the cutting
tool (see Fig. 2). This offsetting can change the geometry of the CL data from
that derived from the surface. However efforts are usually made to preserve
the angle of the cutter to the surface normal and tangent direction in order to
maintain a consistent chip pattern on the surface [4]. This geometric property
proves insightful when considering the derivatives of the tool path motion.

Fig. 2. The Cutter Contact (CC) and Cutter Location (CL) points.

The next stage in the manufacturing process involves converting the tool
paths, in the form of positional CL and orientation data, into machine instruc-
tions for a CNC controller. These instructions, commonly known as NC code,
depend upon what type of CNC machine tool is to be used. Information regard-
ing the machine tool structure is required to determine the effect each axis has on
the pose of the tool with respect to the workpiece. This information is contained
within the kinematic chain which connects frames of reference across each axis
of the machine as well as the frames of reference connecting the workpiece and
cutter (more detail is given to the kinematic chain in Sect. 3). The kinematic
chain can thus be used to define a locally one-to-one function between the tool
poses of the CAM model and the five machine axis values that replicate each
pose.

The tool path from the CAM software is discretized into a sequence of tool
poses which are then converted into five corresponding machine axis values in the
post-processing stage. This list of machine configurations forms part of the CNC
instructions for the machine tool along with other machining parameters such

78 R.J. Cripps et al.

as spindle speed. The CNC machine can then move the machine axes to interpo-
late each sequential configuration, machining the desired geometry (within tol-
erance). The amount of time desired between each pose is also stored in the NC
code in an attempt to control the cutting speed (or feed rate) and thus cutting
conditions. Alternatively an explicit feed rate can be given.

The cutting speed represents the relative speed between the cutter and the
surface of the part. It is usually constant for each individual tool path to preserve
cutting conditions. Consider the collection of CC points for such a tool path in
the finishing stage. These derive from a curve on the target surface and are
parameterised by some constant factor of the arc-length parameterisation for
this curve. This provides enough information to fully define a tool path motion.
It is a function that outputs the pose of the cutter for a given input of time.
This concept is formalised in more detail in Sect. 3.

Given a tool path motion it is possible to convert the poses into machine
axes values and analyse the changes in them with respect to time. These repre-
sent kinematical characteristics of the machine and therefore must abide by the
laws of physics. For example, the acceleration for each axis is bounded by the
amount of force (or power) that can be transmitted in accordance with New-
ton’s second law. The maximum speed must also be bounded not least for safety
but also for the sustainability of the machine. In order to smooth the move-
ment of a machine these characteristics are controlled by the CNC controller.
The exact details of the control algorithms used are not in the public domain
as the intellectual property belongs to the manufacturer. However, most abide
by similar principles. Data corresponding to position, velocity and acceleration
is measured at an instance. Decisions regarding how much power to deliver to
the axes are then made by the controller from this data in a closed feedback
loop [5]. A fundamental component of this decision making is limiting the maxi-
mum speed and acceleration of the machine axes. These bounds are hard-coded
inside the controller. If the desired tool path motion exceeds these bounds then
the controller must make adjustments. Even if the controller is able to maintain
positional accuracy, the cutting speed cannot be maintained. These dwells cause
irregular chip patterns and rubbing of the cutting tool. This in turn affects the
surface finish of the part and may cause it to be rejected (Fig. 7).

Therefore, given a tool path, it is possible to detect these types of machining
issues (here referred to as machining errors). The process involves generating the
machine axes values at each instance of time and checking that they lie within
predetermined bounds. Analysis of two case studies leads to distinct causes of
machining errors. In the first case the excessive speeds and accelerations can be
eliminated by changing the kinematic chain. This is akin to having a different
machine tool perform the same tool path motion. For this reason they are clas-
sified as machine-dependent errors. In the second case however it can be shown
that no kinematic chain can resolve the issue and the cause of the error lies in the
geometry of the tool path motion. These are referred to as machine-independent
errors. Since the tool path motion is defined from the surface of the part, the
link with surface geometry and machining errors is discussed in Sect. 6.

Machinability of Surfaces via Motion Analysis 79

The next section presents the mathematical processes required to form the
tool path motion. Then using knowledge of the CNC machine tool structure, in
the form of a kinematic chain, the relationship between tool poses and machine
axes values is given. These form two separate coordinate systems. The Jaco-
bian between these coordinate systems is then presented which proves useful for
analysing how the coordinate systems change with respect to each other.

3 Mathematical Preliminaries

3.1 Coordinate Systems and the Kinematic Chain

A workpiece coordinate system is defined with respect to some fixed coordinate
frame rigidly attached to the workpiece. The position of the cutter is described
with a triplet of VW = (x, y, z) values. More precisely this is the CL point of
the cutter which is normally chosen to be the tip of the cutter. The cutting tool
rotates in the spindle about a line. The direction of this line is described with
a unit vector, OW = (i, j, k), which represents the orientation of the cutter.
The combined position and orientation coordinates, PW = (x, y, z, i, j, k) form
the pose of the cutter. In the post-processing stage, the pose of the cutter must
be converted into machine coordinates, PM = (M1,M2,M3,M4,M5), represent-
ing the values of each machine axis. This requires information about the CNC
machine tool regarding the arrangement of the axes relative to the workpiece
and cutter.

A kinematic diagram is a graph that represents the connectivity of links and
joints in a machine (see Fig. 3). Nodes of the graph represent parts of the machine
and the edges between them represent joints. Each joint can be represented as a
rigid-body transform between coordinate systems fixed at each link. A joint is con-
sidered an actuator if its movements can be controlled by the machine. The kine-
matic graph of a five-axis CNC machine therefore comprises five actuator joints
connected to the workpiece and the cutting tool. Only serially connected machines
are considered here. This implies that each actuator is connected in series and the
kinematic diagram is a tree with world space as the root. The five actuators com-
bined with the workpiece and cutter form a closed kinematic loop [6]. That is to
say if one begins at a node and applies the rigid-body transforms of each sequential
edge as one loops round the graph one arrives back at the original node with the
same frame of reference. The machine body is fixed to the ground (world space)
and remains stationary whilst the machine is moving. This is signified with a con-
nection to ground and helps to define a fixed reference frame for each set of links
and joints.

The pose of the cutter with respect to the workpiece is represented in the
kinematic diagram by the edge connecting them. Thus given values of each actu-
ator the pose of the cutter can be determined by looping round the kinematic
chain from the workpiece to the cutter thorough the actuator joints. Since each
edge represents a rigid-body transform, applying these transformations sequen-
tially results in the rigid-body transform corresponding to the pose of the cutter.

80 R.J. Cripps et al.

Fig. 3. Kinematic diagram of [left] a generic 5-axis machine and [right] the Hermle
C600U.

Take the Hermle C600U machine tool for example. A schematic of the
machine tool is given in Fig. 4. This machine consists of 3 translational axes
(X,Y,Z) controlling the spindle position and two rotary axes (A,C) controlling
the orientation of the workpiece mounted on the machine bed. For simplicity a
reference (or world space) coordinate frame is chosen such that the origin corre-
sponds to the intersection of the axes of rotation for the A and C rotary axes.
The (x, y, z) directions align with the (X,Y,Z) translational movements of the
spindle. The origin of the cutter’s reference frame is chosen at the tip of the
cutter. The orientation of the cutter’s frame is aligned to the reference frame.
The coordinate frame for the workpiece is chosen so that when the A and C
rotary axes are set to zero it coincides with the reference frame. The kinematic
diagram is given in Fig. 3.

The pose of the cutter can thus be inferred from the kinematic chain. Note
the rigid-body transform from the reference frame to the cutting tool is simply
a translation of (X,Y,Z). The rigid-body transform from the reference frame to
the workpiece is a rotation of angle C in the Z direction followed by a rotation
of angle A in the X direction. Thus the CL location is given by

VW =

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

cos(C) sin(C) 0
− sin(C) cos(C) 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0
0 cos(A) sin(A)
0 − sin(A) cos(A)

⎞
⎠

⎛
⎝

X
Y
Z

⎞
⎠

= Rz(C)Rx(A)VM . (1)

Here A and C are the angles of the rotary axes and Ri(j) is the rotation matrix
about the i axis of angle j. Note that the subscript of W or M represents the
coordinate frames chosen to determine the CL position, where M is the machine
coordinate frame and W is the workpiece coordinate frame. The orientation of
the cutter can also be determined by reorienting through the kinematic chain,
starting with it aligned in the Z direction.

Machinability of Surfaces via Motion Analysis 81

Fig. 4. Schematic of the Hermle C600U machine tool.

OW =

⎛
⎝

i
j
k

⎞
⎠ =

⎛
⎝

cos(C) sin(C) 0
− sin(C) cos(C) 0

0 0 1

⎞
⎠

⎛
⎝

1 0 0
0 cos(A) sin(A)
0 − sin(A) cos(A)

⎞
⎠

⎛
⎝

0
0
1

⎞
⎠

= Rz(C)Rx(A)OM . (2)

Given a cutter pose, PW = (x, y, z, i, j, k), the corresponding machine axes
values can be calculated. The first task is to find the A and C values that produce
the orientation OW = (i, j, k). This can be found by solving Eq. (2). Table 1
shows possible solutions [7]. The coordinates (X,Y,Z) can then be found from
Eq. (1) by premultiplying by the appropriate rotation matrices.

Table 1. A and C angles for a given orientation OW = (i, j, k).

k = +1 A = 0 C - undefined

k = −1 A = π C - undefined

−1 < k < 1 A = tan−1(±√i2 + j2, k) C = tan−1(±i,±j)

Either the workpiece coordinates or machine axes values (machine coordi-
nates) can be used to describe a pose. The workpiece coordinates characterise
the geometry of the tool path whereas the machine coordinates characterise the
machine behaviour. A useful tool for describing the link between coordinate
systems is the Jacobian matrix.

3.2 The Jacobian Matrix

The change in machine coordinates over time represents the kinematic properties
of the individual axes. If the speed or acceleration of these axes becomes too large

82 R.J. Cripps et al.

then surface defects can occur. The change in workpiece coordinates is described
with the tool path motion. Thus, in order to gain a better insight into how the
moving cutter corresponds to movements in machine axes, derivatives of the
coordinates should be considered.

The velocity of machine axes movements can be inferred from the velocity of
the pose via the chain rule.

[
∂PM

∂t

]
=

[
∂PM

∂PW

] [
∂PW

∂t

]

⎛
⎜⎜⎜⎜⎝

∂M1
∂t

∂M2
∂t

∂M3
∂t

∂M4
∂t

∂M5
∂t

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

∂M1
∂x

∂M1
∂y

∂M1
∂z

∂M1
∂i

∂M1
∂j

∂M1
∂k

∂M2
∂x

∂M2
∂y

∂M2
∂z

∂M2
∂i

∂M2
∂j

∂M2
∂k

∂M3
∂x

∂M3
∂y

∂M3
∂z

∂M3
∂i

∂M3
∂j

∂M3
∂k

∂M4
∂x

∂M4
∂y

∂M4
∂z

∂M4
∂i

∂M4
∂j

∂M4
∂k

∂M5
∂x

∂M5
∂y

∂M5
∂z

∂M5
∂i

∂M5
∂j

∂M5
∂k

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∂x
∂t
∂y
∂t
∂z
∂t
∂i
∂t
∂j
∂t
∂k
∂t

⎞
⎟⎟⎟⎟⎟⎟⎠

,

ṖM = JṖW . (3)

The J term, referred to as the Jacobian matrix, describes the relationship
between velocities in the two coordinates systems as a matrix transformation.
The matrix is non-square because in workpiece coordinates the unit normal
OW = (i, j, k) has only two degrees of freedom. Nonetheless, an upper bound on
this matrix transformation can be obtained from analysis of the spectral norm
defined as:

||J|| = max
||x||=1

||Jx||.

This equals the square root of the largest eigenvalue of JTJ [8] and is referred
to here as the bound of the Jacobian.

3.3 Machine Singularities

The Jacobian, J, represents the change in machine coordinates with respect to
workpiece coordinates. A similar matrix, K, for the change in workpiece coordi-
nates with respect to machine coordinates can be derived as:

[
dPW

dt

]
=

[
∂PW

∂PM

] [
dPM

dt

]
,

ṖW = KṖM .

It can be calculated by differentiating the rigid-body transformation between
cutter and workpiece as described in the kinematic chain.

If the rank of the matrix K is less than 5 then some machine axes movements
become redundant in that they do not affect the pose of the cutter relative to the
workpiece. This occurs when det(KTK) = 0 with the redundant movements cor-
responding to the eigenvector with zero eigenvalue. Furthermore the Jacobian, J,

Machinability of Surfaces via Motion Analysis 83

is undefined here. In this scenario there are not enough degrees of freedom in the
system to accommodate all possible pose changes, this is identified as a machining
singularity [9].

As det(KTK) → 0 the spectral norm of the Jacobian ||J|| → ∞ since it
becomes possible to change the machine axes values with a diminishing effect on
the pose. Therefore local to a singularity a machine may require relatively large
speeds to attain a constant feed rate [7].

Consider the Hermle C600U with its kinematic chain. Certain orientations
correspond to a singularity, these occur when OW = (0, 0, 1)T (Table 1). This
is due to the fact that when the cutter is oriented at (0, 0, 1)T it is possible to
spin the C-axis and follow a circle in the XY plane centered on the C-axis of
rotation without affecting the pose. This can be demonstrated with calculation
of det(KTK). For simplicity consider only the sub-matrix (KO) corresponding
to orientation changes and rotary axes movements. Then

[
dOW

dt

]
=

[
∂OW

∂OM

] [
dOM

dt

]
= [KO]

[
dOM

dt

]
,

⎛
⎜⎜⎜⎜⎜⎜⎝

∂i

∂t
∂j

∂t
∂k

∂t

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂i

∂A

∂i

∂C
∂j

∂A

∂j

∂C
∂k

∂A

∂k

∂C

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

∂A

∂t
∂C

∂t

⎞
⎟⎠

From (2)

∂i

∂A
= sin C cos A,

∂j

∂A
= cos C cos A,

∂k

∂A
= − sin A,

∂i

∂C
= cos C sin A,

∂j

∂C
= − sin C sin A,

∂k

∂C
= 0.

Therefore
⎛
⎜⎜⎜⎜⎜⎜⎝

∂i

∂A

∂i

∂C
∂j

∂A

∂j

∂C
∂k

∂A

∂k

∂C

⎞
⎟⎟⎟⎟⎟⎟⎠

T ⎛
⎜⎜⎜⎜⎜⎜⎝

∂i

∂A

∂i

∂C
∂j

∂A

∂j

∂C
∂k

∂A

∂k

∂C

⎞
⎟⎟⎟⎟⎟⎟⎠

=
(

1 0
0 sin2 A

)

which gives

||KT
OKO|| = sin2 A.

When OW = (0, 0, 1)T then A = 0 and thus ||KT
0 KO|| = ||KTK|| = 0.

The case study presented in the following section analyses machine axes
movements as det(KTK) → 0 and the spectral norm of the Jacobian, ||J||,
increases.

84 R.J. Cripps et al.

4 Case Study One: Machine-Dependent Sources of Error

In this section an example of a tool path that produces machining errors (as
defined in Sect. 2) with the Hermle C600U machine tool is examined. It is taken
from a recent publication [7] wherein further details can be found.

The tool path motion is defined as

VW (t) =

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

100
3 t
0
0

⎞
⎠ , t ∈ [0, 3

2]

OW (t) = Rx(11◦)Rz(120◦t)Rx(−10◦)ẑ, t ∈ [0, 3
2]

The cutter tip (VW) moves in a straight line whilst the cutter orientation (OW)
rotates at a uniform speed. A zenith (orientation closest to singularity) is reached
halfway along the tool path at angle of 1◦. A graphical representation of this
tool path is given in Fig. 5 which also illustrates the orientation of the cutter as
well as a simulation for the expected shape of the part after cutting.

Fig. 5. [Left] Visualisation of the linear tool path. [Centre] The tool orientations (OW)
visualized on the unit sphere. [Right] Simulated part shape after machining.

Applying the inverse kinematics (see Sect. 3) machine axes values can be
determined at each moment of the motion and hence the speed of axes move-
ments can be calculated. Figure 6 illustrates the machine kinematics of the rotary
axes. Halfway through the tool path it is noted that the C-axis is required to
spin at a maximum speed of 199.0 rpm which has been calculated from (3) as

∂C

∂t

∣∣∣∣
t=

3
4

=
20 sin(10◦)

sin(1◦)
≈ 199.0.

However the maximum speed of the rotary axes for the Hermle C600U is around
25 rpm, as stated by the machine tool manufacturers [10]. Therefore the CNC
controller has to make a compromise on the desired tool path motion. From this
analysis a surface defect is predicted between x = 23 mm and x = 27 mm.

Machinability of Surfaces via Motion Analysis 85

Fig. 6. Kinematics of the rotary axes with a feed rate 2000mm/min. [Left] A-axis
[Right] C-axis [Top] Axis angle [Bottom] Axis speed.

After machining, the part was inspected with a 3D micro coordinate mea-
surement machine and surface roughness measurement device [11]. The images
taken (Fig. 7) illustrate the presence of a surface defect in the form of a dis-
colouration of the material at the center of the part. Furthermore, a roughness
profile measurement taken across the part indicates an increase in surface rough-
ness local to the predicted affected region between x = 23 mm and x = 27 mm
across the part (Fig. 8). The surface defect is thought to be melting of aluminium
from dwelling as a consequence of singular behaviour.

The singular behaviour can be eliminated by changing the Jacobian, which is
defined from the kinematic chain of the machine tool. This is achieved by either
choosing a machine tool with a different kinematic chain or changing the existing
kinematic chain. The latter can be achieved by reorientating the workpiece on
the machine bed (with the use of a jig [7]) which effectively inserts an extra
node into the kinematic diagram (Fig. 3). Consequently the tool path has to be
reorientated.

Therefore a second tool path, based upon the previous tool path, is con-
structed through reorientation of 10◦ in the direction away from the singularity
(so its zenith is 11◦ away). This tool path motion is defined as

86 R.J. Cripps et al.

PW (t) =

⎛
⎝

x
y
z

⎞
⎠ =

⎛
⎝

100
3 t
0
0

⎞
⎠ , t ∈ [0, 3

2]

OW (t) = Rx(21◦)Rz(120◦t)Rx(−10◦)ẑ, t ∈ [0, 3
2].

Fig. 7. Image showing surface defect occurring near to singularity.

A graphical representation of this tool path is given in Fig. 9 which also
illustrates the orientation of the cutter as well as a simulation for the expected

Machinability of Surfaces via Motion Analysis 87

Fig. 8. Surface roughness profile of the machined surface.

Fig. 9. [Left] Visualisation of the second tool path. [Center] The modified tool orienta-
tions (OW) visualized on the unit sphere. [Right] Simulated part shape after machining.

shape of the part after cutting. The corresponding machine kinematics of the
rotary axes are given in Fig. 10.

Applying the reorientation has had the effect of reducing the C-axis speed
from around 199.0 rpm to around 18.2 rpm, which has been calculated from
(3) as

∂C

∂t

∣∣∣∣
t=

3
4

=
20 sin(10◦)
sin(11◦)

≈ 18.2.

This value is below the C-axis maximum speed (Fig. 10) and is therefore not
expected to cause the same issues as in the first tool path. The image in
Fig. 11 confirms that the surface defect from the original tool path, explained
as a consequence of singular behaviour, has been successfully removed through
reorientation.

88 R.J. Cripps et al.

Fig. 10. Kinematics of the rotary axes (reorientated tool path) with a feed rate
2000 mm/min. [Left] A-axis [Right] C-axis [Top] Axis angle [Bottom] Axis speed.

This case study illustrates that, by applying a shape-preserving transforma-
tion to reorientate the tool path, sources of error be can eliminated. Therefore
the error cannot be attributed to the geometry of the tool path but rather the
Jacobian and thus the machine tool kinematic chain. For this reason these errors
are referred to as machine-dependent. In the next case study an example of a
machining flaw that cannot be resolved with a manipulation of the kinematic
chain is presented.

5 Case Study Two: Machine-Independent Sources of
Error

Consider the task of machining a turbine blade as in Fig. 12 [3]. Machining
flaws often occur on the turbine blade between the flatter sections and the more
rounded edges (as highlighted in Fig. 13). To gain insight into what might be
causing these flaws a simplified 2D tool path is considered. This turbine blade
boundary consists of a flat section followed by a semi-circular tip leading back
to another flat section. A machining strategy that preserves the angle between
the surface normal and tangential direction (described in Sect. 2) is chosen for
use with the Hermle C600U machine tool that maintains a uniform cutting feed
rate.

Machinability of Surfaces via Motion Analysis 89

Fig. 11. Image showing improved surface finish due to singularity avoidance (compared
to Fig. 7).

The tool path is chosen to lie in the xy-plane. To ensure the cutter orientation
remains in this plane the A-axis value is fixed at 90◦. The angle of orientation
in the xy-plane corresponds to the angle of the C-axis. Along the flat sections
the orientation of the cutter is preserved. This requires the rotary axes to be
stationary. In the circular section the orientation of the cutter rotates through
180◦ at a uniform speed. This requires the C-rotary axis to be moving at a
constant speed.

At the joins between flat sections and circular sections, the rotary axes have to
transition from being stationary to moving at a constant speed in an instance.

90 R.J. Cripps et al.

Fig. 12. [Top] CAD model of the blade and [Bottom] tool paths generated with the
CAM software.

This corresponds to an infinite amount of acceleration/deceleration, which is
physically impossible. The CNC controller must therefore make alterations to
the tool path motion resulting in a different set of cutting conditions possibly
leading to machining flaws.

Recall Eq. (3): ṖM = JṖW . Along the flat sections the last three components
of ṖW are zero since these represent the change in orientation. Along circular
sections the magnitude of the vector formed from the last three coordinates is a
non-zero constant signifying the orientation speed. Thus there is a discontinuity

Machinability of Surfaces via Motion Analysis 91

Fig. 13. [Top Left] Area of blade where machining flaws predicted. [Bottom Left] Sim-
plified model of the turbine blade. [Right] Tool paths generated from the simple model.

in ṖW where the sections join. Since the Jacobian is locally constant at the join
between the flat and circular sections, the machine coordinates ṖM must also
experience a discontinuity and P̈M becomes unbounded.

An infinite acceleration of the machine axes therefore occurs independent of
the choice for the kinematic chain of the machine tool. For this reason the error
is referred to as machine-independent. Equation (3) can be used to distinguish
between a machine dependent error and a machine-independent error. Machine-
dependent errors relate to the Jacobian matrix whereas machine-independent
errors relate to the ṖW data. Thus a solution to eliminate machine-independent
errors requires a reformulation of the pose data PW . This can be achieved by
either altering the machining strategy, such as no longer preserving the angles
with normal and tangent, or by altering the CAD geometry.

6 Discussion: Geometric Contribution to Machine Errors

Case study one showed that singularity errors are machine-dependent whilst
case study two showed that geometric discontinuities are machine-independent.
However, not all errors are of these forms. A more realistic expectation is that
errors are contributed from both components. Thus, given any machining error
it is useful to quantify how much is caused by the machine-configuration and
how much by the geometry to decide the best course of action. To ensure there
are no machine-dependent errors, the Jacobian needs to be suitably bounded. To
ensure there are no machine-independent errors, the ṖW data needs to be suit-
ably bounded. The pose data PW is inherited from the surface geometry of the
CAD model. Therefore geometric properties of the surface affect the machining
characteristics.

92 R.J. Cripps et al.

To avoid geometric discontinuities of the PW poses, the underlying CAD
surface must satisfy certain continuity constraints. This section derives these
constraints and then discusses approaches to bound the ṖW data. To begin the
following claim is proven: given a Gn surface, a curve can be obtained from the
surface in which the normal vector is Cn−1 smooth.

The unit normal can be defined in terms of first derivatives of curves on the
surface. Given a non-degenerate parametrised surface, S(u, v), the normal, N(s),
is derived from:

N(s) =
Su ∧ Sv

||Su ∧ Sv|| , where Su =
∂S

∂u
and Sv =

∂S

∂v
.

This corresponds to the normalised cross product of the tangent vectors for
two iso-parametric curves at the point on the surface. Given any two curves
that meet at the surface normal with non-parallel tangents a similar expression,
replacing Su and Sv with the new tangents, can be formed. Given that S(u, v) is
Gn it is possible to find two Gn curves [12] crossing at the surface normal with
non-parallel tangents. The cross product of these tangents has Cn−1 continuity
since the cross product is a C∞ operation and thus preserves the Cn−1 continuity
inherited from the tangents. Thus any Gn surface admits a Gn curve that delivers
Cn−1 continuity of the surface normal.

Given the surface, S(u, v), a curve lying on it can be written as C(t) =
S(u(t), v(t)). A tool path motion that traces out such a curve has the following
properties. The CC data is obtained from the arc-length parametrised curve of
C(t), referred to as CC(s). A local orientation frame, RF = {Fx, Fy, Fz}, for
this curve can be defined. The Fx direction is defined as T(s) = CC ′(s), the
Fz direction is aligned to the surface normal and the unit bi-normal is the cross
product of these B(s) = T(s)∧N(s). This frame is commonly referred to as the
Darboux frame [14].

The cutting tool can be orientated in any direction depending upon the
desired machining strategy. The angles the cutter makes with the surface normal
and tangent affect the chip pattern on the surface [4]. In five-axis machining
efforts are usually made to preserve these angles to maintain a consistent surface
finish. In this case, a fixed rotational offset of the Darboux frame can be defined
as a unit vector, OO, that forms the respective angles with the Fx and Fz axes.
A rotation matrix with the axes of the reference frame as rows, RF = [T,−B,N]
can then be used to define the orientation vector in workpiece coordinates as:

OW = RFOO.

The last step involves finding the CL values to complete the pose data PW .
The shape of the cutter can be interpreted as a surface of revolution and, when it
touches a surface (that is it does not gouge), its normal intersects with the axis of
revolution (see Fig. 2). The CL data, defined at the tip of the tool, can therefore
be defined as a translation along the axis of revolution from the intersection

Machinability of Surfaces via Motion Analysis 93

point. This axis is defined from the orientation data and so it is possible to form
the following equation:

CL(s) = CC(s) + d1N(s) + d2OW ,

= CC(s) + d1N(s) + d2RFOO,

The values of d1 and d2 depend upon the cutter geometry and the orientation
of the cutter with respect to the Darboux frame (OO) which are assumed to be
constant throughout the motion.

Therefore the components of the pose data comprise the underlying curve
along with first derivatives of the surface. Algebra of limit arguments can thus
be employed to show that Gn continuity of C(t) delivers Cn−1 continuity of the
tool path motion PW (s). Note that not every curve that can be obtained from
a Gn surface is Gn continuous and hence sufficient care must be taken when
tracing out the CC curve on the surface. This highlights another potential cause
of error in selection of the tool paths. For example, machining the simplified
blade in Sect. 5 along the orthogonal direction could have avoided traversing the
G2 discontinuity.

The occurrence of machine-independent errors, in the form of discontinuous
axes movements, can thus be summarised with the following statement. Given
a Cn smooth tool path from a Gn smooth surface the machine axes kinematics
are Cn−1 smooth. Note however that this assumes the Jacobian is Cn−1 smooth
and the angles between the surface normal and tangent direction are preserved.

In case study one the tool path was G∞ smooth and there were no disconti-
nuities in the PW data. In case study two the curve was G1 continuous and hence
the machine coordinates were C0 continuous. However, there was a G2 discon-
tinuity between flat and round sections and thus C1 continuity of the machine
coordinates could not be achieved. Using a G2 curve and surface would ensure
C1 continuous machine coordinates and thus finite acceleration bounds.

Bounding the kinematic properties of the machine axes is possible by bound-
ing pose data and the Jacobian. Bounds on the machine axis speeds and accel-
erations [6] can be determined from Eq. (3) as

||ṖM || ≤ ||J|| ||ṖW ||, ||P̈M || ≤ ||J̇|| ||ṖW || + ||J|| ||P̈W ||.
It is not enough for these bounds to exist but rather they must be less than a pre-
determined amount. Thus simply eliminating discontinuities does not eradicate
machine-independent errors. Bounding the maximum velocity and acceleration
to specific values is required to ensure no machine-independent errors.

In the scenario where the velocity and acceleration of machine axes are
bounded but exceed kinematic constraints one possible solution to eliminate
machine errors is to reduce the cutting feed rate. This approach is undesirable
because other issues can occur with a reduced cutting feed, such as rubbing of
the workpiece. However an important concern of productivity is that a lower
feed rate necessitates longer machining times. In the ideal situation a tool path
should admit as high as possible feed rate before exceeding kinematic constraints.
This motivates further research into determining what type of geometry could
preclude machine-independent errors whilst accommodating high feed rates.

94 R.J. Cripps et al.

7 Conclusions

Machining flaws can be predicted by analysing the desired tool path motion.
A tool path motion can be converted into machine coordinates representing the
values of the machine axes. If the expected speed or acceleration of an individual
machine axis is too high then it differs from the desired motion. Consequently
a loss of control in the cutting conditions is experienced potentially leading to
machining flaws. This forms the basis of a diagnostic tool for analysing tool
path motions. If the velocity or acceleration of the machines axes exceed prede-
termined bounds a machining error is said to occur. These should be eliminated
if potential machining flaws are to be avoided.

The mathematical processes required to form the position and orientation
(poses) of the cutter relative to the workpiece was presented in Sect. 2. Given
knowledge of the machine tool structure, in terms of a kinematic chain, the
relationship between poses and machine axis values was then given. Further
insight into this relationship was gleaned from the Jacobian which represents
how the coordinate systems change with respect to each other.

Two case studies were then presented. In the first case study the effect of
a Jacobian with a large spectral norm, relating to a machining singularity, was
investigated. It was shown that by changing machine tool structure, or more
specifically the kinematic chain, these machining errors can be eliminated. For
this reason machining singularities were identified as a machine-dependent error.
In the second case of machining a turbine blade, a geometric discontinuity caused
an infinite acceleration of one of the machine axes. It was shown that this occurs
independent of the kinematic chain. Such errors were referred to as machine-
independent errors.

Section six then discussed the differences between machine-dependent and
machine-independent errors. These are characterised by two separate factors.
The Jacobian characterises machine-dependent errors whereas the pose data
characterises machine-independent errors. Thus the geometric contribution of
the machinability of a surface comes from the pose data. Discontinuities in the
pose data can be eliminated if the underlying surface possesses sufficient con-
tinuity conditions. It was argued that given a Gn continuous surface the time
derivatives of the machine axes, up to the (n − 1)th derivatives, are also contin-
uous (assuming a sufficiently smooth Jacobian).

A surface with a high machinability must admit curves that yield desirable
machine kinematic profiles. The derivatives of the poses represent the geometric
contribution to the machine axes velocity and acceleration. These in turn are
defined from the surface and constrained by the geometry that defines them.
For example, a bumpy surface intuitively seems to be more difficult to machine
than a smooth surface. What needs to be done next is obtain criteria for surface
geometry under which it possesses good machinability properties. This will be
the subject of future investigations.

Machinability of Surfaces via Motion Analysis 95

Acknowledgement. The research is supported by the EPSRC research council
(EP/L010321/1 and EP/L006316/1). The authors also thank Delcam International
PLC for supporting the research presented in this paper.

References

1. Kalpakjian, S., Schmid, S.: Manufacturing Engineering and Technology, 5th edn.
Pearson Publishing Company, Upper Saddle River (2006)

2. Choi, B.K., Kim, B.H., Jerard, R.B.: Sculptured surface NC machining. In: Hand-
book of Computer Aided Geometric Design, pp. 543–574 (2002)

3. Powermill 2014 Delcam PLC, January 2016. www.powermill.com
4. Lavernhe, S., Quinsat, Y., Lartigue, C.: Model for the prediction of 3D surface

topography in 5-axis milling. Int. J. Adv. Manuf. Technol. 51, 915–924 (2010)
5. Suh, S., Kang, S., Ching, D., Stroud, I.: Theory and Design of CNC Systems.

Springer, Heidelberg (2008). doi:10.1007/978-1-84800-336-1
6. Doughty, S.: Mechanics of Machines. Wiley, New York (1988)
7. Cripps, R., Cross, B., Hunt, M., Mullineux, G.: Singularities in five-axis machining:

cause effect and avoidance. Int. J. Mach. Tools Manuf. 166, 40–51 (2017)
8. Kincaid, D., Cheney, W.: Numerical Analysis, 2nd edn. Brooks/Cole Publishing

Company, Pacific Grove (1996)
9. Zlatanov, D., Fenton, R.G., Benhabib, B.: Singularity analysis of mechanisms and

robots via a velocity-equation model of the instantaneous kinematics. In: IEEE
International Conference on Robotics and Automation (1994)

10. Hermle: Hermle C600 Series Brochure. Hermle, Gosheim (1999)
11. Alicona G5 InfiniteFocus Alicona Imaging GmbH, August 2016. http://www.

alicona.com/products/infinitefocus/
12. Peters, J.: Geometric continuity. In: Farin, G., Hoschek, J., Kim, M. (eds.) Hand-

book on Computer Aided Geometric Design. Elsevier, Amsterdam (2002)
13. Powershape 2014 Delcam PLC, January 2016. www.powershape.com
14. Guggenheimer, H.W.: Differential Geometry. Dover Publications, New York (1997)

http://www.powermill.com
http://dx.doi.org/10.1007/978-1-84800-336-1
http://www.alicona.com/products/infinitefocus/
http://www.alicona.com/products/infinitefocus/
http://www.powershape.com

Simplicial Complex Entropy

Stefan Dantchev and Ioannis Ivrissimtzis(B)

Duarham University, Durham, UK
{s.s.dantchev,ioannis.ivrissimtzis}@durham.ac.uk

Abstract. We propose an entropy function for simplicial complices. Its
value gives the expected cost of the optimal encoding of sequences of
vertices of the complex, when any two vertices belonging to the same
simplex are indistinguishable. We focus on the computational properties
of the entropy function, showing that it can be computed efficiently.
Several examples over complices consisting of hundreds of simplices show
that the proposed entropy function can be used in the analysis of large
sequences of simplicial complices that often appear in computational
topology applications.

Keywords: Entropy · Simplicial complices · Ambiguous encoding ·
Graph entropy · Simplicial complex entropy

1 Introduction

In several fields of visual computing, such as computer vision, CAD and graphics,
many applications require the processing of an input in the form of a set of
unorganized points, that is, a finite subset of a metric space, typically R2 or R3.
Often, the first step in the processing pipeline is the construction of a simplicial
complex, or a series of simplicial complices capturing spatial relations of the input
points. Such geometrically constructed simplicial complices commonly used in
practice include the Vietoris-Rips and Čech complices, see for example [15], the
alpha shapes [7] and the witness complices [6,9].

The two simplest constructions, giving the Vietoris-Rips and the Čech com-
plices, emerged from studies in the field of algebraic topology. In the Vietoris-
Rips construction, we connect two points with an edge if their distance is less
than a fixed ε and the simplices of the complex are the cliques of the resulting
graph. In the Čech construction, the simplices are the sets of vertices that lie
inside a bounding sphere of radius ε.

Notice that the complices constructed in this way, apart from the input point
set which gives their vertex set, also depend on the parameter ε. In applications
where the goal is to extract topological information related to the input point
set, it is quite common to consider sequences of complices corresponding to
different values of ε and to study the evolution of their topological properties
as ε varies [13,16]. Such investigations led to the development of the notion of
persistence, in the form for example of persistent homology, as one of the main

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 96–107, 2017.
https://doi.org/10.1007/978-3-319-67885-6_5

Simplicial Complex Entropy 97

concepts in the field of computational topology [5,8]. Indicative of the need for
computational efficiency, persistent homology calculations based on millions of
distinct complices from the same input point set are now common and thus, the
efficient computation of such series of complices is an active research area [4,15].

In this paper, our aim it to use information-theoretic tools to study sequences
of geometrically constructed complices corresponding to different values of ε. In
particular, we define an entropy function on simplicial complices; we show that it
can be computed efficiently; and demonstrate that it can be used to find critical
values of ε. Here, the value of ε is seen as a measure of spatial resolution and
thus, we interpret the simplices of the geometrically constructed complices as
sets of indistinguishable points.

The setting of our problem is very similar to one that gave rise to the con-
cept of graph entropy [11] and hypergraph entropy [10]. There, a graph or a
hypergraph describe indistinguishability relations between vertices and the sets
of indistinguishable vertices are derived as the independent sets of the graph or
hypergraph. In contrast, in our approach, the sets of indistinguishable vertices
are readily given as the simplices of the complex. In the next section, immedi-
ately after introducing the proposed simplicial complex entropy, we discuss in
more detail its relation to graph entropy.

2 Simplicial Complex Entropy

Let V = {v1, . . . , vn} be a point set consisting of n vertices. An abstract simpli-
cial complex C over V is given by its maximal simplices C1, . . . , Cm. These are
nonempty subsets of V whose union is the entire V and none of them is a subset
of another.

We are also given a probability distribution P over V , i.e. non-negative num-
bers p1, . . . , pn and such that

∑n
j=1 pj = 1. Assuming that all points that belong

to the same simplex Ci for some i, 1 ≤ i ≤ m are indistinguishable, we define
the simplicial complex entropy as

H(C,P) = min
{qi}m

i=1

n∑

j=1

pj log
1

∑

i∈Simpl(j)

qi
s.t. (1)

s.t.
m∑

i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m.

where Simpl (j) denotes the set of simplices containing vertex pj .
The above simplicial complex entropy is similar to the graph entropy [11,12],

defined over a graph G with a probability distribution P on its vertices, given by

H(G,P) = min
a∈V P (G)

∑
pj log

1
aj

(2)

98 S. Dantchev and I. Ivrissimtzis

where V P (G), the vertex packing polytope of a graph G, is the convex hull of
the characteristic vectors of its independent sets.

In its information theoretic interpretation, the graph entropy gives the
expected number of bits per symbol required in an optimal encoding of the
information coming from a source emitting vertices of G under the probability
distribution P , assuming that any two vertices are indistinguishable iff they are
not connected with an edge [12]. In other words, the independent sets of G are
the sets of mutually indistinguishable vertices.

The information theoretic interpretation of the proposed simplicial complex
entropy is analogous to that of graph entropy. That is, it gives the expected
cost, in bits per vertex, of the optimal encoding of a sequence of vertices under
the assumption that the simplices indicate sets of mutually indistinguishable
vertices. In other words, it gives the expected compression ratio of an optimal
ambiguous encoder, which instead of actual vertices encodes simplices containing
them. The entropy acquires geometric meaning when the simplices encode spatial
information, as for example in the case of Čech complices. In that case, the
entropy gives the information savings that we can achieve if we treat any points
enclosed inside a sphere of radius ε as indistinguishable. We note however, that in
this paper we do not describe any actual simplicial complex encoder, an efficient
example of which can be found in [1].

In other information theoretic approaches into the study of simplicial com-
plices or similar geometric structures, [3] defined an entropy function on convex
corners of the non-negative orthant of the k-dimensional Euclidean space Rk

+.
Their construction is less general and as a result the minimising vector of the
entropy function is uniquely determined, unlike the qi’s in Eq. 1. In [2] hierar-
chical systems modelled as simplicial complices are studied through the maximi-
sation of a Kullback-Liebler divergence. While in a fashion similar to [2], Eq. 1
could be written as a mutual information minimisation problem, we note that
in [2] the computational aspects of that optimisation problem are not considered.

While the proposed simplicial complex entropy can be seen as a simplification
of the graph entropy, which however is at least as general. Indeed, on a graph
G we can define a simplicial complex C on the same vertex set as G and its
simplices being the independent sets of G. Then, the graph entropy of G is the
simplicial complex entropy of C. On the other hand, given a simplicial complex
C it is not immediately obvious how one can construct a graph G such that the
simplicial complex entropy of C is the graph entropy of G.

In an abstract context, the proposed simplification might seem quite arbi-
trary: instead of deriving the sets of indistinguishable vertices from the connec-
tivity of a graph, we consider them given in the form of simplices. However, in the
context of geometrically constructed simplicial complices embedded in a metric
space, the simplices are the natural choice of sets of indistinguishable points for
a given spatial resolution ε and there is no need, or indeed an obvious way, to
model the property of indistinguishability in terms of graph connectivity. One
notable exception to this is the special case of Vietoris-Rips complices which we
discuss next, aiming at further highlighting differences and similarities between
simplicial entropy and graph entropy.

Simplicial Complex Entropy 99

2.1 Example: Vietoris-Rips Simplicial Complex Entropy

In the case of Vietoris Rips complices, there is a straightforward interpretation
of the simplicial complex entropy as graph entropy. Indeed, assume a probability
distribution P on a set of vertices V embedded in a metric space, and assume
that two vertices, are indistiguishable if their distance is less than ε. The graph
G with its edges connecting pairs of distinguishable vertices is the complement
of the underlying graph of the Vietoris-Rips complex constructed on V for the
same ε.

It is easy to see that the independent sets of G are exactly the simplices of the
Vietoris-Rips complex and thus, the graph entropy of G is the simplicial complex
entropy of the Vietoris-Rips complex. Indeed, if there are no edges connecting
points of a subset of V , it means that all distances between these points are less
than ε, therefore they form a simplex of the Vietoris-Rips complex.

The simplicial entropy of the Vietoris-Rips complices has a straightforward
graph entropy interpretation because Vietoris-Rips complices are completely
defined by their underlying graph. Indeed, their simplices are the cliques of
the underlying graph. However, this is not generally the case for geometrically
constructed complices, with the Čech complex being a notable counterexample.

Indeed, consider as V the three vertices of an equilateral triangle of edge-
length 1, embedded in R2. Any pair of vertices corresponds to an edge of the
triangle and has a minimum enclosing sphere of radius 1/2. The V itself has
a minimum enclosing sphere of radius

√
3/3. Thus, for any 1/2 ≤ ε ≤ √

3/3
all three edges of the triangle are simplices of the Čech complex, i.e. pair-wise
indistinguishable, but the triangle itself is not a simplex of the Čech complex.

3 Properties of Simplicial Complex Entropy

Solving the entropy minimisation turns out to be computationally tractable. Let
us denote

Sj (q) def=
∑

i∈Simpl(j)

qi

and rewrite Eq. 1 as a maximisation problem with an objective function

f (q) def=
n∑

j=1

pj log Sj (q) . (3)

We can immediately prove the following

Proposition 1. The objective function in Eq. 3 is concave. The sums Sj (q) are
unique (i.e. the same) for all vectors q where the maximum is attained, while the
set of all maxima is a polyhedron.

Proof. Let q′ and q′′ be two different feasible vectors. Clearly, the vector

q =
1
2

(q′ + q′′) (4)

100 S. Dantchev and I. Ivrissimtzis

is also feasible and

Sj (q) =
1
2

(Sj (q′) + Sj (q′′)) for 1 ≤ j ≤ n (5)

We then have
log Sj (q) ≥ 1

2
(log Sj (q′) + log Sj (q′′)) , (6)

which proves the concavity of the objective function.
Imagine now that q′ and q′′ are two (different) optimal vectors (with f (q′) =

f (q′′)) and moreover there is a j, 1 ≤ j ≤ n such that Sj (q′) �= Sj (q′′). For
those particular q′ and q′′, Eq. 6 is a strict inequality and after summing up all
inequalities, we get

f (q) >
1
2

(f (q′) + f (q′′)) (7)

which contradicts the optimality of both q′ and q′′. Thus, the sums log Sj (q) are
unique over all optimal vectors q.

Finally, if we denote these sums (at an optimum) by sj , 1 ≤ j ≤ n, we notice
that the set of all optimal optimal vectors q is fully described by the following
linear system:

∑

i∈Simpl(j)

qi = sj 1 ≤ j ≤ n

m∑

i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m.

Let Pts (i) denote the set of vertices of the simplex i. Another useful charac-
terisation of an optimal vector q is given by

Proposition 2. Any optimal vector q satisfies the following “polynomial com-
plementarity” system:

∑

j∈Pts(i)

pj
Sj (q)

{
= 1 if qi > 0
≤ 1 if qi = 0

1 ≤ i ≤ m

m∑

i=1

qi = 1

qi ≥ 0 1 ≤ i ≤ m

Proof. The gradient of the objective function, ∇f (q) is

⎛

⎝
∑

j∈Pts(1)

pj
Sj (q)

, · · ·
∑

j∈Pts(m)

pj
Sj (q)

⎞

⎠

T

.

Simplicial Complex Entropy 101

We start with Karush-Kuhn-Tucker conditions (for the maximisation problem)
that an optimal vector q should satisfy:

∑

j∈Pts(i)

pj
Sj (q)

= λ − μi 1 ≤ i ≤ m (8)

m∑

i=1

qi = 1 (9)

qi, μi ≥ 0, qiμi = 0, 1 ≤ i ≤ m (10)

for some λ and μi, 1 ≤ i ≤ m.
We first expand the inner product

〈q,∇f (q)〉 =
m∑

i=1

qi
∑

j∈Pts(i)

pj
Sj (q)

(11)

=
n∑

j=1

pj
Sj (q)

∑

i∈Simpl(j)

qi =
n∑

j=1

pj = 1. (12)

On the other hand, from Eqs. 8, 9 and 10, we get

m∑

i=1

qi
∑

j∈Pts(i)

pj
Sj (q)

=
m∑

i=1

qi (λ − μi) (13)

= λ

m∑

i=1

qi −
m∑

i=1

qiμi = λ, (14)

and thus λ = 1.

3.1 Encoding/Decoding Accuracy Rate

The ambiguity in the description of a point set by a simplicial complex, results
into an error when points are encoded as simplices and then simplices are decoded
back to points. Here, the main motivation for studying the accuracy rate of spe-
cific encoding/decoding processes is the observation that while the optimisation
problem in Eq. 1 has a unique solution, the optimising vector q is not necessarily
unique. Thus, we will use the maximisation of the encoding/decoding accuracy
rate, under maximisation of the entropy, as a second optimisation problem that
will return a unique probability distribution q on the simplices.

We will describe two encoding/decoding strategies, one randomised, which is
the one we will use to produce our examples in Sect. 4, and an adversarial which
generally results to higher error rates.

Randomised Encoder. The encoder gets a point j, 1 ≤ j ≤ n, produced by
a memoryless random source under distribution p, and produces one of the cells

102 S. Dantchev and I. Ivrissimtzis

that contains j, under the distribution qi
Sj(q)

for all i ∈ Simpl (j). The overall
probability of seeing cell i as a result is

∑

j∈Pts(i)

pj
qi

Sj (q)
= qi

∑

j∈Pts(i)

pj
Sj (q)

= qi (1 − μi) = qi (15)

where μi is as in the proof of Proposition 2 above and taking into account that
λ = 1, as expected.

The decoder sees a cell i and returns the vertex which according to the
distribution p had the highest probability to have been encoded as i. Thus,
the probability for accurate encoding/decoding, which we maximise through our
choice of qi’s, is

acc =
m∑

i=1

qi
maxj∈Pts(i) pj
∑

j∈Pts(i) pj
. (16)

The Adversarial Encoder. We can think of this encoding strategy as a game
between the encoder and the decoder, in which whenever the decoder sees a sim-
plex i, he responds with a guess of a point j ∈ Simpl (i) according to probabilities
rij , rij ≥ 0 and such that

∑

j∈Pts(i)

rij = 1 for every 1 ≤ i ≤ m. (17)

These probabilities are known to the encoder, so if the source produced a
point j, the encoder minimises the success rate of the decoder by picking a cell i
that is arg mini∈Simpl(j) rij . In turn, the decoder tries to maximise the accurate
encoding/decoding rate as

acc = max
n∑

j=1

pjrj s.t. (18)

rij ≥ rj 1 ≤ j ≤ n and i ∈ Simpl (j) (19)
∑

j∈Pts(i)

rij = 1 1 ≤ i ≤ m (20)

rij ≥ 0 1 ≤ j ≤ n and i ∈ Simpl (j) (21)

4 Examples

The computation of the simplicial complex entropy and the encoding/decoding
accuracy rate were implemented in Matlab. Apart from some code for
input/output operations and simplicial complex representation, fmincon and
linprog were directly used to compute the entropy and the accuracy rate,
respectively.

Simplicial Complex Entropy 103

Fig. 1. The y-axis represents the normalised entropy (blue curve), the accuracy rate
(red curve) and their difference (green curve). The x-axis represents the parameter
ε (radius of the minimal enclosing sphere of a simplex) in the construction of the
Čech complex. Top: The input point set is the 5 × 5 block of vertices of a square
grid of edgelength 0.2 shown in the left. From left to right, uniform random noise
±0.5%,±5% and ±50% of the edgelength was added. The figures represent entropy
and accuracy rate computations on all possible Čech complices for that range of ε,
that is, 768, 746 and 685 distinct Čech complices, respectively. Bottom: As per the
top, but for triangular grid points. The figures correspond to 725, 694 and 672 distinct
Čech complices, respectively. (Color figure online)

In all examples, we report:

(i) the normalised entropy, that is, the simplicial complex entropy H(C,P)
divided by the entropy of the vertex set V under the same probability
distribution P ,

(ii) the accuracy rate, which correlates nicely with the entropy since the more
bits we use the higher we expect the encoding/decoding accuracy,

(iii) the difference between these two values.

In a first example, Fig. 1 (Top) shows the values of these two functions on
Čech complices constructed from vertex sets that are nodes of square grid of
edgelength 0.2 with some added noise. Figure 1 (Bottom) shows a similar exam-
ple with the vertices originally being nodes of a triangular grid. In all cases, the
probability distribution P on the vertex set is uniform.

In the case of a square grid without any added noise, as the values of the
parameter ε of the Čech complex construction parameter increase, they reach
the first critical value at ε = 0.1, when edges, i.e. simplices of degree 2, are
formed. The next critical value is ε
 0.141, where the simplices of degree 4 are
formed, and the next critical value is ε = 0.2 when simplices of degree 5 are
formed. Similarly, the first critical values in the case of points from a triangular

104 S. Dantchev and I. Ivrissimtzis

Fig. 2. The axes and the colour of the curves are as per Fig. 1. Two left figures: The
input point set of size 50 is a computational solution to the Thomson problem with
uniform noise of ±0.01 units added on each coordinate. In the right figure the input
in an area uniform spherical random sample of the same size. The figures represent
entropy and accuracy rate computations from 2523 and 2661 distinct Čech complices,
respectively. Two right figures: As per the top, with point sets of size 100. Due
to the very large number of distinct Čech complices, each figure represents 100 Čech
complices, corresponding to a uniform sample of values of ε in [0, 0.6]. (Color figure
online)

grid are ε = 0.1, when simplices of degree 2 are formed and ε
 0.115 when
simplices of degree 3 are formed.

These critical values are shown Fig. 1 as sudden drops in the entropy of the
Čech complices constructed on the less noisy data sets. We also notice simul-
taneous drops of the accuracy rates since they, as expected, correlate well with
entropy. As the level of noise increases the critical points become less visible on
either of these two curves. However, their difference, shown in green, seems to
be more robust against noise, and moreover, seems to peak at a favorable place.
That is, it peaks in values of ε that would neither return a large number of
non-connected components nor heavily overlapping simplices.

In the second example, the input set is a sample from the unit sphere in R3.
Figure 2 (left) shows results from regular samples of size 50 (top) and 100 (bot-
tom), computed in [14] as solutions to the Thomson problem, with added uni-
form noise of ±0.01 units. In [14], the minimum distances between a point and
its nearest neighbour in an optimal solution are ∼ 0.5 and ∼ 0.35, respectively,
and correspond to the steep entropy decreases at the half of these values, i.e.
when the first edges of the Čech complices are formed. Figure 2 (right) shows
results from random, area uniform samples of size 50 (top) and 100 (bottom).
While the input is much less regular than at the left hand side of the figure, the
peaks of the two green curves align well.

In the third example, the initial vertex sets are the nodes of a 4 × 4 square
grid of edgelength 1/3 and of a 4 × 4 × 4 cubic grid of the same edgelength.
Figure 3 (left) shows the results for the square grid, first with added uniform
noise of ±0.01% of the edgelength and then with ±0.1%. Figure 3 (right) shows
the results for the cubic grid, again under noise addition of ±0.01% and ±0.01%
of the edgelength. We notice that green line corresponding to the cubic grid

Simplicial Complex Entropy 105

Fig. 3. The axes and the colour of the curves are as per Fig. 1. Left: The input point
set is a 4 × 4 block of vertices of a square grid of edgelength 1/3 with added uniform
random noise equal to ±0.01% and ±0.1% of the edgelength. The figures represent
entropy and accuracy rate computations on all possible Čech complices for a [0,0.35]
range of ε. Right: As per the left, but the input point set is a 4 × 4 × 4 block of
vertices of a cubic grid. (Color figure online)

Fig. 4. Two left figures: The values qi in Eq. 1 are color-mapped on the mesh tri-
angles. Darker colors correspond to higher values. Two right figures: The probabil-
ity distribution P on the vertices corresponds to the absolute values of the discrete
Gaussian curvature of the vertices. The two meshes consist of 512 and 1704 triangle,
respectively. (Color figure online)

peaks higher and later than the green line of the square grid, reflecting the
higher dimensionality of the data.

In a fourth example, we solve the optimisation problem for the computation
of the entropy on triangle meshes and show the obtained values of the vector q,
as in Eq. 1, color-mapped on the mesh triangles. In Fig. 4 (left), the probability
distribution on the mesh vertices is uniform, as it was in all previous examples.
On the right hand side of the figure, the probability distribution follows the
absolute value of the discrete Gaussian curvature of the vertices.

5 Conclusion

We presented an entropy function for simplicial complices which can be seen as
a simplification and generalisation of the graph entropy since all the maximal
sets of indistiguishable points are exactly the maximal simplices of the complex
and do not have to be computed as the independent sets of the graphs, which,
generally, are difficult to characterise. We show that this simplification makes
the simplicial complex entropy a function that can be efficiently computed.

106 S. Dantchev and I. Ivrissimtzis

Even though the entropy is defined on abstract simplicial complexes, which
are purely topological structures, in the examples we show that it can be relevant
to geometric applications. For example, by computing the entropy of geometri-
cally constructed simplicial complices, such as the Čech complices, or by using
geometric properties of an embedded complex, such as a discrete curvature com-
puted on the vertices to obtain a probability distribution on them.

In the future we would like to study in more detail the function given as the
difference between normalised entropy and the decoding accuracy rates, which
seems to be a robust to noise descriptor of an appropriate level of geometric
detail defined by the variable ε of the Čech complex. We would also like to study
the relationship between the accuracy rate of the a randomised encoder we used
here and the that of the adversarial encoder discussed at the end of Sect. 3.1.

Acknowledgement. This research was partially supported by the EPRSC Grant
EP/K016687/1 “Topology, Geometry and Laplacians of Simplicial Complexes”.

References

1. Attali, D., Lieutier, A., Salinas, D.: Efficient data structure for representing and
simplifying simplicial complexes in high dimensions. Int. J. Comput. Geom. Appl.
22(04), 279–303 (2012)

2. Ay, N., Olbrich, E., Bertschinger, N., Jost, J.: A geometric approach to complexity.
Chaos 21(3), 22 (2011)

3. Csiszár, I., Körner, J., Lovász, L., Marton, K., Simonyi, G.: Entropy splitting for
antiblocking corners and perfect graphs. Combinatorica 10(1), 27–40 (1990)

4. Dantchev, S., Ivrissimtzis, I.: Efficient construction of the Čech complex. Comput.
Graph. 36(6), 708–713 (2012)

5. de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology.
Algebraic Geom. Topol. 7, 339–358 (2007)

6. de Silva, V., Carlsson, G.: Topological estimation using witness complexes. In:
Alexa, M., Rusinkiewicz, S. (eds.) Eurographics Symposium on Point-Based
Graphics. ETH, Zürich (2004)

7. Edelsbrunner, H.: The union of balls and its dual shape. Discrete Comput. Geom.
13(1), 415–440 (1995)

8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. In: FOCS 2000, p. 454. IEEE (2000)

9. Guibas, L.J., Oudot, S.Y.: Reconstruction using witness complexes. In: Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2007, pp. 1076–1085, Philadelphia, PA, USA. SIAM (2007)

10. Korner, J., Marton, K.: New bounds for perfect hashing via information theory.
Eur. J. Comb. 9(6), 523–530 (1988)

11. Körner, J.: Coding of an information source having ambiguous alphabet and the
entropy of graphs. In: 6th Prague Conference on Information Theory, pp. 411–425
(1973)

12. Simonyi, G.: Graph entropy: a survey. Comb. Optim. 20, 399–441 (1995)
13. Vejdemo-Johansson, M.: Interleaved computation for persistent homology. CoRR,

abs/1105.6305 (2011)

Simplicial Complex Entropy 107

14. Wales, D.J., Ulker, S.: Structure and dynamics of spherical crystals characterized
for the Thomson problem. Phys. Rev. B 74(21), 212101 (2006)

15. Zomorodian, A.: Fast construction of the Vietoris-Rips complex. Comput. Graph.
34, 263–271 (2010)

16. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput.
Geom. 33(2), 249–274 (2005)

Precise Construction of Micro-structures
and Porous Geometry via Functional

Composition

Gershon Elber(B)

Department of Computer Science, Technion – IIT, 32000 Haifa, Israel
gershon@cs.technion.ac.il

http://www.cs.technion.ac.il/~gershon

Abstract. We introduce a modeling constructor for micro-structures
and porous geometry via curve-trivariate, surface-trivariate and
trivariate-trivariate function (symbolic) compositions. By using 1-, 2-
and 3-manifold based tiles and paving them multiple times inside the
domain of a 3-manifold deforming trivariate function, smooth, precise
and watertight, yet general, porous/micro-structure geometry might be
constructed, via composition. The tiles are demonstrated to be either
polygonal meshes, (a set of) Bézier or B-spline curves, (a set of) Bézier
or B-spline (trimmed) surfaces, (a set of) Bézier or B-spline (trimmed)
trivariates or any combination thereof, whereas the 3-manifold deform-
ing function is either a Bézier or a B-spline trivariate.

We briefly lay down the theoretical foundations, only to demonstrate
the power of this modeling constructor in practice, and also present a
few 3D printed tangible examples. We then discuss these results and
conclude with some future directions and limitations.

Keywords: Freeform deformation · Trivariate splines · Symbolic com-
putation · Freeform tiling

1 Introduction and Related Work

Deformations and metamorphosis captured the attention of the computer graph-
ics and the geometric modeling communities for several decades, while in recent
years this interest has reduced a bit. The idea of freeform deformations (FFD)
was introduced around thirty years ago [25] as a global deformation mapping,
T : IR3 → IR3, and was originally based on trivariate tensor-product Bézier vec-
tor functions. Trivariate splines were investigated by many and herein we will
only survey the use of trivariates toward deformations.

A large body of work was presented on a variety of FFD techniques, fol-
lowing [25], including extensions that support the B-spline representation [14]
and use of FFDs in animation [5]. While, in general, FFDs map a box-shaped
domain into a deformed-box in Euclidean space, other topologies were consid-
ered and, for example, [4] introduces Extended FFDs to form a deformation that
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 108–125, 2017.
https://doi.org/10.1007/978-3-319-67885-6_6

Precise Construction of Micro-structures and Porous Geometry 109

better resembles the shape of the input model. [4] suggested the use of prismatic
and cylindrical FFD functions that can approximate some geometric models
better than box-shaped tensor product FFDs. More general FFDs suggested
the use of arbitrary topology FFDs based on subdivision volumes for free-form
deformation [15].

Other, more recent, variations of FFDs considered the removal of cer-
tain topological restrictions from the deformed object. [11] considered torn sur-
faces that incorporated non-iso-parametric curves of C−1 discontinuity inside B-
spline surfaces. Similarly, [23] suggested the exploitation of discontinuous FFDs
to induce tears in the deformed models for animation and surgery incision sim-
ulations.

While the body of FFD work is significant, FFDs were always seen as manip-
ulation tools of existing geometry. Almost exclusively, FFDs were applied to an
existing model, resulting in a modified, deformed, model, that typically, and aside
from the discussed torn surfaces abilities, preserved the topology. Also, in the
last decade or so, surface detailing techniques where introduced in [8] and then
in [9,22] that are volumetric but limited to a surface layer (between the surface
and its small offset, with typically a linear interpolation in between) allowing
the modeling of surface details like scales or thorns. Similar surface detailing
abilities can also be found in commercial packages nowadays like Rhinoceros1.

Other efforts toward the synthesis of porous geometry and modeling with
porosity are known and, for example, include stochastic methods and the use
of Boolean set operations [24], including voxels’ based. In [26], the 3D Voronoi
diagram of a set of points serves as the basis of the pore space, thickening the
Voronoi edges and/or walls, and in [19], procedural (implicit) forms are employed
toward the synthesis of micro-structures while also allowing for deformations and
blendings. In [1], porous modeling of scaffolds is considered toward 3D printing,
where a volumetric grid-like model is synthesized to follow the basic input scaf-
fold. These methods typically synthesize piecewise constant (i.e. voxels) and
linear porous geometry and are hence of limited continuity, and are further inca-
pable of precisely controlling the geometry that is being synthesize. This, while
herein the micro-structures’ results can be fully piecewise-parametric.

In this work, we fuse the general FFD’s idea with a surface detailing tech-
nique into a modeling constructor of porous and/or micro-structure geome-
try that smoothly and precisely builds the geometry. The constructor of the
porous/micro-structure receives a volumetric model, T , as a trivariate and a
geometric tile, and paves the tile in the domain of T as desired, constructing a
whole new topology of porous geometry in the general shape of T . The paved
tiles are then mapped to Euclidean space via a composition with the volumetric
model T .

The trivariate function T can be of any general shape. Techniques to build
trivariate functions are known for a long time (i.e. [18] but also recently [16]).
The vast majority of tensor product surface constructors can be made into a
trivariate constructors, including volumetric extrusions, ruled volumes or vol-

1 http://www.rhino3d.com.

http://www.rhino3d.com

110 G. Elber

umes of revolution, volumetric Boolean sums, and volumetric sweeps. With
the clear ability to construct primitive shaped trivariates (i.e. cones and
spheres), in [16] volumetric Boolean set operations over trivariates are now also
demonstrated.

This work extends our previous recent work [10] that introduced the basic
micro-structure construction idea, in several ways. While [10] only consid-
ered surface-trivariate compositions and 2-manifold micro-structures, here we
expand and allow tiles consisting of univariates, (trimmed) bivariates, and even
(trimmed) trivariates [16], including in combination thereof in the same tile
(See Fig. 1). Hence, one can manage non-manifold tiles as well as tiles con-
sisting of multi-dimensional shapes. With the additional ability of supporting
trivariate-trivariate composition, we form a closure: the resulting elements of
the micro-structure are again trivariates and hence, can be recursively used in
the construction of nano-structure, etc. Finally, we formalize the conditions over
the mapping trivariate, T , and the tile so that the constructed model will be a
viable k-manifold.

(a) (b) (c) (d)

Fig. 1. A simple example of a tile, T , consisting of three different geometric types: a
curve (in blue), a surface (in red), and a trivariate (in green) (a). T is paved (3×3×3)
times in the domain of the mapping trivariate, T , (b), that is shown in (c). (d) presents
the precise smooth composition result of T (T). (Color figure online)

The rest of this work is organized as follows. Section 2 presents the different
computational needs of this variant of a micro-structure constructor and the
necessary foundations. In Sect. 3, some examples and results are presented, only
to be discussed, in Sect. 4. Then, we conclude, in Sect. 5.

2 Algorithm

Let T be a trivariate Bézier vector function:

T (x, y, z) =
n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

Pi1,i2,i3B
n1
i1

(x)Bn2
i2

(y)Bn3
i3

(z), (1)

Precise Construction of Micro-structures and Porous Geometry 111

where Pi1,i2,i3 are the control points of the 3D mesh of T and Bn1
i1

(u) is the i1’th
Bézier basis function, of degree n1.

Herein, we only discuss the necessary computation imposed by a trivariate-
trivariate composition, while the cases of curve-trivariate and surface-trivariate
are similar, yet obviously simpler.

Consider the trivariate-trivariate composition T̄ = T (T), where T is as in
Eq. (1) and T is:

T (u, v, w) =
m1∑

j1=0

m2∑

j2=0

m3∑

j3=0

Qj1,j2,j3B
m1
j1

(u)Bm2
j2

(v)Bm3
j3

(w). (2)

One can map the control points, Qj1,j2,j3 , of T through T as T (Qj1,j2,j3),
yielding

T̄ ≈
m1∑

j1=0

m2∑

j2=0

m3∑

j3=0

T (Qj1,j2,j3)B
m1
j1

(u)Bm2
j2

(v)Bm3
j3

(w), (3)

as is typically done with the FFD of input polygonal data where only the vertices
of the polygons are mapped through T . However, Eq. (3) is only an approxima-
tion of T̄ = T (T). Further, continuity will not be preserved and the geometry
will only loosely follow the micro-shape induced by T . Alternatively, a precise
mapping of T through T (See Fig. 1) can be computed using function composi-
tion [6,7]:

T̄ = T (T)
= T (tx(u, v, w), ty(u, v, w), tz(u, v, w))

=
n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

Pi1,i2,i3B
n1
i1

(tx(u, v, w))Bn2
i2

(ty(u, v, w))Bn3
i3

(tz(u, v, w)), (4)

where (tx, ty, tz) are the coefficients of T . Equation (4) amounts to the computa-
tion of products of terms in the form of Bn1

i1
(tx(u, v, w)). If Bn1

i1
is a polynomial

(Bézier) function and Qj1,j2,j3 = (qxj1,j2,j3 , q
y
j1,j2,j3

, qzj1,j2,j3), then:

Bn1
i1

(tx(u, v, w)) =

(
n1

i1

)
tx(u, v, w)i1(1 − tx(u, v, w))n1−i1

=

(
n1

i1

)(
m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

qxj1,j2,j3B
M
J (u, v, w)

)i1

(
1 −

m1∑
j1=0

m2∑
j2=0

m3∑
j3=0

qxj1,j2,j3B
M
J (u, v, w)

)n1−i1

, (5)

where BM
J (u, v, w) = Bm1

j1
(u)Bm2

j2
(v)Bm3

j3
(w).

Algorithms to directly evaluate the product (and summation) of splines, in
both Bézier and B-spline forms, are known [7,12,13,17], and all the above for-
mulation can be applied to either the Bézier or the B-spline representation, with

112 G. Elber

one caution. If T is a B-spline trivariate, the tile T cannot, in general, cross knot
lines in T . Because tensor product splines can represent finite (dis)continuities
only along knots, a general crossing of a knot line of T by T is likely to intro-
duce a irrepresentable by tensor product splines diagonal (dis)continuity into
T (T). Hence, T must be divided along the knot lines of T . If T consists solely
of univariates, these univariates could be divided at the knot lines of T , only
to be re-merged into T (T). However, if T is a surface or a trivariate it must
be divided along the knot lines into smaller, not necessarily rectangular sur-
face/trivariates patches. Further, those new patches must be again divided into
rectangular/cuboid patches. While a feasible process, it is unfortunately a far
more difficult process that also affects the regularity of the tiles’ representation,
in the micro-structure as a whole. Hence, herein we limit ourselves to bivariate
and trivariate tiles that cross no knot lines in T .

The continuity of T̄ = T (T) is directly governed by the lowest continuity
between the continuities of T and T , a result that stems directly from the chain
rule of differentiation of composition functions. A function is considered regular
if its Jacobian vanishes in no place. Again, and using the chain rule of differen-
tiation T̄ can be shown to be regular if both T and T are regular. This means
that a mapping of a regular k-manifold, k = 1, 2, 3 through a regular trivariate
T will yield back a regular k-manifold, k = 1, 2, 3, albeit of a higher degree.

Having the ability to compute T (T) as well as the simpler cases of surface-
trivariate (and polygon-trivariate) and curve-trivariate compositions, we con-
sider periodic tiles in 3D that pave the domain of T (cx × cy × cz) times (See
also Fig. 1). A tile is considered Cn periodic if the boundaries of the tile for umin,
vmin, wmin match the boundaries of the same tile for umax, vmax, wmax, with
Cn continuity, respectively. That is,

∂mta
∂pm

∣∣∣∣
umin

=
∂mta
∂pm

∣∣∣∣
umax

, m = 0, ..., n, (6)

in all axes a = x, y, z and in all permutations of parameters p ∈ {u, v, w}.
We also need to consider T ’s boundary end conditions. Consider the pave-

ment of the domain T by tile T (cx × cy × cz) times. A tile T can be Cn periodic
but tiles placed on the boundary of T must be closed along their boundary.
That is, all tiles (i, j, 1) and (i, j, cz), i ∈ (1, ..., cx), j ∈ (1, ..., cy) must all be
closed in the wmin and wmax directions, respectively, and the same holds for the
u and v min/max boundaries. While one can consider handling these boundary
openings after the mapping through T , we propose a simpler remedy. Given a
Cn periodic tile T , process it by computing its Boolean set operations with the
six planes u = umin, u = umax, v = vmin, v = vmax, w = wmin, w = wmax,
and their combination thereof, considering face, edge and vertex neighborhoods,
26 neighbors in all. As an example, tile (1, 1, 1), that should be closed in umin,
vmin and wmin, will be applied with Boolean set operations and sealed against
planes u = umin, v = vmin and w = wmin. Then, and based on the tile’s indices
in T , the proper boundary or interior tile will be employed out of the 27 tiles
we will have, in whole. While the output can include hundred of thousands if

Precise Construction of Micro-structures and Porous Geometry 113

not millions of mapped tiles, by computing the boundary tiles a-priori, only 26
different, local to the tile, Boolean set operations are required.

Then, if T is a regular Cn (or better) trivariate and T is a regular Cn k-
manifold periodic tile, a watertight Cn k-manifold model can be formed, except
possibly at the boundaries, as the intersection curves along the Boolean set
operations are typically only C0. In the next section, the power of this modeling
constructor is fully revealed and demonstrated.

3 Results and Examples

A modeling constructor based on trivariate functions can be quite powerful. It
enables the fabrication of delicate geometry that is very difficult to construct in
alternative ways. In Fig. 2, the domain of a trivariate duck is paved with piece-
wise linear B-spline surfaces’ tiles, only to be using precise surface-trivariate
composition computation. Six bilinear B-spline surfaces define this hollowed tile,
shown in Fig. 2(a). The result of the composition is shown in Fig. 2(b) whereas
Fig. 2(c) presents a similar result when the surfaces of the tile are first converted
to polygons while only the vertices of the polygons are mapped through T . Note
the silhouettes near the belly area, in Fig. 2(c), that are clearly C1 discontinu-
ous where they should have been smooth, at common boundaries between two
different tiles.

We seek viable models which means they should be watertight. If each tile is
watertight and closed, the result will be watertight but consisting of numerous
disjoint parts. If the tiles are periodic (and possibly smoothly periodic) between
(xmin, ymin, zmin) and (xmax, ymax, zmax), the interior will be connected and
hence sealed and watertight. However, we still need to close boundary openings
along the boundary of T . This closure is simple to achieve as explained in Sect. 2 -
every tile that is a boundary tile in some direction, in the domain of the trivari-
ate, will be sealed with the plane of that boundary, possibly using a Boolean
set operation. Figure 2(d) shows a watertight porous model that resulted from
applying this boundary sealing operation to the model in Fig. 2(c). As stated in
the previous section, 26 such Boolean operations will be needed.

Alternatively, one can provide a-priori sealed tiles for the proper boundary.
26 such sealed tiles could be provided for all possible neighboring boundaries.
Figure 3 shows a tile consisting of three Borromean rings2, tailored so they can
also be linked to their neighbors. In Fig. 3(a), the interior as well as the primary
umin, umax, vmin, vmax, wmin, wmax boundary tiles are shown, left to right.
Figure 3(b) and (c) shows two views of a (3 × 3 × 3) tiling using these tiles, as
a full watertight and smooth model, using the interior and six boundary tiles
shown in Fig. 3(a).

In Fig. 4, we pave 3D twisted tubes in a domain of a trivariate in the shape of
a knot. The knot surface was created as a regular sweep of a circular cross section
along a 3D knot curve. Then, volumetric Boolean sum was used to convert the

2 https://en.wikipedia.org/wiki/Borromean rings.

https://en.wikipedia.org/wiki/Borromean_rings

114 G. Elber

(a)
(b) (c) (d)

Fig. 2. Six bilinear B-spline surfaces form the tile in (a) that paves the domain of a
trivariate in the shape of a duck. (b) presents the smooth and precise surface-trivar
composition. In (c), the tile is converted to polygons and vertices are mapped through
the trivariate, resulting in C1 discontinuities (note the belly area). The interiors of
the resulting surfaces are exposed, in magenta, in (b) and (c). (d) shows the result of
the boundary sealing via Boolean set operations, creating a watertight model. See also
Fig. 9(a).

(a)

(b) (c)

Fig. 3. One can create a sealed, watertight, model by providing sealed boundary tiles
for the proper boundaries of T . In (a), the interior tile and the umin, umax, vmin, vmax,
wmin, wmax tiles are provided (left to right). (b) and (c) shows two different views of
a (3 × 3 × 3) tiling, using these linked Borromean rings’ tiles.

sweep surface to the trivariate that is shown in Fig. 4(b). The tile in Fig. 4(a)
consists of four bicubic helical B-spline surfaces, constructed using algebraic
sum [21] between a quarter of a helical curve and a circle. In this example, we
pave the tiles mostly in one direction - along the axis of the knot trivariate.
The tile (smoothly) shifts between the four boundary openings, bottom to top,
creating the twisting effect, in the C1 continuous final result shown in Figs. 4(c)
and (d). Figures 4(e) to (h) shows the same trivariate paved using increasingly
higher resolutions, in all three axes.

The complexity of the final model depends on the resolution of the pavements
but also on the complexity of the individual tile. Figure 5 shows an example where

Precise Construction of Micro-structures and Porous Geometry 115

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. A tile consisting of four B-spline helical-looking surfaces (a) is paved (1×1×47)
times in the domain of a B-spline trivariate of degrees (3×3×3) and lengths (4×4×50)
in the shape of a knot (b), resulting in (c) (note one tile is highlighted in cyan). (d)
shows a different view of the same final result, embedded in the transparent knot
trivariate. (e) to (h) present different results using increasingly higher resolutions of
pavements, with one tile highlighted in cyan. (Color figure online)

(a) (b) (c)

Fig. 5. A fairly complex polygonal periodic tile consisting of around 20k polygons in
(a) is paving the domain of a torus trivariate using two different resolutions in (b) and
(c). See also Fig. 9(b).

a fairly complex tile is exploited. The polygonal tile, in Fig. 5(a), is paving the
domain of a torus trivariate in Fig. 5(b) and (c), using two different pavement’s
resolutions.

Because of the capability to conduct trivariate-trivariate composition, a clo-
sure is formed. A recursive application of the composition operator may be per-
formed, and Fig. 6 demonstrates this ability. The wing model, in Fig. 6(a), is

116 G. Elber

(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 6. A recursive application of the composition operator. The trivariate model of
the wing in (a) is trivariate-trivariate composed (8 × 4 × 1) times with the vertical
support trivariate pillar shown in (b). The tiling in the domain of the wing is shown
in (c) and the result of the composition is shown in (d). Now each of these pillars (e),
which is a zoom-in on (d), is, in turn, surface-trivariate composed with a polygonal
surface tile (f). The tiling in the domain of the pillar is shown in (g) and the result
of the composition is shown in (h). Note one tile is highlighted in cyan, in (h). (Color
figure online)

Precise Construction of Micro-structures and Porous Geometry 117

constructed as a trivariate ruled volume. The supporting pillar structure, in
Fig. 6(b), is another trivariate volume that is constructed by lofting along a set
of square surfaces of different sizes. By composing the support pillar trivariate
tile into the wing domain (8×4×1) times (wing’s domain is shown in Fig. 6(c)),
32 deformed pillars, shown in Fig. 6(d), result. Note the 32 composed pillars are
all differently shaped trivariates. In Fig. 6(e), a zoom-in on one of these pillars is
shown, only to recursively compose the polygonal surface tile, in Fig. 6(f), in the
pillar trivariate (8×4×4) times (pillar’s domain is shown in Fig. 6(g)). The final,
two-levels composition, result is shown in Fig. 6(h), with one tile highlighted in
cyan.

This surface-trivariate (and trivariate-trivariate) approach can also serve to
handle trimmed geometry. Herein, the tensor product geometry undergoes com-
position whereas the trimming information is simply propagated along, as the
domain(s) of the surface(s) (or trivariate(s)) in the tile is (are) not affected.
Figure 7 shows one example where three concentric trimmed through-cylinder
B-spline surfaces are serving together as a tile that is composed (4×4×2) times
in the mapping trivariate.

(a) (b) (c) (d)

Fig. 7. Three concentric trimmed through-cylinder surfaces are serving as a tile (a)
that is composed (4 × 4 × 2) times in the trivariate shown in (b). The result is shown
from two somewhat different views, in (c) and (d).

We now present another example that exploits surface-surface and surface-
trivariate compositions, in two composition levels, toward the precise modeling of
composite materials. The domain of the B-spline duck surface shown in Fig. 8(a)
is tiled in Fig. 8(b) with parallel strip surfaces that are composed with the duck
surface to yield Fig. 8(c). The strip surface in Fig. 8(c) is then offset a bit to yield
some real thickness and a trivariate strip is formed as a ruled volume between
the original strip and its offset, and is shown in Fig. 8(d). Finally, the trivariate
strip, from Fig. 8(d), is populated with tiles in the shape of stitches to model the
internal stitched fibers, as is shown in Fig. 8(e) and (f) (a zoom-in).

Finally, and as a testimony for the viability of the constructed models and
their watertightness, Fig. 9 presents two of the presented examples 3D-printed
using additive manufacturing.

While in this work we focused on surface-trivariate and trivariate-trivariate
composition, we like to add that curve-trivariate composition can also play a

118 G. Elber

(a) (b)

(c) (d)

(e) (f)

Fig. 8. A two level composition. The periodic strip in (b) is composed into the duck
surface in (a) to yield (c). By offsetting the strip surface in (c) and ruling a volume
between the strip and its offset, (d) is formed. The trivariate strip in (d) is made
transparent (to enable the visibility of its interior) and then composed with a stitches
like tile as a second composition, yielding (e) (and a zoom-in, in (f), with one tile
enlarged), modeling a composite strip with detailed stitched fibers.

role in the placement of fibers, in the modeling of composites. Curves can be
embedded in the domain of the mapping trivariate, T , only to be mapped to
Euclidean space via curve-trivariate composition. Because T is unlikely to be
an isometric mapping, one might be required to compensate for the distances
between adjacent curves in the domain of T so the mapped curves are more

Precise Construction of Micro-structures and Porous Geometry 119

(a) (b)

Fig. 9. A 3D printed porous duck (a) from Fig. 2 and a porous torus (b) from Fig. 5.
Printing courtesy of Stratasys Israel.

equally spaced in Euclidean space. Figure 10 shows one such example, where
helical curves are mapped through T to yield the Euclidean space curves. The
result is a set of univariates, through which, one can, for example, sweep any
cross section to precisely yield fibers of that cross section.

(a) (b)

Fig. 10. Two sets of concentric helical curves are embedded in the domain of the
trivariate (a) only to be curve-trivariate composed to yield the result shown in (b), in
a trivariate duck model.

We have already shown that trivariate-trivariate composition is viable. One
can also use trivariate-trivariate composition to construct volumetric micro-
structures toward Isogeometric Analysis (IGA). Figure 11 shows two structures
of trivariate B-spline functions, created using the presented trivariate-trivariate
composition. Each trivariate in Fig. 11 is differently colored.

Finally, Fig. 12 shows a small-deformation linear elasticity analysis of an
isotropic material (young modulus E = 1 and Poisson coefficient nu = 0.3),

120 G. Elber

(a) (b)

Fig. 11. Two examples of micro-structures consisting of trivariate B-spline functions
(each trivariate in a different color) that were created using trivariate-trivariate com-
position, possibly toward Isogeometric Analysis (IGA). In (a), 168 trivariate Bézier
elements of orders (4, 4, 7) are shown and in (b), 336 trivariate Bézier elements of
orders (5, 5, 9) are presented. (Color figure online)

Fig. 12. The result of elasticity isogeometric analysis for the micro-structures from
Fig. 11(b), using the igatools library [20].

using the igatools library [20], for the micro-structure in Fig. 11(b). The bound-
ary conditions of the problem include a lower internal ring that is completely
blocked and a Dirichlet boundary condition that is applied for the top faces
of the upper external ring, that is moved vertically a quantity 0.5, but cannot
move horizontally. This IGA problem was solved in less than two minutes, on a
modern PC workstation.

4 Discussion, Limitations, and Future Work

The complexity of the result deserves some considerations. The composition
operations in Fig. 1 employed a tile that consists of a cubic curve, a cubic by

Precise Construction of Micro-structures and Porous Geometry 121

quadratic surface, and a trivariate of degrees (3, 3, 2). The mapping function was
a trivariate Bézier of degrees (1, 1, 3).

A direct mapping of control points will ends up with the same degrees as
the input. On the other hand, the smooth result, of Fig. 1(d), of the precise
composition mapping, resulted in deformed curves of degree 15, deform surfaces
of degrees (15, 10) and deformed trivariates of degrees (15, 15, 10).

Recall Eq. (1). Given a trivariate T of degrees (n1, n2, n3) and a surface S of
degrees (m1,m2), the degrees of the composition surface T (S) are

(n1m1 + n2m1 + n3m1, n1m2 + n2m2 + n3m2). (7)

For the surface case of Fig. 1, Eq. (7) indeed yields the degrees of

(1 × 3 + 1 × 3 + 3 × 3, 1 × 2 + 1 × 2 + 3 × 2) = (15, 10).

Clearly, the degrees can be higher and as a second example, in Fig. 4, the
tile consists of four surfaces of degrees (3 × 3), and the trivariate knot is of
degrees (3×3×3). The composed surface elements are of degrees (27×27) (and
lengths (109×163)). That said, and beyond the computation overhead that these
high degrees poses, we have detected no instability difficulties for degrees below
one hundred, including with rational forms. Rational input will yield rational
output but in the same degrees as the polynomials case. Figure 13 exemplifies
this observed stability. Given a unit cube polynomial trivariate, T , of a tri-order
d and a rational cylinder surface of unit size, S, of bi-order d, we examined the
error in the circularity of T (S) (measured as the distance deviation from the
axis of the cylinder) as a function of d. As can be seen in the figure, the error
remains very small and its growth is approximately linear with the orders.

Fig. 13. Given a unit cube polynomial trivariate, T , of a tri-order d and a rational
cylinder surface of unit size, S, of bi-order d, the error in the circularity of T (S) is
examined and shown in red as a function of d. Also shown is the bi-order of T (S) in
blue. (Color figure online)

Since the geometry that is synthesized in this work is typically deformed,
the need for precise rational circular arcs is diminished. While we do support

122 G. Elber

compositions of rational forms, in all other presented examples in this work,
polynomial forms were used.

All the micro-structure models presented in this work were created in seconds
to minutes. Measured on an 2.8 GHz i7 laptop running Windows 10, the example
in Fig. 2 synthesized 256 = (4×4×16) tiles (each consisting of 6 bilinear surfaces)
in a little over a minute. The example in Fig. 4(c) synthesized 47 tiles (each
consisting of 4 helical surfaces) in around 20 s. Finally, the example in Fig. 11(b)
synthesized 48 tiles (each consisting of 7 trivariates, 336 Bézier elements in all)
in around 5 s.

Both inputs, the tile and/or the mapping trivariate, T , can be singular, in
which case the constructed micro-structure is likely to be singular as well. How-
ever, verifying the regularity of either the tile or T is fairly simple by computing
and bounding the magnitude of their Jacobian. For T , this amounts to the
(spline) product of:

|J | =
〈

∂T
∂x

× ∂T
∂y

,
∂T
∂z

〉
,

and verifying that |J | never vanish, for example, by verifying that all the coeffi-
cients of |J | are of the same sign.

In all examples presented and due to T , different local scale factors are
applied to different tiles in the output geometry. This clear limitation stems
from the fact that the deformation trivariate function is rarely isometric. One
can only establish bounds on the different scale factors, by computing the field
of the first fundamental form [2] of the deforming trivariate, as spline functions,
and bound their range.

Because every tile is likely to be deformed a bit differently from other tiles,
if some local properties are to be preserved, some extra measures must be
taken into considerations. Consider the example in Fig. 8. While the original
tile could have been synthesized using a highly accurate circular cross section,
the mapped/deformed result in Fig. 8(f) is likely to violate that circularity. How-
ever, one can deform an axial curve of the tile’s circular geometry, using curve-
trivariate composition (i.e. Fig. 10), only to sweep a circular cross section through
the deform axial curve, using a regular sweep surface operator. Here, the result
will be stitches that are circular as precise as desired (and allowed by the sweep
operation).

In this work, we uniformly paved tiles in the domain of the mapping FFD.
However, and as already stated, especially for B-spline FFDs, this can result in
unequally stretched tiles. While the notion of arc-length is difficult to extend
from curves to surfaces and trivariates, one can still devise a scheme to try to
equalize the stretch in the mapping T , via a domain reparametrization, before
the paving process takes place. Indeed, the internal parameterization of T can
have a grand affect on the distribution of the tiles in the structure and is a degree
of freeform to further investigate and employ.

Having fairly complex tiles, paving and mapping them numerous times can
require an intense amount of memory (and computing power). While unavoid-
able at times, one can consider a lazy synthesis of the geometry on the fly and

Precise Construction of Micro-structures and Porous Geometry 123

as needed in real time, possibly with the help of parallel computing. Further,
one can take advantage of the inherent hierarchy and given local geometric oper-
ations (like slicing), converge rapidly and process/synthesize only these micro-
structure’s tiles that are active and affect the local geometry (intersect with the
slicing plane). Similarly, if tiles are (trimmed) freeform shapes, their tessellation
into polygons might also be done on the fly and by demand, again with the
possible help of GPUs or parallel computing. This potential difficulty of large
memory and computing needs is likely to play a role also in analysis of porous
geometry, while part of the difficulties in the analysis might be alleviated via
homogenization of the structure [3].

In all examples, by definition, the deforming function was a tensor product
trivariates and the tiles were cuboids aligned along the main axes, in a cube-like
topology. In [16], use of trimmed trivariates was already proposed and herein, in
order to support T mapping using trimmed trivariates, tiles that intersect with
the trimming domain must be properly pruned or sealed. Further, considering
an interior trimming boundary in some volumetric model, between two trimmed
trivariates must also be addressed, following [16]. Conceptually, there might be
no need to prune tiles that are completely inside the volumetric model, even when
they cross interior trimming boundaries, while matching the boundaries of the
tiles along these interior trimming boundaries will be required. Proper, whatever
that means, treatment of tiles in such a trimmed volumetric environment is still
an open question, including the proper management of continuity across interior
trimming surfaces.

Non-tensor product FFDs were already proposed, for example, in [4], as
Extended FFDs. Use of Extended FFDs or other mappings, instead of the tensor
product trivariates employed herein, will allow one to support micro-structures
that are not necessarily of cuboid topology. Further, the tiles themselves are not
confined to cube-like topology, and any tile that periodically paves 3-space can be
used. Examples include hexagonal prisms or tetrahedra tiles, possibly embedded
in a large hexagonal prism or tetrahedra deformation function. Alternatives to
tensor product trivariates should be explored as mapping function and those can
include splines over general triangulations or box-splines. Moreover, any tiling
of 3-space can be used and semi-regular tiling, where two (or more) differently
shaped tiles are employed together, is another example.

The presented micro-structures’ construction scheme can be further refined
and improved in additional directions. Attributes like colors or texture can be
mapped to the resulting geometry where the attributes’ specifications can either
be local, coming from the tile itself and repeated for all tiles, or be global as a
specification over the mapping trivariate.

Herein, the same tile was used throughout the pavement of a deforming
trivariate. Alternatively, one can select each tile out of a (predetermined or cre-
ated on the fly) random (set of) tile, resulting in a randomly looking porous
geometry. Further, if certain physical constraints apply, such as local stress
fields, the synthesized tiles can obey such constraints and locally adapt their
shape to optimally satisfy these constraints while preserving continuity condi-

124 G. Elber

tions between tiles. The preservation of continuity can be performed incremen-
tally and on the fly, by using, for random tile at indices (ijk), the boundary
conditions of previously constructed random tiles (i − 1, j, k), (i, j − 1, k), and
(i, j, k − 1), if any, along their shared boundaries.

5 Conclusions

In this work, we have presented a purely geometric modeling constructor for
the synthesis of complex, porous or micro-structure objects, by drawing from
FFD techniques, possibly recursively. We have presented constructors using tiles
that are either polygonal or spline based, as curves or (trimmed) surfaces and
(trimmed) trivariates. If the input geometry is precise in the form of B-spline
curves, (trimmed) surfaces, or (trimmed) trivariates, the mapped output will
be precise as well, to within machine precision, also in the same form of B-
spline shapes, albeit typically of higher degrees. The successful utilization of the
presented micro-structure modeling constructor in application areas such as bio-
engineering, mission critical engineering, or alternatively jewelry design, a few
fields we already foresee as viable, or other areas, is yet to be seen.

All the implementation, include source code, is available as part of the IRIT
geometric modeling environment (http://www.cs.technion.ac.il/∼irit). Further,
most micro-structure examples presented in this work are available, as obj (for
polygons) and iges (for surfaces) files, in http://www.cs.technion.ac.il/∼gershon/
site/modeling.html.

Acknowledgments. This research was supported in part by the ISRAEL SCIENCE
FOUNDATION (grant No. 278/13). I also like to thank Boris van Sosin for his help in
implementing the trivariate-trivariate composition operator.

The IGA of the model in Fig. 12 has been performed with the help of Pablo Antolin
(EPFL Lausanne), Annalisa Buffa (EPFL Lausanne and IMATI-CNR Pavia), Massi-
miliano Martinelli (IMATI-CNR Pavia); Giancarlo Sangalli (University of Pavia and
IMATI-CNR Pavia)

References

1. Armillotta, A., Pelzer, R.: Modeling of porous structures for rapid prototyping of
tissue engineering scaffolds. Int. J. Adv. Manuf. Technol. 39, 501–511 (2008)

2. Carmo, M.P.D.: Differntial Geometry of Curves and Surfaces. Prentice-Hall, Engle-
wood Cliffs (1976)

3. Chen, J., Shapiro, V.: Optimization of continuous heterogeneous models. In: Pasko,
A., Adzhiev, V., Comninos, P. (eds.) Heterogeneous Objects Modelling and Appli-
cations. LNCS, vol. 4889, pp. 193–213. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68443-5 8

4. Coquillart, S.: Extended free-form deformation: a sculpturing tool for 3D geometric
modeling. In: Proceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques, vol. 24, pp. 187–196. ACM Press, August 1990

http://www.cs.technion.ac.il/~irit
http://www.cs.technion.ac.il/~gershon/site/modeling.html
http://www.cs.technion.ac.il/~gershon/site/modeling.html
http://dx.doi.org/10.1007/978-3-540-68443-5_8
http://dx.doi.org/10.1007/978-3-540-68443-5_8

Precise Construction of Micro-structures and Porous Geometry 125

5. Coquillart, S., Jancne, P.: Animated free-form deformation: an interactive ani-
mation technique. In: Proceedings of the 18th Annual Conference on Computer
Graphics and Interactive Techniques, vol. 25, pp. 23–26. ACM Press, July 1991

6. DeRose, T.D., Goldman, R.N., Hagen, H., Mann, S.: Functional composition algo-
rithms via blossoming. ACM Trans. Graph. 12(2), 113–135 (1993)

7. Elber, G.: Free form surface analysis using a hybrid of symbolic and numerical
computation. Ph.D. thesis, University of Utah (1992)

8. Elber, G.: Geometric deformation-displacement maps. In: The Tenth Pacific
Graphics, pp. 156–165, October 2002

9. Elber, G.: Geometric texture modeling. IEEE Comput. Graph. Appl. 25(4), 66–76
(2005)

10. Elber, G.: Constructing porous geometry. In: FASE 2016, June 2016
11. Ellens, M.S., Cohen, E.: An approach to C−1 and C0 feature lines. In: Mathemat-

ical Methods for Curves and Surfaces, pp. 121–132 (1995)
12. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. Academic

Press Professional, Boston (1993)
13. Farouki, R.T., Rajan, V.T.: Algorithms for polynomials in Bernstein form. Com-

put. Aided Geom. Des. 5(1), 1–26 (1988)
14. Griessmair, J., Purgathofer, W.: Deformation of solids with trivariate B-splines.

Eurograpghic 89, 137–148 (1989)
15. MacCracken, R., Joy, K.I.: Free-form deformations with lattices of arbitrary topol-

ogy. In: Proceedings of the 23rd Annual Conference on Computer Graphics and
Interactive Techniques, pp. 181–188. ACM Press (1996)

16. Massarwi, F., Elber, G.: A B-spline based framework for volumetric object mod-
eling. Comput. Aided Des. 78, 36–47 (2016)

17. Morken, K.: Some identities for products and degree raising of splines. Constr.
Approx. 7(1), 195–208 (1991)

18. Paik, K.L.: Trivariate B-splines. MSc. Department of Computer Science, University
of Utah (1992)

19. Pasko, A., Fryazinov, O., Vilbrandt, T., Fayolle, P.-A., Adzhiev, V.: Procedural
function-based modelling of volumetric microstructures. Graph. Models 73(5),
165–181 (2011)

20. Pauletti, M.S., Martinelli, M., Cavallini, N., Antolin, P.: Igatools: an isogeometric
analysis library. SIAM J. Sci. Comput. 37(4), 465–496 (2015)

21. Piegl, L., Tiller, W.: The NURBS Book. Springer, Heidelberg (1997)
22. Porumbescu, S.D., Budge, B., Feng, L., Joy, K.I.: Shell maps. ACM Trans. Graph.

24(3), 626–633 (2005)
23. Schein, S., Elber, G.: Discontinuous free form deformations. In: Proceedings of

Pacific Graphics 2004, pp. 227–236 (2004)
24. Schroeder, C., Regli, W.C., Shokoufandeh, A., Sun, W.: Computer-aided design of

porous artifacts. Comput. Aided Des. 37, 339–353 (2005)
25. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models.

Comput. Graph. 20, 151–160 (1986)
26. Xiao, F., Yin, X.: Geometry models of porous media based on Voronoi tessellations

and their porosity-permeability relations. Comput. Math. Appl. 72, 328–348 (2016)

Partially Nested Hierarchical Refinement
of Bivariate Tensor-Product Splines with

Highest Order Smoothness

Nora Engleitner, Bert Jüttler(B), and Urška Zore

Institute of Applied Geometry, Johannes Kepler University, Linz, Austria
{nora.engleitner,bert.juettler}@jku.at

Abstract. The established construction of hierarchical B-splines starts
from a given sequence of nested spline spaces. In this paper we general-
ize this approach to sequences formed by spaces that are only partially
nested. This enables us to choose from a greater variety of refinement
options while constructing the underlying grid. We identify assumptions
that allow to define a hierarchical spline basis, to establish a truncation
mechanism, and to derive a completeness result. Finally, we present an
application to surface approximation that demonstrates the potential of
the proposed generalization.

Keywords: Tensor-product B-splines · Hierarchical B-splines · Adap-
tive refinement

1 Introduction

Hierarchical tensor-product B-splines are one of the major approaches to per-
form local refinement in geometric modeling and isogeometric analysis, besides
splines defined by control meshes with T-junctions (T-splines), locally refined
(LR) splines and polynomial splines over hierarchical T-meshes (PHT-splines).
See [3,16–18] and the references therein for more information on the latter three.

Hierarchical spline refinement can be traced back to the work of Forsey and
Bartels [6] on surface design using locally defined control meshes. Based on a
selection mechanism, a system of basis functions spanning the resulting hier-
archical spline space was established by Kraft in his PhD thesis [14]. Another
basis, which consists of truncated hierarchical B-splines, possesses improved prop-
erties (increased locality, partition of unity and strong stability) and has been
established more recently [8]. Its properties regarding stability, completeness and
approximation power have been analyzed in greater detail [9,19,22].

Hierarchical B-splines have found numerous applications due to their
good mathematical properties. They were used for surface reconstruction in
Computer-Aided Design [10,12]. Additionally, they were employed for perform-
ing numerical simulations using the powerful framework of isogeometric analysis
[1,2,15,20]. The recent article [7] discusses the potential of the truncated basis
for geometric design and isogeometric analysis.
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 126–144, 2017.
https://doi.org/10.1007/978-3-319-67885-6_7

Partially Nested Hierarchical Spline Refinement 127

In addition to the work on applications, several authors proposed various
extensions and generalizations of the hierarchical construction. These include
extensions to Powell-Sabin splines [21], box splines and doubly hierarchical
splines as instances of more general generating systems [24], B-splines on tri-
angulations [11], hierarchical T-splines [5], and functions defined by subdivision
algorithms [23,25].

The established construction of hierarchical B-splines starts from a given
sequence of nested spline spaces. As a consequence, if the refinement process
inserts knot lines at some level, then they will automatically be present at all
higher levels, even if they are not needed in all parts of the domain. This may
lead to an unnecessary increase of the number of degrees of freedom. It should
be noted that this limitation is not present when using alternative constructions
such as T-splines, LR splines or PHT-splines.

In order to overcome the limitation caused by the sequential nature of hier-
archical B-spline refinement, while maintaining their good mathematical prop-
erties, we extend the construction to sequences formed by spaces that are only
partially nested. The proposed generalization enables us to choose from a greater
variety of refinement options while constructing the underlying grid. This addi-
tional flexibility is potentially useful when designing surfaces that possess creases
or similar features, and a related technique has been developed in the context
of subdivision surface modeling [13]. It might also open new perspectives for
adaptivity in isogeometric analysis by providing the opportunity to use different
refinement techniques (such as h- versus p-refinement) in different parts of the
computational domain.

In order to keep the presentation simple, in this paper we limit ourselves
to the discussion of partially nested refinement for bivariate spline spaces of
uniform degrees. We identify a number of assumptions that enable the definition
of a hierarchical spline basis, of a truncation operation to obtain the partition
of unity property, and the derivation of a completeness result.

The remainder of the paper consists of seven sections. We describe the frame-
work of our construction in the next section and establish a hierarchical spline
basis in Sect. 3. We then derive a characterization of the space spanned by the
basis and adapt the definition of the truncation operation to the non-nested
setting in the next two sections. The completeness properties of the basis are
analyzed in Sect. 6. We then present an application to least-squares approxima-
tion that demonstrates the power of the new construction before concluding the
paper with suggestions for future work.

2 Preliminaries

We consider a finite sequence of bivariate tensor-product spline spaces

V � = spanB�, � = 1, . . . , N,

which are spanned by spline bases B�. The upper index � will be called the level.
Each of the spline spaces is defined on the open unit square (0, 1)2.

128 N. Engleitner et al.

The spline bases B� consist of tensor-product B-splines that are defined by
two open knot vectors with boundary knots 0 and 1. We consider a uniform
polynomial degree p = (px, py) and use only single knots except for the boundary
knots that have multiplicity px + 1 and py + 1, respectively. The supports of the
basis functions are axis-aligned boxes in (0, 1)2.

We use the subspace relation to restrict the natural ordering of the levels to
a partial ordering. We say that level k precedes level �, denoted by k ≺ �, if k is
less than � and V k is a subspace of V �, i.e.

k ≺ � ⇔ k < � and V k ⊆ V �. (1)

The spaces are not necessarily nested. If they are, however, then the finer space
is assumed to have the higher level, i.e.

V k ⊂ V � ⇒ k ≺ �. (2)

Any finite sequence of spline spaces can be re-ordered such that this condition
is satisfied.

We present an example that will be used throughout the paper to illustrate
the discussion of notions and results.

Example. We consider C1-smooth biquadratic tensor-product spline spaces
(px = py = 2) on dyadically refined knots,

Dr,s = S2(0, 0, 0,
1
2r

, . . . ,
2r − 1

2r
, 1, 1, 1) ⊗ S2(0, 0, 0,

1
2s

, . . . ,
2s − 1

2s
, 1, 1, 1),

where S2 denotes the univariate spline space defined by a given knot sequence,
with positive integers r, s. Among them we use the spaces

V 1 = D3,3, V 2 = D4,3, V 3 = D3,4,

V 4 = V 5 = D4,4, V 6 = D5,4, V 7 = D4,6, (3)

which define the partial ordering

2 6
≺ ≺ ≺

1 4 ≺ 5
≺ ≺ ≺

3 7

(4)

of the seven levels. ♦

The functions in all spline spaces V � are Cs-smooth on (0, 1)2, where the
order of smoothness is given by

s = (px − 1, py − 1). (5)

More precisely, they possess continuous partial derivatives of order px − 1 and
py − 1 with respect to x and y, respectively. We shall denote the set of all
functions on an open subset X ⊆ (0, 1)2 with this smoothness as Cs(X).

Partially Nested Hierarchical Spline Refinement 129

In addition to the spline spaces we consider an associated sequence of open
sets

π� ⊆ (0, 1)2, � = 1, . . . , N,

which will be called patches. We assume that these are mutually disjoint,

π� ∩ πk 	= ∅ ⇒ � = k.

We use the closures π� of the patches to define the domain

Ω = int
(N⋃

�=1

π�

)
⊆ (0, 1)2.

The part of the boundary of each patch that is shared with patches of a lower
level,

Γ � =
�−1⋃
k=1

πk ∩ π�,

is called the constraining boundary of the patch π�. Note that the constraining
boundary may be empty. In particular we have Γ 1 = ∅.

Example. We consider again the spaces (3), which are defined by the dyadi-
cally refined knot vectors. Figure 1a visualizes an associated sequence of patches,
which defines a subdivision of the domain Ω. In this case, the domain is also
the unit square. Additionally, Fig. 1b shows the knot lines of the spline spaces
within each patch.

♦

(a) (b)

Fig. 1. The subdivision of the domain into patches (a). The numbers (r, s) in each
patch specify the dyadically refined knot sequences that define the associated spline
spaces. The corresponding partially nested hierarchical mesh (b).

130 N. Engleitner et al.

We conclude this section by defining the partially nested hierarchical spline
space

H = {s ∈ Cs(Ω) : s|π� ∈ V �|π� ∀� = 1, . . . , N}. (6)

It consists of all the Cs-smooth functions with the property that their restric-
tions s|π� to the patches are contained in the associated spline spaces V �|π� . In
particular, the space of tensor-product polynomials of degree p, restricted to the
domain Ω, is a subspace of H.

3 Basis Functions

We define the basis by a selection procedure, which generalizes the definition of
Kraft’s basis for hierarchical B-splines. This procedure selects elements of each
spline basis B�. Among all B-splines that do not vanish on the patch π�, we
select the ones that take zero values on the constraining boundary Γ � of that
patch, i.e.,

K� = {β� ∈ B� : β�|π� 	= 0 and β�|Γ � = 0}.

Each set K� of selected functions defines the shadow of the associated patch π�,

π̂� = suppK� =
⋃

β�∈K�

suppβ�.

We collect the selected B-splines of all levels into the set

K =
N⋃

�=1

K�. (7)

We will denote this set of functions as PNHB-splines, since it consists of hierar-
chical B-splines defined by a partially nested sequence of spline spaces.

Example. We consider the PNHB-splines on the subdivision of the domain
which was shown in Fig. 1a. The selected functions for the levels 2 and 6 are
visualized in Fig. 2a and b.

The constraining boundary of π2 consists of the line segment on the border
with π1. The set K2 consists of 30 tensor-product B-splines (note the Greville
points on the domain boundary). The shadow defined by them extends into the
patches π4 and π7, covering π4 fully and π7 partially.

The constraining boundary of π6 consists of three line segments. The set
K6 contains 144 tensor-product B-splines. The shadow defined by them is equal
to the patch, since the only non-constraining patch boundary is located on the
boundary of the domain Ω. ♦

The following condition is essential for proving the linear independence of
the PNHB-splines:

Partially Nested Hierarchical Spline Refinement 131

(a) (b)

Fig. 2. Constraining boundaries (dark blue line segments), shadows (blue and light
blue) and selected basis functions (represented by their Greville points, which are
shown as red dots) of the patches (shown in blue) π2 (a) and π6 (b) for the domain
subdivision shown in Fig. 1. Patches of lower levels are shown in green. For the latter
patch, the shadow is equal to the patch itself. (Color figure online)

Assumption. If the shadow π̂� of the patch of level � intersects another patch
πk of a different level k, then the first level is lower than the second one,

π̂� ∩ πk 	= ∅ ⇒ � ≤ k. (SOA)

This will be called the Shadow Ordering Assumption (SOA).

We will use this assumption in the remainder of the paper. Since we will make
several further assumptions throughout the paper, we provide Table 1 containing
their names and acronyms, in order to guide the reader.

Table 1. Assumptions and acronyms.

Name Acronym Defined on page

Shadow Ordering Assumption SOA 5

Shadow Compatibility Assumption SCA 7

Constraining Boundary Alignment CBA 8

Full Boundary Alignment FBA 14

Support Intersection Condition SIC 15

SOA enables us to obtain our first result:

Theorem 1. The PNHB-splines are linearly independent on Ω if SOA holds.

Proof. The proof of linear independence follows an idea originally formulated
in [14], see also [8]. However, we will repeat it here in order to keep this paper

132 N. Engleitner et al.

self-contained and in order to adapt it to the current setting. We need to prove
the implication

N∑
�=1

∑
β�∈K�

dβ�β� = 0 ⇒ dβ� = 0 ∀β� ∈ K� ∀� = 1, . . . , N. (8)

We first restrict the sum in (8) to π1. Due to SOA only functions β1 ∈ K1 are
non-zero on π1. The local linear independence of the B-splines B1 gives dβ1 = 0
for all β1 ∈ K1. This implies that the sum in (8) involves only functions with
� > 1.

We now consider the restriction of the sum to π2. Again, according to SOA
only the functions β2 ∈ K2 take non-zero values there. As the B-splines in B2

are locally linearly independent, we conclude that dβ2 = 0 for all β2 ∈ K2. By
repeatedly using the above argument, we eventually exhaust all the terms in (8),
which concludes the proof of linear independence. ��

While the selection mechanism and SOA guarantee linear independence, they
do not ensure that the spline space spanned by PNHB-splines contains a class
of functions that guarantees certain approximation properties, such as tensor-
product polynomials of degree p. This is shown in the following example:

Example. We consider the two biquadratic spline spaces

V 1 = D3,0, V 2 = D1,1 (9)

and the two patches

π1 = (0,
1
2
) × (0, 1), π2 = (

1
2
, 1) × (0, 1). (10)

The first set K1 of selected functions consists of 18 tensor-product B-splines and
defines the shadow π̂1 = (0, 3

4) × (0, 1). The second set K2 of selected functions
contains only 4 functions. The functions in K1 ∪ K2 are linearly independent
but cannot represent any biquadratic function on Ω. This can be seen easily by
analyzing the space which is spanned by the 4 functions in K2 and noting that
only these functions take non-zero values on (34 , 1) × (0, 1). ♦

4 The Spline Space

Consequently, we need to introduce further assumptions. We replace SOA by a
stronger condition, which will be used in the remainder of this paper.

Assumption. If the shadow π̂� of the patch of level � intersects another patch
πk of a different level k, then the first level precedes the second one,

π̂� ∩ πk 	= ∅ ⇒ � = k or � ≺ k. (SCA)

This will be called the Shadow Compatibility Assumption (SCA).

Partially Nested Hierarchical Spline Refinement 133

In other words, the shadow π̂� intersects only patches that correspond to
spaces containing V � as a subspace.

Example. We consider again the situation shown in Figs. 1 and 2. The shadow
π̂2 intersects π4 and π7. SCA is satisfied since 2 ≺ 4 and 2 ≺ 7, see (4). ♦

This condition obviously implies (SOA). However, it turns out that SCA does
not yet suffice to prove that the space spanned by the PNHB-splines contains a
class of functions, which would guarantee certain approximation properties (e.g.
polynomials). We need to impose a condition on the location of the constraining
boundaries.

Assumption. For each level �, the constraining boundary Γ � of the patch π�

is aligned with the knot lines of the spline space V �. This will be called the
Constraining Boundary Alignment (CBA) condition.

More precisely, the constraining boundary Γ � is either empty or is formed by
horizontal segments, vertical segments and isolated vertices, where not all these
features need to be present. We assume that the segments are all located on knot
lines of V � and that the vertices are intersections of knot lines.

We will use both assumptions CBA and SCA in the remainder of the paper.
Under these assumptions we can characterize the spline space that is generated
by the PNHB-splines:

Theorem 2. The PNHB-splines span the partially nested hierarchical spline
space H if both SCA and CBA are satisfied.

We will need a technical lemma to prove this result. This lemma uses the
notion of homogeneous boundary conditions of order s. A function f is said to
satisfy these conditions at a point (x, y) if (ϑf)(x, y) = 0, where the operator

ϑ =
(∂i

∂xi

∂j

∂yj

)
i=0,...,sx;j=0,...,sy

transforms a function into a matrix of dimension p that contains all the partial
derivatives up to order s. (Note here that 0 denotes the null matrix of dimen-
sion p, not a scalar.) In particular, this operator contains the evaluation of its
argument as its first element.

Lemma 1. The selected functions of level � span the subspace

spanK�|π� = {f ∈ V � : (ϑf)|Γ � = 0}|π�

of the associated spline space V �|π� on the patch π�, which consists of the restric-
tions f |π� of all functions f ∈ V � that satisfy homogeneous boundary conditions
of order s on the constraining boundary Γ �, provided that CBA holds.

134 N. Engleitner et al.

Proof. First, we show that all selected functions of level � satisfy the homoge-
neous boundary conditions of order s on the constraining boundary Γ �.

Consider a selected tensor-product B-spline β� ∈ K�. None of the points
(x, y) ∈ Γ � of the constraining boundary belongs to the interior of the support
suppβ�. This point thus either belongs to the support’s boundary, or it is even
farther away. The tensor-product B-spline β� satisfies homogeneous boundary
conditions of order s at (x, y) in both cases, since it is Cs-smooth.

Second, we show that the restriction f |π� of any function f ∈ V �, which
satisfies the homogeneous boundary conditions of order s on the constraining
boundary Γ �, can be represented as a linear combination of the selected functions
K�. Obviously, the restriction possesses a representation of the form

f(x) =
∑

β�∈B�

suppβ�∩π� �=∅

cβ�β�(x), x ∈ π�. (11)

We consider a function β� ∈ B� \ K� that does not vanish on π�. There exists
an isolated vertex v or a (horizontal or vertical) segment L of the constraining
boundary such that β� takes non-zero values there.

In the case of an isolated vertex, the matrix (ϑf)(v) depends on px × py

spline coefficients due to CBA, and one of them is cβ� . The matrix has the same
dimensions, cf. (5), and the linear mapping that transforms the spline coefficients
into the matrix elements has full rank, simply because the spline function can
take any values of (ϑf)(v). Thus we conclude that cβ� = 0 if (ϑf)(v) = 0.

In the case of a segment L we choose a (sub-) segment L′ which is contained
in only one knot span, and consider the tensor-product Bernstein–Bézier (BB)
representation of f with respect to a sufficiently small axis-aligned box in π� with
this segment on its boundary. More precisely, this box is chosen such that it is
simultaneously located within π� and in one of the tensor-product knot spans
of V �.

The elements of the matrix (ϑf)|L′ depend on the px + 1 columns (each of
height py) of adjacent BB coefficients for a horizontal segment, and on the py +1
rows (each of width px) of adjacent BB coefficients for a vertical segment. The
matrix is equal to the null matrix on L′ if and only if all these BB coefficients
are equal to zero.

Due to CBA, these BB coefficients depend on the same number of spline
coefficients, and cβ� is one of them. The linear mapping that transforms the
spline coefficients into the considered BB coefficients has full rank, since any
tensor-product polynomial of degree p is contained in the spline space V �. Thus
we conclude that cβ� = 0 if (ϑf)|L′ = 0. ��

We now proceed with the proof of the Theorem:

Proof (Theorem 2). Given a function f ∈ H, we consider its restriction to the
patch of level 1 and find a representation

f(x) =
∑

β1∈K1

cβ1β1(x), x ∈ π1. (12)

Partially Nested Hierarchical Spline Refinement 135

It exists since f |π1 ∈ V |π1 according to the definition of H and because the
associated constraining boundary is empty. We use this local representation to
derive the globally defined level 1 representation

f1(x) =
∑

β1∈K1

cβ1β1(x), x ∈ Ω.

We now proceed by iterating over the remaining levels � = 2, . . . , N . In each
level, we consider the restriction of

f −
�−1∑
k=1

fk

to the patch π� and its local representation

f(x) −
�−1∑
k=1

fk(x) =
∑

β�∈K�

cβ�β�(x), x ∈ π�, (13)

which leads to the globally defined level � representation

f �(x) =
∑

β�∈K�

cβ�β�(x), x ∈ Ω. (14)

The existence of a local representation (13) with respect to the full basis B� is
guaranteed by f |π� ∈ V |π� according to the definition of H, and by using SCA.
This confirms that the function on the left-hand side of (13) is contained in
V �|π� . Additionally, we use the fact that

f(x) −
�−1∑
j=1

f j(x) = 0, x ∈ πk, k < �, (15)

which follows immediately from the definition of f j . Combining this observation
with the Cs-smoothness of f gives the homogeneous boundary conditions of order
s on the constraining boundary Γ �. Finally, these conditions enable us to apply
Lemma 1, which confirms that only the selected functions K� ⊆ B� are needed
in (13).

We conclude the proof by noting that (15) is satisfied since Eqs. (13) and
(14) imply

f(x) −
�−1∑
k=1

fk(x) = f �(x), x ∈ π�,

while SOA (which is implied by SCA) means that increasing the level � does not
affect the values on patches of lower levels. Thus, we finally choose � = N + 1 in
(15) and arrive at

f(x) =
N∑

k=1

fk(x), x ∈ Ω.

��

136 N. Engleitner et al.

In particular, this proves that every tensor-product polynomial of degree p
can be represented as a linear combination of PNHB-splines, since these poly-
nomials belong to the partially nested hierarchical spline space.

5 Truncation

We define the truncated PNHB-splines by suitably generalizing the truncation
mechanism, which has been established in [8]. These functions are linearly inde-
pendent, form a partition of unity, and span the partially nested hierarchical
spline space H.

We consider a fixed level � > 1 and a function

f ∈ span
�−1⋃
k=1

Kk, (16)

which is a linear combination of all tensor-product B-splines that have been
selected at lower levels. SCA then implies that

f |πk ∈ V k|πk , k = 1, . . . , �,

for all levels that do not exceed �. When restricted to the patch π�, this function
possesses a unique local representation

f(x) =
∑

β�∈B�

suppβ�∩π� �=∅

cβ�β�(x), x ∈ π�, (17)

as a linear combination of tensor-product B-splines in B�. We now define the
truncation of f with respect to K� as the globally defined function

(trunc�f)(x) = f(x) −
∑

β�∈K�

cβ�β�(x), x ∈ Ω, (18)

where the coefficients c�
β are taken from the representation (17). Combining this

definition with (16) implies that

trunc�f ∈ span
�⋃

k=1

Kk.

Consequently, we are now able to apply truncation of the next higher level � + 1
to trunc�f .

For future reference we note that the trunction with respect to level � does
not change the value of the function on patches of previous levels,

f |πk = (trunc�f)|πk if k < �. (19)

Partially Nested Hierarchical Spline Refinement 137

This is a direct consequence of SOA. We also note that

(trunc�f)|π� ∈ span(B� \ K�)|π� . (20)

This can be confirmed by combining the local representation (17) with the defi-
nition (18) of the truncation.

We define truncated PNHB-splines of level � by applying the truncation
repeatedly to the selected tensor-product splines in K�,

T � = truncN · · · trunc�+1K� = { truncN · · · trunc�+1β� : β� ∈ K� }. (21)

Collecting the contributions from all levels gives the set of truncated PNHB-
splines

T =
N⋃

�=1

T �. (22)

Lemma 2. We assume SCA and consider a selected B-spline β� ∈ K� of level
� and a lower level k ≤ �. Then

(truncN · · · trunc�+1β�)|πk =

{
0 if k < �

β�|πk if k = �.
(23)

Moreover, for larger levels k > � we have

(truncN · · · trunc�+1β�)|πk ∈ span(Bk \ Kk)|πk . (24)

Proof. Due to SCA we have that

β�|πk =

{
0 if k < �

β�|πk if k = �.

This implies (23) since the truncations with respect to the levels �+1, . . . , N do
not change the values on πk according to (19).

To prove (24) we first observe that (20) gives

(trunck · · · trunc�+1β�)|πk ∈ span(Bk \ Kk)|πk ,

and note that the remaining truncations with respect to the levels k + 1, . . . , N
do not change the values on πk according to (19). ��
Proposition 1. The truncated PNHB-splines are linearly independent if SCA
is satisfied.

Proof. We use Eq. (23) and proceed as in the proof of Theorem1. ��
Proposition 2. The truncated PNHB-splines span the partially nested hierar-
chical spline space H if both SCA and CBA hold.

138 N. Engleitner et al.

Proof. The definition of truncation implies that every function in T can be
represented with respect to K. Indeed, a function truncN · · · trunc�+1β� for
β� ∈ K� is obtained by subtracting contributions of functions included in Kk

for k = � + 1, . . . , N . Hence, it can be written as a linear combination of func-
tions in K, and consequently, spanT ⊆ span K. Since both T and K are linearly
independent, and since |T | = |K|, we conclude that spanT = spanK. Finally,
we use Theorem 2 to complete the proof. ��

Similar to [9] we show that the functions in T preserve the coefficients of the
corresponding selected functions in K�.

Theorem 3 (Preservation of coefficients). Any function f ∈ H possesses
local representations

f(x) =
∑

βk∈Bk

suppβk∩πk �=∅

cβkβk(x), x ∈ πk, (25)

on the patches. The representation with respect to the truncated PNHB-splines
inherits the coefficients cβk from these local representations,

f(x) =
N∑

�=1

∑
β�∈K�

cβ�(truncN · · · trunc�+1β�)(x), x ∈ Ω,

provided that SCA and CBA are valid.

Proof. Proposition 2 guarantees that there exists a representation of f ∈ H with
respect to T ,

f(x) =
N∑

�=1

∑
β�∈K�

dβ�(truncN · · · trunc�+1β�)(x), x ∈ Ω,

with certain coefficients dβ� . We consider the restriction of this representation
to the patch πk of level k. None of the terms obtained for � > k contributes to
this restriction, according to (23). This also implies that the PNHB-splines of
level k are simply tensor-product splines on πk. Using these two observations we
obtain

f(x) =
k−1∑
�=1

∑
β�∈K�

dβ�(truncN · · · trunc�+1β�)(x) +
∑

βk∈Kk

dβkβk(x), x ∈ πk.

(26)
We note that the first sum is contained in (Bk\Kk)|πk , due to (24). Consequently
we may use the linear inpendence of the tensor-product B-splines (Bk)|πk on the
patch of level k to conclude

dβk = cβk , ∀βk ∈ Kk,

by comparing the coefficients of (25) and (26). ��

Partially Nested Hierarchical Spline Refinement 139

The property of preservation of coefficients implies that the functions in T
form a partition of unity:

Corollary 1. The sum of the truncated PNHB-splines is the constant function
with value 1 if both SCA and CBA are valid.

Proof. Since the constant function with value 1 is contained in H, we may
consider its representations (25) on all patches πk, with the coefficients
cβk = 1. Theorem 3 confirms the partition of unity property of truncated
PNHB-splines. ��

Similarly, the function truncN · · · trunck+1βk has the same Greville abscissa
as its corresponding function βk ∈ Kk from which it was derived by using
truncation.

6 Completeness

The knot lines of each spline space V � define a subdivision of the unit square
(0, 1)2 into the mesh M � of level �. More precisely, the elements of M � are
axis-aligned boxes, which are the Cartesian product of two closed intervals that
represent knot spans of V � in x- and y-direction. These elements will be denoted
as cells of level �

Another assumption, which is stronger than CBA, is required to investigate
the completeness of the PNHB-splines:

Assumption. The boundaries of the patches π� are aligned with the mesh of
level �. More precisely, each patch π� is obtained as the interior

π� = int
⋃

c∈C�

c (FBA)

of the union of a cell set C� ⊆ M �. This condition will be called the Full Boundary
Alignment (FBA) condition.

The union of the cell sets C� over all levels forms the partially nested hierar-
chical mesh.

Example. We consider again the partially nested hierarchical spline space,
which is defined by the patches and spaces shown in Fig. 1a. The partially nested
hierarchical mesh

⋃N
�=1 C� is shown in Fig. 1b. ♦

In this section we are interested in the full spline space F of degree p and
maximal smoothness s = p − (1, 1),

F = {f ∈ Cs(Ω) : f |c ∈ Πp ∀c ∈ C� ∀� = 1, . . . , N}, (27)

where Πp denotes the space of tensor-product polynomials of degree p. This
space contains the partially nested hierarchical spline space H, but it is generally
larger. A simple condition implies that both spaces are equal:

140 N. Engleitner et al.

Assumption. The support intersections of the basis functions of level � with
the associated patches π� are all connected,

suppβ� ∩ π� is connected ∀β� ∈ B�, � = 1, . . . , N. (SIC)

This will be denoted as the Support Intersection Condition (SIC).

If this assumption is satisfied in addition to all previous ones, then PNHB-
splines are complete.

Theorem 4. The PNHB-splines span the full spline space F if FBA, SIC and
SCA are satisfied.

Proof. Given a function f ∈ F , we proceed exactly as in the proof of Theorem2.
There is one modification, however, since we need to use a different argument to
confirm the existence of the local representations (12) and (13).

This is achieved with the help of a result from [19]: Each patch π� is a multi-
cell domain due to FBA. Theorem 2.12 of that paper implies that we obtain
local representations as linear combinations of tensor-product B-splines β� if
one uses several copies for functions with more than one support intersection.
More precisely, when considering the function in (13) we obtain

f(x) −
�−1∑
k=1

fk(x) =
∑

β�∈B�

∑
σ

σ is connected
component of

suppβ�∩π�

cβ�,σ β�(x) χσ(x), x ∈ π�,

where χσ(x) is the characteristic function of the connected component σ.
SIC implies that only one instance of each B-spline β� is required, as the sup-

port intersections with π� possess at most one connected component σ. Lemma 1
can be applied again and confirms that only functions β� ∈ K� need to be con-
sidered. Consequently, we can find a representation of the form (13) (and also
(12) for the first level).

The remainder of the proof applies without any modifications. ��
Since PNHB-splines span the partially nested hierarchical spline space H, we

also proved that the full spline space is equal to the partially nested hierarchical
spline space under the assumptions of the theorem. All these results apply to
truncated PNHB-splines as well.

7 An Example: Least-Squares Fitting

We consider a surface approximation problem to compare PNHB-splines with
classical tensor-product B-splines and hierarchical B-splines. We choose the func-
tion

f(x, y) = 0.6
(10∑

i=0

10∑
j=0

dijbi(x)bj(y) + (x − 0.5)2
)

,

Partially Nested Hierarchical Spline Refinement 141

which is constructed by multiplying the elements of the tensor-product basis
constructed from the univariate Bernstein polynomials

bk(t) =
(

10
k

)
tk(1 − t)10−k, for k = 0, . . . , 10,

of degree 10 with the function-valued coefficients

D = [dij] =

⎡
⎢⎢⎢⎢⎢⎣

1 + sin(60x) 1 · · · 1 1
1 1 . . . 1 1
...

...
...

...
1 1 . . . 1 1
1 1 · · · 1 1 + sin(60y)

⎤
⎥⎥⎥⎥⎥⎦

,

see Fig. 3. Its domain is the unit square (0, 1)2. This function is fairly flat in
most parts of the domain, but has distinctive vertical and horizontal features in
the southwest and the northeast corners of the domain, which motivates us to
use partially nested spline refinement.

Fig. 3. The function considered in the fitting example.

We use a simple least-squares approximation to project this function into
spline spaces spanned by

1. biquadratic tensor-product B-splines defined on the mesh shown in Fig. 4a,

142 N. Engleitner et al.

2. hierarchical B-splines defined on the mesh shown in Fig. 4b, and
3. partially nested hierarchical B-splines defined on the mesh shown in Fig. 4c.

For tensor-product splines we consider a vertical and horizontal refinement in
the southwest and northeast corner. These knot lines propagate to the northwest
corner since tensor-product splines do not support local refinement. This is not
the case for HB-splines, where we can perform local refinement. Nevertheless,
one still needs to use nested splines spaces, which enforces the simultaneous
refinement in both directions. Therefore, we add knot lines in x- and y-direction
in both considered corners. Finally, we show the mesh used for PNHB-spline
approximation. It seems to be perfectly suited for this task as the knot line
segments are aligned with the features of the function.

Fig. 4. The meshes used for defining the approximating spline functions. Left: tensor-
product B-splines, middle: HB-splines, right: PNHB-splines.

Table 2. Numerical results of the least-squares approximation.

No. of dof. % of dof. Max. error Average error

Tensor-product B-splines 2304 100% 3.39e−3 3.81e−5

HB-splines 1633 71% 3.08e−3 4.37e−5

PNHB-splines 769 33% 8.12e−4 1.89e−5

The numerical results are reported in Table 2, which presents information
about the number of degrees of freedom, the percentage of degrees of freedom
(with respect to the tensor-product case), the maximum error between the orig-
inal function and the fitting result and the average error.

The tensor-product splines provide the baseline for these tests. The number of
control points is equal to 2304 and this is sufficient to obtain a reasonable result.
By using hierarchical B-splines we saved some degrees of freedom and obtained
a similar result. We used spline spaces Di,i for i ≤ 6. Further refinement in the
corners would substantially increase the number of degrees of freedom. Finally,

Partially Nested Hierarchical Spline Refinement 143

the use of PNHB-splines leads to an additional improvement: a better approxi-
mation is obtained by using an even smaller number of degrees of freedom.

So far we constructed the meshes manually. Our current work is devoted to
the use of error estimators for automating this process.

8 Conclusion

We proposed the new construction of partially nested hierarchical B-splines in
order to overcome the limitations of the existing hierarchical spline constructions,
which are based on sequences of fully nested spline spaces. Suitable assumptions
enabled us to define a hierarchical spline basis, to establish a truncation mech-
anism, and to derive a completeness result. The application potential of the
proposed generalization has been demonstrated by a first experimental result on
least-squares approximation.

Future work will be devoted to extensions of this construction to the full
multivariate case and to refinement strategies that can guide the process of
local mesh refinement. Further, we will study alternative formulations of the
generalized truncation mechanism, in order to analyze the non-negativity of the
resulting spline basis. Also, we will investigate algorithms for assigning spaces
to patches which ensure that the various assumptions are satisfied. Finally, we
will continue to explore the application potential of our new construction. Some
results on these topics will be presented in a forthcoming paper [4].

Acknowledgment. Supported by project NFN S117 “Geometry + Simulation” of
the Austrian Science Fund and the EC projects “EXAMPLE”, GA no. 324340 and
“MOTOR”, GA no. 678727.

References

1. Bornemann, P.B., Cirak, F.: A subdivision-based implementation of the hierar-
chical B-spline finite element method. Comput. Methods Appl. Mech. Eng. 253,
584–598 (2013)

2. Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines:
error estimator and convergence. Math. Methods Appl. Sci. 26, 1–25 (2016)

3. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined
box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

4. Engleitner, N., Jüttler, B.: Patchwork B-spline refinement. In: Computer-Aided
Design, vol. 90, pp. 168–179 (2017). ISSN 0010-4485. https://doi.org/10.1016/j.
cad.2017.05.021

5. Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-
suitability, Bézier extraction, and application as an adaptive basis for isogeometric
analysis. Comput. Methods Appl. Mech. Eng. 284, 1–20 (2015)

6. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22,
205–212 (1988)

7. Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J.: THB-
splines: an effective mathematical technology for adaptive refinement in geometric
design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–
365 (2016)

https://doi.org/10.1016/j.cad.2017.05.021
https://doi.org/10.1016/j.cad.2017.05.021

144 N. Engleitner et al.

8. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hier-
archical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

9. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined
multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014)

10. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with
hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker,
L.L. (eds.) Surface Fitting and Multiresolution Methods. Innovations in Applied
Mathematics, pp. 163–172. Vanderbilt University Press, Nashville (1997)

11. Kang, H., Chen, F., Deng, J.: Hierarchical B-splines on regular triangular parti-
tions. Graph. Models 76(5), 289–300 (2014)

12. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive
CAD model (re-)construction with THB-splines. Graph. Models 76(5), 273–288
(2014)

13. Kosinka, J., Sabin, M., Dodgson, N.: Subdivision surfaces with creases and trun-
cated multiple knot lines. Comput. Graph. Forum 23, 118–128 (2014)

14. Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwen-
dungen. Ph.D. thesis, Universität Stuttgart (1998)

15. Kuru, G., Verhoosel, C.V., van der Zeeb, K.G., van Brummelen, E.H.: Goal-
adaptive isogeometric analysis with hierarchical splines. Comput. Methods Appl.
Mech. Eng. 270, 270–292 (2014)

16. Li, X., Chen, F.L., Kang, H.M., Deng, J.S.: A survey on the local refinable splines.
Sci. China Math. 59(4), 617–644 (2016)

17. Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Visual Com-
put. 26, 277–286 (2010)

18. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear inde-
pendence of T-spline blending functions. Comput. Aided Geom. Des. 29, 63–76
(2012)

19. Mokrǐs, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-
product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)

20. Schillinger, D., Dedé, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes,
T.J.R.: An isogeometric design-through-analysis methodology based on adaptive
hierarchical refinement of NURBS, immersed boundary methods, and T-spline
CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)

21. Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines.
Comput. Aided Geom. Des. 26, 174–191 (2009)

22. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces.
Numer. Math. 132(1), 155–184 (2016)

23. Wei, X., Zhang, Y., Hughes, T.J.R., Scott, M.A.: Extended truncated hierarchi-
cal Catmull-Clark subdivision. Comput. Methods Appl. Mech. Eng. 299, 316–336
(2016)

24. Zore, U., Jüttler, B.: Adaptively refined multilevel spline spaces from generating
systems. Comput. Aided Geom. Des. 31, 545–566 (2014)

25. Zore, U., Jüttler, B., Kosinka, J.: On the linear independence of truncated hierar-
chical generating systems. J. Comput. Appl. Math. 306, 200–216 (2016)

Regression Analysis Using a Blending Type
Spline Construction

Tatiana Kravetc(B), Børre Bang, and Rune Dalmo

R&D Group Simulations, Department of Computer Science and Computational
Engineering, Faculty of Science and Technology,

UiT - The Arctic University of Norway, Narvik, Norway
tatiana.kravetc@uit.no

Abstract. Regression analysis allows us to track the dynamics of change
in measured data and to investigate their properties. A sufficiently good
model allows us to predict the behavior of dependent variables with
higher accuracy, and to propose a more precise data generation hypoth-
esis.

By using polynomial approximation for big data sets with complex
dependencies we get piecewise smooth functions. One way to obtain a
smooth spline representation of an entire data set is to use local curves
and to blend them using smooth basis functions. This construction allows
the computation of derivatives at any point on the spline. Properties such
as tangent, velocity, acceleration, curvature and torsion can be computed,
which gives us the opportunity to exploit these data in the subsequent
analysis.

We can adjust the accuracy of the approximation on the different seg-
ments of the data set by choosing a suitable knot vector. This article
describes a new method for determining the number and location of the
knot-points, based on changes in the Frenet frame.

We present a method of implementation using generalized expo-
rational B-splines (GERBS) for regression problems (in two and three
variables) and we evaluate the accuracy of the model using comparison
of the residuals.

1 Introduction

1.1 The Problem

We describe a general method suitable for use on stream based data. A wide
range of applications is possible, trend analysis for correlation of trends between
weather stations, and estimation of trends in online revenue streams are two
examples that will be considered for further work at a later time. In this paper,
the model implementation is based on weather data. Stages in the data form the
basis for a segmentation intended to be used in further classification, which gives

9th International Conference on Mathematical Methods for Curves and Surfaces,
Tønsberg, June 23rd–28th, 2016.

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 145–161, 2017.
https://doi.org/10.1007/978-3-319-67885-6_8

146 T. Kravetc et al.

us the opportunity to identify state changes, or derived properties as for instance
accumulations (mass/volume etc.). Identifying shifts in trends, i.e. stages in time-
dependent open ended stream based data sets is considered to be of general
interest in a wide area of real world applications.

1.2 Contribution

A natural way of treating possibly noise contaminated data which consists of
more or less well defined stages, is to utilize local approximation in the relevant
stages.

Our method changes the representation of the raw data to a form that accom-
modates both local approximation and adjustable criteria for identifying stages.
Local piecewise Bézier curves are formed from the Least Squares Method of a
limited number of data points that are close in time. Blending splines makes
it possible to keep the original approximation and gives a gradual refinement
that can be used to balance accuracy and computational effort. The Hermite
properties of the interpolation method we use, where the local curves supply the
additional information regarding derivatives, makes the resulting approximation
work on localized intervals without keeping the complete data set (in memory).

1.3 Related Work

1.3.1 Statistical methods
In [14], James solves the registration problem between curves by “equating the
moments of the curve while also shrinking toward a common shape”. This could
also be used to recognize “stages” or states, if information about the shapes of the
stages are available. Statistical methods like the use of first and second moments
of data for feature extraction, have been treated in [7]. For several application
specific problems, an expansion in this direction of the approximation theory
related to a blending type spline construction, would be appropriate.

1.3.2 Geometrical Methods
Real-time approximation and smoothing of geometry data, like position and ori-
entation under constraints, arises frequently in path planning and control theory
for self-guided vehicles. In [6], Brezak and Petrovic consider locally smoothing
of paths by clothoids, using table lookup to implement a numerical integration
that otherwise could be prohibitive in computational cost.

The problem of finding suitable knot vectors has been studied in the litera-
ture [5,8,12]. It seems to be an active area of research, however, the methods are
depending on the data. In [3], Bittner and Brachtendorf utilize the Oslo algo-
rithm for knot insertion in a wavelet context and provides an adaptive approxi-
mation method.

In [18] a locally supported spline quasi-interpolant is developed, with the
assumption that the B-spline knots are chosen to lie midway between consecu-
tive sampling points, or chosen to coincide with the sampling points. Then by

Regression Analysis Using a Blending Type Spline Construction 147

blending of this and a local Hermite interpolation scheme, a method for fast
interpolation is achieved, which has some resemblance to our method. Since our
global setting is open ended, and we choose to approximate our data with local
curves before blending, we also gain a data reduction for the current stage.

The implemented approximation method in [15], called MARS, provides
searching for a suitable knot vector and approximates the data using the
B-spline. It has parameters such us maximum number of basis functions, and an
accuracy of this approximation depends on the size of the data set. The method
presented in this paper provides a flexible approximation curve, independent of
the complete data set. We do not need to keep all stages. This feature shows the
distinction between local curves and control points. In MARS, if we remove the
first knots, we completely lose the connection with the previous data points.

2 Method Overview

We seek to obtain a real-time continuous smooth approximation of noisy data,
automatization of searching for non-stochastic deviation, and approximation
with sufficient accuracy near sudden changes in the data.

The main goal of the algorithm presented in this paper is searching for fea-
tures of the data. In other words, the algorithm provides preparation for clus-
terization of the data. Based on that, we consider to use data with the following
definition: the 2- or 3-dimensional point set, which is the time dependence of
some value, and can be divided into “stages”. For example, change of tempera-
ture caused by the weather can be divided by times of day or seasons, depending
on the length of the data set. In this paper we have considered open data from
the Norwegian weather service yr.no at a specific location [20]. For the 2D data
set we have used the maximum temperature between 01.12.2016 and 01.03.2017,
measured once per hour, as shown in Fig. 1(a). For the 3D data set we have used
the data from the weather radar, as the pixel’s coordinates of the maximum
amount of precipitation movement, as shown in Fig. 1(b).

In order to choose our approximation method we first notice some important
properties: the data set has been collected throughout a long time and is has
unpredictable dynamics. Additionally, the number of points increases with time,
i.e., we based our approximation on the amount of points available at the current
time step.

From existing methods for building regression models [3,10,13] we will take
the Multivariate Adaptive Regression Splines method (also known as MARS) [15]
for comparison with our implemented method. The MARS method makes cubic
B-spline approximation and provides optimization of knots positions and the
number of knots. The maximum number of basis functions can be set as a para-
meter.

The approach is to recognize the changes between “stages” on the data action,
when they occur, where the duration of one “stage” is unknown. Thus, we need
to provide the approximation of each “stage”. We can use polynomial approxima-
tion for this purpose because the dynamics within one “stage” does not change

148 T. Kravetc et al.

Fig. 1. The data is taken from yr.no [20]. The dashed lines between the data points
are generated to obtain a more clear view. Figure 1(a) shows time dependence of the
temperature in Narvik during winter months, the timestep is one hour; Fig. 1(b) shows
time dependence of the pixel’s coordinate of the maximum amount of precipitation in
Nordland taken from the weather radar.

sharply. Then we blend these local polynomial curves together continuously and
smoothly.

The algorithm considered in the present paper combines several approxima-
tion methods. We initiate the approximation with a rough estimate and improve
it to obtain clustered sets of points. The motivation is to keep the accuracy inde-
pendent of the length of on the point set, to provide stable real-time approxi-
mation, since the size of the data is unknown.

Consider the following short outline of the sequence of algorithms constitut-
ing the main algorithm proposed in the paper. Transition from one step to the
next occurs only if the step returned a value. Throughout this text, kv is an
array of the elements of the knot vector, � is an array of local curves, A is the
blending spline approximation curve, i is the index of a local curve, and t is time.

(i) Statistical searching of a “stage” or, in other words, element of a knot
vector, return kv(i); (see Algorithm 1)

(ii) Compute the (i − 1)th local curve, return �i−1; (using formula (1))
(iii) Blend �i−1 together with �i−2, return parametric curve A(t); (see Algo-

rithm 2 and formula (3))

Extension of the knot vector:
(a) Find candidates for knot insertion from the knot intervals; (see Algo-

rithm3)

Regression Analysis Using a Blending Type Spline Construction 149

(b) Find the positions for new knots, return recomputed arrays kv, �, and
curve A(t); (see Algorithm 4)

The sequence above is realized for each time step.

3 GERBS

In this section we shall briefly consider some of the theory of blending type spline
constructions, which is relevant for this work. A comprehensive study of GERBS
can be found in [9,16].

In contrast to classical B-splines [4,17], where the coefficients typically are
control points in some Eucledian space R

n, blending spline coefficients can be
local geometry. Here we have opted to use Bézier curves [2] defined by

�i(t) =
d∑

k=0

ckbd,k(t), if ti−1 ≤ t < ti+1, (1)

where bd,k are the Bernstein polynomials [1] of degree d, and ck ∈ R
2 are coeffi-

cients (or control points), ti−1 and ti+1 are blending spline interpolation knots,
as described below.

We find the coefficients ck by using the Least Squares Method [19]. According
to this method, the vector of coefficients c = (c0, c1, ..., cd)T is the solution of
the common equation:

c = (WTW)−1WT y,

where the vector y consist of values of the time dependent variable, and W is
the matrix of basis functions.

The general formula for an expo-rational B-spline (ERBS) [9] curve over the
knots (ti)n+1

i=0 is:

f(t) =
n∑

i=1

�i(t)Bi(t), if t1 ≤ t ≤ tn, (2)

where the coefficients �i in our case are the local Bézier curves (1), and Bi(t) are
the expo-rational basis functions [16].

The domain of the local curves has to correspond with the domain of the
respective ERBS basis function. This means that �i in (2) is defined on the
domain (ti−1, ti+1), as shown in (1). Blending of local curves in the global domain
[0, 1] is performed via the formula

f(t) =
(
1 − Bi−1 ◦ ωi−1(t) Bi ◦ ωi(t)

) (
�i−1(t)
�i(t)

)
, 0 ≤ t ≤ 1, (3)

where ωk(t) = t−tk
tk+1−tk

, tk and tk+1 are knots, and our choice of B is the logistic
expo-rational B-function [21]:

B(t) =
1

e
1
t − 1

1−t + 1
.

150 T. Kravetc et al.

Fig. 2. A graph of the expo-rational basis function (solid red) and its first derivative
(dotted blue). (Color figure online)

Fig. 3. The top picture shows a plot of a 3rd degree polynomial B-spline (blue). The
dashed green lines are the control polygon. The red curve shows an expo-rational
B-spline using the same knot vector and control points as the polynomial B-spline. The
red and green stars denotes extreme values of the speed. The bottom picture shows
the comparison between the speeds of these curves. Here the blue function shows the
speed of the polynomial B-spline whereas the red function denotes the speed of the
expo-rational B-splines. (Color figure online)

The choice of using expo-rational basis functions is founded on some impor-
tant properties of these functions [16]. One main difference when compared to
polynomial B-splines is the continuity properties. The continuity at the knots
will increase with the order of the B-function. The expo-rational basis functions
are C∞-smooth at the respective exterior knot and all derivatives are zero at

Regression Analysis Using a Blending Type Spline Construction 151

their interior knot. The blending splines in (2) possess a transfinite Hermite
property, namely, �i(t) and all their existing derivatives are interpolated at the
interior knots ti. Figure 2 shows that the first derivative of the basis function is
zero at the start and at the end of its support.

The speed of expo-rational B-splines occurs in a more “natural” way than the
speed of polynomial B-splines, as shown in Fig. 3. Its minimums are at the start
and at the end of curve, local minimums at the turns and local maximums at
the straights. We will use these speed properties further as criteria for inserting
new knots and finding knot positions.

4 Statistical Method for Real-Time Approximation

Our data are noisy, so we can divide them into noise and a non-stochastic part.
We assume that the noise tends towards a normal distribution. We will construct
probability distribution functions [11] for some initial number of points, and suc-
cessively add points to the point set. The deviation from the normal distribution
yields a new stage of activity. Such a method facilitates the so-called real-time,
that is, we run the algorithm while we receive new data.

Algorithm 1 provides searching for knots by comparing the normal distribution
with the probability distribution function for an open ended stream of data.

A virtual example of Algorithm1 is shown in Fig. 4. Here, the green curves are
normal distributions, where the red curves are probability distribution functions
(PDF) for all points between each pair of blue lines. The blue lines illustrate the
stages array, which corresponds to the knot vector.

Algorithm 1. Statistical searching of “stage”
1: procedure Search stage
2: start = 1;
3: step = 4; //take a step number of points for computation of the next PDF
4:
5: for t = start + 1 : step : T do
6:
7: compute σ(start : t), μ(start : t); //σ is the standard deviation and μ is the

mean value
8:
9: nd = 1

σ
√

2Π
e−(x−μ)2/2σ2

; //normal distribution
10:
11: f =pdf(y(start : t)); //compute probability distribution function
12:
13: if f has > 1 local maximums then
14:
15: start = t;
16:
17: append start to stages;
18:

return stages

152 T. Kravetc et al.

Fig. 4. Illustration of statistical “stages”, i.e., initial knots, searching by Algorithm 1 for
2D data (see Fig. 1(a)). The blue lines show recognized knots, red lines show probability
distribution functions of groups of data points separated by the blue lines, and the green
curves are the normal distribution functions for those data points. (Color figure online)

Let us imagine that the set of points is the random translation of one point.
Then for each time step it makes a displacement with an average value of 1. The
initial value for displacement is 0 for both axes. Since the PDF can be unstable
for small numbers of points, we have used a constant interval as a minimum
distance between the knots.

For the R
3 case we define translation of the point as a continuous displace-

ment of the R
3 → R

2 projection.
The distance between two points is

|dj | = |pj+1 − pj |. (4)

The initial displacement D0 is zero, and accumulates the distance (4) between
the first and the second point. Then we choose the direction Dt+1 of translation
as the sign of the difference between the y coordinates as shown in formula (5).

Dt+1 = Dt + sign(yt+1 − yt)
√

(xt+1 − xt)2 + (yt+1 − yt)2. (5)

By involving these steps we get the picture of a random walk, see Fig. 5, to
which we can apply Algorithm 1.

Figure 5 shows translation of the point as a projection from 3D to 2D, using
formula (5), combined with an illustration of the searching for “stages”.

Algorithm 2 provides construction of local curves, as Bézier curves of degree 3,
and blending them together. A description of such a spline construction was
addressed in Sect. 2 (see formula (2)). In Algorithm 2, the input value stages
is adjusted by applying Algorithm1. N denotes the number of stages, which
changes with time, and N + 2 is the number of knots. We begin to compute the
ith local curve when we have i + 2 knots. The blending starts when we have a
minimum of two local curves. Finally, by repeating the procedure, we obtain the

Regression Analysis Using a Blending Type Spline Construction 153

Fig. 5. Illustration of searching for “stages” for 3D data (see Fig. 1(b)). The distance
between neighbor points in this figure is equal to the distance between neighbor points
in 3D, and the direction corresponds to the projection on the plane determined by the
t and y axes. The blue lines show the knots found by applying Algorithm 1. (Color
figure online)

Algorithm 2. Blending of local curves
1: procedure gerbs(stages, N)
2: kv = [stages(0), stages(0), stages(1), ...
3: ..., stages(N − 1), stages(N), stages(N)]; //kv is the knot vector
4:
5: for i = 1 : N do
6:
7: dom = kvi+1 − kvi−1; //define the domain of the ith local curve
8:
9: curvei = Bezier(y(dom, 3)); //compute the Bézier local curve of degree 3 on

the domain dom using formula (1)
10:
11: if N > 2 then
12:
13: for t = 0 : kv(N) do
14:

15: A(t) =
(
1 − Bi−1 ◦ ωi−1(t) Bi ◦ ωi(t)

)(curvei−1(t)
curvei(t)

)
; //blending using

formula (3)
16:

return A

blending spline A(t). We make the observation that since our initial knot vector
will increase with time, we can draw local curves and blend them in real-time.

5 Adding Knots

In the procedure above we defined the initial knot vector for a current time
step. If this vector contains at least two knot intervals, we can improve the
approximation of the data, i.e., increase the accuracy, by inserting new knots at
certain positions.

154 T. Kravetc et al.

Let A(t) be a spline function. X is the discrete set of points, xt ∈ X, xt =
(t, y) for the 2D case and xt = (t, x, y) for the 3D case, where t is the time
variable. Thus, we have a point for each t and a continuous approximation of
this set of points. The knot vector is denoted by τ = (ti)Ni=0, where N is number
of knots.

We introduce a moving frame, denoted by its tangent and normal vectors, η
and ξ for the 2D case, and tangent, normal and binormal vectors η, τ , ξ, for the
3D case, respectively. Such a frame represents a moving local coordinate system.

Definition 1. The “scope” is the interior of the geometric boundary outlined
by the pair of straight lines for the 2D case, or planes for the 3D case, which
are defined via the knot interval. Each knot interval on τ yields the top and the
bottom borders of the “scope”, which go through the points from the set Xi ⊂ X,
Xi = [xti ,xti+1], which have the maximum distance from the local origin along
the axis ξ of the moving frame, and are parallel to the axis η, for the 2D case,
or rectifying plane denoted by the axes η and τ , for the 3D case.

The process of inserting new knots consists of two steps: finding candidates
for knot insertion from intervals in the knot vector, and defining the position for
knot insertion.

(a) The first step is based on the detection of points which are outside of the
“scope”. The “scope” should contain all of the points. Algorithm3 and
Figs. 6 and 8 describe a process for finding the indices of intervals where
new knots should be inserted.
We shall now consider separately line 15 from Algorithm3 for the 3D case
and describe how to find the points which are outside of the “scope”.
The parametric expression of the plane which belongs to the “scope” is:

q(u, v) = p0 + ut + vb,

where t is the tangent vector, b is the binormal vector, and p0 is the local
origin.
Let the vector between p0 and the point to check be dpoint, the vector
between p0 and A be dcurve, and n be the normal vector of the curve at p0

(see Fig. 8(c)). If the inner product between n and dpoint has the same sign
as the inner product between n and dcurve, then the point and the curve lie
on one side of the plane:

if

〈dpoint,n〉〈dcurve,n〉 < 0, (6)
then add a new knot

(b) The second step is based on the properties of ERBS curve, as considered
in Sect. 2 (see Fig. 3). We seek to divide the knot interval by inserting a
new knot at the position where we can measure the largest change in the
point set. We define this to be the position with the highest speed, thus, we

Regression Analysis Using a Blending Type Spline Construction 155

need to find local maximums of the first derivative of the curve. Algorithm4
and Fig. 7 describe the process of inserting new knots. x and y are point
coordinates, kv is the knot vector, and ms is an array of local maximums of
the first derivative of the curve A. in is an array of indices of knot intervals,
and there are two types of indexation, i is the index of the knot interval and
t is an index along the time axis.

Algorithm 3. Finding candidates for knot insertion from knot vector
1: procedure FindIntervals(kv, A) //kv is the knot vector, A is the curve
2: ρ = []; //an array for extremal points, which denote the border of the “scope”
3:
4: Define the moving frame to A(t); //Fig. 6(a), 8(a)
5:
6: for i = 0 : length(kv)-1 do
7: //add to ρ extremal points along ξ on the interval [kvi, kvi+1)
8: ρ.add(X(max(ξt)));
9: ρ.add(X(min(ξt)));

10:
11: Construct lines through points from ρ, parallel to the η axis, and we get the “scope”

for the 2D case; //Fig. 6(b)
12: OR
13: Construct planes through points from ρ, parallel to the rectifying plane denoted by

the η and τ axes, and we get the “scope” for the 3D case; //Fig. 8(b)
14:
15: if ∃ points from X on the interval [kvi, kvi+1) which lie below of the bottom

border or above of the upper border then
16: insert a new knot using Algorithm 4 ;
17: recompute the knot vector and the curve and goto 2; // (Fig. 6(c), 8(d))

Algorithm 4. Inserting new knots
1: procedure NewKv(kv, A, N)
2: in = [], ms = [];
3:
4: //find knot intervals where we need to add new knots, using Algorithm 3

in = FindIntervals(kv, A); //in consists of indices of knot intervals
5:
6: ms = LocalMaximums(A′); //populate the array ms with indices of local maxi-

mums of the A′(t)
7:
8: Add to kv the indices (t) from ms, which lie on knot intervals with indices (i) from

in; //in the case when values of ms or in does not lead to add new knot, then we
do not add any indices

9:
10: return kv

156 T. Kravetc et al.

Fig. 6. Describes Algorithm 3. (a) illustrates the detection of a moving frame on the
curve (Algorithm 3, line 4). The blue lines in (b) are the tangent lines of the curve
through the red points, corresponding to maximum and minimum distances along the ξ
axis on the considered knot interval, which are used to obtain the “scope” (Algorithm 3,
line 11). Since there are points outside of the “scope” (Algorithm 3, line 15), we insert
a new knot and recompute the curve as shown in (c) (Algorithm 3, lines 16–17). (Color
figure online)

Fig. 7. Relation between the arrays, described in Algorithm 4, which uses Algorithm 3.
The blue curves show the derivative of the curve A(t) before (top) and after (bottom)
knot insertion. The red circles illustrate the positions of the knots. kv is the knot vector
before knot insertion, ms is the array of positions on the time-axis of the maximums
of the curve’s first derivative, in is the array of indices of the knot intervals where
we need to insert new knots found by using Algorithm 3, and newkv is the new knot
vector, found via comparing the kv, ms and in arrays, as described in Algorithm 4.
(Color figure online)

Regression Analysis Using a Blending Type Spline Construction 157

Fig. 8. Description of Algorithm 3 for the 3D case. (a) illustrates the detection of
a moving frame on the curve (Algorithm 3, line 4). The blue planes in (b) are the
tangent planes to the curve through the red points, corresponding to the maximum
and minimum values along the ξ axis on the considered knot interval, constituting the
“scope” (Algorithm 3, line 13). (c) illustrates how we recognize the points which are
outside of the “scope” in the projection on a plane denoted by the t and y axes: n is
the normal to the curve at p0. We are checking the position of dpoint relative to the
plane by applying formula (6). Since there are points which are outside of the “scope”
(Algorithm 3, line 15), we insert a new knot and recompute the curve as shown in (d)
(Algorithm 3, lines 16–17). (Color figure online)

6 Results and Concluding Remarks

Figures 9 and 11 show some steps of the proposed algorithm applied to repre-
sentative examples in R

2 and R
3, respectively.

The approximation is a continuous smooth function which is generated by
the automated algorithm. We can use intrinsic parameters of the resulting curve
for further analysis. The settings of the algorithm are implicit: sensitivity to
the detection of stages by changing the step, tolerance to the points which are
outside of the “scope” (see Algorithm 3, line 15), and adjusting the degree of the
local curves (in our case d = 3). We do not need to set the initial number of
knots, or initial length of knot-intervals, or number of iterations.

158 T. Kravetc et al.

Fig. 9. The process of approximation for 2D data (see Fig. 1(a)). The red curves are
local curves, the blue curve is the approximation curve. (Color figure online)

Fig. 10. Result of the MARS [15] algorithm. The blue curve is the resulting curve,
black circles and dashed lines show knots. (Color figure online)

Regression Analysis Using a Blending Type Spline Construction 159

Fig. 11. The process of approximation for 3D data (see Fig. 1(b)). The red curves are
local curves, the blue curve is the approximation curve. (Color figure online)

For comparison, we consider the MARS algorithm [15]. Parameters for the
MARS model have been set as

params = aresparams2(’maxFuncs’, 70);

which limits of the maximum number of basis functions used. Note that the
implementation is not a real-time version, so, assuming that we can realize a
comparable approach, we simply run MARS for each time step.

160 T. Kravetc et al.

By making a visual comparison of Figs. 9 and 10 one can see the differences
and similarities between the results of the two algorithms. We note that the
length of the resulting knot vectors for both methods are equal, but the val-
ues are very different. For example, the accuracy of the approximation changes
within the range 300–600. Also one can compare the range 800–1200 for both
algorithms.

One can not conclude which one is the better, based on the curves, since we
do not have an original curve. However, we can discuss which method is more
fit for our task and for our data.

The method presented in this paper provides flexible approximation of curves,
independent of the complete data set. The curve is an affine combination of two
and only two local functions on each knot interval. We do not need to keep all
local curves or all “stages”. This feature shows the distinction between local
curves and control points. For comparison, with MARS, if we remove the first
knots, we completely lose the connection with the “earlier” data points. But by
using local curves, we keep the previous “stage” only as long as we need it.

We observe a constant (but not established) accuracy in our method for any
time step. Conversely, with MARS, if maxFuncs is large, then we obtain one
accuracy at first, which will decrease when increasing the number of data points.
This can be addressed by changing the maximum number of basis functions, but
requires an extension of the algorithm.

Thus, we conclude that the presented algorithm is suitable for data possessing
similar properties as our model data, whereas MARS is an established method
with flexible settings for specific tasks.

References

1. Bernstein, S.: Démonstration du théoréme de Weierstrass fondée sur le calcul des
probabilités, Communications de la Société Mathématique de Kharkow, 2-ée série,
vol. 13(1), pp. 1–2 (1912)

2. Bézier, P.: Numerical Control: Mathematics and Applications. Wiley series in Com-
puting. Wiley, London, New York (1972). English language edition

3. Bittner, K., Brachtendorf, H.G.: Fast algorithms for adaptive free-knot spline
approximation using non-uniform biorthogonal spline wavelets. SIAM J. Sci. Com-
put. 37(2), 283–304 (2015)

4. de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)
5. Bratlie, J., Dalmo, R., Zanaty, P.: Fitting of discrete data with GERBS. In: Lirkov,

I., Margenov, S., Waśniewski, J. (eds.) LSSC 2013. LNCS, vol. 8353, pp. 577–584.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-43880-0 66

6. Brezak, M., Petrovic, I.: Real-time approximation of clothoids with bounded error
for path planning applications. IEEE Trans. Robot. 30, 507–515 (2014)

7. Clarenz, U., Rumpf, M., Telea, A.: Robust feature detection and local classification
for surfaces based on moment analysis. IEEE Trans. Vis. Comput. Graph. 10, 516–
524 (2004)

8. Dalmo, R.: Expo-Rational B-Splines in geometric modeling, methods for computer
aided geometric design. Ph.D. thesis, University of Oslo (2016)

http://dx.doi.org/10.1007/978-3-662-43880-0_66

Regression Analysis Using a Blending Type Spline Construction 161

9. Dechevsky, L.T., Laks̊a, A., Bang, B.: Expo-rational B-splines. Int. J. Pure Appl.
Math. 27(3), 319–367 (2006)

10. Friedman, J.H.: Multivariate Adaptive Regression Splines. Stanford linear acceler-
ator center, Stanford, California, vol. 19, pp. 1–67 (1990)

11. Guttman, I.: Introductory Engineering Statistics. Wiley, Hoboken (1965)
12. Hartley, P.J., Judd, C.J.: Parametrization of Bézier-type B-spline curves and sur-

faces. Comput. Aided Des. 10, 130–134 (1978)
13. Härdle, W.: Applied nonparametric regression 34(2), 341–342 (1989)
14. James, G.M.: Curve alignment by moments. Ann. Appl. Stat. 1, 480–501 (2007)
15. Jekabsons, G.: ARESLab: Adaptive Regression Splines toolbox for Matlab/Octave.

Riga Technical University, Riga, Latvia, Institute of Applied Computer Systems
(2009)

16. Laks̊a, A.: Blending Technics for Curve and Surface Constructions. Narvik Uni-
versity College, Narvik (2012)

17. Shumaker, L.L.: Spline Functions, 3rd edn. Cambrige University Press, Cambridge
(2007)

18. Van der Walt, M.D.: Real-time, local spline interpolation schemes on bounded
intervals. Appl. Math. Sci. 10, 205–234 (2015)

19. Vorontsov, K.V.: Lectures about algorithms for dependencies reconstruction (2007)
20. Weather service yr.no. Norwegian Meteorological Institute and Norwegian

Broadcasting Corporation, 2007–2017, 01.12.2016–03.01.2017. www.yr.no/place/
Norway/Nordland/Narvik/Narvik/almanakk.html, www.yr.no/place/Norway/
Nordland/Narvik/Narvik/radar.html

21. Zanaty, P., Dechevsky, L.T.: On the numerical performance of FEM based on
piecewise rational smooth resolutions of unity on triangulations. In: AIP Confer-
ence Proceedings, vol. 1570, p. 191 (2013)

www.yr.no/place/Norway/Nordland/Narvik/Narvik/almanakk.html
www.yr.no/place/Norway/Nordland/Narvik/Narvik/almanakk.html
www.yr.no/place/Norway/Nordland/Narvik/Narvik/radar.html
www.yr.no/place/Norway/Nordland/Narvik/Narvik/radar.html

On the Coupling of Decimation Operator with
Subdivision Schemes for Multi-scale Analysis

Zhiqing Kui1(B), Jean Baccou2, and Jacques Liandrat1

1 Centrale Marseille, I2M, UMR 7353, CNRS, Aix-Marseille University,
13451 Marseille, France

{zhiqing.kui,jacques.liandrat}@centrale-marseille.fr
2 Institut de Radioprotection et de Sûreté Nucléaire (IRSN),

PSN-RES/SEMIA/LIMAR, CE Cadarache, 13115 Saint Paul Les Durance, France
jean.baccou@irsn.fr

Abstract. Subdivision schemes [5,11] are powerful tools for the fast
generation of refined sequences ultimately representing curves or sur-
faces. Coupled with decimation operators, they generate multi-scale
transforms largely used in signal/image processing [1,3] that generalize
the multi-resolution analysis/wavelet framework [8]. The flexibility of
subdivision schemes (a subdivision scheme can be non-stationary, non-
homogeneous, position-dependent, interpolating, approximating, non-
linear...) (e.g. [3]) is balanced, as a counterpart, by the fact that the
construction of suitable consistent decimation operators is not direct
and easy.

In this paper, we first propose a generic approach for the construc-
tion of decimation operators consistent with a given linear subdivision. A
study of the so-called prediction error within the multi-scale framework
is then performed and a condition on the subdivision mask to ensure
a fast decay of this error is established. Finally, the cases of homoge-
neous Lagrange interpolatory subdivision, spline subdivision, subdivision
related to Daubechies scaling functions (and wavelets) and some recently
developed non stationary non interpolating schemes are revisited.

Keywords: Multi-scale analysis · Decimation · Subdivision

1 Introduction

Since the eighties [5,10,11] and even earlier [9], subdivision schemes have been
developed, analyzed and used with very popular applications such as curve gen-
eration, image processing or animation movies. One of their advantages stands
in the flexibility of the construction of their masks. In many ways, subdivision
schemes are connected to the refinement process associated to the wavelet frame-
work [6,8,15] and have to be coupled with a so called decimation operator [12] to
fully generalize the classical multi-resolution approach. In practice, this coupling
has been successfully used for image compression [1,3] since it offers an efficient

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 162–185, 2017.
https://doi.org/10.1007/978-3-319-67885-6_9

Subdivision and Decimation Coupling 163

compromise between sparsity of the decomposition and quality of the recon-
struction of an image. However, if the decimation operator is trivially defined as
a subsampling when working with interpolatory subdivision schemes, it is not
the case in other situations. As an example, one can mention the non-stationary
penalized Lagrange subdivision scheme [14] for which there is, up to now, no
available decimation operator in the literature due to the mixing between inter-
polating and non interpolating subdivisions. Many approximating subdivision
schemes can not be used for compression for the same reason. More generally,
even if a decimation operator is known, it is important in practice to be able to
derive a large choice of decimation masks in order to exhibit the most relevant
one according to specific objectives. It is the case for example in image compres-
sion where a criterion based on the stability of the multi-resolution transforms
could be used to select decimation operators.

Therefore, the goal of our work is to propose a generic approach for the
construction of decimation operators related to a given subdivision scheme. In
this paper, we focus on linear and homogeneous subdivision schemes as a starting
step. We first provide an overview on the multi-scale and subdivision frameworks
(Sect. 2). Then we revisit in Sect. 3 the fundamental aspects of consistency and
provide a generic construction of decimation operators of minimal length mask
that we call elementary decimation operators. We then describe how to generate
all the possible decimation operators from them. Section 4 is then devoted to
a theoretical analysis of the so-called prediction error. We show that the decay
of this quantity is fully controlled by the subdivision operator. Finally, several
examples and applications are considered in Sect. 5.

2 Combining Multi-scale Transforms and Subdivision
Schemes

2.1 Multi-scale Analysis and Multi-scale Transform of Harten

A multi-scale analysis is characterized by the introduction of a family of separable
spaces (V j)j∈Z (j is a scale parameter) and two families of operators (Dj

j+1)j∈Z

and (P j+1
j)j∈Z connecting two successive spaces V j and V j+1. For each value

of j, the decimation operator, Dj
j+1, maps f j+1 =

(
f j+1

k

)
k∈Z

∈ V j+1 to an

element f j =
(
f j

k

)
k∈Z

∈ V j ; the prediction operator, P j+1
j , maps f j ∈ V j to

an element of V j+1. If f j is obtained after decimation of f j+1, P j+1
j f j does

not usually coincide with f j+1. However the following consistency condition is
required:

Dj
j+1P

j+1
j = IV j (1)

164 Z. Kui et al.

where IV j stands for the identity operator in V j . In order to recover f j+1 after
a decimation and a prediction, a sequence of prediction errors ej+1 =

(
ej+1

k

)
k∈Z

is introduced and defined as:

ej+1
k = f j+1

k −
(
P j+1

j Dj
j+1f

j+1
)

k
=

((
IV j+1 − P j+1

j Dj
j+1

)
f j+1

)
k

. (2)

The multi-scale transform of Harten [12] is then constructed as follows.
Focussing on a level j, we note h̃ = Dj

j+1 and h = P j+1
j . Thanks to (1) and

(2) that can be reformulated as h̃h = IV j and ej+1 =
(
IV j+1 − hh̃

)
f j+1, it

comes out that h̃ej+1 = 0. When h̃ is linear, we get ej+1 ∈ Ker(h̃) = W j . We
call g̃ the operator that associates ej+1 to its decomposition on a basis of W j and
g the canonical injection from W j to V j+1. We note dj = g̃ej+1 and ej+1 = gdj .
Then

(
h, h̃, g, g̃

)
satisfy:

⎧
⎪⎪⎨
⎪⎪⎩

g̃g = IW j ,

hh̃ + gg̃ = IV j+1 ,
g̃h = 0,

h̃g = 0.

One-scale decomposition and reconstruction transforms are then classically
sketched as follows [15]:

f j = h̃f j+1

f j+1

dj = g̃ej+1 with ej+1 = (I − hh̃)f j+1

hh̃
g̃

g

Iterating this process and denoting J0 < j, two multi-scale decomposition
and reconstruction transforms can be finally constructed as:

decomposition: f j+1 �→ {fJ0 , dJ0 , . . . , dj}, (3)

reconstruction: {fJ0 , dJ0 , . . . , dj} �→ f j+1 . (4)

These two transforms are of prime importance in data analysis and compres-
sion. In this context, their stability with respect to small perturbations is a key
property that is recalled in the following definition.

Subdivision and Decimation Coupling 165

Definition 1
The decomposition transform is said to be stable with regards to the norm || · ||
if there exists a constant C such that for all j and for all (f j , f j

ε), if f j �→{
fJ0 , dJ0 , ..., dj−1

}
and f j

ε �→
{
fJ0

ε , dJ0
ε , ..., dj−1

ε

}
, then,

sup
{
||fJ0

ε − fJ0 ||, {||dm
ε − dm||, m < j}

}
≤ C||f j

ε − f j || . (5)

The reconstruction transform is said to be stable with regards to the norm || · || if
there exists a constant C such that for all j > J0 and for all {fJ0 , dJ0 , ..., dj−1}
and

{
fJ0

ε , dJ0
ε , ..., dj−1

ε

}
, if {fJ0 , dJ0 , ..., dj−1} �→ f j and

{
fJ0

ε , dJ0
ε , ..., dj−1

ε

}
�→

f j
ε , then,

||f j
ε − f j || ≤ C sup

{
||fJ0

ε − fJ0 ||, {||dm
ε − dm||, m < j}

}
. (6)

From the previous definition, it turns out that the stability of the multi-scale
transforms fully depends on the choice of the four operators (h, h̃, g, g̃). Indeed
the following results hold as a direct consequence of the definition of (h, h̃, g, g̃).

Proposition 1
Assuming that the one-scale decomposition and reconstruction transforms are
constructed from the linear operators (h, h̃, g, g̃), if f j �→

{
f j−1, dj−1

}
and f j

ε �→{
f j−1

ε , dj−1
ε

}
, then,

||f j−1 − f j−1
ε || ≤ ||h̃|| ||f j − f j

ε ||, (7)
||dj−1 − dj−1

ε || ≤ ||g̃|| ||IV j − hh̃|| ||f j − f j
ε ||, (8)

moreover, if {f j−1, dj−1} �→ f j and
{
f j−1

ε , dj−1
ε

}
�→ f j

ε , then

||f j − f j
ε || ≤ (||h|| + ||g||) sup

{
||f j−1 − f j−1

ε ||, ||dj−1 − dj−1
ε ||

}
, (9)

where for simplicity, || · || denotes the vector or operator norm.

The family of prediction operators (P j+1
j)j∈Z plays a key role in the efficiency

of the multi-scale process (3)–(4). In this paper, we focus on linear local oper-
ators. There exists several approaches to construct them. The first one exploits
the classical multi-scale analysis and wavelet framework [8]. In this case, the coef-
ficients involved in the linear combination are directly deduced from the scaling
relation connecting scaling functions at different levels. Starting from functional
(continuous) spaces then moving to separable (discrete) ones is then required.
On the contrary, a second approach consists in defining explicitly the connection
between V j and V j+1 without specifying scaling functions and wavelets. This
can be performed using subdivision schemes that are briefly described in the
next section.

2.2 Subdivision and Decimation Schemes

The definition of a binary subdivision scheme [11] is first recalled.

166 Z. Kui et al.

Definition 2
A (univariate) subdivision scheme S is defined as a linear operator S : l∞(Z) →
l∞(Z) constructed from a real-valued sequence (hk)k∈Z having a finite number of
non zero values such that

(fk)k∈Z ∈ l∞(Z) �→ ((Sf)k)k∈Z ∈ l∞(Z) with (Sf)k =
∑
l∈Z

hk−2lfl .

The set of non zero values of (hk)k∈Z is called the mask of S and is denoted Mh.

From the definition of a subdivision scheme, it is easy to verify that a sub-
division scheme reproduces constant1 if and only if

∑
l∈Z

h2l =
∑
l∈Z

h2l+1 = 1 . (10)

This property is also called shift invariance for constant and is assumed to be
verified for all the subdivision schemes considered in this paper.

Subdivision can be iterated from an initial sequence (fJ0
k)k∈Z to generate

(f j
k)k∈Z for j ≥ J0 as

f j+1 = Sf j , j ≥ J0 . (11)

The mask plays a key role in the subdivision process and there exists many
ways to construct it ([2,4,7,11,14] for example). In this work, we focus on homo-
geneous (the mask does not depend on k) and stationary (the mask does not
depend on j) schemes.

Expression (11) can be interpreted as a prediction relation. There is therefore
a one-to-one correspondence between subdivision and local prediction operators
that will be exploited in this work.

The connection with the multi-scale framework is then fully achieved by
introducing in the following definition the notion of binary decimation scheme.

Definition 3
A (univariate) decimation scheme D is defined as a linear operator D : l∞(Z) →
l∞(Z) constructed from a real-valued sequence (h̃k)k∈Z having a finite number of
non zero values such that

(fk)k∈Z ∈ l∞(Z) �→ ((Df)k)k∈Z ∈ l∞(Z) with (Df)k =
∑
l∈Z

h̃l−2kfl .

The set of non zero values of (h̃k)k∈Z is called the mask of D and denoted Mh̃.

Moreover, similarly to subdivision schemes, a decimation scheme reproduces
constant if and only if ∑

k∈Z

h̃k = 1 . (12)

1 a scheme U is said to reproduce constant if ∀k, fk = C =⇒ ∀k, (Uf)k = C.

Subdivision and Decimation Coupling 167

The subdivision framework leads to a large choice for the family (P j+1
j)j∈Z

thanks to the flexibility in the construction of the mask. This is not the case
when considering wavelet multi-resolution analysis, since the prediction and the
decimation are fixed once scaling functions and wavelets are specified. However,
for a given subdivision scheme, the construction of a decimation mask leading
to a family of consistent decimation operators satisfying (1) is more involved.
This topic is addressed in the next section where a new method to generate
decimation masks associated to a fixed subdivision is proposed.

3 Construction of Decimation Operators

The first part of this section (Sect. 3.1) is devoted to the derivation of a condition
on the subdivision and decimation masks to ensure the consistency property for
the associated operators. Then, we propose in Sect. 3.2 a generic approach to
construct decimations consistent with a fixed subdivision.

3.1 Consistency Condition

Proposition 2
Let h be a prediction operator constructed from the mask of a subdivision scheme
i.e. ∀j, ∀

(
f j

l

)
l∈Z

,

(
hf j

)
k

=
∑
l∈Z

hk−2lf
j
l . (13)

Let h̃ be a decimation operator constructed from the mask of a decimation scheme
i.e. ∀j, ∀

(
f j+1

k

)
k∈Z

,

(
h̃f j+1

)
l
=

∑
k∈Z

h̃k−2lf
j+1
k . (14)

Then h and h̃ satisfy the consistency relation (1) if and only if

∀j ∈ Z,
∑
i∈Z

hih̃i+2j = δj,0 . (15)

where (δj,0)j∈Z
is the Dirac sequence.

Proof
According to (13) and (14), the consistency condition (1) implies that ∀

(
f j

m

)
m∈Z

,

∀m ∈ Z, f j
m =

∑
k∈Z

h̃k−2m

∑
l∈Z

hk−2lf
j
l =

∑
l∈Z

(
∑
k∈Z

h̃k−2mhk−2l)f
j
l

168 Z. Kui et al.

which is equivalent to

∀m ∈ Z,
∑
k∈Z

h̃k−2mhk−2l = δm,l

that leads to (15). �	
Remark 1
According to Eqs. (10), (12) and (15), if a subdivision scheme and a decimation
scheme are consistent and if the subdivision scheme reproduces constants, then
the decimation scheme also reproduces constants.

We end up this section by providing results related to convex combination
and translation of consistent decimation operators.

Definition 4
If h̃ is a decimation operator constructed from the sequence (h̃k)k∈Z, for all t ∈ Z

we call Tt(h̃) the decimation operator related to the sequence (h̃k−t)k∈Z.

Then, the following proposition holds:

Proposition 3
Let h be a prediction operator constructed from the sequence (hk)k∈Z,

1. if h̃0, h̃1 are two decimation operators of sequences (h̃0
k)k∈Z and (h̃1

k)k∈Z con-
sistent with h, then ∀λ ∈ R, λh̃0 + (1 − λ)h̃1 is consistent with h;

2. if h̃0, h̃1, h̃2 are three decimation operators of sequences (h̃0
k)k∈Z, (h̃1

k)k∈Z and
(h̃2

k)k∈Z consistent with h, then ∀λ ∈ R and ∀t ∈ Z, h̃0 + λT2t(h̃1) − λT2t(h̃2)
is consistent with h.

Proof

1. We have
∑

k

hk+2j(λh̃0
k + (1 − λ)h̃1

k) = λδj,0 + (1 − λ)δj,0 = δj,0 .

2. Similarly,
∑

k

hk+2j(h̃0
k + λh̃1

k−2t − λh̃2
k−2t) = δj,0 + λδj+t,0 − λδj+t,0 = δj,0 .

�	
Corollary 1
Subdivision operator h being fixed, let {h̃i}i∈I be a set of consistent decimation
operators, a general consistent decimation operator can be constructed as

∑
t∈T

∑
i∈I

ci,tT2t(h̃i) (16)

with
∀t ∈ T ,

∑
i∈I

ci,t = δt,0, 0 ∈ T ⊂ Z .

Subdivision and Decimation Coupling 169

3.2 Generic Approach

In this section, we focus on the construction of all the decimation operators con-
sistent with a given subdivision operator. We first construct elementary opera-
tors with masks of minimal number of non zero values. Then, we show how all
consistent decimation operators can be recovered using linear combinations of
translated versions of elementary operators.

The two following propositions provide the construction of the elementary
operators. Proposition 4 gives a generic approach to get consistent decimation
operators for a subdivision mask of even or odd length. Then, Proposition 5 deals
with further consideration for subdivision masks of odd length.

Proposition 4
Let h be a prediction operator constructed from the mask

Mh = {hn−2α, hn−2α+1, . . . , hn, hn+1}

of length 2(α + 1) with hn−2αhn+1 �= 0 or of length 2α + 1 with hn−2α = 0 and
hn−2α+1hn+1 �= 0.
We note HMh

the following matrix,

HMh
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−2 · · · hn−2α 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · hn−2α · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...
0 0 · · · hn hn−2 · · · hn−2α

0 0 · · · hn+1 hn−1 · · · hn−2α+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If det(HMh
) �= 0, there exists 2α consistent elementary decimation operators

which masks are of length not larger than 2α. These masks are given by each
row of H−1

Mh
.

Proof
First, let us assume that Mh is of even length (hn−2αhn+1 �= 0) and denote
formally for any integer m ∈ Z,

Mh̃ = {h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1},

the mask of a consistent decimation operator of length not larger than 2α. Here
the parameter n controls the centering of the mask Mh. The parameter m is
related to the shift between the masks Mh and Mh̃.

If h̃ is consistent with h then the consistency condition (15) is verified. It can
be written as

[h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1]

⎡
⎢⎢⎢⎢⎢⎣

hn−m−2j

hn−m+1−2j

...
hn−m+2α−2−2j

hn−m+2α−1−2j

⎤
⎥⎥⎥⎥⎥⎦

= δj,0 . (17)

170 Z. Kui et al.

To ensure that (17) makes sense with a given Mh, we should have

{hn−m−2j , hn−m+1−2j , . . . , hn−m+2α−1−2j}
⋂

{hn−2α, hn−2α+1, . . . , hn+1} �= ∅,

which means {
n − m + 2α − 1 − 2j ≥ n − 2α
n − m − 2j ≤ n + 1 .

and leads to

−m + 1
2

≤ j ≤ −m + 1
2

+ 2α .

When m is odd, (17) corresponds to 2α + 1 linear equations for j ∈
{−m+1

2 , . . . ,−m+1
2 + 2α} including

h̃n−mhn+1 = δm,−1 for j =
m + 1

2

and
h̃n−m+2α−1hn−2α = δm,4α−1 for j =

m + 1
2

+ 2α.

Since hn+1hn−2α �= 0, it necessarily leads to h̃n−mh̃n−m+2α−1 = 0. If h̃n−m = 0,
then Mh̃ is equivalent to {h̃n−m′ , h̃n−m′+1, . . . , h̃n−m′+2α−2, h̃n−m′+2α−1} where
m′ is even by considering

{h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1, 0},

and replacing m−1 by m′. The same kind of argument holds when h̃n−m+2α−1 =
0 by considering

{0, h̃n−m, . . . , h̃n−m+2α−2, h̃n−m+2α−2} .

Therefore, m can always be considered as even without losing generality.
Since m is even, (17) leads to 2α linear equations for j ∈ {−m

2 ,−m
2 +1, . . . ,−m

2 +
2α − 1} that can be written as

[h̃n−m, h̃n−m+1, . . . , h̃n−m+2α−2, h̃n−m+2α−1]HMh
= [δm,0, δm−2,0, . . . , δm−4α+2,0]

with

HMh
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−2 · · · hn−2α 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · hn−2α · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...
0 0 · · · hn hn−2 · · · hn−2α

0 0 · · · hn+1 hn−1 · · · hn−2α+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the column index corresponds to parameter j.

Subdivision and Decimation Coupling 171

For m ∈ {0, 2, . . . , 4α − 4, 4α − 2}, Eq. (17) can be written as

H̃Mh
HMh

= I2α

with

H̃Mh
=

⎡
⎢⎢⎢⎢⎢⎣

Mh̃0

Mh̃2

...
Mh̃4α−4

Mh̃4α−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h̃0
n h̃0

n+1 · · · h̃0
n+2α−1

h̃2
n−2 h̃2

n−1 · · · h̃2
n+2α−3

...
...

h̃4α−4
n−4α+4 h̃4α−4

n−4α+5 · · · h̃4α−4
n−2α+3

h̃4α−2
n−4α+2 h̃4α−2

n−4α+3 · · · h̃4α−2
n−2α+1

⎤
⎥⎥⎥⎥⎥⎦

.

Each row of H̃Mh̃
corresponds to a value of m and to a consistent decimation

operator. Note that, specifically for the elementary decimation operators defined
above, the superscript k for h̃k controls the shift between Mh and Mh̃k . Since
det(HMh

) �= 0, H̃Mh
= H−1

Mh
, that concludes the proof when Mh is of even length.

In the case of subdivision mask of odd length, the same proof can be con-
ducted assuming hn−2α = 0 and the same matrix H̃Mh

can be deduced if
det(HMh

) �= 0. �	

When the subdivision masks are of even length, the previous proposition
provides 2α consistent elementary decimation operators. When the subdivision
masks are of odd length, it turns out that the last row of H̃Mh

can be obtained by
a linear combination of translated versions of the decimation masks associated
with the other rows. This leads to only 2α− 1 elementary decimation operators.
It is stated by the next proposition.

Proposition 5
Let h be a prediction operator constructed from the mask

M ′
h = {hn−2α+1, hn−2α+2, . . . , hn, hn+1}

of length 2α + 1, α ≥ 2 with hn−2α+1hn+1 �= 0.
We note H ′

M ′
h

the following matrix

H ′
M ′

h
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...
0 0 · · · hn hn−2 · · · hn−2α+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

If det(H ′
M ′

h
) �= 0, there exists 2α− 1 consistent elementary decimation operators

which masks are of length not larger than 2α−1 . These masks are given by each
row of H ′−1

M ′
h
.

172 Z. Kui et al.

Proof
Following Proposition 4, we construct a similar matrix with hn−2α = 0

HM ′
h

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...
0 0 · · · hn hn−2 · · · 0
0 0 · · · hn+1 hn−1 · · · hn−2α+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since hn−2α+1 �= 0 and det(H ′
M ′

h
) �= 0, we have det(HM ′

h
) �= 0 and we can

introduce

H̃M ′
h

=

⎡
⎢⎢⎢⎢⎢⎣

Mh̃0

Mh̃2

...
Mh̃4α−4

Mh̃4α−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h̃0
n h̃0

n+1 · · · h̃0
n+2α−2 0

h̃2
n−2 h̃2

n−1 · · · h̃2
n+2α−4 0

...
...

...
h̃4α−4

n−4α+4 h̃4α−4
n−4α+5 · · · h̃4α−4

n−2α+2 0
h̃4α−2

n−4α+2 h̃4α−2
n−4α+3 · · · h̃4α−2

n−2α h̃4α−2
n−2α+1

⎤
⎥⎥⎥⎥⎥⎦

with H̃M ′
h

= H−1
M ′

h
.

Note that the last row of H̃M ′
h

denoted Mh̃4α−2 is the only mask with a non-
zero last term. Therefore h̃4α−2

n−2α+1 �= 0 according to the consistency condition.
In the sequel, we show that the last row of H̃M ′

h
can be obtained by linear

combinations of the translated versions of the above ones.
First, note that the set

{h̃0
n+2α−2, h̃

2
n+2α−4, . . . , h̃

4α−6
n−2α+4}

has at least one non-zero term, otherwise, according to the consistency condition,
all terms in

{h̃0
n+2α−3, h̃

2
n+2α−5, . . . , h̃

4α−6
n−2α+3}

would be also zero which implies det(H̃M ′
h
) = 0.

So there exists h̃4α−4−2t
n−2α+2+2t �= 0 for t ∈ {1, 2, . . . , 2α − 2}. Introducing λ =

h̃4α−4
n−2α+2/h̃4α−4−2t

n−2α+2+2t, we note

h̃∗ = h̃4α−4 + λT−2t(h̃4α−2−2t) − λT−2t(h̃4α−4−2t)

which can have non-zero value from index n − 4α + 2 to n − 2α + 2. Calculating
the last term gives

h̃∗
n−2α+2 = h̃4α−4

n−2α+2 + λh̃4α−2−2t
n−2α+2+2t − λh̃4α−4−2t

n−2α+2+2t = 0 .

It means that h̃∗ can have non-zero value from index n − 4α + 2 to n − 2α + 1.

Subdivision and Decimation Coupling 173

Since det(HM ′
h
) �= 0, h̃4α−2 is the unique consistent operator with a mask of

length not larger than 2α and admitting non-zero values from index n − 4α + 2
to n − 2α + 1. It therefore implies that h̃∗ = h̃4α−2.

Thus, eliminating the last row and column of HM ′
h
, we construct the matrix

H ′
M ′

h
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−2 · · · 0 0 · · · 0
hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · 0 · · · 0
0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...
0 0 · · · hn hn−2 · · · hn−2α+2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Since det(H ′
M ′

h
) �= 0, we then get elementary consistent decimation operator

masks by considering the rows of H̃ ′
M ′

h
= H ′−1

M ′
h
. �	

By construction, H̃ ′
M ′

h
in Proposition 5 is a (2α − 1) × (2α − 1) sub matrix of

H̃Mh
introduced in Proposition 4. Therefore, for any subdivision scheme, H̃Mh

provides all consistent elementary decimation masks. However, in practice, in
the case of odd length (more than 3), the elementary operators will be obtained
by restricting to H̃ ′

M ′
h

that is denoted for simplicity H̃ ′
Mh

since a subdivision
mask of odd length can be considered as a mask of even length by adding zero
in front or behind.

The previous elementary decimation operators can then be used to construct
any consistent decimation operator. Indeed we have the following proposition.

Proposition 6
Given a subdivision scheme h satisfying the hypotheses of Propositions 4 or 5,
combining elementary decimation operators with formula (16) generates all the
consistent decimation operators.

Proof
Let’s first consider Mh = {hn−2α, hn−2α+1, . . . , hn, hn+1} the mask of a given
operator h of length 2(α + 1) with hn−2αhn+1 �= 0. Then, Proposition 4 pro-
vides 2α consistent elementary decimation operators of length 2α which can be
denoted as

Mh̃2i = {h̃2i
n−2i, h̃

2i
n−2i+1, . . . , h̃

2i
n−2i+2α−2, h̃

2i
n−2i+2α−1}

with i = 0, 1, 2, . . . , 2α − 1.
Let Mh̃ = {h̃m−2β , h̃m−2β+1, . . . , h̃m, h̃m+1} be the mask of an arbitrary

decimation operator h̃ consistent with h. The length of Mh̃, 2β + 2, is supposed
to be larger than 2α that is to say β > α − 1 , otherwise h̃ is an elementary
operator itself and the proof is completed. Moreover, m in Mh̃ is always chosen
to ensure n − m even by assuming that h̃m−2β and h̃m+1 can be zero. However,
{h̃m−2β , h̃m−2β+1} �= {0, 0} and {h̃m, h̃m+1} �= {0, 0} are always guaranteed.

The consistency of h and h̃ implies directly n − 2α − 1 < m < n + 2β + 1.

174 Z. Kui et al.

The aim is to prove that h̃ can be represented as a linear combination of
translated version of (h̃2i)0≤i≤2α−1.

This will be proved in two steps. The first step consists in writing h̃ as the
sum of a term involving some h̃2i or its translated versions and of another one
denoted h̃∗ that is a consistent decimation operator with a shorter mask than
Mh̃. The second step is an iteration of this process until h̃∗ is an elementary
decimation operator. We restrict the proof to the first step since the second one
is straightforward.

The starting point is the consistency condition (15). Considering j = m−n
2 −β

and j = m−n
2 + α, it leads to

hnh̃m−2β + hn+1h̃m−2β+1 = δm−n
2 −β,0 , (18)

hn−2αh̃m + hn−2α+1h̃m+1 = δm−n
2 +α,0 . (19)

According to α and β, at least one of the two above RHS term is equal to zero.
Let us suppose that the RHS of (18) is zero, i.e.

hnh̃m−2β + hn+1h̃m−2β+1 = 0. (20)

Since hn+1 �= 0, we cannot have h̃2i
n−2i = 0 for all i ∈ {1, 2, . . . , 2α − 1}

according to the consistency condition.

Let us introduce the two following operators with a mask of length 2α with
h̃′

m−2β �= 0,

Mh̃′ = {h̃′
m−2β , h̃′

m−2β+1, . . . , h̃
′
2α−2β+m−2, h̃

′
2α−2β+m−1} = Tm−2β−n+2i(h̃2i),

Mh̃′′ = {h̃′′
m−2β+2, h̃

′′
m−2β+3, . . . , h̃

′′
2α−2β+m, h̃′′

2α−2β+m+1} = Tm−2β−n+2i(h̃2i−2)

which are elementary operators with the same translation. The consistency con-
dition implies

hnh̃′
m−2β + hn+1h̃

′
m−2β+1 = 0. (21)

Considering (20) and (21), h̃m−2β = 0 leads to h̃m−2β+1 = 0 which is not
allowed. Moreover, h̃m−2β+1 = 0 implies hn = 0 and then h̃′

m−2β+1 = 0. There-
fore there exists λ ∈ R/{0} such that

λ[h̃′
m−2β , h̃′

m−2β+1] = [h̃m−2β , h̃m−2β+1] . (22)

According to Proposition 3, h̃∗ = h̃ − λh̃′ + λh̃′′ is consistent with h. Since
Mh̃ has length 2β + 2, Mh∗ has length 2β from index m − 2β + 2 to m + 1.

If β = α, Mh̃∗ and Mh̃′′ have the same length and indices. According to
Proposition 4, h̃∗ = h̃′′ and

h̃ = λh̃′ + (1 − λ)h̃′′ ,

which leads to the expected result with a zero second term.

Subdivision and Decimation Coupling 175

If β > α, Mh̃∗ has a shorter length than Mh̃ and

h̃ = λh̃′ − λh̃′′ + h̃∗ ,

that allows us to iterate by replacing h̃ with h̃∗ and then to conclude.

The above process actually eliminate the first two terms h̃m−2β , h̃m−2β+1 of
Mh̃ using elementary decimation operators. If we suppose that the RHS of (19)
is zero, a symmetrical similar process can be performed and the last two terms
h̃m, h̃m+1 of Mh̃ will be eliminated.

To complete the proof in the case of subdivision mask of odd length, we
suppose hn+1 = 0 in (20) and (21). It is straightforward that h̃m−2β = 0,
h̃m−2β+1 �= 0 and then h̃′

m−2β = 0. Moreover, introducing Mh′ and Mh′′ with
h̃′

m−2β = 0 and h̃′
m−2β+1 �= 0, there exists λ �= 0 verifying (22). �	

Coming back to the multi-scale framework, the next section is devoted to
a theoretical study of the prediction error involving consistent subdivision and
decimation operators.

4 Analysis of the Prediction Error

The following result holds:

Proposition 7
Let {(V j , h, h̃)}j∈Z define a multi-scale analysis with h a prediction operator con-
structed from the real sequence (hk)k∈Z and h̃ a decimation operator constructed
from the real sequence (h̃k)k∈Z. We assume that the associated multi-scale trans-
form is applied from a fine scale Jmax to a coarse one J0.
If there exists L ∈ N such that ∀n ∈ {0, 1, . . . , L},

∀k ∈ Z,
∑
l∈Z

hk−2l

∑
m∈Z

h̃m−2l(m − k)n = δn,0 (23)

then for sufficiently large j ∈ [J0, Jmax − 1],

||ej || ≤ C2−(L+1)j , (24)

where C does not depend on j.

Proof
Condition (23) is equivalent to

∀1 ≤ n ≤ L, kn =
∑

l

hk−2l

∑
m

h̃m−2lm
n,

and implies that

∀j ∈ Z,∀1 ≤ n ≤ L, (k2−j)n −
∑

l

hk−2l

∑
m

h̃m−2l(m2−j)n = 0 . (25)

176 Z. Kui et al.

Moreover, for any j, one can introduce fj ∈ CL0(R) with L0 >> L such
that f j

k = fj(k2−j). We postpone to the end of the proof the construction of a
particular fj to get the expected result of the proposition.

Using Taylor expansion, it then comes out,

f j
k = fj(k2−j) =

L+1∑
n=0

1
n!

f
(n)
j (0)(k2−j)n + o((2−j)L+1)

and the prediction error (2) can be rewritten

ej
k =

L+1∑
n=1

1
n!

f
(n)
j (0)

(
(k2−j)n −

∑
l

hk−2l

∑
m

h̃m−2l(m2−j)n
)

+ o((2−j)L+1).

According to (25),

ejk =
1

(L+ 1)!
f
(L+1)
j (0)

(
(k2−j)L+1 −

∑

l

hk−2l

∑

m

h̃m−2l(m2−j)L+1
)
+ o(2−j(L+1)). (26)

To finish the proof we introduce a particular fj such that ∀i ≤ L0, ||f (i)
j ||∞ is

controlled independently of j that leads to a constant C independent of j such
that ||ej || ≤ C2−j(L+1).

For any j ∈ [J0, Jmax − 1], fj is constructed from fJmax
∈ CL0(R).

More precisely, starting from (fJmax

k)k∈Z with fJmax

k = fJmax
(k2−Jmax),

(fJmax−1
k)k∈Z is written

f
Jmax−1
k = (D

Jmax−1
Jmax

f
Jmax)k =

∑

l∈Z

h̃l−2kf
Jmax
l =

∑

l∈Z

h̃lf
Jmax
l+2k =

∑

l∈Z

h̃lfJmax ((l+2k)2
−Jmax),

fJmax−1 can therefore be defined as ∀x ∈ R

fJmax−1(x) =
∑

l

h̃lfJmax
(l2−Jmax + x),

and it is straightforward that ∀i ≤ L0,

||f (i)
Jmax−1||∞ ≤ (

∑
l

|h̃l|)||f (i)
Jmax

||∞ . (27)

Iterating this process, ∀j ∈ [J0, Jmax − 1],

||f (i)
j ||∞ ≤ (

∑
l

|h̃l|)Jmax−j ||f (i)
Jmax

||∞ . (28)

Since
∑

l |h̃l| ≥ 1,

||f (i)
j ||∞ ≤ (

∑
l

|h̃l|)Jmax−J0 ||f (i)
Jmax

||∞,

and (26) leads to
||ej || ≤ C2−(L+1)j

with C independent of j. �	

Subdivision and Decimation Coupling 177

Remark 2
The bound in Inequality (27) depends on the L∞ norm of the decimation operator
that is also a key quantity controlling the stability of the multi-scale decomposi-
tion (Expression (7) of Proposition 1). Therefore, an heuristic criterion to select
a decimation scheme after applying our generic approach can be based on the
L∞ norm of its mask. An optimal choice corresponds to a minimal norm equal
to 1 that leads to a bound in Inequality (28) independent of Jmax and J0. We
show in Sect. 5 some numerical examples related to the stability of the decimation
operators associated to classical subdivision schemes.

Condition (23) involves both subdivision and decimation masks. Under the
consistency Condition (15), it can be reformulated in a simpler way.

Proposition 8
Let h and h̃ be two consistent operators. Condition (23) is satisfied if and only
if ∀n ∈ {0, 1, 2, . . . , L}

∑
l∈Z

h2l(2l)n =
∑
l∈Z

h2l+1(2l + 1)n . (29)

Proof
Let us first introduce the following notations,

En
e,e =

∑
l h2l

∑
k h̃2k(2k − 2l)n,

En
o,o =

∑
l h2l+1

∑
k h̃2k+1(2k − 2l)n,

En
e,o =

∑
l h2l

∑
k h̃2k+1(2k + 1 − 2l)n,

En
o,e =

∑
l h2l+1

∑
k h̃2k(2k − 2l − 1)n.

Condition (23) becomes ∀0 ≤ n ≤ L,

En
e,e + En

e,o = δn,0, En
o,e + En

o,o = δn,0 . (30)

First we will prove that, the consistency constraint implies

∀n ∈ N, En
e,e + En

o,o = δn,0 . (31)

It is easy to verify that for n = 0, E0
e,e + E0

o,o = 1. Moreover, for any n ∈ N
∗,

the consistency condition leads to
∑

j

(
∑

i

hi−2j h̃i)(2j)n =
∑

j

δj,0(2j)n,

∑
i

(
∑

j

hi−2j(2j)n)h̃i = 0 .

Splitting the previous sum with respect to even and odd indices, we get
∑

i

(
∑

j

h2i−2j(2j)n)h̃2i +
∑

i

(
∑

j

h2i+1−2j(2j)n)h̃2i+1 = 0,

178 Z. Kui et al.

∑
l

h2l

∑
k

h̃2k(2k − 2l)n +
∑

l

h2l+1

∑
k

h̃2k+1(2k − 2l)n = 0,

which is precisely,
En

e,e + En
o,o = 0 .

Considering (30)and (31),Condition (23) is thenequivalent to∀n ∈ {0, 1, 2, . . . , L}
∑

l

h2l

∑
k

h̃2k(2k − 2l)n =
∑

l

h2l+1

∑
k

h̃2k(2k − 2l − 1)n,

∑
l

h2l

∑
k

h̃2k+1(2k + 1 − 2l)n =
∑

l

h2l+1

∑
k

h̃2k+1(2k − 2l)n,

which can be written as
∑

l

h2l

∑

k

h̃2k

n∑

i=0

(
n

i

)
(−1)

i
(2k)

n−i
(2l)

i
=
∑

l

h2l+1
∑

k

h̃2k

n∑

i=0

(
n

i

)
(−1)

i
(2k)

n−i
(2l + 1)

i
,

∑

l

h2l

∑

k

h̃2k+1

n∑

i=0

(
n

i

)
(−1)

i
(2k+1)

n−i
(2l)

i
=
∑

l

h2l+1
∑

k

h̃2k+1

n∑

i=0

(
n

i

)
(−1)

i
(2k+1)

n−i
(2l+1)

i
,

leading to

n∑
i=0

(
n

i

)
(−1)i(

∑
l

h2l(2l)i −
∑

l

h2l+1(2l + 1)i)
∑

k

h̃2k(2k)n−i = 0,

n∑
i=0

(
n

i

)
(−1)i(

∑
l

h2l(2l)i −
∑

l

h2l+1(2l + 1)i)
∑

k

h̃2k+1(2k + 1)n−i = 0,

which is equivalent to (29). �	

In fact, (29) in Proposition 8 and (23) in Proposition 7 are related to poly-
nomial quasi-reproduction and to polynomial reproduction. Full discussion on
these topics is beyond the scope of this paper.

5 Examples and Applications

Several applications of the previous results are provided in this section. They are
focussed on different goals. The first one is to revisit, with our generic approach,
classical decimation operators associated with well-known subdivision schemes
(Sects. 5.1, 5.2 and 5.3). A special attention is devoted to the stability of the
generated decimations. We illustrate how our approach can be used to improve
stability constants. The second one is to apply our method to the practical case of
a newly developed subdivision scheme for which there is no available decimation
operator in the literature (Sect. 5.4).

Subdivision and Decimation Coupling 179

5.1 Lagrange Subdivision

Lagrange interpolation provides interpolatory subdivision as follows. Given
(l, r) ∈ N

∗2 and introducing for each value of k,
∑r

m=−l+1 Lm(x)f j
k+m, the

polynomial of degree (l+r−1) that interpolates the points ((m, f j
k+m),−l+1 ≤

m ≤ r), the subdivision is given by
{

f j+1
2k = f j

k ,

f j+1
2k+1 =

∑r
m=−l+1 Lm(12)f j

k+m.

Here, {Lm(x)}m=−l+1,...,r stands for the Lagrange functions associated to
the stencil {−l + 1, . . . , r}. The coefficients of the subdivision mask are then
given by h0 = 1 and h2i+1 = L−i(1/2),−r ≤ i ≤ l − 1.

We then have

Proposition 9
Given (l, r) ∈ N

∗2, the Lagrange subdivision mask satisfies

l−1∑
i=−r

h2i(2i)n =
l−1∑

i=−r

h2i+1(2i + 1)n = δn,0, n = 0, 1, . . . , l + r − 1, (32)

which can be regarded as an enhanced condition (29) with L = l+r−1. Moreover,
it is the only family {hk}k=−2r,...,2l−1 satisfying (32).

Proof
Since h2i = δi,0 the left hand side term of (32) is δn,0. Moreover, using the
interpolatory property of the Lagrange subdivision for polynomials of degree less
than n gives directly that

∑l−1
i=−r h2i+1(2i+1)n = δn,0 ∀n ∈ {0, 1, 2, . . . , l+r−1}.

To prove uniqueness, we rewrite (32) as

A

⎡
⎢⎢⎢⎢⎢⎣

h−2r

h−2r+2

...
h2l−4

h2l−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦

and B

⎡
⎢⎢⎢⎢⎢⎣

h−2r+1

h−2r+3

...
h2l−3

h2l−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤
⎥⎥⎥⎥⎥⎦

,

with

A =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
−2r −2r + 2 · · · 2l − 4 2l − 2

...
...

...
...

...
(−2r)l+r−2 (−2r + 2)l+r−2 · · · (2l − 4)l+r−2 (2l − 2)l+r−2

(−2r)l+r−1 (−2r + 2)l+r−1 · · · (2l − 4)l+r−1 (2l − 2)l+r−1

⎤
⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
−2r + 1 −2r + 3 · · · 2l − 3 2l − 1

...
...

...
...

...
(−2r + 1)l+r−2 (−2r + 3)l+r−2 · · · (2l − 3)l+r−2 (2l − 1)l+r−2

(−2r + 1)l+r−1 (−2r + 3)l+r−1 · · · (2l − 3)l+r−1 (2l − 1)l+r−1

⎤
⎥⎥⎥⎥⎥⎦

.

180 Z. Kui et al.

Since A and B are invertible Vandermonde matrices the uniqueness is
proved. �	

Example
The 4-point centred Lagrange interpolating subdivision scheme is given by

{
f j+1
2k = f j

k

f j+1
2k+1 = − 1

16f j
k−1 + 9

16f j
k + 9

16f j
k+1 − 1

16f j
k+2

corresponding to

Mh = {h3, h2, h1, h0, h−1, h−2, h−3, h−4} = {− 1
16

, 0,
9
16

, 1,
9
16

, 0,− 1
16

, 0} .

Applying Proposition 5 gives

H̃ ′
Mh

=

⎡
⎢⎢⎢⎢⎣

h̃0
2 h̃0

3 h̃0
4 h̃0

5 h̃0
6

h̃2
0 h̃2

1 h̃2
2 h̃2

3 h̃2
4

h̃4
−2 h̃4

−1 h̃4
0 h̃4

1 h̃4
2

h̃6
−4 h̃6

−3 h̃6
−2 h̃6

−1 h̃6
0

h̃8
−6 h̃8

−5 h̃8
−4 h̃8

−3 h̃8
−2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

9 −16 9 0 −1
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

−1 0 9 −16 9

⎤
⎥⎥⎥⎥⎦

.

Remark 3
The five elementary decimation operators defined above correspond to sub-
sampling (lines 2, 3 and 4 of H̃ ′

Mh
) and polynomial extrapolations of degree 3

(from the positions (0, .5, 1, 2) to x = −1 for line 1 and from the positions
(−2,−1,−.5, 0) to x = 1 for line 5). Note that as for all interpolatory subdi-
vision, sub-sampling provides an optimally stable decimation with

∑
l |h̃l| = 1.

5.2 Compactly Supported Wavelet Subdivision

Wavelets and, more precisely, scaling functions for multi-resolutions [8], are
known to provide subdivision operators.

Orthogonality and zero moment conditions translate on the scaling coefficient
Mh′ = {h′

0, h
′
1, . . . , h

′
2N−1} as [8]

{∑
i h′

ih
′
i+2j = 2δj,0∑

i(−1)ih′
ii

p = 0 (33)

for j ∈ Z, p = 0, 1, . . . , N − 1.
According to orthogonal compactly supported wavelet theory, the rescaled

operators h =
√

2h′ and h̃ = 1√
2
h′ are consistent subdivision/decimation opera-

tors. More precisely, compact support wavelets of length 2N constructed in [8]
lead to the unique subdivision/decimation operators with the same mask (up to√

2 rescaling) with exponential decay of the error (Proposition 7) corresponding
to L = N − 1.

Subdivision and Decimation Coupling 181

Example
For N = 2 we get from [8]

[h′
0 h′

1 h′
2 h′

3] = [
1 +

√
3

4
√

2
3 +

√
3

4
√

2
3 −

√
3

4
√

2
1 −

√
3

4
√

2
] .

Applying Proposition 4 for h =
√

2h′ we get

H̃Mh
=

[
h̃0
2 h̃0

3

h̃2
0 h̃2

1

]
= H−1

Mh
=

[
3−

√
3

4
1+

√
3

4
1−

√
3

4
3+

√
3

4

]−1

=

[
3+

√
3

4 − 1+
√
3

4
−1+

√
3

4
3−

√
3

4

]

and therefore two elementary decimation operators h̃0 and h̃2.
For λ = 1

2

√
3−1√
3+1

, the linear combination

[h̃0 h̃1 h̃2 h̃3] = λ[0 0 h̃0
2 h̃0

3] + (1 − λ)[h̃2
0 h̃2

1 0 0]

= [
1 +

√
3

8
3 +

√
3

8
3 −

√
3

8
1 −

√
3

8
]

provides h̃ = 1√
2
h′. We also get that (29) is verified for n ≤ N − 1 = 1.

5.3 B-Spline Subdivision

It is well known that the scaling relation satisfied by the B-spline basis functions
of order m, Bm(t) =

∑
k hm

k Bm(2t − k) implies that any spline function C(t) =∑
k f j

kBm(2jt − k) can also be written as C(t) =
∑

k f j+1
k Bm(2j+1t − k) with

f j+1
k =

∑
l

hm
k−2lf

j
k k ∈ Z .

From the definition Bm+1(t) =
∫ t

t−1
Bm(τ)dτ and B0(t) = χ[0,1] with χω the

characteristic function of the domain ω, it follows that the mask of the B-spline
subdivision of degree m is given by

hm
k =

1
2m

(
m + 1

k

)
, k = 0, 1, . . . , m + 1 . (34)

We then have the following

Proposition 10
Given m ∈ N, the mask of the B-spline subdivision scheme satisfies condition
(29) with L = m, i.e.

	m/2
∑
l=0

h2l(2l)n =
�m/2�∑

l=0

h2l+1(2l + 1)n, n = 0, 1, . . . , m . (35)

Moreover, it is the only mask {hk}0≤k≤m+1 satisfying (29) and (10) with L = m.

182 Z. Kui et al.

Proof
It is easy to verify by induction that

m∑
k=0

(
m

k

)
kn(−1)k = 0, ∀n ≤ m − 1,

and splitting the previous sum with respect to even and odd indices leads to
(35) where the mask is given by (34).
To prove uniqueness, we rewrite (35) incorporating (10) as

A

⎡
⎢⎢⎢⎢⎢⎣

h0

−h1

h2

−h3

...

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

2
0
0
0
...

⎤
⎥⎥⎥⎥⎥⎦

with A =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 1 −1 · · ·
1 1 1 1 · · ·
0 1 2 3 · · ·
0 12 22 32 · · ·
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎦

.

After a short calculus, the determinant of A can be written as the sum of strictly
positive determinants of Vandermonde matrices. Therefore, det(A) �= 0, that
concludes the proof. �	

Example 1
For m = 3 we get

{
f j+1
2k = 3

4f j
k + 1

4f j
k+1

f j+1
2k+1 = 1

4f j
k + 3

4f j
k+1

and Mh = {h1, h0, h−1, h−2} = { 1
4 , 3

4 , 3
4 , 1

4}. We obtain two elementary decima-
tion masks from

H̃Mh
=

[
h̃0
0 h̃0

1

h̃2
−2 h̃2

−1

]
= H−1

Mh
=

[
3
4

1
4

1
4

3
4

]−1

=
[

3
2 − 1

2
− 1

2
3
2

]

and other solutions for any λ ∈ R as

[h̃−2 h̃−1 h̃0 h̃1] = λ[0 0 h̃0
0 h̃0

1] + (1 − λ)[h̃2
−2 h̃2

−1 0 0]
= [− 1

2 (1 − λ) 3
2 (1 − λ) 3

2λ − 1
2λ]

.

Remark 4
For splines of order 3, the subdivision given above coincides with the values
at 1/4 and 3/4 of the polynomial of degree 1 interpolating (0, f j

k), (1, f j
k+1). The

elementary decimations correspond to the extrapolations from the right (first line
of H−1

Mh
) or from the left (second line of H−1

Mh
).

Example 2
For splines of order 5 we get

{
f j+1
2k = 5

16f j
k−1 + 5

8f j
k + 1

16f j
k+1

f j+1
2k+1 = 1

16f j
k−1 + 5

8f j
k + 5

16f j
k+1

Subdivision and Decimation Coupling 183

and Mh = {h3, h2, h1, h0, h−1, h−2} = { 1
16 , 5

16 , 5
8 , 5

8 , 5
16 , 1

16}. We obtain four ele-
mentary decimation masks from

H̃Mh =

⎡
⎢⎢⎣

h̃0
0 h̃0

1 h̃0
2 h̃0

3

h̃2
−2 h̃2

−1 h̃2
0 h̃2

1

h̃4
−4 h̃4

−3 h̃4
−2 h̃4

−1

h̃6
−6 h̃6

−5 h̃6
−4 h̃6

−3

⎤
⎥⎥⎦ = H−1

Mh
=

⎡
⎢⎢⎣

5
16

5
8

1
16

0
1
16

5
8

5
16

0
0 5

16
5
8

1
16

0 1
16

5
8

5
16

⎤
⎥⎥⎦

−1

=

⎡
⎢⎢⎣

35
8

− 47
8

25
8

− 5
8

− 5
8

25
8

− 15
8

3
8

3
8

− 15
8

25
8

− 5
8

− 5
8

25
8

− 47
8

− 35
8

⎤
⎥⎥⎦ .

Other solutions can be constructed following (16) using for instance
{λ1, λ2, λ3, λ4} as

[h̃−6 h̃−5 h̃−4 h̃−3 h̃−2 h̃−1 h̃0 h̃1 h̃2 h̃3]
= λ1[0 0 0 0 0 0 h̃0

0 h̃0
1 h̃0

2 h̃0
3]

+ λ2[0 0 0 0 h̃2
−2 h̃2

−1 h̃2
0 h̃2

1 0 0]
+ λ3[0 0 h̃4

−4 h̃4
−3 h̃4

−2 h̃4
−1 0 0 0 0]

+ λ4[h̃6
−6 h̃6

−5 h̃6
−4 h̃6

−3 0 0 0 0 0 0] .

Remark 5
The values {λ1, λ2, λ3, λ4} = { 1

100 , 47
300 , 47

60 , 1
20} minimize

∑3
i=−6 |h̃i| to the value

163
40 . Following Remark 2, the corresponding decimation operator gets a smaller
stability constant than any of the elementary decimation for which the stability
constants are (14, 6, 6, 14).

5.4 Penalized Lagrange Subdivision

We finally consider a non-stationary (i.e. depending on the scale j) subdivision
scheme recently introduced in [14] and focus in the sequel on the associated
consistent decimation masks generated by our approach.

Using the notations of [14], the scheme is here constructed from a polynomial
Pj(x) = 100(2−2j)x2 − 2−4jx4 and a vector of penalization C = (0, 2, 0, 0).

Denoting Mh(j) = {h
(j)
3 , h

(j)
2 , h

(j)
1 , h

(j)
0 , h

(j)
−1, h

(j)
−2, h

(j)
−3, h

(j)
−4}, it first comes out

that

lim
j→−∞

Mh(j) = {− 1
16

, 0,
9
16

, 1,
9
16

, 0,− 1
16

, 0}, (36)

and

lim
j→+∞

Mh(j) = {1
3
,
1
8
, 0, 0, 1,

9
8
,−1

3
,−1

4
} . (37)

Therefore, according to the scale j, the subdivision evolves from the classical
interpolatory Lagrange subdivision (36) to a non-interpolatory one of Lagrange-
type. Indeed, the coefficients in (37) are the point values at x = 0 or x = 1

2 of
the Lagrange functions associated with the stencil {−1, 1, 2}.

According to Proposition 4, it is then possible to generate for each j ∈ Z

the matrix of associated consistent elementary decimation masks. As an exam-
ple, Fig. 1 displays the evolution of the third row of H̃Mh

for j ∈ [−10, 10].

184 Z. Kui et al.

It appears that the decimation mask quickly converges towards its asymp-
totical limit which is a sub-sampling ({0, 0, 0, 0, 1, 0}) when j → −∞ and
{− 54

107 , 144
107 ,− 9

107 , 24
107 ,− 6

107 , 8
107} when j → +∞. It is also interesting to notice

that, as expected, these decimations are consistent with the asymptotical sub-
division schemes associated with the masks (36) and (37) respectively.

Fig. 1. Six coefficients of the mask of a decimation operator consistent with the penal-
ized Lagrange subdivision scheme for scale −10 ≤ j ≤ 10.

6 Conclusion

We have shown, in this paper, that a construction of all the decimation oper-
ators consistent with a given linear and homogeneous subdivision operator can
be performed. The proposed generic approach first leads to the construction of
elementary decimation operators by exploiting the consistency condition. Then,
all the possible consistent decimation operators can be obtained by linear com-
binations of translated versions of elementary ones. A theoretical analysis has
been performed to provide an error bound for the so-called prediction error. It
turned out that the decay rate is controlled by the subdivision scheme only.
Moreover, the bound depends on the stability constant of the decimation opera-
tor that leads to the proposition of an heuristic strategy for the selection of the
decimation mask among the family of consistent ones. Several applications have
been performed in order to show the interest of our approach. It first appeared
that our method is coherent with previous constructions of decimation opera-
tors associated with well-known subdivision schemes. Moreover, it allows to go
beyond such constructions by offering a large choice of decimation masks that
can be used to improve the stability of multi-scale transforms. Finally, it pro-
vides an efficient tool to design decimation operators for non classical subdivision

Subdivision and Decimation Coupling 185

schemes. Some generalizations to position dependent schemes as well as to some
non linear subdivision operators are in progress [13].

References

1. Amat, S., Donat, R., Liandrat, J., Trillo, J.: Analysis of a fully nonlinear mul-
tiresolution scheme for image processing. Found. Comput. Math. 6(2), 193–225
(2006)

2. Amat, S., Liandrat, J.: On the stability of PPH nonlinear multiresolution. Appl.
Comput. Harmon. Anal. 18, 198–206 (2005)

3. Arandiga, F., Baccou, J., Doblas, M., Liandrat, J.: Image compression based on a
multi-directional map-dependent algorithm. Appl. and Comp. Harm. Anal. 23(2),
181–197 (2007)

4. Baccou, J., Liandrat, J.: Kriging-based interpolatory subdivision schemes. Appl.
Comput. Harmon. Anal. 35, 228–250 (2013)

5. Cavaretta, A., Dahmen, W., Micchelli, C.: Stationary subdivision. In: Memoirs of
the American Mathematics Society, vol. 93, No. 453, Providence, Rhode Island
(1991)

6. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly sup-
ported wavelets. CPAM 45(5), 485–560 (1992)

7. Cohen, A., Dyn, N., Matei, B.: Quasilinear subdivision schemes with applications
to ENO interpolation. Appl. Comput. Harmon. Anal. 15, 89–116 (2003)

8. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)
9. De Rham, G.: Un peu de mathématiques à propos d’une courbe plane. Elem. Math.

2, 73–76 (1947)
10. Deslauries, G., Dubuc, S.: Interpolation dyadique. In: Fractals, dimensions non

entières at applications, pp. 44–55 (1987)
11. Dyn, N.: Subdivision schemes in computer-aided geometric design. In: Light, W.

(ed.) Advances in Numerical Analysis II, Wavelets, Subdivision Algorithms and
Radial Basis Functions, pp. 36–104. Clarendon Press, Oxford (1992)

12. Harten, A.: Multiresolution representation of data: a general framework. SIAM J.
Numer. Anal. 33(3), 1205–1256 (1996)

13. Kui, Z.: Approximation multiechelle non lineaire et applications en analyse de
risques. Ph.D. thesis, Ecole Centrale Marseille, Marseille, France (2018)

14. Si, X., Baccou, J., Liandrat, J.: On four-point penalized lagrange subdivision
schemes. Appl. Math. Comput. 281, 278–299 (2016)

15. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal
wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

Translation Surfaces and Isotropic Transport
Nets on Rational Minimal Surfaces

Jan Vršek1,2(B) and Miroslav Lávička1,2

1 Department of Mathematics, Faculty of Applied Sciences,
University of West Bohemia, Univerzitńı 8, 306 14 Plzeň, Czech Republic

{vrsekjan,lavicka}@kma.zcu.cz
2 NTIS – New Technologies for the Information Society,
Faculty of Applied Sciences, University of West Bohemia,

Univerzitńı 8, 306 14 Plzeň, Czech Republic

Abstract. We will deal with the translation surfaces which are the
shapes generated by translating one curve along another one. We focus
on the geometry of translation surfaces generated by two algebraic curves
in space and study their properties, especially those useful for geomet-
ric modelling purposes. It is a classical result that each minimal surface
may be obtained as a translation surface generated by an isotropic curve
and its complex conjugate. Thus, we can study the minimal surfaces as
special instances of translation surfaces. All the results about transla-
tion surfaces will be directly applied also to minimal surfaces. Finally,
we present a construction of rational isotropic curves with a prescribed
tangent field which leads to the description of all rational minimal sur-
faces. A close relation to surfaces with Pythagorean normals will be also
discussed.

1 Introduction

In computer aided geometric design (CAGD) basic modelling surfaces, with the
property being simple and widely used, are applied to construct complex models,
see [1,2]. Typical examples are ruled surfaces, rotational surfaces, canal surfaces,
swept surfaces, translation surfaces, etc. Recognition of these surfaces from their
equations, investigation of suitable parameterization methods and other related
topics became an active research area in the past, see e.g. [3–7].

In this paper, we focus on the translation surfaces that are shapes generated
by translating one curve along another one. Hence, they are a simple solution
to the task to interpolate a surface going through two prescribed curves. From
this reason they are typical modelling shapes often used in industrial design
and architecture. An invariant feature of a translation surface is the existence of
a conjugate Chebyshef (transport) net, see [2]. We will focus on the geometry
of translation surfaces generated by two space algebraic curves and study their
properties that may be used later especially for geometric modelling purposes.

Furthermore, we will investigate in more detail the minimal surfaces as special
instances of translation surfaces. We recall that a non-zero vector (a1, a2, a3) ∈ C

3

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 186–201, 2017.
https://doi.org/10.1007/978-3-319-67885-6_10

Translation Surfaces and Isotropic Transport Nets 187

is called isotropic if it satisfies the condition a2
1 + a2

2 + a2
3 = 0. Then the isotropic

curve is a complex curve whose all tangent directions are isotropic. It is a classical
geometric result that each minimal surface may be obtained as a translation sur-
face generated by some isotropic curve and its complex conjugate, i.e., an isotropic
net on a minimal surface is a transport net, see [8]. Hence all the results about
translation surfaces can be directly applied also to minimal surfaces. Finally, we
will present a construction of rational isotropic curves with prescribed tangent
field which leads to the description of all rational minimal surfaces. A close rela-
tion to surfaces with Pythagorean normals (PN surfaces), i.e., rational surfaces
with rational offsets (see [9] for more details), will be also discussed.

2 Translation Surfaces

A translation surface is a simple solution to the problem of interpolating a surface
passing through two given input curves. In this section we recall some fundamen-
tal properties of these surfaces and investigate in more detail their behaviour at
infinity. All the obtained results will be in the next section directly applied to
minimal surfaces.

2.1 Definition, Fundamental Properties and Singularities

In what follows we will study surfaces in the affine space A
3
K
, where K is some

suitable field, typically K = R,C. Next let be given two points p,q ∈ A
3
K

then
p ⊕ q = p+q

2 denotes their midpoint. For two point sets X,Y we define

X ⊕ Y = {p ⊕ q | p ∈ X, q ∈ Y }. (1)

Definition 1. Let A, B ⊂ A
3
K
be two curves. The set A ⊕ B is called a trans-

lation surface.

The construction is illustrated in Fig. 1. We assume that the input curves
are algebraic and irreducible. Then the Zariski closure A ⊕ B is an irreducible
algebraic surface (i.e., a subset of A3

K
defined by a single irreducible polynomial),

unless A and B are parallel lines in which case A ⊕ B is a line.
Assuming that the input curves are given by their parameterizations a(u)

and b(v) respectively then the parameterization x(u, v) = 1
2

(
a(u)+b(v)

)
of the

translation surface fulfils the differential equation

xuv = 0, (2)

where the subscript denotes the mixed partial derivative w.r.t. the variables
u and v. Conversely, any solution of this differential equation can be written as
the sum of two functions in variables u and v, respectively. Hence we arrived at:

Lemma 1. A surface X is translational if and only if it can be (locally) given
by a parameterization x(u, v) fulfilling xuv = 0.

188 J. Vršek and M. Lávička

Fig. 1. Construction of a translation surface from two given input curves (red and
blue) as the set of all the midpoints p ⊕ q (black). (Color figure online)

We recall that the translation surfaces are usually defined in an alternative
way. Assume o ∈ A,B then we can construct a surface X either by translating
the curve A along the curve B, or by translating the curve B along the curve
A, cf. Fig. 2. Of course the obtained shapes are for both approaches the same
– they differ only by scaling with factor 2. The approach presented in Fig. 2
immediately demonstrates that X and thus also A ⊕ B carries two families of
congruent curves; this is the fundamental property of translation surfaces.

Fig. 2. Construction of a translation surface (yellow) by translating the curve A along
the curve B (left), or by translating the curve B along the curve A (right). (Color figure
online)

Clearly, the distinguished property recalled above can help when one wants
to recognize the translation surface and reconstruct their generating curves from

Translation Surfaces and Isotropic Transport Nets 189

its given implicit equation. As the curve A is reproduced via translating along
the curve B (and vice versa) it is efficient to investigate the singular points of
A ⊕ B which must originate from the properties of A and B.

For almost all input curves (see the discussion after Theorem 1 for the bad
cases), a generic point p ∈ A ⊕ B is generated by a unique pair a ∈ A and b ∈ B.
In this case we can describe the singular locus of A ⊕ B easily. The singular point
set of the variety X will be denoted by XSing. First, if p ∈ ASing then p ⊕ B is
the singular curve on A ⊕ B (the same holds for A ⊕ q, where q ∈ BSing). Next
if p ∈ A and q ∈ B are both regular points (i.e., the points not belonging to
ASing or BSing) and the corresponding tangent lines are not parallel then the
tangent plane at p ⊕ q is given simply by

Tp⊕q(A ⊕ B) = TpA ⊕ TqB. (3)

On the other hand, the points with parallel tangent lines are singular points of
the translation surface and they are contained in its self-intersection curve.

The points of the self-intersection of A ⊕ B can be expressed as a1 + b1 =
a2+b2. Let us denote A � A = A⊕(−A) where −A is the set centrally symmetric
to A w.r.t. the origin. Then the points of self-intersection correspond to the set
(A � A) ∩ (B � B). Since any two surfaces always intersect in a curve (at least in
the projective space over the algebraic closure of K), we see that A ⊕ B contains a
singular curve originated in the self-intersection of the surface.

Remark 1. Let A and B be two complex curves defined by real equations and
assume that their real parts AR and BR are one-dimensional real curves. It may
happen that (A ⊕ B)R differs from AR ⊕ BR. We illustrate this on the example.
Let AR and BR be two curves from Fig. 3. Then AR ⊕ BR is the yellow surface
from the same figure. However the real part of the surface A ⊕ B is the union of

Fig. 3. Two generating curves (red and blue) of the translation surface (yellow) from
Remark 1 and its self-intersection curve (cyan). (Color figure online)

190 J. Vršek and M. Lávička

AR ⊕ BR and the self-intersection curve (cyan in the figure). The reason is that
this curve is generated by the pairs of complex conjugated points.

2.2 Relation of A ⊕ B to A × B
Since A ⊕ B is generated by A and B it should look like A × B in some sense.
Hence, let us investigate this relation in more detail. This will be especially
useful when the behaviour of A × B at infinity is thoroughly studied in the next
section.

p+q
2

, p+q
2

)

(p,q)

x1,x2,x3

y1,y2,y3,

S : xi − yi = 0

Fig. 4. Projection π : P6
C ��� S with the centre S⊥ : w0 = 0, xi +yi = 0 relating A × B

with A ⊕ B

Consider the projective closure P
6
K

of A
3
K

× A
3
K

and the point coordinates
described in the form (w0 : x1 : x2 : x3 : y1 : y2 : y3). Let us note that for further
considerations it is more convenient to work with P

6
K

instead of more usual
closure P

3
K

× P
3
K
. Next let the subspace S be given by the equations xi − yi = 0,

for i = 1, 2, 3. Then the projection π : P
6
C

��� S with the centre S⊥ : w0 =
0, xi + yi = 0 immediately relates A × B with A ⊕ B, see Fig. 4.

Theorem 1. π(A × B) = A ⊕ B.
Clearly, if the projection π : A × B → A ⊕ B is one-to-one then these surfaces

are the same from the birational point of view. Nonetheless there exist situations
where π fails to be birational, for instance:

– If A and B are plane curves of degree ≥ 2 in parallel planes (Fig. 5).
– If A is a line and B is a curve (then A ⊕ B is a cylinder); if B intersects each

ruling k times them π is k : 1 mapping.
– If A � A = B � B.

Translation Surfaces and Isotropic Transport Nets 191

Fig. 5. An example when (A ⊕ B)R (right) is strictly bigger then AR ⊕ BR (left) when
A, B are two circles lying in parallel planes.

The last case is closely related to the so called multitranslation surfaces which
are surfaces obtained as translation surfaces by more than only one way. We
would like to recall some classical result describing a property of these surfaces.
If p ∈ A is a smooth point on the curve then there exists the well defined tangent
direction vp (up to multiplication by a scalar) and one can consider a rational
map gA : A → P

2
K
. The closure GA of gA(A) is an algebraic curve. It holds:

Theorem 2 (S. Lie 1882). If A ⊕ B = C ⊕ D then GA ∪ GB ∪ GC ∪ GD is an
algebraic curve of degree four.

When dealing with algebraic curves and surfaces it is more convenient to
work over C then over R. On the other hand, geometric modeling works over the
field of real numbers and thus some techniques and results must be reconsidered
when used in applications. This means that one has to be very careful before
formulating some conclusions. We present it on the case of translation surfaces
and show that birationality of π plays a significant role.

If not stated otherwise then assume that A and B are curves in complex space
but defined by real equations and their real dimensions are one. As mentioned
in Remark 1 the surface (A ⊕ B)R can be strictly bigger then AR ⊕ BR. If the
projection π is not birational then their difference may become more dramatic.

Theorem 3. If dimR(A ⊕ B)R\(AR ⊕BR) = 2 then the projection π is not bira-
tional.

Proof. There exists a Zariski open set U ⊂ A ⊕ B and a natural number k such
that for each p ∈ U the cardinality of the fiber π−1(p) is exactly k. This number
k is called the degree of the projection and it is birational if and only if k = 1.

192 J. Vršek and M. Lávička

Because dimR(A ⊕ B)R\(AR ⊕ BR) = 2 it cannot be contained in any closed set
as the dimension of closed sets is at most 1. Hence U ∩ (A ⊕ B)R\(AR ⊕ BR) is
non-empty. Let p be an arbitrary point in this intersection. Then p = (aR+iaI +
bR +ibI)/2, where aI and bI are non-zero. However A and B are defined by real
equations and thus they contain also the points aR − iaI ∈ A and bR − ibI ∈ B.
Trivially p = (aR − iaI +bR − ibI)/2, which means that π−1 consists of at most
two points. Hence the degree of the projection is at least two and it cannot be
birational.
�

Next, we can formulate further consequences being implied by the assump-
tion of birationality. Nonetheless, before we state the theorem we recall some
fundamental facts dealing with the rationality of algebraic varieties. Let X be
a variety of dimension d over a field K. Then X is said to be unirational, or
parametric, if there exists a rational map p : Kd → X defined over K such that
p(Kd) is dense in X . We speak about a (rational) parameterization p(t1, . . . , td)
of X . Furthermore, if p defines a birational map then X is called rational, and
we say that p(t1, . . . , td) is a proper parameterization.

For the sake of brevity, let us mention results at least for algebraic curves
and surfaces. By a theorem of Lüroth, a curve has a parameterization iff it has
a proper parameterization iff its genus (see [10] for the definition of this notion)
vanishes. Hence, for planar curves the notions of rationality and unirationality
are equivalent for any field. On contrary, in the surface case unirationality implies
rationality over algebraically closed fields only. Hence e.g. there exists a real
surface possessing only real non-proper parameterizations.

Theorem 4. If the projection π is birational then the following statements are
equivalent:

1. (A ⊕ B)C is rational,
2. (A ⊕ B)R is rational,
3. g (A) = g (B) = 0.

Proof. (1) ⇒ (3) It is a standard fact in the theory of surfaces that A × B can
be rational only if the genus of both curves vanishes. Moreover the birationality
of the projection implies that A × B is rational if and only if A ⊕ B is rational.
(3) ⇒ (2) Unlike in the surface case the rationality of the curve A implies
the existence of a birational parameterization of AR as well. Hence the proper
parameterizations a(u) and b(v) yield the proper parameterization of AR × BR

which propagates to the birational parameterization of AR ⊕ BR. Finally, by
Theorem 3 this is a birational parameterization of (A ⊕ B)R as well and thus it
is rational. (2) ⇒ (1) This is evident.
�

Let us emphasize that without the assumption of birationality it may hap-
pen that a rational surface is generated by non-rational curves (in this case no
parameterization reflecting the kinematic construction of the surface as A ⊕ B
exists). Next, it would also hold (1) ⇒ (2) in general, i.e., there exist surfaces
with XC rational but XR unirational only.

Translation Surfaces and Isotropic Transport Nets 193

2.3 Behaviour of Translation Surfaces at Infinity

Recognition of translation surfaces from their implicit equations is a challenging
and interesting problem, cf. [5]. In this section, a necessary condition for deciding
if the given surface is translational or not is presented. It reflects the behaviour
of translation surfaces at infinity. Finding sufficient condition remains an open
question. On the other hand, this investigation leads to a compact degree formula
for translation surfaces.

Let A ⊕ B ⊂ P
3
K

be the projective closure of A ⊕ B and ω = P
3
K
\A3

K
be

the plane at infinity. Since for a,b ∈ ω is a ⊕ b ∈ ω the points at the boundary
of A ⊕ B at infinity must be generated by intersections of A and/or B with ω.

If a ∈ ω, b ∈ ω then a ⊕ b = a. So we have to study in more detail the
case a,b ∈ ω. We recall the projection π : A × B → A ⊕ B and use A × B ⊂ P

6
K

instead of A × B ⊂ P
3
K

× P
3
K
. The image of a pair (0 : a1 : a2 : a3) ∈ A,

(0 : b1 : b2 : b3) ∈ B in A × B is the line

Lab : α(0 : a1 : a2 : a3 : 0 : 0 : 0) + β(0 : 0 : 0 : 0 : b1 : b2 : b3). (4)

Then for a = b we obtain π(Lab) = {αa + βb} ⊂ A ⊕ B. It remains to discuss
the case a = b.

Let c be a common point of A and B in the plane ω. For the sake of simplicity
we assume that c is a regular point on both curves and π(Lcc) = c. The point
C = (0 : c1 : c2 : c3 : c1 : c2 : c3) ∈ Lcc has no image in the projection
π(C) = TC(A × B) ∩ S. We can distinguish:

1. both tangents intersect ω transversaly ⇒ π(C) is a “finite” line passing
through c,

2. the tangent at one point is contained in ω ⇒ π(C) is this tangent line,
3. both tangents lie in ω ⇒ C is not regular on A × B ⇒ π(C) is a union of

lines through c.

The observation discussed above, see also Fig. 6, can be summarized as

Proposition 1. The boundary at infinity of any translation surface A ⊕ B con-
sists solely of a union of lines.

Clearly, Proposition 1 brings a necessary (unfortunately not sufficient) con-
dition for recognizing translation surfaces. Moreover, studying the behaviour at
infinity enables us to formulate the degree formula for translation surfaces.

Theorem 5. Consider a translation surface A ⊕ B. Then it holds

deg A ⊕ B ≤ deg A · deg B − #{A ∩ B ∩ ω}. (5)

Proof. We recall the formula deg X −multpX = deg πp ·deg Y, where πp : X ���
Y is the projection from the point p with the multiplicity multpX , see [11]. Next
it holds deg(A × B) = deg A · deg B and since π is 1 : 1 we have deg π = 1.
�

Intersections of A × B with the center of projection correspond exactly to
common points at infinity of the curves A and B. Multiplicity of the point is one
if the curves behave “nicely”, i.e., when the point is regular and the intersection
with ω is transversal.

194 J. Vršek and M. Lávička

Fig. 6. The boundary at infinity of a translation surface A ⊕ B consisting of straight
lines.

3 Transport Nets on Minimal Surfaces

In the previous sections we investigated translation surfaces and formulated for
them several results. In what follows we will focus on minimal surfaces as promi-
nent examples of translation surfaces, which means that all results obtained in
the previous parts can be immediately applied also to minimal surfaces.

Minimal surfaces have been studied in various mathematical disciplines and
for instance topological problems related to minimal surfaces are still challenging
topics for investigations. Due to their applications, they have become an area
of intense scientific study also in the fields such as molecular engineering or
materials science. In addition, they play a role in general relativity. However, it
is beyond the scope of this paper to recall a long history of this class of surfaces
and to make a complete overview of all obtained results. We consider them
as special instances of translation surfaces and we focus solely on those being
algebraic, see also [12] and references therein, and especially on rational ones.
Thus, for the sake of brevity, we refer only to the classical and general results on
minimal surfaces, see e.g. [13–17] and then, when needed, to the papers/books
which are closely related to our point of view. Our plan was not to write a survey
paper on minimal surfaces but to present some new results interesting especially
for the CAGD community.

3.1 Definition and Weierstrass-Enneper Formula

Minimal surfaces can be introduced in several equivalent ways. This fact and
also its long history show how important and interesting they are for many
mathematical and other disciplines as e.g. differential geometry, complex analysis

Translation Surfaces and Isotropic Transport Nets 195

and mathematical physics. Let E3
R

denote the 3-dimensional real Euclidean space
in what follows.

Definition 2. A surface in E
3
R
is called minimal surface if its mean curvature

vanishes identically.

Minimal surfaces are also often defined as surfaces of the smallest area
spanned by a given closed space curve, which is a property that can find some
applications e.g. in garment and shoe design (in order to minimize material con-
sumption). Well-known examples of minimal surfaces (although not being alge-
braic) are catenoids, helicoids, Schwarz minimal surfaces, Riemann’s minimal
surface, Henneberg surface, etc.

These surfaces can be locally parameterized as x : U → X, where U ⊂ R
2,

such that x is conformal or isothermal (i.e., satisfying the condition xu · xv = 0,
xu ·xu = xv ·xv) and harmonic (�x = 0), which declares a very close connection
to complex analysis. In addition, they are the surfaces on which the asymptotic
lines form an orthogonal net (i.e., the Dupin indicatrix consists of two conjugate
rectangular hyperbolas) and thus they satisfy the distinguishing condition

g11h22 − 2g12h12 + g22h22 = 0, (6)

where gij and hij are the coefficients of the first and second fundamental form,
respectively.

A well-known piece of the classical differential geometry is the Weierstrass-
Enneper parameterization of minimal surfaces. It holds that any minimal surface
defined over a simply-connected parameter domain can be represented by the
Weierstrass-Enneper formula

x(u, v) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Re

(
1
2

∫ z

0

f(w)(1 − g(w)2) dw

)

Re

(
i
2

∫ z

0

f(w)(1 + g(w)2) dw

)

Re

(∫ z

0

f(w)g(w) dw

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, w = u + iv, (7)

where f, g are complex analytic functions defined on U ⊂ C and Re takes the
real part of considered functions, see [8]. The coefficients of the first fundamental
form are in this case given as

g11 = g22 =
(|f |(|g|2 + 1)

)2
, g12 = 0, (8)

i.e., the parameterization is conformal. Investigating (7) in more detail one can
see that any choice of f, g as polynomials leads to a polynomial minimal surface
x(u, v). On the other hand, choosing f, g as rational functions does not guarantee
that x(u, v) is rational as integrals of rational functions are not rational, in
general. So, it is a question how to generate all rational minimal surface. We will
show that the approach based on translation surfaces and constructing rational
transport nets help.

196 J. Vršek and M. Lávička

3.2 Minimal Surfaces as Translation Surfaces

Let us start with recalling the notion of isotropic (or minimal) curve, cf. [8].
An isotropic curve is a complex curve in A

3
C

such that a tangent direction t =
(t1, t2, t3) at each regular point satisfies the condition t · t = t21 + t22 + t23 = 0.

Proposition 2. The mapping Ψ = (ψ1, ψ2, ψ3) : U → A
3
C
such that

ψ1(z) =
1
2

∫ z

z0

f(w)(1 − g(w)2) dw

ψ2(z) =
i
2

∫ z

z0

f(w)(1 + g(w)2) dw

ψ3(z) =
∫ z

z0

f(w)g(w) dw

(9)

is a parameterization of some isotropic curve.

One can easily confirm that the condition on isotropic curves is satisfied.
Formula (9) is called Weierstrass formula of the given isotropic curve. Conversely,
it is possible to obtain the Weierstrass representation from Ψ by setting simply
f = ψ′

1 − iψ′
2, g = ψ′

3
ψ′

1−iψ′
2
.

It holds that any surface possesses an isotropic parameterization (i.e., the
parametric lines are isotropic). In particular, the isotropic parameterization then
fulfils

g11 = g22 = 0, g12 = 0. (10)

Next for minimal surfaces, assuming the condition for vanishing mean curva-
ture (6) we obtain h12 = 0. This leads to

Γ 1
12 = Γ 2

12 = 0, (11)

where Γ k
ij are the Christoffel symbols. To sum up, as it holds

xuv = Γ 1
12xu + Γ 2

12xv + LN, (12)

where N is the unit normal vector at x, we can see that condition (2) is satisfied
for any isotropic parameterization of a minimal surface. Hence by Lemma 1 we
arrive at the classical result (see [8]).

Theorem 6 (S. Lie). All minimal surfaces are translation surfaces, of which
the generating curves are isotropic curves.

In addition this also relates formulae (7) and (9). Consider an isotropic curve
A ⊂ A

3
C

parameterized by Ψ(z). Then x(u, v) = Re (Ψ(z)) is a minimal surface
patch. Denote by A∗ the complex conjugate curve of A. Then A ⊕ A∗ is a
complex translation surface in A

3
C
. Its real part is a real minimal surface patch

described by (7).
We would like to stress that using Theorem 6 all results about translation sur-

faces hold also for all minimal surfaces, which form their subfamily. For instance,
the degree formula (5) formulated for algebraic translation surfaces can be also
efficiently used for all algebraic minimal surfaces, too. Furthermore, it holds

Translation Surfaces and Isotropic Transport Nets 197

Corollary 1. The boundary at infinity of any algebraic minimal surface consists
solely of a union of lines.

Let us recall that it was already shown by Lie in [18] that the asymptote
cone of a real algebraic minimal surface always decays in planes. In addition, Lie
refers to the paper [19], in which the intersection of an algebraic minimal surface
with the plane at infinity was also identified as consisting of straight lines only.

Remark 2. For the sake of completeness, it must be emphasized that the behav-
iour of minimal surfaces at infinity is usually associated with its “ends”, e.g.
ends asymptotic to a plane, see [16,17]. In this paper we are concerned with a
different kind of behaviour at infinity. We study the points at infinity of alge-
braic surfaces which have a canonical extension to projective space. Of course,
any planar end yields a straight line at infinity.

Example 1. A planar isotropic curve is a line. Hence, the first non-trivial example
are cubics. With some additional work it can be shown that each such a cubic
intersects ω with multiplicity 3 and hence it is a polynomial curve. As an example
let us consider the isotropic cubic

A :
(

s − s3

3
, is + i

s3

3
, s2

)
(13)

Hence we obtain A ∩ ω = (0 : 1 : i : 0) and A∗ ∩ ω = (0 : 1 : −i : 0). This gives
(A ⊕ A∗)R ∩ ω = {w = 0, z9 = 0}, which is a 9-tuple line at infinity. Moreover
we have deg(A⊕A∗) = 9. The surface A⊕A∗ is the Enneper surface, see Fig. 7.
Finally it can be proved that any minimal surface generated by cubic isotropic
curves is the Enneper surface.

3.3 Rational Isotropic Curves and Rational Minimal Surfaces

As already mentioned before it is an open question how to generate all rational
minimal surfaces from Weierstrass-Enneper formula. We show that this problem
can be efficiently solved when we consider the minimal surfaces as translation
surfaces. This is equivalent to answer (for isotropic curves) the question how to
determine a rational function ϕ(z) such that

∫
ϕ(z)t(z) dz is again rational.

The approach from [20] gives us a motivation. We recall that the tangent
developable surface is the envelope of the osculating planes of the regression
curve and the osculating planes are given by the binormal vector field. Let us at
least shortly present the main idea of the used approach.

It is known that at each point of a spatial curve c(s) one can construct the
normal, rectifying, and osculating planes, whose points x = (x, y, z)� satisfy

t(s) · (
x − c(s)

)
= 0,

n(s) · (
x − c(s)

)
= 0,

b(s) · (
x − c(s)

)
= 0,

(14)

198 J. Vršek and M. Lávička

Fig. 7. The minimal Enneper surface as a translation surface with the cubic isotropic
transport net.

respectively, where (t,n,b) is the Frenet frame. The Frenet-Serret equations
describing the variation of the Frenet frame read

⎛

⎝
t′

n′

b′

⎞

⎠ = σ

⎛

⎝
0 κ 0

−κ 0 τ
0 −τ 0

⎞

⎠

⎛

⎝
t
n
b

⎞

⎠ , (15)

where σ is the speed, κ is the curvature, and τ is the torsion of c(s). The equation
of the osculating plane in (14) has the form

b(s) · x = h(s), (16)

where we define h(s) := b(s) ·c(s). For a unit vector field b(s), the function h(s)
expresses the distance of the corresponding osculating plane from the origin.

It can be proved that (under some natural assumptions) differentiating (16)
and using (15) gives an equation of the rectifying plane and differentiating again
yields an equation of the normal plane. It follows that starting from a given
rational unit vector b(s) and a given rational function h(s), the points of a
spatial curve c(s) may be identified as the intersection points of the associated
osculating, rectifying and normal planes.

However, c(s) is not rational in general since the normalized tangent and
normal vectors contain square root terms. To resolve this issue, the authors of
[20] consider a modified rational system of three planes instead, namely

b(s) · x = h(s), b′(s) · x = h′(s), b′′(s) · x = h′′(s). (17)

Translation Surfaces and Isotropic Transport Nets 199

The first plane is still the osculating one, but the other two are not the
rectifying and normal planes any more (as b′(s) is generally not unit and b′′(s)
is not orthogonal to b′(s)).

Modifying the system of planes (14), (15), (16) and (17) does not change the
main contribution of the introduced approach: we can construct a curve with
a given (not necessarily unit) binormal vector field. And moreover in our case
when an isotropic curve is considered, t(s) is both tangent and binormal vector
field. This simplifies the considerations and we can immediately formulate:

Lemma 2. Let t(s) be a rational isotropic vector field and h(s) an arbitrary
rational function. Then the curve of regression of the tangent developable surface
being the envelope of a 1-parametric family of planes t(s) ·x = h(s) is a rational
isotropic curve with the tangent field ϕ(s)t(s), where ϕ(s) is a rational factor.
Conversely any such a curve may be obtained in this way.

This approach represents a rational alternative to integral formula (9). Fur-
thermore, an arbitrary basepoint-free isotropic vector field can be written in the
form

t(s) =
(
1 − g2(s), i(1 + g2(s)), 2g(s)

)
. (18)

Moreover, considering the rational minimal surfaces as translation surfaces,
of which the generating curves are rational isotropic curves, we can formulate

Theorem 7. All rational minimal surfaces can be generated as translation sur-
faces A ⊕ A∗ where A is a rational isotropic curve from Lemma2.

Finally, we recall that the coefficients of the first fundamental form satisfies
the condition (8) and the parameterization is thus conformal. This means that
for rational minimal surfaces, g11g22 − g212 is a perfect square of some ratio-
nal function, i.e., the parameterized surface x(u, v) is a rational surface with
Pythagorean normals (PN surface in short), see [9].

Corollary 2. All rational minimal surfaces are rational surfaces with
Pythagorean normals.

We recall that rational surfaces with Pythagorean normal vector fields (PN
surfaces) were introduced in [9] as a surface analogy to Pythagorean hodograph
(PH) curves defined previously in [21]. For a survey of shapes with Pythagorean
property see e.g. [22] and references therein. These surfaces provide an elegant
and practical solution of various difficult problems occurring in technical appli-
cations, in particular in the context of CNC machining. They are distinguished
by having rational offsets, i.e., tool paths do not have to be approximated and
they are described exactly in NURBS form, which represents currently a univer-
sal standard in computer-aided design, see [23]. Recently, it was revealed that all
polynomial minimal surfaces are PN, cf. [24]. Now, we can see that this property
holds not only for polynomial but for all rational minimal surfaces.

200 J. Vršek and M. Lávička

4 Conclusion

In this paper we studied translation surfaces as special instances of shapes impor-
tant for the technical practice. We dealt especially with the question of their
rationality, of their singular locus and it was shown that their boundary at infin-
ity consists of straight lines. Next, a degree formula for translation surfaces was
derived. Using a classical result that each minimal surface may be obtained as
a translation surface, all obtained results were applied also to minimal surfaces.
In addition, we presented a construction of all rational minimal surfaces and
discussed their close relation to rational surfaces with Pythagorean normals.

Acknowledgments. The authors were supported by the project LO1506 of the Czech
Ministry of Education, Youth and Sports. We thank to all referees for their valuable
comments, which helped us to improve the paper.

References

1. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann
Publishers Inc., San Francisco (2002)

2. Krivoshapko, S., Ivanov, V.: Encyclopedia of Analytical Surfaces. Springer, Cham
(2015)

3. Weinert, K., Du, S., Damm, P., Stautner, M.: Swept volume generation for the
simulation of machining processes. Int. J. Mach. Tools Manuf. 44(6), 617–628
(2004)

4. Shen, L.-Y., Pérez-Dı́az, S.: Characterization of rational ruled surfaces. J. Symbolic
Comput. 63, 21–45 (2014)

5. Pérez-Dı́az, S., Shen, L.-Y.: Parametrization of translational surfaces. In: Pro-
ceedings of the 2014 Symposium on Symbolic-Numeric Computation, SNC 2014,
New York, NY, USA, pp. 128–129. ACM (2014)

6. Vršek, J., Lávička, M.: Determining surfaces of revolution from their implicit equa-
tions. J. Comput. Appl. Math. 290, 125–135 (2015)

7. Vršek, J., Lávička, M.: Recognizing implicitly given rational canal surfaces. J. Sym-
bolic Comput. 74, 367–377 (2016)

8. Struik, D.J.: Lectures on Classical Differential Geometry, 2nd edn. Dover Publica-
tions, Mineola (1988)

9. Pottmann, H.: Rational curves and surfaces with rational offsets. Comput. Aided
Geom. Des. 12(2), 175–192 (1995)

10. Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Heidelberg (1974)
11. Mumford, D.: Algebraic Geometry I: Complex Projective Varieties. Springer,

Heidelberg (1976)
12. Odehnal, B.: On algebraic minimal surfaces. KoG 20, 61–78 (2016). Scientific and

Professional Journal of Croatian Society for Geometry and Graphics
13. Weierstrass, K.: Über die flächen deren mittlere krümmung Überall gleich null ist.

Monatsberichte der Berliner Akademie, pp. 612–625 (1866)
14. Schwarz, H.A.: Miscellen aus dem Gebiete der Minimalflächen, pp. 168–169.

Springer, Heidelberg (1890)
15. Darboux, G.: Lecons sur la Theorie Generale des Surfaces et les Applications

Geometriques Due Calcul Infinitesimal. Chelsea Publishing Series. American Math-
ematical Society, Providence (2000)

Translation Surfaces and Isotropic Transport Nets 201

16. Jakob, R., Dierkes, U., Küster, A., Hildebrandt, S., Sauvigny, F.: Minimal Surfaces.
Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2010)

17. Osserman, R.: A Survey of Minimal Surfaces. Dover Publications, Mineola (2014)
18. Lie, S.: Synthetischanalytische Untersuchungen über Minimalflächen. I. Über reelle

algebraische Minimalflächen. Archiv for Mathematik og Naturvidenskab, pp. 157–
198 (1877)

19. Geiser, C.F.: Notiz über die algebraischen Minimumsflächen. Math. Ann. 3(4),
530–534 (1871)

20. Farouki, R.T., Š́ır, Z.: Rational Pythagorean-hodograph space curves. Comput.
Aided Geom. Des. 28, 75–88 (2011)

21. Farouki, R., Sakkalis, T.: Pythagorean hodographs. IBM J. Res. Develop. 34(5),
736–752 (1990)

22. Farouki, R.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable.
Springer, Heidelberg (2008)

23. Piegl, L., Tiller, W.: The NURBS Book. Monographs in Visual Communication,
2nd edn. Springer, New York (1997)

24. Lávička, M., Vršek, J.: On a special class of polynomial surfaces with Pythagorean
normal vector fields. In: Boissonnat, J.-D., Chenin, P., Cohen, A., Gout, C., Lyche,
T., Mazure, M.-L., Schumaker, L. (eds.) Curves and Surfaces 2010. LNCS, vol.
6920, pp. 431–444. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27413-8 27

http://dx.doi.org/10.1007/978-3-642-27413-8_27

Towards Subdivision Surfaces C2 Everywhere

Malcolm Sabin(B)

Numerical Geometry Ltd., 19 John Amner Close, Ely, Cambs, UK
malcolm.sabin@btinternet.com

Abstract. The conditions for subdivision surfaces which are piecewise
polynomial in the regular region to have continuity higher than C1 were
identified by Reif [7]. The conditions are ugly and although schemes have
been identified and implemented which satisfy them, those schemes have
not proved satisfactory from other points of view. This paper explores
what can be created using schemes which are not piecewise polynomial
in the regular regions, and the picture looks much rosier. The key ideas
are (i) use of quasi-interpolation (ii) local evaluation of coefficients in the
irregular context. A new method for determining lower bounds on the
Hölder continuity of the limit surface is also proposed.

Keywords: Subdivision surfaces · Continuity · Reproduction

1 Motivation

There is a myth among commercial CAD system suppliers that “Subdivision
surfaces are adequate for animation, but they can’t be used for serious CAD
because they are not C2 at extraordinary points.”

Although this myth cannot be completely discounted (like most myths there
is some truth hidden underneath), in this raw form it is false.

1. There are subdivision surface schemes which are C2 at extraordinary vertices
(see [9,18,19] and several others). They may all have other problems, but
they are C2.

2. Lack of C2 at isolated points does not matter. The ideas of [18] could be
applied after a few hundred iterations of a standard method. This would
make the limit C2 everywhere, but it would be totally indistinguishable from
the raw limit surface. Also, there is a bivariate interpolation technique which
minimises the bending energy of the surface. This is widely regarded as good,
but the second derivatives are unbounded at the data sites.

3. The ‘raw’ forms of popular subdivision surfaces [2,4,5] are not merely not
C2. They actually have unbounded curvature at extraordinary points, and
because the unboundedness accelerates at different rates for positive and neg-
ative Gaussian curvatures, this can force regions of the limit surface close to
an extraordinary point to have the wrong sense of curvature [15,16]. Such
extreme behaviour can be eliminated easily [23,24] by tuning of the coeffi-
cients in extraordinary regions, but this does not cure the lack of C2, and is
not widely cited.

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 202–217, 2017.
https://doi.org/10.1007/978-3-319-67885-6_11

C2 Subdivision 203

The truth underneath is that the raw forms of the popular schemes, and even
tuned versions to a lesser extent, suffer from local distortion of the surface over
non-infinitesimal regions. It is these artifacts which are visible and objectionable
in the reflection line plots, and it is these which need to be eliminated. The
basic cause of these turns out to be the same as the cause of our inability to
tune these schemes to perfection: the inability to achieve quadratic generation
in any simple uniform stationary scheme which gives bi-polynomial pieces in the
regular regions. This was understood nearly twenty years ago [7,9,10] and that
understanding has deepened since [17].

This paper explores the idea of using schemes with fractal limit surfaces, the
analog of the quasi-spline curves of [20,21] to give the kind of behaviour which
serious CAD needs. [25] has already explored the quad grid case, and so the
focus here is on surfaces where the regular part of the mesh contains triangles.

Any full coverage of this will require many more years of work, and so this
paper merely sets out the territory and provides some initial results and some
ideas for directions which need to be explored. The exploration here is of surfaces
with a quasi-interpolating degree of three.

2 Definitions

A scheme is said to generate polynomials of degree d if for any bivariate poly-
nomial of degree d we can find a control polyhedron for which that function is
the limit.

A scheme is said to reproduce polynomials of degree d if for any bivariate
function of degree d we can find a control polyhedron for which that function is
the limit, and for which the control points all lie on the function. The limit has
to interpolate them.

The distinction between these two was not emphasised in the early papers,
but it turns out to be fairly important. Over regular grids, most subdivision
schemes can generate polynomials of low degree. Those which are B-spline based
do not reproduce them for degrees above 1.

A scheme can reproduce polynomials without being an interpolating scheme
for arbitrary data. Such a scheme is called a quasi-interpolating scheme of
degree d where d is the highest degree of polynomial which it can reproduce.

A scheme is called a stable generator of degree d if it generates polynomials
of degree d and if the maximum change of dth derivative with respect to addition
of perturbations of maximum amplitude ε is continuous with respect to ε with
Hölder exponent greater than 1, 0. The issue of stability is critical. The four-
point scheme is a quasi-interpolant of degree 3, but not a stable one, because
for any sequence of six data points which do not all lie on a cubic, the second
derivatives at dyadic points within the central span diverge at a rate depending
on the fourth differences of the local control points.

204 M. Sabin

3 Quadratic and Cubic Reproduction in Functional
Subdivision over a Regular Triangulation
of the Domain

This section exemplifies an approach. It does not preclude further work on
higher quasi-interpolation degrees, on different regular connectivities or on higher
arities.

3.1 Stencil Sizes

A quasi-interpolating functional subdivision scheme has the property that if the
values at all the old vertices lie on a polynomial, then new vertices will also
get vertices on that polynomial. If this property holds at every step, then the
limit surface will reproduce that polynomial, which we take as a condition for
continuity of the relevant degree, and for avoiding certain artifacts.

In order for a new vertex to have that property, the value has to be chosen
to match all polynomials of the target degree, d, which means that unless the
scheme is actually interpolating, there is a number n of conditions to be ful-
filled equal to the number of independent polynomials of that degree. These are
tabulated in Table 1.

Table 1. Stencil sizes

Degree Number

0 1

1 3

2 6

3 10

4 15

n (n+ 1)(n+ 2)/2

Table 2. Number of available vertices

No of rings Number of
vertices in
V-vertex stencil

Number of
vertices in
E-vertex stencil

0 1

1 7 4

13 8

2 19 10

25 14

31 18

r 3(r + 1)(r + 2)+1

We get the new value by taking a linear combination of the values at the
vertices in the stencil of the new point, and in order to be able to satisfy all
these conditions, we need to have at least as many independent coefficients in
those linear combinations. This leads to the unwelcome conclusion that high
degrees of polynomial reproduction will require very large stencils, involving a
number of rings varying at least linearly with the degree. See Table 2. Quadratics
and cubics remain (just) within sensible reach.

C2 Subdivision 205

We can have more coefficients (i.e. more old vertices in the footprint of the
stencil) than conditions to satisfy, and in this case the choice of the values of those
coefficients is underdetermined. This can be demanded by symmetry, since the
number of vertices in a rotationally symmetric stencil goes up with the number
of rings included.

However, in the case of the completely regular domain, symmetry also pro-
vides a way of resolving the extra freedom.

3.2 Construction of Cubic Quasi-interpolant

We know that each of the stencils must contain at least 10 entries for cubic quasi-
interpolation. There are three e-vertex stencils as well as the v-vertex stencil,
and so the total number of entries in the mask must be at least 40. We need
some understanding in order to be able to construct such a beast.

This understanding comes from two sources: the first is that the v-vertex
stencils must have 6-fold rotational symmetry, and that the e-vertex stencils
must have two mirror symmetry axes. The second is that we cannot have good
behaviour for general data if we do not have good behaviour for extruded data,
in which each mesh direction has the same value at all points along each edge
in that direction.

If the data is extruded, then the shape of a cross-section limit curve will be
given by a univariate refinement scheme whose mask is given by the row-sums
of the bivariate scheme. Further, factorisation of the mask is preserved under
the taking of row-sums. Because there are three directions for the row sums, the
desired symmetries come out in the wash.

We know a univariate scheme with cubic quasi-interpolation. This was
described by Hormann and Sabin [20]. Its mask is

2
(

[1, 1]
2

)6 [−3, 10,−3]
4

To map this to a triangular grid we need to take the [1, 1]/2 factors in pairs,
replacing each pair by

S =

⎡
⎣ 1 1

1 2 1
1 1

⎤
⎦ /8

and finding a kernel which, when multiplied by the cube of this, gives the required
row sums.

This is easily found to be

K =

⎡
⎣ −3 −3

−3 26 −3
−3 −3

⎤
⎦ /8

206 M. Sabin

which has the correct row sums to match [−3, 10,−3]/4, giving a final mask1 of
4S3K. ⎛

⎜⎜⎜⎜⎜⎜⎝

−3 −12 −18
−12 −28 −24 |

−18 −24 66 144
−12 −24 144 468 |

−3 −28 66 468 754 sym
sym

⎞
⎟⎟⎟⎟⎟⎟⎠

/1024

From this we can extract the stencils

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 −18 −3

−18 66 66 −18

−3 66 754 66 −3

−18 66 66 −18

−3 −18 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/1024

and ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−12 −12

24 144 24

−28 468 ∗ 468 −28

24 144 24

−12 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/1024

There are enough entries in these stencils (19 and 14 respectively) to give
cubic precision, which requires 10 points, but not quite quartic, which requires 15.
In any case there is no reason why these coefficients should satisfy the quartic
quasi-interpolation conditions. Three of the four cubics and all lower degrees
are satisfied because cubic extruded data is matched for three extrusion direc-
tions (by symmetry). The fourth cubic condition is based on a linearly varying
quadratic, and this is satisfied by mirror symmetry. We therefore assert that
this set of stencils satisfies all of the constant, linear, quadratic and cubic quasi-
interpolation conditions.

The question remains whether the resulting scheme is stable in the sense that
the eigenvalues behave.
1 K here is normalised to sum to 1: the kernel is thus 4K. This factor of 4 is analogous

to the factor of 2 in the expression for the univariate scheme mentioned above.

C2 Subdivision 207

3.3 The Basis Function

The basis function is the effect on the surface when one control point is moved.
If we start the refinement process itself with a single unit valued control point
and all the rest with value zero (cardinal data), successive refinements converge
towards the basis function. We can get tesselations of the basis function by
convolving each of these with the unit row stencil (the row (left) eigenvector of
the component with unit eigenvalue and column (right) eigenvector of all 1s) to
get the vertices at limit points. These are shown in Fig. 1. The last of these can
be compared with the basis functions of the Butterfly [5] and Loop [4] schemes
in regular regions in Fig. 2. Our scheme has significantly smaller wriggles than
Butterfly, and is narrower than Loop. In all of these figures, the basis function
is shown as far out as the first zero entries. Note that these are not control
polyhedra, as the scheme is only quasi-interpolating and the basis function is
not a polynomial.

Fig. 1. The first four iterations, in which there is refinement, but no alteration of
existing limit points.

3.4 Continuity Analysis

We can address the determination of lower bounds on the Hölder continuity by
three routes. The first approach is to apply the bivariate approach of Cavaretta
et al. [6], which is capable of showing that whatever the data, a norm of the first

208 M. Sabin

Fig. 2. The basis functions of the butterfly scheme and of Loop in regular regions.
(also drawn at four iterations.)

difference of the second or third divided difference contracts with each refine-
ment. This is capable of putting a lower bound on the continuity of the limit
surfaces. Unfortunately I have not been able to formulate this approach and have
not therefore been able to apply this test.

The second is that of Kobbelt [11], which applies difference operators to the
powers of the refinement operation.

I suggest here that a simpler approach may be to check whether the contrac-
tivity is true for the basis function. Any other data has its limit surface expressed
at any point as a finite weighted sum of basis functions, and so if the basis func-
tion is continuous in derivative to a certain degree, then so must any other limit
surface. This can be done numerically and is covered in Sect. 3.5 below.

We can also determine upper bounds by checking the magnitudes of the
eigenvalues, which can put upper bounds on the level of continuity, by measuring
the actual continuity at specific mark points of the surface. This can also be done
numerically and is covered in Sect. 3.6 below. Sharper bounds can in principle be
determined by eigenanalysis at more mark points. Here only the triangle vertices
and triangle centres are considered.

3.5 Contractivity of Differences of the Basis Function

Because we have tesselations of the basis function at different levels, we can,
merely by convolving with appropriate difference stencils, determine how the
various differences vary from level to level.

Because it is easiest to implement, the tables below are derived by taking the
appropriate differences (up to 4th) over the entire domain and then extracting
norms. We show here the max-norm and the average absolute value.

Because of the symmetry of the basis, we need only take the first differences
in one direction giving Table 3. Similarly the three second differences are just
symmetric versions of a single one giving Table 4. We can get the four 3rd dif-
ferences just by evaluating two of them giving Table 5. The same is true of the
4th differences giving Table 6.

C2 Subdivision 209

In each table are five columns. The second is the sum of the absolute values
of the relevant difference, taken over the tesselations of the basis function shown
in Fig. 1. The third is the ratio between each such value and the one above. The
fourth column is the maximum absolute value of the relevant difference, and
again the fifth holds the ratio between successive refinements.

Table 3. First differences: Because the entries in the second column are sums, the
ratios need to be divided by 4 to get the actual ratio of norms. (There are four times
as many triangles and therefore four times as many difference entries in each row
compared with the previous.) With this correction, both ratios are converging nicely
to 1/2, which, because it is less than one indicates that the scheme is convergent, with
a continuous limit.

Level Σ|d| Ratio |d|max Ratio

0 1.954658364122 0.6252769189585

1 4.4209983756427 2.2617754881314 0.3706062878079 0.5927074494053

2 9.457042987369 2.1391193083155 0.2077661161766 0.5606114170526

3 19.150115219234 2.0249580386608 0.1054197019496 0.5073960272712

4 38.430854767130 2.0068210727280 0.0529147334585 0.5019434932932

Table 4. Differences of first divided differences: The ratios in the third column
now need to be divided by 4, but also multiplied by 2, because the raw figures are
differences rather than divided differences. Those in the fifth column now need to be
multiplied by 2. Again, the ratios are nicely converging to 1/2 which is well below 1,
and so we can deduce that the scheme is C1.

Level Σ|d| Ratio |d|max Ratio

0 1.954658364122 0.625276918958

1 5.195647796224 2.658084855947 0.509341262301 0.260578150970

2 5.915246892456 1.138500361158 0.148838512720 0.292217661784

3 6.111079357843 1.033106389124 0.039238461919 0.263631107314

4 6.162914058208 1.008482085950 0.009987309486 0.254528567085

3.6 Eigenvalue Analysis

This is very straightforward, as we can work solely with the kernel, which is very
simple.

4K =

⎛
⎜⎜⎜⎜⎝

−3 −3

−3 26 −3

−3 −3

⎞
⎟⎟⎟⎟⎠ /2

210 M. Sabin

Table 5. Differences of second divided differences: We have two different third
differences in use here. The ratios in the third column now need to be divided by 4,
but also multiplied by 4, because the raw figures are differences rather than divided
differences. Those in the fifth column now need to be multiplied by 4. Yet again, the
ratios are nicely converging to 1/2 which is well below 1, and so we can deduce that
the scheme is C2.

Level Σ|d| Ratio |d|max Ratio

0 6.3472772348861 1.7968990864628

1 6.7026946541919 1.0559952568878 0.4211556586767 0.2343791378434

2 4.2440378797963 0.6331838310942 0.0783173770441 0.1859582684705

3 2.2718369140307 0.5353008098362 0.0103408828255 0.1320381659330

4 1.1575101905374 0.5095040860497 0.0013108955912 0.1267682472874

Level Σ|d| Ratio |d|max Ratio

0 8.457483383656 2.175810559215

1 19.80725893292 2.341980236248 1.479495404617 0.679974365576

2 18.91360654972 0.954882581874 0.365260442678 0.246881768972

3 11.64307651131 0.615592614804 0.053058514549 0.145262142707

4 6.249221667750 0.536732852496 0.006830399904 0.128733342097

Table 6. Differences of third divided differences: We have three different fourth
differences in use here. The ratios in the third column now need to be divided by 4,
but also multiplied by 8, because the raw figures are differences rather than divided
differences. Those in the fifth column now need to be multiplied by 8. It looks as though
we can infer C3.

Level Σ|d| Ratio |d|max Ratio

0 12.30937074944 3.593798172925

1 9.351603172048 0.759714152932 0.786811211287 0.218935837080

2 3.573727352791 0.382151304652 0.086012788579 0.109318204095

3 1.044397941094 0.292243318527 0.008115334957 0.094350329662

4 0.280368542187 0.268449918518 0.000710776028 0.087584311946

Level Σ|d| Ratio |d|max Ratio

0 16.91248082729 4.351621118431

1 37.84281382575 2.23756728608 2.95899080923 0.679974365576

2 24.47335784142 0.646710837997 0.511077643651 0.172720253829

3 7.817348127387 0.319422785301 0.051984063931 0.101714611423

4 2.094546402655 0.267935669299 0.004790014051 0.092143893521

Level Σ|d| Ratio |d|max Ratio

0 10.70181694529 2.314131729739

1 5.6719938630861 0.5300028856857 0.4288936385916 0.1853367434013

2 1.8838035407895 0.3321236916438 0.0439635901700 0.1025046450080

3 0.5026102536695 0.2668060882075 0.0040813827780 0.0928355205346

4 0.1320672373545 0.2627627200007 0.0003559242029 0.0872067684662

C2 Subdivision 211

The stencils are⎛
⎜⎜⎜⎜⎝

0 0

0 26 0

0 0

⎞
⎟⎟⎟⎟⎠ /2 and

⎛
⎜⎜⎜⎜⎝

0

−3 ∗ −3

0

⎞
⎟⎟⎟⎟⎠ /2

The subdivision matrix at vertices for the zero frequency Fourier component
becomes ⎡

⎢⎢⎢⎣
26/2
−3/2 −3/2

0 −6/2 0

0 26/2 0
. . .

⎤
⎥⎥⎥⎦

whose only non-zero eigenvalues are 26/2 and −3/2. Those of higher frequency
Fourier components are never larger.

We may therefore determine the Hölder continuity at vertices to be

6 − log2(13) = 6 − 3.7004 = 2.2996,

because each S factor increases the Holder continuity by 2.
The subdivision matrix at triangle centres for the zero frequency Fourier

component becomes ⎡
⎢⎢⎢⎣

−6/2
26/2 0
−3/2 −3/2 0

−3/2 0 −3/2
. . .

⎤
⎥⎥⎥⎦

whose only nonzero eigenvalue is −3. Those of higher frequency Fourier compo-
nents are never larger.

The Hölder continuity here is 6 − log2(3) = 4.41
In fact the continuity might be less than 2.2996, because this analysis only

tells us about the continuity at the dyadic points, giving upper bounds on the
level of continuity. Other mark points might have different (worse) behaviour.
There are an infinite number of them and this is why the joint spectral radius
calculation is such a lot of work. However, getting two upper bounds on the right
side of 2 means that the method has not failed this test.

4 Triangulations with Extraordinary Vertices

The handling of extraordinary vertices requires amazingly little additional analy-
sis. If a scheme has quadratic or cubic precision, it will have linear precision. We
can therefore choose a desired natural configuration, for example by taking that
of any C2 scheme, and the coefficients computed to give the reproduction proper-
ties will automatically make that natural configuration a self-fulfilling prophecy.

212 M. Sabin

We have three types of stencil to determine:

(i) That of the EV itself.
Here use of symmetry resolves the underdeterminedness.

(ii) Those of new vertices2 lying within the support of the EV: i.e. whose sten-
cils contain the EV in their interior, so that the topology of the stencil is
affected asymmetrically by the presence of the EV.

This is where most of the work lies, in that the vertices which need to
be taken into account have to be chosen. The EV spoils the regularity of
the topology. Calculating the coefficients to give the required reproduction
properties applies as in the regular case.

(iii) Those of vertices lying further out, in what we can term the ‘far field’. Here
the topology of the stencil is regular, but the geometry is influenced by the
natural configuration. Thus the actual coefficients will differ from the regu-
lar case. This effect propagates unboundedly, although hopefully reducing
with distance. However, we can choose to resolve the underdeterminedness
by minimising the difference from the regular case. Because of the regress
of regularity around the extraordinary vertices, if the stencils converge fast
enough towards the regular case, we do not have to worry about continuity
at any points other than the extraordinary vertices themselves. This means
that eigenanalysis at the EVs is a sufficient tool. Thus most of the really
hard work is done in the regular case.

In fact at large distances from an EV we have two possible strategies

(iii.i) to be pure, and insist that all stencils are determined correctly.
In fact, if we are careful, the perturbation of the coefficients from the

regular case reduces fast enough with distance that after a certain distance
it can be approximated accurately enough (to machine precision) by some
simple form, which can be combined when more than one EV is present
in the control polyhedron.

(iii.ii) just to revert to the regular stencil for all new vertices whose support does
not touch the EV.

This avoids a lot of implementation problems, and will not spoil the
continuity at the EV, because only control points within, or on the bound-
ary of, the support of the EV influence the shape of the limit surface in
the immediate neighbourhood of the EV. It will not spoil the continuity
anywhere else either, because everywhere outside that neighbourhood has
its continuity governed by the regular case.

However, we can expect something to go wrong, and an obvious symp-
tom to be expected will be the appearance of artifacts in the region
between the two regimes.

A practical resolution might well be to use (iii.ii) to avoid overlapping influ-
ences from more than one EV. In regions where more than one EV has a sig-
nificant effect, who can say what the desired surface should be? As refinement
2 In the case of schemes having multiple kinds of e- and f-vertices (for example, that

of [9] or of higher arity) each kind will need individual calculations of this type.

C2 Subdivision 213

proceeds, the threshold between the two regimes can move in more slowly than
the refinement rate, and the artifacts should therefore be spread out and diluted.

4.1 Conformal Characteristic Map

In [13] David Levin conjectured that a stationary subdivision scheme giving the
characteristic map

u + iv = (s + it)6/n

would require a EV mask of unbounded size. Here we have a non-stationary
scheme, because the stencils depend on the local layout of control points in the
domain, and the corresponding conjecture is that the influence of the presence
of the extraordinary point extends unboundedly, even though the EV itself is
only accessed by the stencils of a finite number of nearby new vertices.

In the far field we find that the rate of convergence to the regular case turns
out to be significantly slower if we enforce cubic reproduction than if we only
enforce quadratic, despite the fact that what we are trying to be close to does
have cubic precision when the geometry is regular. The Tables 7, 8, 9 and 10 in
Annex 2 report E1 = Σiδ

2
i and E2 = maxi|δi| for reproduction of degrees 2 and

3, for v-vertices along rays from the EV of valencies 5 and 7.

4.2 Other Characteristic Maps

The choice of the conformal characteristic map is entirely an aesthetic one. It
would be equally possible to choose as arbitrary natural configuration that of
Loop or of the Butterfly scheme. Anything, in fact, which can be shown to be
1:1 and have its characteristic map join smoothly enough to its scaled instance
under the next ring.

4.3 Moving Least Squares

Since presentation of the paper I have seen the recent work of Ivrissimtzis. This
uses a combination of a standard subdivision scheme (in this Loop, Butterfly or
even the degree 1 box-spline) to determine approximate new vertex positions,
which are then refined by projection on to a local least squares fit to some
subset of the old vertices. This work is following a line which can be traced
back through the work of Boyé, Guennebaud and Schlick [22], Levin [14] and
McLain [1]. It looks to be almost equivalent to the above ideas, in that it gives a
quasi-interpolant (if enough local points lie on a polynomial, the new point will
lie on that polynomial), but goes, apparently, more directly to the new points
(projecting rather than first computing coefficients).

5 Directions Still Needing Exploration

5.1 Stronger Proof of Degree of Continuity

The analysis of the regular case above is unsatisfactory, with different approaches
giving different opinions. The method of chapter seven in Cavaretta et al. [6]
needs to be made to work.

214 M. Sabin

5.2 End and Edge Conditions

Before these ideas can be applied to practical situations, the detail of what to do
at the edges of the domain of interest needs to be articulated. Unfortunately we
do not yet even have end conditions adequately explored for univariate quasi-
splines, and this must obviously come first.

5.3 Extension to Higher Degrees

In principle exactly similar constructions can be made, choosing coefficients
to give any desired quasi-interpolation degree. Because the stencils for higher
degrees become large quadratically with degree, it is unlikely that higher degrees
will be of more than academic interest, but the academic interest is there. It
seems likely that the extension in this direction will not expose new problems
significantly different from those already seen.

5.4 Extension to Solids and Higher Dimensions

Although regular triangular grids do not have completely regular analogues in
higher dimensions, the ideas of using subdivision basis functions which reproduce
low degree polynomials without being interpolating for general data must be
relevant to IsoGeometric Analysis, overcoming the current disadvantage of sub-
division that the lack of polynomial generation gives excessive stiffness because
the artifacts contribute spurious energy to the solution.

Acknowledgements. My thanks go to a very diligent referee who bothered to con-
struct a counterexample disproving a conjecture in my first draft of this paper and
also pointed out many places where the original text was not clear. I also thank col-
leagues: Cedric Gerot for helping me understand that counterexample, Leif Kobbelt
and Ulrich Reif for prompt replies to my emails requesting clarifications, and to Ioannis
Ivrissimtzis for bringing the moving least squares ideas to my attention.

Annex 1: Computation of Stencil Nearest to a Regular
Stencil

In the topologically regular but geometrically irregular case, I suggest that the
nearest solution to the regular one should be chosen. This gives some measure
of continuity with respect to changing layouts in the abscissa plane. The metric
for ‘nearest’ might be chosen by more sophisticated arguments later3, but for
the moment I just use the euclidean distance in coefficient space.

Call the number of coefficients c and the number of quasi-interpolation con-
ditions n.

3 For example, to get better continuity when the set of support points needs to change
because of changes in the set of local neighbours.

C2 Subdivision 215

The quasi-interpolating conditions define a linear subspace of dimension c−n
in the space of dimension c − 1 of sets of coefficients: nearness to the regular
coefficients defines a complementary subspace orthogonal to it, and the solution
can be found in that subspace by solving a linear system of size n × n.

Let the set of coefficients be ai, i ∈ 1..c, and let the quasi-interpolation
conditions be

∀j ∈ 1..n Σiaifj(vi) = 0

If the regular coefficients are āi, then we can set up the system

∀i ai = āi + Σk∈1..n δkfk(vi)

and solve for the δj .

∀j ∈ 1..n 0 = Σiaifj(vi)
= Σi (āi + Σk δkfk(vi)) fj(vi)
= Σi āifj(vi) + Σi Σk δkfk(vi)fj(vi)
= Σi āifj(vi) + Σk Σi δkfk(vi)fj(vi)
= Σi āifj(vi) + Σk δkΣi fk(vi)fj(vi)⎡

⎢⎢⎣
. . .

Σi fk(vi)fj(vi)
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...
δk
...

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

...
Σi āifj(vi)

...

⎤
⎥⎥⎦

The actual coefficients can then be determined from these δj values.

∀i ai := āi + Σk δkfk(vi)

The rate of convergence with distance from the EV in an interesting natural
configuration can be measured by how Σjδ

2
j varies with distance.

Annex 2: Convergence for Conformal Characteristic Map

These figures in Tables 7, 8, 9 and 10 (E1 = Σiδ
2
i and E2 = maxi|δi|) are

disappointing in that the convergence is so slow. A conjecture that the rate of
convergence would be d−6 has been soundly disproved by these calculations.

Table 7. Valency = 5, reproduction
degree = 2

Distance E1 E2

2 0.0266273481 0.00859447462

4 0.0029902673 0.00098588428

8 0.0004904519 0.00014386747

16 0.000117032 0.00003354449

Table 8. Valency = 5, reproduction
degree = 3

Distance E1 E2

2 0.043294222 0.0178461598

4 0.035778240 0.0131572241

8 0.020705507 0.0069547056

16 0.01054870 0.0035061301

216 M. Sabin

Table 9. Valency = 7, reproduction
degree = 2

Distance E1 E2

2 0.03776611323 0.0112682406

4 0.00295127833 0.0010064401

8 0.00022928609 0.0000913945

16 0.0000595678 0.0000175042

Table 10. Valency = 7, reproduction
degree = 3

Distance E1 E2

2 0.1065766380 0.0439985659

4 0.0327818713 0.0132975787

8 0.0142165239 0.0051765249

16 0.0074573353 0.0025183365

References

1. McLain, D.H.: Two dimensional interpolation from random data. Comput. J.
19(2), 178–181 (1976)

2. Catmull, E.E., Clark, J.: Recursively generated B-spline surfaces on topological
meshes. CAD 10(6), 350–355 (1978)

3. Doo, D.W.H., Sabin, M.A.: Behaviour of recursive division surfaces near extraor-
dinary points. CAD 10(6), 356–360 (1978)

4. Loop, C.T.: Smooth subdivision surfaces based on triangles. M.S. Mathematics
thesis, University of Utah (1987)

5. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface inter-
polation with tension control. ACM ToG 9(2), 160–169 (1990)

6. Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Memoirs of
the American Mathematical Society, no. 453. AMS, Providence (1991)

7. Reif, U.: A degree estimate for subdivision surfaces of higher regularity. In: Pro-
ceedings of AMS, vol. 124, pp. 2167–2175 (1996)

8. Reif, U.: TURBS - topologically unrestricted rational B-splines. Constr. Approx.
14(1), 57–77 (1998)

9. Prautzsch, H.: Smoothness of subdivision surfaces at extraordinary points. Adv.
Comput. Math. 9(3–4), 377–389 (1998)

10. Prautzsch, H., Reif, U.: Degree estimates for Ck-piecewise polynomial subdivision
surfaces. Adv. Comput. Math. 10(2), 209–217 (1999)

11. Kobbelt, L.:
√

3-subdivision. In: Proceedings of SIGGRAPH 2000, pp. 103–112
(2000)

12. Velho, L.: Quasi 4–8 subdivision. CAGD 18(4), 345–357 (2001)
13. Levin, D.: Presentation at Dagstuhl Workshop (2000)
14. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann, B.,

Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp.
37–49. Springer, Heidelberg (2004)

15. Peters, J., Reif, U.: Shape Characterization of subdivision surfaces - basic princi-
ples. CAGD 21, 585–599 (2004)

16. Karciauskas, K., Peters, J., Reif, U.: Shape Characterization of subdivision surfaces -
case studies. CAGD 21, 601–614 (2004)

17. Levin, A.: The importance of polynomial reproduction in piecewise-uniform sub-
division. In: Martin, R., Bez, H., Sabin, M. (eds.) IMA 2005. LNCS, vol. 3604,
pp. 272–307. Springer, Heidelberg (2005). doi:10.1007/11537908 17. ISBN 3-540-
28225-4

http://dx.doi.org/10.1007/11537908_17

C2 Subdivision 217

18. Levin, A.: Modified subdivision surfaces with continuous curvature. ACM (TOG)
25(3), 1035–1040 (2006)

19. Zulti, A., Levin, A., Levin, D., Taicher, M.: C2 subdivision over triangulations with
one extraordinary point. CAGD 23(2), 157–178 (2006)

20. Hormann, K., Sabin, M.A.: A family of subdivision schemes with cubic precision.
CAGD 25(1), 41–52 (2008)

21. Dyn, N., Hormann, K., Sabin, M.A., Shen, Z.: Polynomial reproduction by sym-
metric subdivision schemes. J. Approx. Theor. 155(1), 28–42 (2008)

22. Boyé, S., Guennebaud, G., Schlick, C.: Least squares subdivision surfaces. Comput.
Graph. Forum 29(7), 2021–2028 (2010)

23. Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Artifact analysis on B-splines, box-
splines and other surfaces defined by quadrilateral polyhedra. CAGD 28(3), 177–
197 (2010)

24. Augsdörfer, U.H., Dodgson, N.A., Sabin, M.A.: Artifact analysis on triangular box-
splines and subdivision surfaces defined by triangular polyhedra. CAGD 28(3),
198–211 (2010)

25. Deng, C., Hormann, K.: Pseudo-spline subdivision surfaces. Comput. Graph.
Forum 33(5), 227–236 (2014)

Adaptivity with B-spline Elements

Malcolm Sabin(B)

Numerical Geometry Ltd., 19 John Amner Close, Ely, Cambs, UK
malcolm.sabin@btinternet.com

Abstract. This paper takes a stage further the work of Kraft [1] and
of Grinspun et al. [2] who used subdivision formulations to show that
finite element formulation can be expressed better in terms of the basis
functions used to span the space, rather than in terms of the partitioning
of the domain into elements. Adaptivity is achieved not by subpartition-
ing the domain, but by nesting of solution spaces. This paper shows
how, with B-spline elements, their approach can be further simplified: a
B-spline element of any degree and in any number of dimensions can be
refined independently of every other within the basis. This completely
avoids the linear dependence problem, and can also give slightly more
focussed adaptivity, adding extra freedom only, and exactly, where it is
needed, thus reducing the solution times.

Keywords: Finite elements · Adaptivity · Nested spaces

1 Motivation

In the use of the finite element method to solve partial differential equations
such as those for thermal analysis and elasticity, an important tool for achieving
the best trade-off between accuracy and computing cost is the use of adaptivity,
whereby the resolution of an initial analysis is improved by using a finer mesh
where the solution is varying rapidly, but only there. In places where the solu-
tion is already captured to an adequate accuracy, adding extra freedoms adds
significant extra cost to the solution without contributing to reducing its overall
inaccuracy. The use of B-spline functions as a basis for the analysis turns out
to provide a very good way of making an optimal trade-off, which has none of
the disadvantages of local remeshing. The key to this is thinking in terms of the
basis functions instead of the partitioning of the domain.

2 Prior Work

2.1 Kraft

In [1] Kraft described how a local increase of density in an array of quadratic
B-spline functions could be achieved by replacing a single bi-quadratic B-spline
function by 16 others. The following Figs. 1, 2, 3 and 4 are my transcriptions of
those in his paper.
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 218–232, 2017.
https://doi.org/10.1007/978-3-319-67885-6_12

B-spline Element Adaptivity 219

Fig. 1. In this figure the regular grid lines denote knot lines. The small squares denote
the centres of biquadratic B-spline functions over the domain in the plane of the paper.
The small black square denotes the centre of a specific such function with the boundary
of its support highlight. Kraft takes such a function as a candidate for adaptivity.

Fig. 2. In this figure the function denoted by the black square of Fig. 1 is replaced by
the sixteen functions denoted here by the small circles. Those sixteen functions have
knot lines which include the extra lines inside the support of the original function.
Note that the remaining functions whose centres are at the squares do not see these
extra knots. This process can be viewed as having the new functions defined by knot
insertion into the old one (just the old one: no others) or as having the new knots
appear as a side-effect of the replacement of the old function by the new ones.

220 M. Sabin

Fig. 3. The new functions are defined by the tensor product of two univariate refine-
ments. In each the replacement is of the upper function here by the four lower ones.
Because the new functions sum to the old one the partition of unity property is main-
tained. The total number of new functions is 16.

Fig. 4. Kraft was very careful to avoid possible linear dependence issues by specifying
that if one old function was refined, those whose support overlapped that of this one
should not be refined. They should be left at the original scale. The set of basis functions
when two functions as close as permissible are refined is therefore as shown here. This
is not the same as would be created by all functions over the new partitioning of the
domain.

2.2 Grinspun et al.

In [2] Grinspun et al. used the Loop subdivision scheme to refine a space defined
over a triangulation of a curved surface. They report actual analyses of interest-
ing shell structures with non-trivial physics (Fig. 5).

B-spline Element Adaptivity 221

Fig. 5. The method of Grinspun et al. [2]. In this figure (adapted from Figs. 9 and 11
of that paper, with permission) the large hexagons denote centres of basis functions at
the coarse level of refinement. They lie on a fairly regular triangular grid. In the centre,
a large hexagon is missing but there are small ones denoting the centres of refined basis
functions around it. Note that there can be both large and small centred at the same
point.

However, their main emphasis, quoted from their abstract, is
...The basic principle of our approach is to refine basis functions, not ele-

ments. This removes a number of implementation headaches associated with
other approaches and is a general technique independent of domain dimension...

They were able somehow to avoid the linear dependence issue even when
supports of refined functions overlapped. If a large region is refined the number
of new functions per old one replaced tends down towards four, though for single
functions it is three times the valency of the centre of the replaced function plus
one.

2.3 Adaptive B-splines

There have been too many papers on this topic to cite them all. These proceed-
ings will contain many papers addressing this topic and references to that liter-
ature will be found therein. Two significant contributions are of note, being the
Truncated Hierarchical B-splines of Giannelli et al. [3] and the Locally Refined
B-splines of Dokken et al. [4]. An excellent comparison of these two with a
method like Kraft’s but with the functions unscaled by the subdivision ratios,
can be found in Johannessen et al. [6].

In the univariate case (illustrated in Fig. 6) both of these recover the par-
tition of unity property which was lost in the original hierarchical work which

222 M. Sabin

(a) unrefined basis

(b) HB spline basis

(c) THB spline basis

(d) LR spline basis

Fig. 6. In the original hierarchical B-spline (HBspline) basis, one function is split into
four by knot insertion at three knots (but cf. Fig. 3). The Truncated Hierarchical
Bspline (THB-spline) basis [3] modifies two more of the original functions by sub-
tracting some multiple of the refined functions so that their support is reduced back
to three spans in the new knot vector, and so that partition of unity is restored. The
Locally Refined B-spline (LR-spline) basis [4] takes this a stage further, truncating all
functions to the minimum support. In the univariate case this is exactly the same as
the non-uniform B-spline basis over the new knot vector.

they cite. In the bivariate case LR-splines still have a problem with linear depen-
dence, although their paper does address how this may be countered. Both sets
of authors regard the problem as being finding a basis spanning all piecewise
polynomials of a given degree over a given partitioning of the domain.

3 New Contributions

The main contribution here is to reiterate the emphasis of Grinspun et al. More
specifically, we

B-spline Element Adaptivity 223

1. Reduce the number of replacement functions down to two per old one. This
is detailed in Sect. 3.1.

2. Provide a proof that this process works for all B-spline degrees. This is
detailed in Sect. 3.2.

3. Provide a proof that it works for all dimensions of domain. This is detailed
in Sect. 3.3.

We consider various dimensions by starting with the univariate case.

3.1 Adaptivity When the Domain Is Univariate

The B-spline degrees are either even or odd. We take these two cases separately

Even Degrees. These are typified by the quadratic. The argument is made in
the captions to Figs. 7, 8, 9 and 10, which should be read in sequence as if they
were part of the text. The extension to higher even degrees is implied by the
descriptions, though not by the illustrations.

Fig. 7. Suppose that an initial set of quadratic basis functions spanning the solution
space is as shown here. This figure shows equal knot intervals, but that is not a pre-
condition. After a number of rounds of selective refinement the spacing of the knots
will be seriously uneven.

Fig. 8. We can take just one of these functions and insert a single new knot at the
midpoint of the central span (all even degree B-splines have an odd number of non-zero
spans).

Fig. 9. This knot insertion gives two new functions, which can replace the old. The sum
of these two functions is equal to the original, and so the partition of unity property
is preserved. In the context where an iterative solver is being used, the coefficients of
the new function are both set equal initially to that of the old. This exactly preserves
the solution so the refined solution space is a nesting of the old.

224 M. Sabin

Fig. 10. However, we can ‘rotate’ the basis within the solution space by rotating the
subspace spanned by these two new functions, by taking their sum and difference. This
is a non-degenerate transformation which does not alter the rank of the space. The
sum of the two new functions is exactly the old one, which has no discontinuity of any
derivative at the new knot. Neither do any of the other old functions. The difference
function is the only one which has a discontinuity here and it is therefore linearly
independent of all the other functions in the extended basis. This is true whether the
function being split was part of an initial basis over some coarse partitioning or whether
it was the result of many stages of Fig. 9 refinement.

Odd Degrees. These are typified by the cubic. The argument is made in the
captions to Figs. 11, 12, 13 and 14, which should be read in sequence. The exten-
sion to higher odd degrees is implied by the descriptions there, though not by
the illustrations. The situation is slightly more complicated, but the concepts
are very similar.

It is a moot point whether the basis of Fig. 9 or that of Fig. 10 (resp., Fig. 13
or Fig. 14) should be used in an actual implementation. The ranks of the Figs. 9
and 10 bases are the same. Each has practical advantages and disadvantages
which are not explored further here, except that we note that Figs. 10 and 14

Fig. 11. Suppose that an initial set of cubic basis functions spanning the solution space
is as shown here. This figure shows equal knot intervals, but that is not a precondition.
After a number of rounds of selective refinement the spacing of the knots will be
seriously uneven.

Fig. 12. We can take just two consecutive functions, and insert a single knot at the
midpoint of the span between the middle knot of one and the middle knot of the next
(all odd degree B-splines have an even number of non-zero spans).

B-spline Element Adaptivity 225

Fig. 13. This knot insertion gives three new functions, which can replace the old two.
The sum of the three is equal to the sum of the old two, and so partition of unity
is preserved. The detail of the coefficients of the new functions depends on the knot
intervals. But the refined solution space is a nesting of the old.

Fig. 14. However, we can again rotate the basis within the solution space by taking
appropriate linear combinations of the three new ones, to give the original two, together
with one new function which is the only one with a discontinuity at the new knot. It is
linearly independent of all other functions in the basis, and the dimension of the space
is not altered by the rotation.

no longer preserve partition of unity. This might matter in a modelling context
because a coefficient no longer transforms as a point, but as a displacement (see
[5]), but in the analysis context it is of no importance whatever. In an iterative
solution the coefficient of the new function can be initially set to zero, to match
exactly the pre-refinement solution.

The refined space exactly contains the old space as a subspace. This is true
whichever of the possible implementations is used.

For even degrees my preference is to use the functions of Fig. 9, though for
odd degrees there are more evenly balanced arguments, relating to the necessary
infrastructure to steer what refinements can be made.

3.2 Adaptivity When the Domain Is Bivariate

We now assume that all of the original basis functions are tensor products of
B-splines in two directions. The argument is made in the captions to Figs. 15,
16, 17, and 18.

The proof of linear independence depends on the fact that a given bivariate
function is never split more than once. The splitting introduces a new knot-line
and clearly new functions which have different such knot-lines will be linearly
independent of each other. If two splits share the same knot-line, but the extents
are different in the other direction, then the linear independence of the distrib-
ution of discontinuity magnitude in that direction implies linear independence
of the new functions. It is useful to notice that, because the split is always of
the centre span for even degrees, a given piece of shared knot can only arise at
a specific level of the refinement.

226 M. Sabin

Fig. 15. Suppose that we have an initial set of basis functions over a regular grid. Each
basis function is a tensor product of a B-spline in one direction and a B-spline in the
other. The two degrees do not have to be equal, although often they will be.

Fig. 16. We can select just one of these basis functions for refinement. In that respect
we are following Kraft.

Clearly, in the odd degree case, the two functions split must share the same
knots in the other direction. If this is not practical, then the analog of the
quadratic case using the span consistently on the same side of the central knot,
though less elegant, can be set up.

B-spline Element Adaptivity 227

Fig. 17. However, we split in only one direction, not both. We are therefore able to
focus the refinement sharply, adding only one dimension to the space, not fifteen. If you
want to split in both directions it is necessary to split first in one direction and then
both of the new functions in the other. This has the expected symmetry, but because
it adds three to the size of the space, takes three refinement operations. The two new
functions from a single refinement are given by the tensor product of Fig. 9 (or Fig. 13)
with the original B-spline in the other direction.

Fig. 18. The rotation in the solution space follows exactly the tensor product of a
simple B-spline with the function of Fig. 10.

228 M. Sabin

3.3 Adaptivity When the Domain Has Higher Dimension

Here we take the simple route of specifying that any basis function, which will be
a tensor product of as many functions as the dimension of the domain, is split in
just one direction, all the other directions keeping their original function. Thus
however high the domain dimension becomes, the refinement always increases
the size of the solution space by 1.

The proof of linear independence follows that for the bivariate case, except
that now the knot insertion is of a piece of knot (hyper)plane. Different hyper-
planes cannot be linearly dependent, and different refinements will lead to lin-
early independent distributions of discontinuity across a common hyperplane.

4 Implementation Issues

An important question is ‘How easy is this to incorporate into an existing analy-
sis infrastructure?’. Even though the scheme is in some ways simpler than the
conventional collection of nodes and elements, where the outermost loop during
stiffness matrix assembly is through elements, there may be a perceived problem
simply because it is different.

4.1 Representation of the Discretisation of the Solution Field

The obvious representation here, assuming isoparametric formulation, is to have
a collection of basis function objects, each of which has a number of lists, each as
long as 1+degree, one for each independent direction within the domain. These
lists contain the domain coordinates of the knots. Thus a triquadratic system
over a three-dimensional domain would have a collection of basis functions each
represented by three lists of four entries. This has to be supplemented by the
map from the parameter domain into the geometric domain, which is used for
evaluation of Jacobians. Isogeometric ideas are obviously relevant here, though
we are not limited to using the partitioning of the domain which comes from the
geometry.

4.2 The Assembly Process

The outermost loops of assembly are now most conveniently taken through pairs
of basis functions. Each possible pair corresponds to a single entry in the stiffness
matrix, and so using this structure lends itself to effective parallelisation on
multi-processor machines with little shared memory.

For each pair we have to do an integration over the intersection of the sup-
ports. Here there is a nice surprise: although the domain may appear to be
totally splintered by different refinements, the number of polynomial pieces over
which the integration must be done is bounded by the number of knots active
in the two basis functions forming the pair. They don’t see knots which are only
discontinuities in other basis functions.

B-spline Element Adaptivity 229

4.3 Solution

There is no reason why, once the stiffness matrix and right hand sides are formed,
the solution process has to be any different. However, because of the exact nesting
of the spaces, there will be a lot of coherence between successive solutions. This
is clearly evident in the case of iterative solution.

However, it is also possible to exploit this coherence in the case of explicit
solution by factorisation. When the total number of refinements is small relative
to the total number of freedoms, it is possible merely to update the factors at a
cost significantly less than starting again.

4.4 Error Estimation

Here for maximum efficiency, we need information not only about the magnitude
of the local error, but also about which direction the refinement should be made
in. The obvious rule of thumb is to split in the direction in which the derivative
of error is largest. (Think about the S-shaped function in Fig. 10. Adding it to
the solution space will obviously be good for correcting the derivative of the
error.)

4.5 Result Extraction

Because there are no longer any elements which can act as a scaffolding for
display of results, this process becomes more complex. At any point where the
result has to be evaluated you need to know which basis functions include that
point in their support. Some kind of spatial indexing is likely to be indispensable
here. This can also give some benefit during the assembly, when identifying which
pairs of basis functions have a non-zero overlap could become a significant task.

5 Discussion

‘Is this just the same as any of the hierarchical formulations which have been con-
sidered, over the last decade or so, which start with a partitioning of the domain
and then work out a linearly independent basis for the space of all piecewise
polynomials of given continuity over that partitioning?’

No, it is not.
It starts instead with the process of refinement of the basis and a partitioning

is the result. That partitioning as such plays a minor role in the solution of any
specific problem. The size of the space which the basis spans may be significantly
smaller than the maximal linear independent space, as we have seen in Fig. 4,
where the maximal dimension over the refined partitioning is six more than
Kraft’s basis.

‘Are you not concerned that you are not using the full space of functions over
the partitioning? What does this do to the approximation power?’

230 M. Sabin

Theoretical asymptotic approximation order is not the critical issue in
practical use. What matters is whether the solution is sufficiently accurate
(usually errors of the order of 10−2 in stresses), and whether it is achieved at
minimal cost.

Selecting basis functions among those possible is a strength, not a weakness,
because the adding of new functions to the basis is done as a response to where
the error needs to be reduced. Every extra freedom increases the cost of solution:
if there is evidence that it will improve the solution then it can be added: if there
is not, you don’t want it. Figure 19 illustrates this.

Fig. 19. An example where the full space is wasteful. In this figure just two basis
functions in an original 3 × 6 grid have been refined. The full space over the resulting
partitioning of the domain would have had to split all of the functions in the original
middle row, making the total number of freedoms four larger. If the error estimator
had requested only the two functions to be refined, the extras would have contributed
to cost without making the solution any better. This figure may also be compared
with Fig. 4.

‘This looks OK for the first addition of a new function, but what happens
when nearby basis functions have already been split?’

This is very straightforward for even degrees. Think in terms of Fig. 9, where
all basis functions are indeed B-splines over their own knot vectors. Any such
B-spline can be split independently of anything else around it. Figure 20 shows
the univariate case, but there is no extra complication for higher even degrees.

Odd degrees appear more complicated, and indeed they are. However, the
new functions in Fig. 14 are still B-splines over their own knot vectors. The
central knot is new and its position and extent are not shared by any other
functions. This is all that matters. The choice of the other knots is actually
arbitrary. In principle we could add a basis function designed to match the local
error behaviour: the new knot does not even need to be aligned with the existing
mesh directions. That is an exciting prospect far too speculative for this paper.
The message here is that almost any choices made in designing software will
work. The problem is that there are too many possible effective answers, not the
failure of any of them.

‘Something that is usually unwanted when dealing with adaptivity is a not
bounded number of non-zero basis functions on a certain point of the domain.

B-spline Element Adaptivity 231

a) Figure 9 basis: split at new knot.

b) Figure 10 basis: rotated to give single new function.

Fig. 20. It is interesting to compare the proposed quadratic functions with those shown
in Fig. 6. The upper figure corresponds to Fig. 9 and the lower to Fig. 10.

If one is keeping refining in the same area it seems that the proposed solution
does not overcome this problem (while this is partially addressed by the reduced
support of THB-spline, or solved by the minimal support of LR B-splines).’

Each entry in the stiffness matrix, representing the interaction of two free-
doms, has a bounded number of polynomial regions for integration.

The actual depth of refinement depends on the actual errors found by the
error estimator. This should only grow significantly if the solution field contains
components of significantly high spatial frequency which, for elliptic problems
will happen only near the boundary.

If functions share knots in the other direction(s) rotation of the basis can
bring it back to a narrower bandwidth.

‘In order to have good numerical properties (e.g., condition numbers of related
matrices) certain mesh grading is usually preferable. In the multivariate setting,
if the knot insertion is always performed in the same direction, elongated ele-
ments (or equivalently, elongated B-spline elements if one prefers to not refer
to domain partitioning) may be created. This is why it is common practice
to perform dyadic refinement on the marked elements (even if also with the
other hierarchical construction the refinement can be carried over along only one
direction).’

As is the case with the other approaches, when bad aspect ratios are about to
be produced, additional refinement in the other direction(s) can be invoked. The
question is the monitoring of the aspect ratio, not the availability of a solution.

232 M. Sabin

‘Section 4 presents some short comments on critical aspects of an adaptive
framework without entering into the details of any of them. From a practical
point of view the effectivity of this construction that adds only one basis func-
tion at the time, should be verified. There are many open questions concerning
the resulting adaptive scheme (function based error estimation which takes into
account derivative information, some refinement strategies) which may effect the
performance of the method.’

Yes, of course, there are a lot more issues to adaptivity than just the basis.
However, these are not significantly affected by the message of this paper.
I didn’t want to dilute that message by details of loosely-coupled aspects. What
is worth stressing is that although the presentation here talks about ‘one at a
time’, there is no reason to invoke a complete re-solution after each one. If the
error estimator finds a lot of places where additional freedoms are needed, then
of course all those functions need to be added.

6 Conclusions

An approach to adaptive refinement has been described with a number of sig-
nificant advantages over previous methods. It follows the ideas of Kraft and of
Grinspun et al., of starting from the basis rather than the partitioning of the
domain, but extends these by making the refinement much more selective. Each
refinement adds only one freedom to the system to be solved, and (although
it is certainly possible to make several refinements before attempting another
solution) this keeps the cost of solution as low as possible. Furthermore, because
the refined space is exactly nested (as is the case for the other approaches men-
tioned above), the next solution can be regarded as an update which may be a
lot cheaper than a re-solution.

References

1. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté,
A., Rabut, C., Schumaker, L. (eds.) Surface Fitting and Multiresolution Methods,
pp. 209–218. Vanderbilt University Press (1997)

2. Grinspun, E., Krysl, P., Schröder, P.: A simple framework for adaptive simulation.
In: Proceedings of SIGGRAPH 2002 (ACM Transactions on Graphics), pp. 281–290
(2002)

3. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierar-
chical splines. CAGD 29(7), 485–496 (2012)

4. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-
partitions. CAGD 30(3), 331–356 (2013)

5. Kosinka, J., Sabin, M.A., Dodgson, N.A.: Control vectors for splines. CAD 58,
173–178 (2015)

6. Johannessen, K.A., Remonato, F., Kvamsdal, T.: On the similarities and differences
between classical hierarchical, truncated hierarchical and LR B-splines. CMAME
291, 64–101 (2015)

Reconstructing Sparse Exponential Polynomials
from Samples: Difference Operators, Stirling

Numbers and Hermite Interpolation

Tomas Sauer(B)

Lehrstuhl für Mathematik mit Schwerpunkt Digitale Bildverarbeitung & FORWISS,
University of Passau, 94032 Passau, Germany

Tomas.Sauer@uni-passau.de

http://www.fim.uni-passau.de/digitale-bildverarbeitung

Abstract. Prony’s method, in its various concrete algorithmic realiza-
tions, is concerned with the reconstruction of a sparse exponential sum
from integer samples. In several variables, the reconstruction is based on
finding the variety for a zero dimensional radical ideal. If one replaces
the coefficients in the representation by polynomials, i.e., tries to recover
sparse exponential polynomials, the zeros associated to the ideal have
multiplicities attached to them. The precise relationship between the
coefficients in the exponential polynomial and the multiplicity spaces
are pointed out in this paper.

1 Introduction

In this paper we consider an extension of what is known as Prony’s problem,
namely the reconstruction of a function

f(x) =
∑

ω∈Ω

fω(x) eωT x, 0 �= fω ∈ Π, ω ∈ Ω ⊂ (R + iT)s
, (1)

from multiinteger samples, i.e., from samples f(Λ) of f on a subgrid Λ of Zs.
Here, the function f in (1) is assumed to be a sparse exponential polynomial
and the original version of Prony’s problem, stated in one variable in [17], is the
case where all fω are constants. Here “sparsity” refers to the fact that the cardi-
nality of Ω is small and that the frequencies are either too unstructured or too
irregularly spread to be analyzed, for example, by means of Fourier transforms.

Exponential polynomials appear quite frequently in various fields of math-
ematics, for example they are known to be exactly the homogeneous solutions
of partial differential equations [9,10] or partial difference equations [18] with
constant coefficients.

I learned about the generalized problem (1) from a very interesting talk
of Bernard Mourrain at the 2016 MAIA conference, September 2016. Mourrain
[16] studies extended and generalized Prony problems, especially of the form (1),
but also for log-polynomials, by means of sophisticated algebraic techniques like

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 233–250, 2017.
https://doi.org/10.1007/978-3-319-67885-6_13

234 T. Sauer

Gorenstein rings and truncated Hankel operators. Much of it is based on the
classical duality between series and polynomials that was used in the definition
of least interpolation [4]. He also gives a recovery algorithm based on finding
separating lines, a property that has to defined a posteriori and that can lead
to severe numerical problems.

This paper here approaches the problem in a different, more direct and ele-
mentary way, following the concepts proposed in [19,20], namely by using as
a main tool the factorization of a certain Hankel matrix in terms of Vander-
monde matrices; this factorization, stated in Theorem 5 has the advantage to
give a handy criterion for sampling sets and was a useful tool for understanding
Prony’s problem in several variables, cf. [20]. Moreover, the approach uses con-
nections to the description of finite dimensional kernels of multivariate convolu-
tions or, equivalently, the homogeneous solutions of systems of partial difference
operators.

Before we explore Prony’s problem in detail, we show in Sect. 2 that it can
also be formulated in terms of kernels of convolution operators or, equivalently,
in terms of homogeneous solutions of partial difference equations. From that
perspective it is not too surprising that many of the tools used here are very
similar to the ones from [18]. The relationship that connects finite differences,
the Taylor expansion and the Newton form of interpolation on the multiinteger
grid, can be conveniently expressed in terms of multivariate Stirling numbers of
the second kind and will be established in Sect. 3. In Sect. 4, this background
will be applied to define the crucial “Prony ideal” by means of a generalized
Hermite interpolation problem that yields an ideal projector. The aforementioned
factorization, stated and proved in Sect. 5 then allows us to directly extend the
algorithms from [19,20] which generate ideal bases and multiplication tables
to the generalized problem without further work. How the eigenvalues of the
multiplication tables relate to the common zeros of the ideal in the presence of
multiplicities is finally pointed out and discussed in Sect. 6.

The notation used in this paper is as follows. By Π = C[x1, . . . , xs] we
denote the ring of polynomials with complex coefficients. For A ⊂ N

s
0 we denote

by ΠA = span {(·)α : α ∈ A} ⊂ Π the vector space spanned by the monomials
with exponents in A, using the fairly common notation (·)α for the monomial
(function) m ∈ Π, defined as m(x) = xα. The set of all multiindices α ∈ N

s
0 of

length |α| = α1 + · · · + αs is written as Γn := {α ∈ N
s
0 : |α| ≤ n} and defines

Πn = ΠΓn
, the vector space of polynomials of total degree at most n.

2 Kernels of Difference Operators

There is a different point of view for Prony’s problem (1), namely in terms of
difference operators and their kernels. Recall that a difference equation can be
most easily written as

q(τ)u = v, u, v : Zs → C, q ∈ Π, (2)

Reconstructing of Sparse Exponential Polynomials 235

where τ stands for the shift operator defined as τju := u(·+εj), j = 1, . . . , s, and
τα := τα1

1 · · · ταs
s , α ∈ N

s
0. Then the difference Eq. (2) takes the explicit form

v =

⎛

⎝
∑

α∈N
s
0

qατα

⎞

⎠ f =
∑

α∈N
s
0

qαταu =
∑

α∈N
s
0

qα u(· + α) = a ∗ u (3)

where a is a finitely supported sequence of filter coefficients with nonzero coef-
ficients a(−α) = qα. This is the well known fact that any difference equation is
equivalent to an FIR filter or a convolution or correlation with a finite sequence.

Of particular interest are kernels of the convolution operators or, equivalently,
homogeneous solutions for the difference Eq. (2), or, more generally of a finite
system of difference equations

q(τ)u = 0, q ∈ Q ⊂ Π, #Q < ∞. (4)

Indeed, it is easily seen that (4) depends on the space Q = spanQ and not on
the individual basis. But even more is true. Since, for any polynomials gq ∈ Π,
q ∈ Q, we also have

∑

q∈Q

(gq q)(τ)u =
∑

q∈Q

gq(τ)(q(τ)u) =
∑

q∈Q

gq(τ) 0 = 0,

the space of homogeneous solutions of (4) depends on the ideal 〈Q〉 generated
by Q and any (ideal) basis of this ideal defines a system of difference equations
with the same solutions.

The kernel space

ker Q(τ) := {u : q(τ)u = 0, q ∈ Q},

on the other hand, also has an obvious structure:

0 = p(τ)0 = p(τ)q(τ)u = q(τ)p(τ)u, p ∈ Π,

tells us that u ∈ ker Q(τ) if and only if p(τ) ∈ ker Q(τ) for any p ∈ Π so that
the homogeneous spaces are closed under translation. This already indicates
that relationships between translation invariant polynomial spaces and ideals
will play a crucial role.

In one variable, the homogeneous solutions of difference equations are known
to be exactly the exponential polynomial sequence, i.e., the sequences obtained
by sampling exponential polynomials of the form (1), see [12]. In several vari-
ables, the situation is slightly more intricate and studied in [18] where a char-
acterization is given for the case that kerQ(τ) is finite dimensional. Indeed, the
kernel spaces are of the form ⊕

ω∈Ω

Pω eωT ·,

where Ω ⊂ C
s is a finite set of frequencies and Pω ⊂ Π is a finite dimensional

translation invariant subspace of polynomials.

236 T. Sauer

Therefore, we can reformulate the problem of reconstructing a function of
the form (1) from integer samples, i.e., from

α �→ f(α) =
∑

ω∈Ω

fω(α) eωT α, α ∈ Z
s, (5)

as the problem of finding, for this exponential polynomial sequence, a system Q
of partial difference equations such that Q(τ)f = 0. This finding of homogenizing
equations is clearly the dual of finding homogeneous solutions of a given system.
In fact, we will also study the question of how many elements of the sequence
(5) we have to know in order to generate the ideal and how we can finally
recover f again from the dual equations. In this respect, we can reformulate the
construction from the subsequent sections in the following form.

Theorem 1. Given any exponential polynomial sequence f : Z
s → C of the

form (5), there exists a finite set Q ⊂ Π of polynomials, the so-called Prony
ideal of f , such that

span {ταf : α ∈ Z
s} = ker Q(τ),

and the set Q can be constructed from finitely many values of f .

3 Stirling Numbers and Invariant Spaces of Polynomials

The classical Stirling numbers of the second kind, written as
{

n
k

}
in Karamata’s

notation, cf. [8, p. 257ff], can be defined as

{n

k

}
:=

1
k!

k∑

j=0

(−1)k−j

(
k

j

)
jn. (6)

One important property is that they are differences of zero [7], which means
that {n

k

}
=

1
k!

Δk0n :=
1
k!
(
Δk(·)n

)
(0).

Since this will turn out to be a very useful property, we define the multivariate
Stirling numbers of the second kind for ν, κ ∈ Z

s as

{ν

κ

}
:=

1
κ!

(Δκ(·)ν) (0) =
1
κ!

∑

γ≤κ

(−1)|κ|−|γ|
(

κ

γ

)
γν , (7)

with the convention that
{

ν
κ

}
= 0 if κ �≤ ν where α ≤ β if αj ≤ βj , j = 1, . . . , s.

Moreover, we use the usual definition

(
κ

γ

)
:=

s∏

j=1

(
κj

γj

)
.

Reconstructing of Sparse Exponential Polynomials 237

The identity in (7) follows from the definition of the difference operator

Δκ := (τ − I)κ, τp := [p(· + εj) : j = 1, . . . , s] , p ∈ Π,

by straightforward computations. From [18] we recall the degree preserving oper-
ator

Lp :=
∑

|γ|≤deg p

1
γ!

Δγp(0) (·)γ , p ∈ Π, (8)

which has a representation in terms of Stirling numbers: if p =
∑

α pα (·)α, then

Lp :=
∑

|γ|≤deg p

(·)γ
∑

|α|≤deg p

pα
1
γ!

(Δγ(·)α) (0) =
∑

|γ|≤deg p

⎛

⎝
∑

|α|≤deg p

{
α

γ

}
pα

⎞

⎠ (·)γ,

that is,

(Lp)α =
∑

β∈N
s
0

{
β

α

}
pβ , α ∈ N

s
0. (9)

With the Pochhammer symbols or falling factorials

(·)α :=
s∏

j=1

αj−1∏

k=0

((·)j − k) , (10)

the inverse of L takes the form

L−1p :=
∑

|γ|≤deg p

1
γ!

Dγp(0) (·)γ , (11)

see again [18]. The Stirling numbers of first kind
[ν
κ

]
:=

1
κ!

(Dκ(·)ν) (0), (12)

allow us to express the inverse L−1 in analogous way for the coefficients of the
representation p =

∑
α p̂α (·)α. Indeed,

(
L−1p

)∧
α

=
∑

β∈N
s
0

[
β

α

]
p̂β .

By the Newton interpolation formula for integer sites, cf. [11,22], and the Taylor
formula we then get

(·)α =
∑

β≤α

1
β!
(
Δβ(·)α

)
(0) (·)β =

∑

β∈N
s
0

{
α

β

}
(·)β

=
∑

β∈N
s
0

{
α

β

} ∑

γ≤β

1
γ!

(Dγ(·)β) (0) (·)γ =
∑

β,γ∈N
s
0

{
α

β

}[
β

γ

]
(·)γ

238 T. Sauer

from which a comparison of coefficients yields the extension of the well-known
duality between the Stirling numbers of the two kinds to the multivariate case:

∑

β∈N
s
0

{
α

β

}[
β

γ

]
= δα,γ , α, β ∈ N

s
0. (13)

Moreover, the multivariate Stirling numbers satisfy a recurrence similar to the
univariate case. To that end, note that the Leibniz rule for the forward difference,
cf. [2], yields

Δκ(·)ν+εj = Δκ ((·)ν (·)εj) = κj Δκ(·)ν + Δκ−εj (·)ν ,

which we substitute into (7) to obtain the recurrence
{

ν + εj

κ

}
=

1
κ!
(
κj Δκ(·)ν + Δκ−εj (·)ν

)
(0) = κj

{ν

κ

}
+
{

ν

κ − εj

}
. (14)

The operator L also can be used to relate structures between polynomial sub-
spaces.

Remark 1. Except [21], which however does not connect to the above, I was not
able to find references about multivariate Stirling numbers, so the above simple
and elementary proofs are added for the sake of completeness. Nevertheless,
Gould’s statement from [7] may well be true: “. . . aber es mag von Interesse sein,
daß mindestestens tausend Abhandlungen in der Literatur existieren, die sich
mit den Stirlingschen Zahlen beschäftigen. Es ist also sehr schwer, etwas Neues
über die Stirlingschen Zahlen zu entdecken.”

Definition 1. A subspace P of Π is called shift invariant if

p ∈ P ⇔ p(· + α) ∈ P, α ∈ N
s
0, (15)

and it is called D-invariant if

p ∈ P ⇔ Dαp ∈ P, α ∈ N
s
0, (16)

where Dα = ∂|α|
∂xα . The principal shift- and D-invariant spaces for a polynomial

p ∈ Π are defined as

S(p) := span {p(· + α) : α ∈ N
s
0}, D(p) := span {Dαp : α ∈ N

s
0}, (17)

respectively.

Proposition 1. A subspace P of Π is shift invariant if and only if LP is D-
invariant.

Reconstructing of Sparse Exponential Polynomials 239

Proof. The direction “⇐” has been shown in [18, Lemma 3], so assume that P
is shift invariant and consider, for some α ∈ N

s
0,

DαLp = Dα
∑

|γ|≤deg p

1
γ!

Δγp(0) (·)γ

=
∑

γ≥α

1
(γ − α)!

Δγ−α (Δαp) (0) (·)γ−α = LΔαp,

where Δαp ∈ P since the space is shift invariant. Hence DαLp ∈ LP which
proves that this space is indeed D-invariant. ��
A simple and well-known consequence of Proposition 1 can be recorded as follows.

Corollary 1. A subspace P of Π is invariant under integer shifts if and only if
it is invariant under arbitrary shifts.

Proof. If together with p also all p(·+α) belong to P then, by Proposition 1, the
space LP is D-invariant from which it follows by [18, Lemma 3] that p ∈ P =
L−1LP implies p(· + y) ∈ P, y ∈ C

s.

Proposition 2. For q ∈ Π we have that LS(q) = D(Lq).

Proof. By Proposition 1, LS(q) is a D-invariant space that contains Lq, hence
LS(q) ⊇ D(Lq). On the other hand L−1D(Lq) is a shift invariant space contain-
ing Lq, hence

L−1D(Lq) ⊇ S(L−1Lq) = S(q),

and applying the invertible operator L to both sides of the inclusion yields that
LS(q) ⊆ D(Lq) and completes the proof. ��
Stirling numbers do not only relate invariant spaces, they also are useful for
studying another popular differential operator. To that end, we define the partial
differential operators

∂̂

∂̂xj

= (·)j
∂

∂xj
and D̂α :=

∂̂α

∂̂xα
, α ∈ N

s
0, (18)

also known as θ-operator in the univariate case. Recall that the multivariate
θ-operator is usually of the form

∑

|α|=n

D̂α

and its eigenfunctions are the homogeneous polynomials, the associated eigen-
values is their total degree. Here, however, we need the partial θ-operators. To
relate differential operators based on D̂ to standard differential operators, we
use the notation (ξD)α := ξαDα for the ξ scaled partial derivatives, ξ ∈ C

s and
use, as common, C∗ := C \ {0}.

240 T. Sauer

Theorem 2. For any q ∈ Π and ξ ∈ C
s we have that

(
q(D̂)
)

p(ξ) = (Lq(ξD)) p(ξ), p ∈ Π. (19)

Proof. We prove by induction that

D̂α =
∑

β≤α

{
α

β

}
(·)β Dβ , α ∈ N

s
0, (20)

which is trivial for α = 0. The inductive step uses the Leibniz rule to show that

D̂α+εj = xj
∂

∂xj

∑

β≤α

{
α

β

}
(·)β Dβ =

∑

β≤α

{
α

β

} (
βj(·)β Dβ + (·)β+εj Dβ+εj

)

=
∑

β≤α+εj

(
βj

{
α

β

}
+
{

α

β − εj

})
(·)β Dβ ,

from which (20) follows by taking into account the recurrence (14). Thus, by (9),

q(D̂) =
∑

α∈N
s
0

qα D̂α =
∑

α∈N
s
0

qα

∑

β∈N
s
0

{
α

β

}
(·)β Dβ =

∑

β∈N
s
0

(Lq)β (·)β Dβ ,

and by applying the differential operator to p and evaluating at ξ, we obtain
(19). ��

4 Ideals and Hermite Interpolation

A set I ⊆ Π of polynomials is called an ideal in Π if it is closed under addition
and multiplication with arbitrary polynomials. A projection P : Π → Π is
called an ideal projector, cf. [3], if kerP := {p ∈ Π : Pp = 0} is an ideal.
Ideal projectors with finite range are Hermite interpolants, that is, projections
H : Π → Π such that

(q(D)Hp) (ξ) = q(D)p(ξ), q ∈ Qξ, ξ ∈ Ξ, (21)

where Qξ is a finite dimensional D-invariant subspace of Π and Ξ ⊂ C
s is a finite

set, cf. [13]. A polynomial p ∈ ker H vanishes at ξ ∈ Ξ with multiplicity Qξ, see
[9] for a definition of multiplicity of the common zero of a set of polynomials as
a structured quantity.

A particular case is that Qξ is a principal D-invariant space of the form
Qξ = D(qξ) for some qξ ∈ Π, i.e., the multiplicities are generated by a sin-
gle polynomial. We say that the respective Hermite interpolation problem and
the associated ideal are of principal multiplicity in this case. By means of the
differential operator D̂ these ideals are also created by shift invariant spaces.

Reconstructing of Sparse Exponential Polynomials 241

Theorem 3. For a finite Ξ ⊂ C
s and polynomials qξ ∈ Π, ξ ∈ Ξ, the polyno-

mial space {
p ∈ Π : q(D̂)p(ξ) = 0, q ∈ S(qξ), ξ ∈ Ξ

}
(22)

is an ideal of principal multiplicity. Conversely, if ξ ∈ C
s
∗ then any ideal of

principal multiplicity can be written in the form (22).

Proof. For ξ ∈ Ξ we set Q′
ξ = D(Lqξ) which equals LS(qξ) by Proposition 2.

Then, also
Qξ :=

{
q(diag ξ ·) : q ∈ Q′

ξ

}

is a D-invariant space generated by Lqξ(diag ξ ·), and by Theorem2 it follows
that

q(D̂)p(ξ) = 0, q ∈ S(qξ) (23)

if and only if
q(D)p(ξ) = 0, q ∈ Qξ = D (Lqξ(diag ξ ·)) . (24)

This proves the first claim, the second one follows from the observation that the
process is reversible provided that diag ξ is invertible which happens if and only
if ξ ∈ C

s
∗. ��

The equivalence of (23) and (24) shows that Hermite interpolations can equiva-
lently formulated either in terms of regular differential operators and differenti-
ation invariant spaces or in terms of θ-operators and shift invariant spaces.

The Hermite interpolation problem based on Ξ and polynomials qξ can now
be phrased as follows: given g ∈ Π find a polynomial p (in some prescribed
space) such that

q(D̂)p(ξ) = q(D̂)g(ξ), q ∈ S(qξ), ξ ∈ Ξ. (25)

Clearly, the number of interpolation conditions for this problem is the total
multiplicity

N =
∑

ξ∈Ξ

dim S(qξ).

The name “multiplicity” is justified here since dimQξ is the scalar multiplicity
of a common zero of a set of polynomials and N counts the total multiplicity.
Note however, that this information is incomplete since problems with the same
N can nevertheless be structurally different.

Example 1. Consider qξ(x) = x1x2 and qξ(x) = x3
1. In both cases dim S(qξ) = 4

although, of course, the spaces span {1, x1, x2, x1x2} and span {1, x1, x
2
1, x

3
1} do

not coincide.

A subspace P ⊂ Π of polynomials is called an interpolation space if for any
g ∈ Π there exists p ∈ P such that (25) is satisfied. A subspace P is called a
universal interpolation space of order N if this is possible for any choice of Ξ
and qξ such that ∑

ξ∈Ξ

dim S(qξ) ≤ N.

242 T. Sauer

Using the definition

Υn :=

⎧
⎨

⎩α ∈ N
s
0 :

s∏

j=1

(1 + αj) ≤ n

⎫
⎬

⎭ , n ∈ N,

of the first hyperbolic orthant, the positive part of the hyperbolic cross, we can
give the following statement that also tells us that the Hermite interpolation
problem is always solvable.

Theorem 4. ΠΥN
is a universal interpolation space for the interpolation prob-

lem (25).

Proof. Since the interpolant to (25) is an ideal projector by Theorem3, its kernel,
the set of all homogeneous solutions to (25), forms a zero dimensional ideal
in Π. This ideal has a Gröbner basis, for example with respect to the graded
lexicographical ordering, cf. [6], and the remainders of division by this basis
form the space ΠA for some lower set A ⊂ N

s
0 of cardinality N . Since ΥN is the

union of all lower sets of cardinality ≤ N , it contains ΠA and therefore ΠΥN
is

a universal interpolation space. ��

5 Application to the Generalized Prony Problem

We now use the tools of the preceding sections to investigate the structure of
the generalized Prony problem (1) and to show how to reconstruct Ω and the
polynomials fω from integer samples. As in [19,20] we start by considering for
A,B ⊂ N

s
0 the Hankel matrix

FA,B =
[
f(α + β) :

α ∈ A
β ∈ B

]
(26)

of samples.

Remark 2. Instead of the Hankel matrix FA,B one might also consider the
Toeplitz matrix

TA,B =
[
f(α − β) :

α ∈ A
β ∈ B

]
, A,B ⊂ N

s
0, (27)

which would lead to essentially the same results. The main difference is the set
on which f is sampled, especially if A,B are chosen as the total degree index
sets Γn := {α ∈ N

s
0 : |α| ≤ n} for some n ∈ N.

Remark 3. For a coefficient vector p = (pα : α ∈ A) ∈ C
B , the result of FA,Bp

is exactly the restriction of the convolution a ∗ f from (3) with a(−α) = p(α),
α ∈ A. With the Toeplitz matrix we get the even more direct TA,Bp = (f ∗p)(A).

Reconstructing of Sparse Exponential Polynomials 243

Given a finite set Θ ⊂ Π ′ of linearly independent linear functionals on Π and
A ⊂ N

s
0 the monomial Vandermonde matrix for the interpolation problem at Θ

is defined as

V (Θ,A) :=
[
θ(·)α :

θ ∈ Θ
α ∈ A

]
. (28)

It is standard linear algebra to show that the interpolation problem

Θp = y, y ∈ C
Θ, i.e. θp = yθ, θ ∈ Θ, (29)

has a solution for any data y = C
Θ iff rankV (Θ,A) ≥ #Θ and that the solution

is unique iff V (Θ,A) is a nonsingular, hence square, matrix.
For our particular application, we choose Θ in the following way: Let Qω be

a basis for for the space S(fω) and set

ΘΩ :=
⋃

ω∈Ω

{θω q(D̂) : q ∈ Qω}, θωp := p(eω).

Since, for any ω ∈ Ω,
(Δαfω : |α| = deg fω)

is a nonzero vector of complex numbers or constant polynomials, we know that
1 ∈ S(fω) and will therefore always make the assumption that 1 ∈ Qω, ω ∈ Ω,
which corresponds to θω ∈ ΘΩ , ω ∈ Ω. Moreover, we request without loss of
generality that fω ∈ Qω.

We pattern the Vandermonde matrix conveniently as

V (ΘΩ , A) =
[(

q(D̂)(·)α
)

(eω) :
q ∈ Qω, ω ∈ Ω

α ∈ A

]

to obtain the following fundamental factorization of the Hankel matrix.

Theorem 5. The Hankel matrix FA,B can be factored into

FA,B = V (ΘΩ , A)T F V (ΘΩ , B), (30)

where F is a nonsingular block diagonal matrix independent of A and B.

Proof. We begin with an idea by Gröbner [9], see also [18], and first note that
any g ∈ Qω can be written as

g(x + y) =
∑

q∈Qω

cq(y) q(x), cq : Cs → C.

Since g(x + y) also belongs to span Qω as a function in y for fixed x, we con-
clude that cq(y) can also be written in terms of Qω and thus have obtained the
linearization formula

g(x + y) =
∑

q,q′∈Qω

aq,q′(g) q(x) q′(y), aq,q′(g) ∈ C, (31)

244 T. Sauer

from [9]. Now consider

(FA,B)α,β = f(α + β) =
∑

ω∈Ω

fω(α + β) eωT (α+β)

=
∑

ω∈Ω

∑

q,q′∈Qω

aq,q′(fω) q(α) eωT α q′(β) eωT β

=
∑

ω∈Ω

∑

q,q′∈Qω

aq,q′(fω)
(
q(D̂)(·)α

)
(eω)
(
q′(D̂)(·)β

)
(eω)

=
(

V (ΘΩ , A) diag
([

aq,q′(fω) :
q ∈ Qω

q′ ∈ Qω

]
: ω ∈ Ω

)
V (ΘΩ , B)T

)

α,β

,

which already yields (32) with

F := diag
([

aq,q′(fω) :
q ∈ Qω

q′ ∈ Qω

]
: ω ∈ Ω

)
= diag (Aω : ω ∈ Ω) .

It remains to prove that the blocks Aω of the block diagonal matrix F are
nonsingular. To that end, we recall that fω ∈ Qω, hence, by (31),

fω = fω(· + 0) =
∑

q,q′∈Qω

aq,q′(fω) q(x) q′(0),

that is, by linear independence of the elements of Qω,
∑

q′∈Qω

aq,q′(fω) q′(0) = δq,fω
, q ∈ Qω,

which can be written as AωQω(0) = efω
where Qω also stands for the polynomial

vector formed by the basis elements. Since Qω is a basis for S(fω), there exist
finitely supported sequences cq : Ns

0 → C, q ∈ Qω, such that

q =
∑

α∈N
s
0

cq(α) f(· + α),=
∑

q′,q′′∈Qω

aq′,q′′(fω)

⎛

⎝
∑

α∈N
s
0

cq(α) q′′(α)

⎞

⎠ q′

from which a comparison of coefficients allows us to conclude that

Aω

∑

α∈N
s
0

cq(α)Qω(α) = eq, q ∈ Qω,

which even gives an “explicit” formula for the columns of A−1
ω . ��

Remark 4. A similar factorization of the Hankel matrix in terms of Vandermonde
matrices for slightly different but equivalent Hermite problems has also been
given in [16, Proposition 3.18]. However, the invertibility of the “inner matrix” F
was concluded there from the invertibility of the Hankel matrix and the assump-
tion that ΠA must be an interpolation space, giving unique interpolants for the
Hermite problem. Theorem 5, on the other hand, does not need these assump-
tions, shows that F is always nonsingular and therefore extends the one given
in [20, (5)] in a natural way.

Reconstructing of Sparse Exponential Polynomials 245

Remark 5. If FA,B is replaced by the Toeplitz matrix from (27), then the fac-
torization becomes

TA,B = W (ΘΩ , A)F W (ΘΩ , B)∗, W (ΘΩ , A) := V (ΘΩ , A)T (32)

which has more similarity to a block Schur decomposition since now a Hermitian
of the factorizing matrix appears.

Once the factorization (32) is established, the results from [19,20] can be applied
literally and extend to the case of exponential polynomial reconstruction directly.
In particular, the following observation is relevant for the termination of the
algorithms. It says that if the row index set A is “sufficiently rich”, then the
full information about the ideal IΩ := kerΘΩ can be extracted from the Hankel
matrix FA,B .

Theorem 6. If ΠA is an interpolation space for ΘΩ, for example if A = ΥN ,
then

1. the function f can be reconstructed from samples f(A + B), A,B ⊂ N
s
0, if

and only if ΠA and ΠB are interpolation spaces for ΘΩ.
2. a vector p ∈ C

B \ {0} satisfies

FA,Bp = 0 ⇔
∑

β∈B

pβ (·)β ∈ IΩ ∩ ΠB .

3. the mapping n �→ rankFA,Γn
is the affine Hilbert function for the ideal IΩ.

Proof. Theorem 6 is a direct consequence of Theorem 5 by means of elementary
linear algebra. The proof of (1) is a literal copy of that of [20, Theorem 3] for (2)
we note that, for p ∈ C

B ,

FA,Bp = V (ΘΩ , A)T F V (ΘΩ , B)p

= V (ΘΩ , A)T F
[(

q(D̂)p
)

(eω) : q ∈ Qω, ω ∈ Ω
]
.

By assumption, V (ΘΩ , A)T has full rank, F is invertible by Theorem5, and
therefore FA,Bp = 0 if and only if the polynomial p belongs to IΩ. Finally,
(3) is an immediate consequence of (2).

Theorem 6 suggests the following generic algorithm: use a nested sequence B0 ⊂
B1 ⊂ B2 ⊂ · · · of index sets in N

s
0 such that there exist j(n) ∈ N, n ∈ N, such

that Bj(n) = Γn. In other words: the subsets progress in a graded fashion. Then,
for j = 0, 1, . . .

1. Consider the kernel of FΥN ,Bj
, these are the ideal elements in ΠBj

.
2. Consider the complement of the kernel, these are elements of the normal set

and eventually form a basis for an interpolation space.
3. Terminate if rankFΥN ,Bj(n+1) = rankFΥN ,Bj(n) for some n.

246 T. Sauer

Observe that this task of computing an ideal basis from nullspaces of matrices is
exactly the same as in Prony’s problem with constant coefficients. The difference
lies only in the fact that now the ideal is not radical any more, but this is
obviously irrelevant for Theorem6.

Two concrete instances of this approach were presented and discussed earlier:
[19] uses Bj = Γj and Sparse Homogeneous Interpolation Techniques (DNSIN)
to compute an orthonormal H-basis and a graded basis for the ideal and the
normal space, respectively. Since these computations are based on orthogonal
decompositions, mainly QR factorizations, it is numerically stable and suitable
for finite precision computations in a floating point environment. A symbolic
approach where the Bj are generated by adding multiindices according to a
graded term order, thus using Sparse Monomial Interpolation with Least Ele-
ments (SMILE), was introduced in [20]. This method is more efficient in terms
of number of computations and therefore suitable for a symbolic framework with
exact rational arithmetic.

Remark 6. The only a priori knowledge these algorithms need to know is an
upper estimate for the multiplicity N .

It should be mentioned that also [16] gives algorithms to reconstruct frequencies
and coefficients by first determining the Prony ideal IΩ; the way how these
algorithms work and how they are derived are different, however. It would be
worthwhile to study and understand the differences between and the advantages
of the methods.

While we will point out in the next section how the frequencies can be deter-
mined by generalized eigenvalue methods, we still need to clarify how the coef-
ficients of the polynomials fω can be computed once the ideal structure and the
frequencies are determined. To that end, we write

fω =
∑

α∈N
s
0

fω,α(·)α

and note that, with ξω := eω ∈ C
s
∗

f(β) =
∑

ω∈Ω

fω(β) eωT β =
∑

ω∈Ω

∑

α∈N
s
0

fω,α βα ξβ
ω =
∑

ω∈Ω

∑

α∈N
s
0

fω,α

(
D̂α(·)β

)
(ξω).

In other words, we have for any choice of Aω ⊂ N
s
0, ω ∈ Ω and B ⊂ N

s
0 that

f(B) := [f(β) : β ∈ B]

=
[(

D̂α(·)β
)

(ξω) :
β ∈ B

α ∈ Aω, ω ∈ Ω

]
[fω,α : α ∈ Aω, ω ∈ Ω]

=: GA,BfΩ .

The matrix GA,B is another Vandermonde matrix for a Hermite-type interpola-
tion problem with the functionals

θωD̂α, α ∈ Aω, ω ∈ Ω. (33)

Reconstructing of Sparse Exponential Polynomials 247

The linear system
GA,B fΩ = f(B)

can thus be used to determine fΩ : first note that LΠn = Πn and therefore it
follows by Theorem 3 that the interpolation problem is a Hermite problem, i.e.,
its kernel is an ideal. If we set

N =
∑

ω∈Ω

(
deg fω + s

s

)
− 1

then, by Theorem 4, the space ΠΥN
is a universal interpolation space for the

interpolation problem (33). Hence, with Aω = Γdeg fω
, the matrix GA,ΥN

contains
a nonsingular square matrix of size #A × #A and the coefficient vector fΩ is
the unique solution of the overdetermined interpolation problem.

Remark 7. The a priori information about the multiplicity N of the interpolation
points does not allow for an efficient reconstruction of the frequencies as it only
says that there are at most N points or points of local multiplicity up to N .

Nevertheless, the degrees deg fω, ω ∈ Ω, more precisely, upper bounds for them,
can be derived as a by-product of the determination of the frequencies ω by
means of multiplication tables. To clarify this relationship, we briefly revise the
underlying theory, mostly due to Möller and Stetter [14], in the next section.

6 Multiplication Tables and Multiple Zeros

Having computed a good basis H for the ideal IΩ and a basis for the normal set
Π/IΩ , the final step consists of finding the common zeros of H. The method of
choice is still to use eigenvalues of the multiplication tables, cf. [1,23], but things
become slightly more intricate since we now have to consider the case of zeros
with multiplicities, cf. [14].

Let us briefly recall the setup in our particular case. The multiplicity space
at ξω = eω ∈ C

s
∗ is

Qω := D (Lfω(diag ξω ·))
and since this is a D-invariant subspace, it has a graded basis Qω where the
highest degree element in this basis can be chosen as gω := Lfω(diag ξω ·). Since
Qω = D(gω), all other basis elements q ∈ Qω can be written as q = gq(D)gω,
gq ∈ Π, q ∈ QΩ .

Given a basis P of the normal set Π/IΩ and a normal form operator ν : Π →
Π/IΩ = spanP modulo IΩ (which is an ideal projector and can be computed
efficiently for Gröbner and H-bases), the multiplication p �→ ν ((·)jp) is a linear
operation on Π/IΩ for any j = 1, . . . , s. It can be represented with respect to
the basis P by means of a matrix Mj which is called jth multiplication table and
gives the multivariate generalization of the Frobenius companion matrix.

Due to the unique solvability of the Hermite interpolation problem in Π/IΩ ,
there exists a basis of fundamental polynomials �ω,q, q ∈ Qω, ω ∈ Ω, such that

q′(D)�ω,q(ξω′) = δω,ω′δq,q′ , q′ ∈ Qω′ , ω′ ∈ Ω. (34)

248 T. Sauer

The projection to the normal set, i.e., the interpolant, can now be written for
any p ∈ Π as

Lp =
∑

ω∈Ω

∑

q∈Qω

q(D)p(ξω) �ω,q

hence, by the Leibniz rule and the fact that Qω is D-invariant

L ((·)j �ω,q) =
∑

ω′∈Ω

∑

q′∈Qω′

q′(D) ((·)j �ω,q) (ξω) �ω′,q′

=
∑

ω′∈Ω

∑

q′∈Qω′

(
(·)j q′(D)�ω,q(ξω) +

∂q′

∂xj
(D)�ω,q(ξω)

)
�ω′,q′

= (·)j �ω,q +
∑

q′∈Qω

∑

q′′∈Qω

cj(q′, q′′) q′′(D)�ω,q(ξω) �ω,q′

= (·)j �ω,q +
∑

q′∈Qω

cj(q, q′) �ω,q′ , (35)

where the coefficients cj(q, q′) are defined by the expansion

∂q

∂xj
=
∑

q′∈Qω

cj(q′, q) q′, q ∈ QΩ . (36)

Note that the coefficients in (36) are zero if deg q′ ≥ deg q. Therefore cj(q, q′) = 0
in (35) if deg q′ ≥ deg q. In particular, since gω is the unique element of maximal
degree in Qω, it we have that

L ((·)j �ω,gω
) = (·)j �ω,gω

, ω ∈ Ω. (37)

This way, we have given a short and simple proof of the following result from
[14], restricted to our special case of principal multiplicities.

Theorem 7. The eigenvalues of the multiplication tables Mj are the compo-
nents of the zeros (ξω)j, ω ∈ Ω, the associated eigenvectors the polynomials
�ω,gω

and the other fundamental polynomials form an invariant space.

In view of numerical linear algebra, the eigenvalue problems for ideals with
multiplicities become unpleasant as in general the matrices become derogatory,
except when gω is a power of linear function, i.e., gω = (vT ·)deg gω for some
v ∈ R

s, but the method by Möller and Tenberg [15] to determine the joint
eigenvalues of multiplication tables and their multiplicities also works in this
situation.

There is another remedy described in [5, p. 48]: building a matrix from traces
of certain multiplication tables, one can construct a basis for the associated
radical ideal with simple zeros, thus avoiding the hassle with the structure of
multiplicities. In addition, this method also gives the dimension of the multiplic-
ity spaces which is sufficient information to recover the polynomial coefficients.
Though this approach is surprisingly elementary, we will not go into details here

Reconstructing of Sparse Exponential Polynomials 249

as it is not in the scope of the paper, but refer once more to the recommendable
collection [5].

Moreover, the dimension of the respective invariant spaces is an upper bound
for deg fω which can help to set up the parameters in the interpolation problem
in Sect. 5.

7 Conclusion

The generalized version of Prony’s problem with polynomial coefficients is a
straightforward extension of the standard problem with constant coefficients.
The main difference is that in (1) multiplicities of common zeros in an ideal
play a role where the multiplicity spaces are related to the shift invariant space
generated by the coefficients via the operator L from (8). This operator which
relates the Taylor expansion and interpolation at integer points in the Newton
form, has in turn a natural relationship with multivariate Stirling numbers of the
second kind. These properties can be used to extend the algorithms from [19,20]
almost without changes to the generalized case, at least as far the construction
of a good basis for the Prony ideal is concerned.

The algorithms from [19,20], numerical or symbolic, can be reused, the only
difference lies in multiplication tables with multiplicities, but the tools from [15]
are also available in this case and allow to detect zeros and their structure.

Implementations, numerical tests and comparison with the algorithms from
[16] are straightforward lines of further work and my be a worthwhile waste of
time.

References

1. Auzinger, W., Stetter, H.J.: An elimination algorithm for the computation of all
zeros of a system of multivariate polynomial equations. In: Numerical mathematics,
Singapore 1988, Internationale Schriftenreihe zur Numerischen Mathematik, vol.
86, pp. 11–30. Birkhäuser, Basel (1988)

2. de Boor, C.: Divided differences. Surv. Approximation Theory 1, 46–69 (2005).
http://www.math.technion.ac.il/sat

3. de Boor, C.: Ideal interpolation. In: Chui, C.K., Neamtu, M., Schumaker, L.L.
(eds.) Approximation Theory XI, Gaitlinburg 2004, pp. 59–91. Nashboro Press
(2005)

4. de Boor, C., Ron, A.: The least solution for the polynomial interpolation problem.
Math. Z. 210, 347–378 (1992)

5. Cohen, A.M., Cuypers, H., Sterk, M. (eds.): Some Tapas of Computer Algebra.
Algorithms and Computations in Mathematics, vol. 4. Springer, Heidelberg (1999)

6. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. Undergraduate
Texts in Mathematics, 2nd edn. Springer, New York (1996)

7. Gould, H.W.: Noch einmal die Stirlingschen Zahlen. Jber. Deutsch. Math.-Verein
73, 149–152 (1971)

8. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn.
Addison-Wesley, Reading (1998)

http://www.math.technion.ac.il/sat

250 T. Sauer

9. Gröbner, W.: Über das Macaulaysche inverse System und dessen Bedeutung für
die Theorie der linearen Differentialgleichungen mit konstanten Koeffizienten. Abh.
Math. Sem. Hamburg 12, 127–132 (1937)

10. Gröbner, W.: Über die algebraischen Eigenschaften der Integrale von linearen Dif-
ferentialgleichungen mit konstanten Koeffizienten. Monatsh. Math. 47, 247–284
(1939)

11. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)
12. Jordan, C.: Calculus of Finite Differences, 3rd edn. Chelsea, New York (1965)
13. Marinari, M.G., Möller, H.M., Mora, T.: On multiplicities in polynomial system

solving. Trans. Am. Math. Soc. 348(8), 3283–3321 (1996)
14. Möller, H.M., Stetter, H.J.: Multivariate polynomial equations with multiple zeros

solved by matrix eigenproblems. Numer. Math. 70, 311–329 (1995)
15. Möller, H.M., Tenberg, R.: Multivariate polynomial system solving using intersec-

tions of eigenspaces. J. Symbolic Comput. 32, 513–531 (2001)
16. Mourrain, B.: Polynomial-exponential decomposition from moments (2016).

arXiv:1609.05720v1
17. Prony, C.: Essai expérimental et analytique sur les lois de la dilabilité des fluides

élastiques, et sur celles de la force expansive de la vapeur de l’eau et de la vapeur
de l’alkool, à différentes températures. J. de l’École Polytechnique 2, 24–77 (1795)

18. Sauer, T.: Kernels of discrete convolutions and subdivision operators. Acta Appl.
Math. 145, 115–131 (2016). arXiv:1403.7724

19. Sauer, T.: Prony’s method in several variables. Numer. Math. (2017, to appear).
arXiv:1602.02352

20. Sauer, T.: Prony’s method in several variables: symbolic solutions by universal
interpolation. J. Symbolic Comput. (2017, to appear). arXiv:1603.03944

21. Schreiber, A.: Multivariate Stirling polynomials of the first and second kind. Dis-
crete Math. 338, 2462–2484 (2015)

22. Steffensen, I.F.: Interpolation. Chelsea Publication, New York (1927)
23. Stetter, H.J.: Matrix eigenproblems at the heart of polynomial system solving.

SIGSAM Bull. 30(4), 22–25 (1995)

http://arxiv.org/abs/1609.05720v1
http://arxiv.org/abs/1403.7724
http://arxiv.org/abs/1602.02352
http://arxiv.org/abs/1603.03944

Reparameterization and Adaptive Quadrature
for the Isogeometric Discontinuous Galerkin

Method

Agnes Seiler1(B) and Bert Jüttler2

1 Doctoral Program “Computational Mathematics”, Johannes Kepler University
Linz, Altenberger Str. 69, 4040 Linz, Austria

agnes.seiler@dk-compmath.jku.at
2 Institute of Applied Geometry, Johannes Kepler University Linz,

Altenberger Str. 69, 4040 Linz, Austria
bert.juettler@jku.at

Abstract. We use the Poisson problem with Dirichlet boundary condi-
tions to illustrate the complications that arise from using non-matching
interface parameterizations within the framework of Isogeometric Analy-
sis on a multi-patch domain, using discontinuous Galerkin (dG) tech-
niques to couple terms across the interfaces. The dG-based discretization
of a partial differential equation is based on a modified variational form,
where one introduces additional terms that measure the discontinuity of
the values and normal derivatives across the interfaces between patches.
Without matching interface parameterizations, firstly, one needs to iden-
tify pairs of associated points on the common interface of the two patches
for correctly evaluating the additional terms. We will use reparameteri-
zations to perform this task. Secondly, suitable techniques for numerical
integration are needed to evaluate the quantities that occur in the dis-
cretization with the required level of accuracy. We explore two possible
approaches, which are based on subdivision and adaptive refinement,
respectively.

1 Introduction

Isogeometric Analysis (IgA) [5,6] uses the same spaces of spline functions for rep-
resenting the geometry of a physical domain and for performing a discretization
in the context of a PDE-based numerical simulation. This method is based on
a parameterization of the physical domain, i.e., on a geometry map that relates
the physical domain and the parameter domain.

Many approaches rely on tensor product parameterizations, where the
domain is a unit square or a unit cube. Consequently, more complex domains
have to be divided into several single patches, forming a multi-patch repre-
sentation. There exist several methods for coupling the discrete discontinuous
Galerkin IgA patch wise solution across the interfaces between single patches and

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 251–269, 2017.
https://doi.org/10.1007/978-3-319-67885-6_14

252 A. Seiler and B. Jüttler

enhancing global continuity of the solution. These include Nitsche’s [16] method
and mortar techniques [2] as well as the discontinuous Galerkin (dG) approach,
which is the focus of the present paper.

DG methods discretize the variational form of a partial differential equation
taking into account the discontinuity of the finite dimensional discretization
spaces. The publications [4,17] provide a general description of dG techniques in
the context of finite elements, which have been transferred to the isogeometric
setting in [3,12–14].

So far, only matching interface parameterizations have been studied in the
context of dG-IgA methods. More precisely, whenever two patches meet in an
interface, then the parameterizations restricted to these interfaces are assumed
to be identical (possibly after affine transformations of the parameter domains),
see [12–14,18]. On the one hand, this limitation provides the advantage that the
elements of the patches on both sides of the interface are perfectly matching,
which significantly simplifies the implementation of such methods. On the other
hand, it complicates substantially the creation of multi-patch parameterizations.

As notable exceptions we mention the recent publications [10,11], where the
authors study gaps and overlaps at the interfaces. While the theory presented
in these papers does not require any assumptions regarding matching interfaces,
such conditions are assumed to be satisfied in all the computational examples.
More precisely, the meshes of the considered domains fulfill restrictive correspon-
dence conditions, which are quite similar to the matching case. This is due to
the lack of an implementation for the non-matching case [9].

This recent work has motivated us to investigate the effect of non-matching
interface parameterizations in the context of dG-IgA in the present paper. We
aim to give a complete description of the necessary computational steps for
applying the theoretical results of [10–14,18] to the case of non-matching para-
meterizations at the interfaces. In order to keep the presentation simple, we
restrict ourselves to planar two-patch domains and we assume that the interfaces
are geometrically matching, thus they have neither overlaps nor gaps. However,
it is clear that the results from [10,11] apply to the non-matching case also, as
the theory presented there is sufficiently general.

More precisely, the assembly of the local stiffness matrices derived from the
dG bilinear form requires the computation of integrals of the type

∫
e

D bk
i (x)D′ b�

j(x)dx, (1)

where e is an interface between Ωk and Ω� in the physical domain, x ∈ e
is a point on the interface, bk

i , b�
j are isogeometric basis functions defined on

patches Ωk, Ω� ⊂ Ω of the multi-patch domain Ω ⊆ R, and D,D′ are differential
operators. As we shall see, non-matching interface parameterizations give rise to
two problems that need to be treated separately.

The first one concerns the evaluation of bk
i (x) and b�

j(x) at the same position
x on the interface. Due to the use of non-matching parameterizations, a point x
will have two possibly different preimages in the parameter domains of the two

Reparameterization and Adaptive Quadrature 253

patches joined by the interface respectively. To identify pairs of corresponding
preimages we use reparameterizations of the preimages of the interface. We also
investigate the influence of the quality of the reparameterization on the accuracy
of the overall result.

The second problem is related to the use of numerical integration methods.
We need to find a quadrature method whose exactness does not depend on
the smoothness of the integrands. We present different approaches, one result-
ing from dividing the element on which quadrature is performed and another
one making use of automatized element splitting. The performance of both
approaches is explored in numerical experiments.

The remainder of this paper is structured as follows: We establish the nota-
tion and describe the example problem we will focus on in the next section. We
then state the two issues of evaluation and numerical integration, as described
above. Section 3 treats the first problem of finding suitable reparameterizations,
while Sect. 4 is devoted to the different quadrature techniques. Results of numer-
ical experiments are presented in Sect. 5. Finally we conclude the paper.

2 Preliminaries

We recall the discontinuous Galerkin isogeometric (dG-IgA) discretization of
a given model problem and discuss the computation of the stiffness matrix
elements in the case of non-matching interface parameterizations. Hereby, we
restrict ourselves to the two-patch case shown in Fig. 1 due to better readability.
All observations generalize directly to domains with more than two patches.

2.1 The Model Problem and the Multi-patch Discretization

Given a domain Ω ⊆ R
2, we consider the Poisson problem

Find u :

{
−∇ · (α∇u) = f on Ω

u = 0 on ∂Ω,
(2)

where f is given and α > 0 is the known diffusion coefficient. We allow α to be
piecewise constant, i.e. α may take different values on every single patch (see
below).

More precisely, we consider a multi-patch domain Ω ⊆ R
2 that consists of 2

non-overlapping single patches Ω1, Ω2 such that Ω̄1 ∪ Ω̄2 = Ω̄. We use upper
indices to refer to the number of the patch, and thus αk denotes the value of the
diffusion coefficient on the k-th patch, k = 1, 2.

An interface e between the two patches is the intersection e = Ω̄1 ∩ Ω̄2. We
consider interfaces that are curve segments only and ignore the remaining ones.

Each physical patch Ωk is parameterized by an associated geometry mapping
Gk with parameter domain Ω̂k = [0, 1]2, k = 1, 2. These mappings are tensor
product spline functions

Gk(ξ) =
∑

i∈Rk

P k
i βk

i (ξ) , ξ ∈ Ω̂k, (3)

254 A. Seiler and B. Jüttler

1

1

0 1

1

0

Ω̂1 Ω̂2

Ω1 Ω2 Ω

e

G1 G2
L R

Fig. 1. Multi-patch domain with two patches Ω1, Ω2, one interface e and geometry
mappings G1, G2. The mappings L and R will be introduced later.

which are defined by control points P k
i ∈ R

2 and tensor product B-splines βk
i ,

where Rk is the index set of the k-th patch. The lower index i identifies the i-th
degree of freedom of the k-th patch.

We do not assume that the knot vectors of the patches are identical. These
knot vectors split each parameter domain into elements. We will use open knot
vectors which implies that the boundaries of the patches are B-spline curves.

An isogeometric basis function bk
i on the physical patch Ωk is the push-

forward of a B-spline βk defined on the parameter domain Ω̂k,

bk
i (x) =

{(
βk

i ◦ (
Gk

)−1
)

(x) if x ∈ Ωk

0 otherwise.
(4)

These functions span the space which is used to derive the dG-IgA discretization.
For later reference we define the set of all edges

Γ =
2⋃

k=1

{Gk([0, 1], 0), Gk([0, 1], 1), Gk(0, [0, 1]), Gk(1, [0, 1])} (5)

of the multi-patch domain. It is the disjoint union of the set of the interface
edges

ΓC = {e ∈ Γ : e ⊆ Ω̄1 ∩ Ω̄2} (6)

and the set of boundary edges

ΓD = {e ∈ Γ : e ⊆ Ω̄k ∩ ∂Ω , k = 1, 2 }. (7)

Reparameterization and Adaptive Quadrature 255

2.2 DG-IgA Discretization

The discontinuous Galerkin isogeometric (dG-IgA) discretization space considers
the subspace

Vh = span {bk
i : i ∈ Rk, k = 1, . . . , n} ⊆

2∏
k=1

H1
(
Ωk

)
, (8)

of the broken Sobolev space, see [17]. Functions in Vh are continuously differ-
entiable on the interior of the single patches but not necessarily smooth across
interface edges. This smoothness of the solution is achieved approximately by
introducing a penalty term that considers the jump of the solution across the
interface. Before stating the final variational formulation we need to define aver-
ages and jumps, see [4,17].

For each patch index k, any function v ∈ ∏2
k=1 H1

(
Ωk

)
has a well-defined

trace along any edge e ⊂ ∂Ωk. Thus, any such function v defines two traces on
the interface e ∈ ΓC , which we denote as v|Ω1e and v|Ω2e , respectively. We use
them to define the average

{v}e =
1
2

(v|Ω1e + v|Ω2e) (9)

and the jump
[v]e = v|Ω1e − v|Ω2e (10)

across the interface e ∈ ΓC .
These definitions are further extended to boundary edges e ∈ ΓD,

{v}e = v|Ωk and [v]e = v|Ωk , k = 1, 2. (11)

The dG-IgA discretization

Find u ∈ Vh : a(u, v) = F (v) ∀v ∈ Vh (12)

of the Poisson problem (2) uses the bilinear form

a(u, v) =
2∑

k=1

ak
1(u, v) − 1

2

∑
e∈ΓC∪ΓD

(
ae
2,1(u, v) + ae

2,2(u, v)
)

+
∑

e∈ΓC∪ΓD

ae
3(u, v)

(13)
with

ak
1(u, v) =

∫
Ωk

αk∇u · ∇vdΩ, (14)

ae
2,1(u, v) =

∫
e

{∇u · n}e[v]ede, ae
2,2(u, v) =

∫
e

{∇v · n}e[u]ede, (15)

ae
3(u, v) =

∫
e

δ

h
[u]e[v]ede (16)

256 A. Seiler and B. Jüttler

and the linear form
F (v) =

∫
Ω

fvdΩ. (17)

The second group of terms ae
2,1 and ae

2,2 considers normal vectors n = ne of the
interface e, which need to comply with the chosen orientation of the edges (deter-
mined by the patch numbering). The last terms ae

3 in the bilinear form are the
penalty terms mentioned before, which involve the sufficiently large parameter
δ. They depend on the element size h, i.e. on the length of the knot spans1.

A detailed derivation of the dG discretization is given in [17]. The adaptation
to the isogeometric setting is discussed in the thesis [3], which also comments on
the choice of the δ, and in the recent article [12].

The discretization (12) defines the associated dG norm

‖u‖2dG =
2∑

k=1

ak
1(u, u) +

∑
e∈ΓC∪ΓD

ae
3(u, u), (18)

where in a1(u, u) the gradient of u is restricted to Ωk, see again [12].
The coefficients uk

i of the approximate solution

uh =
2∑

k=1

∑
i∈Rk

uk
i bk

i (19)

are found by solving the linear system Su = b with

S =
(
s(i,k),(j,�)

)
(i,k),(j,�)

,

b =
(
b(j,�)

)
(j,�)

,

u =
(
uk

i

)
(i,k)

,

where

s(i,k),(j,�) = a
(
bk
i , b�

j

)
, i ∈ Rk, j ∈ R�, k, � = 1, 2, and

b(j,�) = F
(
b�
j

)
, j ∈ R�, � = 1, 2.

2.3 Integrals Along Interfaces

Evaluating the forms in (13) involves integrals along interfaces, which pose con-
siderable difficulties. We discuss the evaluation of these quantities in more detail,
considering again the domain shown in Fig. 1. As a representative example we
shall focus on ae

2,1. All observations generalize directly to other terms.

1 For simplicity we consider uniform knots only. If this is not the case then one may
consider quasi-uniform knots instead, choosing a parameter that controls the size of
all knot spans.

Reparameterization and Adaptive Quadrature 257

In this situation we obtain

ae
2,1(u, v) =

∫
e

(∇u|Ω1 · n) v|Ω1 + (∇u|Ω2 · n) v|Ω1

− (∇u|Ω1 · n) v|Ω2 − (∇u|Ω2 · n) v|Ω2de.

The stiffness matrix is a combination of several matrices, each of which is con-
tributed by one of the four forms in (13) defining it. In particular we focus on
the contribution of ae

2,1.
Taking into account that

b2i |Ω1 = 0 , ∇b2i |Ω1 = 0 ∀i ∈ R2,

b1i |Ω2 = 0 , ∇b1i |Ω2 = 0 ∀i ∈ R1,

we find that only the expressions

ae
2,1

(
bk
i , b�

j

)
= (−1)�+1

∫
e

(∇bk
i |Ωk · n

)
b�
j |Ω�de (20)

contribute to the element s(i,k),(j,�) of the stiffness matrix.
In order to compute these values we use an appropriate numerical quadrature

rule, which means that we have to evaluate these products on the interface e.
This is no major problem if k = � since the integral involves only one trace in
this case. However, the situation is more complicated if k �= � since the (possibly
different) parameterizations of the interface need to be taken into account. In
the remainder of this section we discuss the evaluation of ae

2,1

(
b1i , b

2
j

)
in more

detail.
The interface

e = G1([0, 1]2) ∩ G2([0, 1]2) = G1(1, [0, 1]) = G2(0, [0, 1]) (21)

is parameterized by the restrictions

L = G1|(G1)−1(e) and R = G2|(G2)−1(e), (22)

see Fig. 1. These two different representations of the same interface are related
by the reparameterizations

λ : [0, 1] → {1} × [0, 1] (23)

and

 : [0, 1] → {0} × [0, 1] (24)

via
L ◦ λ = R ◦
. (25)

The construction of suitable reparameterizations λ and
 is the first major prob-
lem related to the evaluation of this term. We will discuss it in the next section.

258 A. Seiler and B. Jüttler

These parameterizations will be used to represent the edge as

e = (L ◦ λ)([0, 1]) = (G1 ◦ λ)([0, 1]) = (G2 ◦
)([0, 1]) = (R ◦
)([0, 1]). (26)

Finally we define P = L ◦ λ = R ◦
 and arrive at

− ae
2,1

(
b1i , b

2
j

)
=

∫
e

(∇b1i (x)|Ω1 · n(x)
)
b2j (x)|Ω2dx

=
∫

e

[(∇G1(x)
)−1 ∇β1

i

(
(G1)−1(x)

) |Ω1 · n(x)
]
β2

j

(
(G2)−1(x)

) |Ω2dx

=
∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i

(
L−1 (P (t))

) · n (P (t))
]
β2

j

(
R−1 (P (t))

) ‖Ṗ (t)‖dt

=
∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i (λ(t)) · n (P (t))
]
β2

j (
(t)) ‖Ṗ (t)‖dt.

The integral in the last line is evaluated by a quadrature rule. However, the
choice of the quadrature rule, which is the second major problem related to the
evaluation of this term, is nontrivial and will be discussed further in Sect. 4. In
fact, the choice of the rules needs to take the different knots of the functions β1

i ,
β2

j , λ and
 into account. While one will generally choose the same knots for λ

and
, the knots of β1
i and β2

j are subject to a non-linear transformation and
cannot be assumed to be identical.

3 Finding the Reparameterizations

It is quite common in the literature to assume matching parameterizations or
almost matching ones, see [5, p. 4148], [6, p. 87], [12–14,18]. In this situation,
the choice of the reparameterizations λ and
 is trivial, as they are simply lin-
ear parameterizations (possibly reversing the orientation) of the preimages of
the interface in the parameter domains. However, the restriction to matching
parameterizations poses constraints on the construction of multi-patch para-
meterizations, making it essentially impossible to parameterize the individual
patches separately. This fact motivates us to study the non-matching case.

More precisely, we consider situations where the condition (25) cannot be
satisfied by considering linear reparameterizations λ and
. Clearly, the condi-
tion does not determine λ and
 uniquely. We fix one of the mappings, say λ,
and compute the remaining one,
. Figure 2 visualizes the relations between the
mappings.

The unknown mapping
 satisfies
 = R−1 ◦ L ◦ λ. We compute it by least-
squares approximation of point samples, as follows:

1. For a given number N of samples, we evaluate

i = R−1 ◦ L ◦ λ

(
i

N

)
(27)

Reparameterization and Adaptive Quadrature 259

0 1
t

λ

1

1

0 1

1

0

Ω̂1 Ω̂2

Ω1 Ω2

Ω

G1 G2L R

Fig. 2. Multi-patch domain with geometry maps G1 and G2, their restrictions L and
R to the preimages of the interface and reparameterizations λ and �

by performing the closest point computations

i = argmin
ξ∈{0}×[0,1]

∥∥∥∥L ◦ λ

(
i

N

)
− R(ξ)

∥∥∥∥ , i = 0, . . . , N, (28)

where ‖ · ‖ is the Euclidean norm. This formulation also applies to the case
of geometrically inexact interfaces (cf. [10,11]).

2. We choose a suitable spline space (e.g. linear, quadratic or cubic splines with
a few uniformly distributed inner knots) and find the control points cj ∈
{0} × [0, 1] of the associated B-splines Nj , j = 1, . . . , m, by solving the linear
least-squares problem

N∑
i=1

⎛
⎝ m∑

j=1

cjNj

(
i

N

)
−
i

⎞
⎠

2

−→ min, (29)

cf. [7]. The influence of the choice of the spline space for
 will be discussed later
in Sect. 5. The given reparameterization λ is chosen as a linear polynomial.

We will refer to the case where at least one of the mappings λ and
 is
different from the identity as non-matching parameterizations at the interface.

260 A. Seiler and B. Jüttler

4 Numerical Integration

The evaluation of

ae
2,1

(
b1i , b

2
j

)
=

∫ 1

0

[(∇G1 (P (t))
)−1 ∇β1

i (λ(t)) · n (P (t))
]
β2

j (
(t)) ‖Ṗ (t)‖dt

(30)
requires integration with respect to the parameter t, which varies in the parame-
ter domain [0, 1]. This is done by applying numerical quadrature and we present
several strategies for doing so.

4.1 Gauss Quadrature with Exact Splitting

Gauss quadrature can be applied to segments of analytic functions. Conse-
quently, we split the parameter domain [0, 1] into segments (separated by junc-
tions) where the integrand satisfies this requirement. Three types of junctions
arise:

– the inverse images λ−1(κ1
i) of the knots κ1

i that were used to define the
B-splines β1

j ,
– the inverse images
−1(κ2

i) that were used to define the B-splines β2
j , and

– the knots τi that were used to define the B-splines Nj in (29).

These types are visualized in Fig. 3.
Consequently we perform Gauss quadrature with exact splitting by applying the
following algorithm:

– Compute all junction points (all three types) in [0, 1],
– sort the junction points, subdivide the domain into segments accordingly,
– subdivide the resulting segments if they are too long,
– apply a Gauss quadrature rule to each segment and sum up the contributions.

As a disadvantage, the inversion of λ and
 is costly and has to be done with
high accuracy, as the sorting depends on it. Furthermore, the method may result
in many segments of varying lengths.

We use Gauss quadrature with p + 1 nodes per element (which exactly inte-
grates polynomials of degree 2p + 1), where p is the degree used for defining the
dG-IgA discretization, cf. [15].

4.2 Gauss Quadrature with Uniform Splitting

A computationally simpler approach is to use uniform subdivision, as follows:

– Split the domain [0, 1] uniformly into M segments, where M is a multiple of
the number of knot spans used to define the B-splines Nj in (29),

– apply a Gauss quadrature rule to each segment and sum up the contributions.

Reparameterization and Adaptive Quadrature 261

0 10.5
t

λ−1 −1

1

1

0

0.5

0.5 1

1

0

0.5

0.5

Ω

L R

Fig. 3. Exact splitting of a knot span and application of a quadrature rule to each
subsegment

As we shall see later, it is mandatory to use large values of M in order to reach
the desired level of accuracy. This is due to the fact that the junctions of the first
two types listed in the previous section may still be located within the segments
obtained by uniform splitting. On the other hand, the use of uniform refinement
also creates many small segments that could be merged into larger ones without
compromising the accuracy. This can be exploited by using adaptive quadrature.

4.3 Adaptive Gauss Quadrature

We recall the main idea of adaptive quadrature, cf. [8]. In order to evaluate the
integral

I =
∫ b

a

f(x)dx (31)

of an integrable function f over an interval [a, b] adaptively one computes two
different estimates I1 and I2 of I by using two different integration methods.
One assumes that one of these estimates, say I1, is more accurate than the
other. Next, one computes the relative distance between I1 and I2 taking into
account a given (or chosen) tolerance tol, e.g. machine precision. If the difference
is small enough, one chooses I1 as the value of the integral

∫ b

a
f(x)dx. If this is

not the case one splits the interval [a, b] into two subintervals,

[a, b] = [a,m] ∪ [m, b] , where m =
a + b

2
,

262 A. Seiler and B. Jüttler

and evalues I by summing up the two contributions. This means that one applies
the procedure of computing two different estimates and checking their relative
difference to both subintervals. Adaptive quadrature is therefore a recursive pro-
cedure, which is summarized in Algorithm 1.

Algorithm 1. Adaptive Quadrature: Basic routine.
adaptiveQuadrature(f, a, b, tol)
1: Input: f , a , b , tol where f is an integrable function, a and b are the interval

boundaries and tol is a given tolerance
2: Choose knots ui and weights wi , i = 1, . . . , n .
3: Compute I1 =

∑n
i=1 wif(ui) .

4: Choose knots ũi and weights w̃i , i = 1, . . . , m .
5: Compute I2 =

∑m
i=1 w̃if(ũi) .

6: if |I1 − I2| ≤ tol ·|I1| then
7: Return I1
8: else
9: Return

adaptiveQuadrature

(

f, a,
a + b

2
, tol

)

+ adaptiveQuadrature

(

f,
a + b

2
, b, tol

)

.

10: end if

Note that the stopping criterion has to be chosen with care and in fact line 6
in the algorithm is a slight oversimplification of it. See [8] for further information.

We apply this procedure to the knot spans that were used to define the
B-splines Nj in (29). Therefore we choose I1 as a Gauss quadrature rule with
p + 1 quadrature knots, where again p is the degree of the basis functions in
the dG-IgA discretization space. For the computation of I2 we split the interval
manually into two halves, apply a Gauss quadrature rule of the same order on
both halves, and sum up. The tolerance tol is set to machine precision.

As an advantage, adaptive quadrature can be performed without inverting
the reparameterizations. Moreover, it avoids the oversegmentation problem that
was present for the previous approach. We observed experimentally that the
adaptive procedure accurately detects the junction points and subdivides the
domain accordingly. Clearly, the implementation is more costly and requires a
recursive algorithm.

5 Numerical Results

We examine the performance of the quadrature methods presented in Sect. 4
as well as the influence of the accuracy of the reparameterization. All exper-
iments were performed using G+Smo2, an object-oriented C++ IgA library
named “Geometry + Simulation Modules”.
2 G+Smo: gs.jku.at.

Reparameterization and Adaptive Quadrature 263

5.1 Reference Results

As a reference we will first show the convergence plot of the solution of the
Poisson equation in the case of matching parameterizations, i.e. for λ =
 = id.
In this case we can restrict ourselves to a simple quadrature rule. There is no
need for using more elaborate versions of numerical integration. Furthermore,
since λ =
 = id, we do not need to consider the influence of the quality of
the reparameterization. More precisely, we consider the two-patch domain with
biquadratic matching interface parameterizations shown in Fig. 4, left.

Fig. 4. Patch and its control net. Left: matching parameterizations at the interface.
Right: non-matching parameterizations at the interface.

Figure 5 demonstrates the convergence behaviour of the numerical solutions
that were obtained for various values of the element size h that was used to
define the dG-IgA discretization. We consider a problem with a known solution
and measure the error as the difference to it. The quadrature method we used is
Gauss quadrature with three quadrature knots. A convergence rate of three for
the L2 error and of two for the dG error is clearly visible. This is in accordance
with the theoretical predictions, see [1,6].

5.2 Influence of the Quadrature Rule

We now consider a different parameterization of the same computational domain,
with non-matching parameterizations of the interface, see Fig. 4, right. Again we
use biquadratic patches. Now we need to use a more complicated integration
technique, and we consider the three approaches that were described in Sect. 4.

Figure 6, top and bottom, visualizes the convergence behaviour measured in
the L2 and dG norms respectively. Each plot contains four curves, corresponding
to four different numerical quadrature techniques. More precisely, we consider
Gauss quadrature with exact splitting (yellow), Gauss quadrature with uniform
splitting into 10 (blue) and into 30 (red) segments, and adaptive Gauss quadra-
ture (purple). We observe that the first and the last method perform better than
the results based on uniform splitting and they achieve the optimal convergence
rates (compare with Fig. 5). In particular we note that using uniform quadrature

264 A. Seiler and B. Jüttler

Fig. 5. Matching parameterizations at the interface, convergence behaviour of error in
different norms: L2 norm (blue curve), dG norm (red curve). (Color figure online)

leads to a reduced order of convergence for smaller mesh sizes h. Even the use
of a very fine but uniform segmentation (30 (red) instead of 10 (blue) segments)
does not improve this significantly.

Based on these observations we decided to use solely adaptive and exact
Gauss quadrature in the remaining example.

5.3 Influence of the Reparameterization

Next we analyse the influence of the quality of the representation of the repa-
rameterization. Consider again the parameterization of the domain in Fig. 4,
right, with non-matching parameterizations of the interface. We compare three
different choices of the reparameterizations λ and
.

For the first reparameterization, which generates the results represented by
the blue curve in Fig. 7, we choose polynomials λ and
 such that the equation
L ◦ λ = R ◦
 is exactly satisfied. In this case it was possible to find such
polynomials, due to the particular construction of the example. However, this
would be impossible in general and it is used here to generate a reference result.

The second and third reparameterizations (red and yellow curves) were
obtained using the Algorithm from Sect. 3 to find
, while λ was chosen as a
linear polynomial. The second reparameterization uses a linear spline with 8
segments and has an L2 error of 1.3 · 10−2, and the third reparameterization
uses a cubic spline with 4 segments and has an L2 error of 3.1 · 10−15.

Figure 7 compares the errors in the L2 (top) and dG norms (bottom) for the
three reparameterizations. We observe that using a high quality reparameteriza-
tion is essential for the convergence of the method. Depending on the accuracy of

Reparameterization and Adaptive Quadrature 265

Fig. 6. Influence of the quadrature rule. Top: Convergence behavior of the error in L2
norm. Bottom: Convergence behavior of the error in dG norm. Blue and red curves:
10 and 30 uniform segments per t-knot span. Yellow curves: exact splitting of the knot
spans. Purple curves: adaptive quadrature. Note that the yellow curve coincides with
the purple one for smaller values of h. Exact representation of the reparameterizations
λ and �. (Color figure online)

the reparameterization, h-refinement only works until it reaches a critical mesh
size, where further refinement does not have any effect.

The plots show the results obtained by using adaptive Gauss quadrature.
The exact method gives virtually identical results.

5.4 Comparison of Exact and Adaptive Quadrature

We perform an experimental comparison of the computational complexity of
exact and adaptive quadrature for the domain in Fig. 4, right.

First we demonstrate the effect of using adaptive quadrature, by showing
the automatically created splitting points in Fig. 8. We used an accuracy of
10−6 instead of machine precision for this picture to obtain a clearer image.

266 A. Seiler and B. Jüttler

Fig. 7. Influence of the reparameterization. Adaptive quadrature on interface integrals.
Top: Convergence behaviour of the error in L2 norm. Bottom: Convergence behaviour
of the error in dG norm. Blue curves: Exact representation of λ and �. Red curves:
Approximation error of � ≈ 0.0131167. Yellow curves: Approximation error of � ≈
3.10616 · 10−15 (Color figure online)

Both patches were uniformly refined into 4 × 4 elements by knot insertion. The
mappings λ and
 are cubic splines on [0, 1] with four knot spans of equal length.
Their knots τi coincide with the inverse images λ−1(κ1

i), as the first mapping
is simply the identity. The adaptive quadrature, which is applied to the knot
spans [τi, τi+1], thus creates additional splitting points around the inverse images

−1(κ2

i), as shown in the Figure. In this particular case, only one splitting point
(at 0.5625) is created near
−1(κ2

2) = 0.5615 since this suffices to reach the
desired accuracy.

These results indicate that, unlike uniform Gauss quadrature, adaptive
quadrature avoids over-segmentation of the integration domains. Still, it splits
the knot spans more often than exact Gauss quadrature, which also results in a
higher number of quadrature knots and thus evaluations.

Reparameterization and Adaptive Quadrature 267

Fig. 8. Splitting points created by adaptive quadrature - see text for details.

In order to analyze this effect, Fig. 9 compares the number of evaluations (i.e.,
quadrature knots) used by exact and adaptive Gauss quadrature for increas-
ing numbers of elements. In addition, we also show the number of root finding
operations (which are more expensive than evaluations) needed to compute the
splitting points of exact Gauss quadrature. Clearly, adaptive quadrature requires
more evaluations than exact splitting. However, for sufficiently fine discretiza-
tions, the number of evaluations in the interior of the patches dominates the
total effort.

Fig. 9. Number of quadrature knots and root finding operations needed by exact and
adaptive quadrature for increasingly finer discretizations.

6 Conclusion

We used a simple model problem to investigate the complications that arise
from using non-matching interface parameterizations within the framework of
Isogeometric Analysis on a multi-patch domain, using discontinuous Galerkin
techniques to couple terms across the interfaces. More precisely, we studied two
particular problems. Firstly, we explored the use of reparameterizations to iden-
tify pairs of associated points on the common interface. This was found to be

268 A. Seiler and B. Jüttler

useful for correctly evaluating certain terms in the dG discretization. Secondly,
we addressed the construction of a suitable procedure for numerical integration.
As demonstrated in our numerical experiments, both problems are important
for ensuring the optimal rate of convergence for the numerical simulation based
on the isogeometric dG discretization.

Future work may be devoted to the extension of the adaptive quadrature-
based approach to the three-dimensional case. Moreover, we are currently study-
ing dG-type techniques for performing multi-patch spline surface fitting with
approximate geometric smoothness across patch interfaces.

References

1. Bazilevs, Y., de Veiga, L.B., Cottrell, J.A., Hughes, T.J., Sangalli, G.: Isogeometric
analysis: approximation, stability and error estimates for h-refined meshes. Math.
Models Methods Appl. Sci. 16, 1031–1090 (2006)

2. Brivadis, E., Buffa, A., Wohlmuth, B., Wunderlich, L.: Isogeometric mortar meth-
ods. Comput. Methods Appl. Mech. Eng. 284, 292–319 (2015)

3. Brunero, F.: Discontinuous Galerkin methods for Isogeometric analysis. Master’s
thesis, Università degli Studi di Milano (2012)

4. Cockburn, B.: Discontinuous Galerkin methods. J. Appl. Math. Mech. 83, 731–754
(2003)

5. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Eng. 194, 4135–4195 (2005)

6. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis. Toward Inte-
gration of CAD and FEA. Wiley, Chichester (2009)

7. Dierckx, P.: Curve and Surface Fitting with Splines. Monographs on Numerical
Analysis. Oxford Science Publications, Oxford (1995)

8. Gander, W., Gautschi, W.: Adaptive quadrature - revisited. BIT Numer. Math.
40(1), 84–101 (2000)

9. Hofer, C.: Personal communication
10. Hofer, C., Langer, U., Toulopoulos, I.: Discontinuous Galerkin isogeometric analy-

sis of elliptic diffusion problems on segmentations with gaps. SIAM J. Sci. Comput.
(2016). Accepted manuscript, arXiv:1511.05715

11. Hofer, C., Toulopoulos, I.: Discontinuous Galerkin isogeometric analysis of elliptic
problems on segmentations with non-matching interfaces. Comput. Math. Appl.
72, 1811–1827 (2016)

12. Langer, U., Mantzaflaris, A., Moore, S.E., Toulopoulos, I.: Multipatch discon-
tinuous Galerkin isogeometric analysis. In: Jüttler, B., Simeon, B. (eds.) Isoge-
ometric Analysis and Applications 2014. LNCSE, vol. 107, pp. 1–32. Springer,
Cham (2015). doi:10.1007/978-3-319-23315-4 1. NFN Technical Report No. 18 at
www.gs.jku.at

13. Langer, U., Moore, S.E.: Discontinuous galerkin isogeometric analysis of ellip-
tic pdes on surfaces. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R.,
Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineer-
ing XXII. LNCSE, vol. 104, pp. 319–326. Springer, Cham (2016). doi:10.1007/
978-3-319-18827-0 31. arXiv:1402.1185

http://arxiv.org/abs/1511.05715
http://dx.doi.org/10.1007/978-3-319-23315-4_1
https://www.gs.jku.at
http://dx.doi.org/10.1007/978-3-319-18827-0_31
http://dx.doi.org/10.1007/978-3-319-18827-0_31
http://arxiv.org/abs/1402.1185
https://arxiv.org/abs/1402.1185

Reparameterization and Adaptive Quadrature 269

14. Langer, U., Toulopoulos, I.: Analysis of multipatch discontinuous Galerkin IgA
approximations to elliptic boundary value problems. Comput. Vis. Sci. 17(5), 217–
233 (2016)

15. Mantzaflaris, A., Jüttler, B.: Integration by interpolation and look-up for Galerkin-
based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 373–400
(2015)

16. Nguyen, V.P., Kerfriden, P., Brino, M., Bordas, S.P., Bonisoli, E.: Nitsche’s method
for two and three dimensional NURBS patch coupling. Comput. Mech. 53(6),
1163–1182 (2014)

17. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic
Equations: Theory and Implementation. SIAM (2008)

18. Zhang, F., Xu, Y., Chen, F.: Discontinuous Galerkin methods for isogeometric
analysis for elliptic equations on surfaces. Commun. Math. Stat. 2(3), 431–461
(2014)

Deconfliction and Surface Generation
from Bathymetry Data Using LR B-splines

Vibeke Skytt1(B), Quillon Harpham2, Tor Dokken1, and Heidi E.I. Dahl1

1 SINTEF, Forskningsveien 1, 0314 Oslo, Norway
{Vibeke.Skytt,Tor.Dokken,Heidi.Dahl}@sintef.no

2 HR Wallingford, Howbery Park, Wallingford, Oxfordshire 0x10 8BA, UK
Q.Harpham@hrwallingford.com

Abstract. A set of bathymetry point clouds acquired by different mea-
surement techniques at different times, having different accuracy and
varying patterns of points, are approximated by an LR B-spline sur-
face. The aim is to represent the sea bottom with good accuracy and
at the same time reduce the data size considerably. In this process the
point clouds must be cleaned by selecting the “best” points for surface
generation. This cleaning process is called deconfliction, and we use a
rough approximation of the combined point clouds as a reference sur-
face to select a consistent set of points. The reference surface is updated
using only the selected points to create an accurate approximation. LR
B-splines is the selected surface format due to its suitability for adaptive
refinement and approximation, and its ability to represent local detail
without a global increase in the data size of the surface.

Keywords: Bathymetry · Surface generation · Deconfliction ·
LR B-splines

1 Introduction

Bathymetry data is usually obtained by single or multi beam sonar or bathym-
etry LIDAR. Sonar systems acquire data points by collecting information from
reflected acoustic signals. Single beam sonar is the traditional technique for
acquiring bathymetry data and it collects discrete point data along the path
of a vessel equipped with single beam acoustic depth sounders. The equipment
is easy to attach to the boat and the acquisition cost is lower than for alterna-
tive acquisition methods. The obtained data sets, however, have a scan line like
pattern, which gives a highly inhomogeneous point cloud as input to a surface
generation application.

Acquisition of bathymetric data with Multi Beam Echo Sounder (MBES) is
nowadays of common use. A swath MBES system produces multiple acoustic
beams from a single transducer in a wide angle. It generates points in a large
band around the vessel on which the equipment is installed. The swath width

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 270–295, 2017.
https://doi.org/10.1007/978-3-319-67885-6_15

Bathymetry, Deconiction, Surface Generation and LR B-splines 271

varies from 3 to 7 times the water depth. In shallow areas, the results of a multi
beam sonar degenerates to that of the single beam sonar as the sonar angle
is reduced due to a short distance to the sea bottom. Multi beam sonar data
acquisition is described in some detail in [10].

LIDAR (light detection and ranging) measures elevation or depth by analyz-
ing the reflections of pulses of laser light from an object. Near shore, especially
in shallow areas or in rough waters that are difficult to reach by a sea-borne
vessel, data acquisition using bathymetry LIDAR is a good alternative to sonar.
Bathymetry LIDAR differs from topography LIDAR by the wavelength of the
signals that are used. To be able to penetrate the water, a shorter wavelength is
required, so green light is used instead of red. This change reduces the effect of
the power used by the laser, and bathymetry LIDAR becomes more costly than
the topography equivalent.

Our aim is to represent a specified region with a seamless surface. Some parts
of the region are only covered by one survey, while other areas are covered by
numerous surveys obtained by different acquisition methods. Where no survey
data exists, even vector data created from navigation charts may be taken as
input. Collections of bathymetric surveys are a source of potentially “big data”
structured as point clouds. Individual surveys vary both spatially and temporally
and can overlap with many other similar surveys. Where depth soundings differ
greatly between surveys, a strategy needs to be employed to determine how to
create an optimal bathymetric surface based on all of the relevant, available
data, i.e., select the best data for surface creation.

The digital elevation model (DEM) is the most common format for repre-
senting surfaces in geographical information systems (GIS). DEM uses a raster
format for storage. Rasters are rectangular arrays of cells (or pixels), each of
which stores a value for the part of the surface it covers. A given cell contains
a single value, so the amount of detail that can be represented for the surface
is limited by the raster cell resolution. The elevation in a cell is frequently esti-
mated using the height values of nearby points. The estimation methods include,
but are not restricted to, the inverse weighted interpolation method, also called
Shepard’s method [22], natural neighbour interpolation, radial basis functions
and kriging [7,16,20]. Alternatively, one of the existing points lying within the
cell can be selected to represent the cell elevation.

Triangulated irregular network (TIN) is used to some extend in GIS context.
Sample data points serve as vertices in the triangulation, which normally is
computed as a Delaunay triangulation. A triangulated surface can interpolate
all points in the point cloud exactly, but for large data sizes an approximate
solution is more appropriate. The triangulation data structure is flexible and
irregular, and a well-chosen distribution of nodes allows capturing rapid changes
in the represented seabed or terrain.

The purpose of trend surfaces is not representation of terrains, but data
analytics. These surfaces are described by polynomials of low degree globally
approximating the data. Trend surface analysis is used to identify general trends
in the data and the input data can be separated into two components: the trend

272 V. Skytt et al.

corresponding to the concept of regional features and the residual corresponding
to local features. Very often, however, the global polynomial surface becomes
too simplistic compared to the data.

In the GIS context, splines are almost entirely understood as regularized
splines or splines in tension in the context of radial basis functions. Only in rare
instances are splines used for terrain modeling. However, Sulebak et al. [25], use
multi-resolution splines in geomorphology and Davydov et al. [3,4], use triangu-
lar splines to approximate geographical data partly in combination with radial
basis functions. We aim at using polynomial spline surfaces to represent our
final result. Moreover, in the process of selecting data surveys for the surface
generation, we use spline surfaces as extended trend surfaces. Spline surfaces are
able to compactly represent smooth shapes, but our bathymetry data are not
likely to describe a globally smooth seabed. Thus, we turn our attention towards
locally refineable splines in the form of LR B-spline surfaces.

Section 2 gives a brief overview of the concept of LR B-splines. In Sect. 3,
we will present the construction of LR B-spline surfaces and collections of such
surfaces approximating point clouds from bathymetry data. The topic of Sect. 4
is the deconfliction process discussed in the context of outliers detection, both
for Geo-spatial data and in a more general setting. Finally, we will present a
conclusion including plans for further work in Sect. 5.

2 LR B-splines

LR B-spline surfaces are spline surfaces defined on a box partition as visualized
in Fig. 1, see [6] for a detailed description of the theory.

Fig. 1. The polynomial patches in the domain of an LR B-spline surface. This con-
struction will be discussed in some detail in Sect. 3.5.

In contrast to the well-known tensor-product spline surfaces, LR B-spline
surfaces posses the property of local refineability. New knot lines, not cover-
ing the entire domain of the surface, can be added to the surface description.
The new knot line must, however, cover the support of at least one B-spline.

Bathymetry, Deconiction, Surface Generation and LR B-splines 273

The local refinement property implies that models with varying degree of detail
can be represented without the drastic increase in model size that would arise
in the tensor-product representation. Other approaches addressing the problem
of lack of local refinement methods in the tensor-product construction are hier-
archical splines [8] and T-splines [21].

An LR-B spline surface F is expressed with respect to parameters u and v
as

F (u, v) =
L∑

i=1

siPiN
d1,d2
i (u, v),

where Pi are the surface coefficients, Ni are the associated B-splines and si are
scaling factors that ensure partition of unity. The B-splines are constructed by
taking the tensor-products of univariate B-splines, and are thus defined on a set
of knots in both parameter directions. They have polynomial degree d1 and d2
in the first and second parameter direction, respectively.

LR B-spline surfaces possess most of the properties of tensor-product spline
surfaces, such as non-negative B-spline functions, limited support of B-splines
and partition of unity, which ensure numerical stability and modelling accuracy.
Linear independence of the B-spline functions is not guaranteed by default. For
LR B-spline surfaces of degree two and three, with knot insertion restricted to
the middle of knot intervals, no cases of linear dependency are known, but the
mathematical proof is still not completed. Actual occurrences of linear depen-
dence can be detected by the peeling algorithm [12] and it can be resolved by a
strategy of carefully chosen knot insertions.

3 Surface Generation

We assume the input to be one point cloud where the initial bathymetry data is
translated to points represented by their x, y, and z-coordinates. The points can
be obtained from one data survey or collected from several surveys. No further
preprocessing of the points is performed.

To exploit the local refineability of the LR B-spline surfaces and to optimize
the positioning of the degrees of freedom in the surface, we apply an adaptive
surface generation approach.

Due to the acquisition methods, bathymetry data is normally projective onto
their x and y-coordinates. Thus, it is possible to parameterize the points by these
coordinates and approximate the height values (z-coordinates) by a function. In
steep areas, however, a parametric surface would be more appropriate. This issue
is discussed in [24]. In this paper, we will concentrate on approximation of height
values.

The description of the surface generation method in the remainder of this
section is partly fetched from [23,24].

274 V. Skytt et al.

3.1 An Iterative Framework for Approximation with LR-spline
Surfaces

The aim of the approximation is to fit an LR-spline surface to a given point
cloud within a certain threshold or tolerance. Normally this is achieved for the
majority of points in the cloud, and any remaining points that are not within the
tolerance after a certain number of iterations can be subject to further investiga-
tion. Algorithm 1 outlines the framework of the adaptive surface approximation
method.

Data: input point cloud, parameters governing the adaptive procedure:
tolerance and maximum number of iterations

Result: LR B-spline surface and accuracy information(optionally)
Initiate LR/tensor-product space;
Generate initial surface approximation;
while there exist out-of-tolerance points or max-levels not reached do

for points within each polynomial patch do
Compute the max. error between points and surface;
if max. error is greater than tolerance then

Refine LR B-spline surface;
end

end
Perform an iteration of the chosen approximation algorithm;

end
Algorithm 1: The LR B-spline surface generation algorithm

The polynomial bi-degree of the generated LR B-spline surface can be of
any degree higher than one, however, in most cases a quadratic (degree two)
surface will suffice. Quadratic surfaces ensure C1-continuity across knot lines
with multiplicity one, and as terrains often exhibits rapid variations higher order
smoothness may be too restrictive.

The algorithm is initiated by creating a coarse tensor-product spline space.
An initial LR B-spline surface is constructed by approximating the point cloud
in this spline space. A tensor-product spline space can always be represented
by an LR B-spline surface while an LR B-spline surface can be turned into a
tensor-product spline surface by extending all knot lines to become global in the
parameter domain of the surface.

In each iteration step, a surface approximation is performed. Two approx-
imation methods are used for this purpose, least squares approximation and
multi-level B-spline approximation (MBA). Both approximation methods are
general algorithms applied to parametric surfaces, which have been adapted for
use with LR B-splines. Typically least squares approximation is used for the
first iterations as it is a global method with very good approximation proper-
ties, while we turn to the MBA method when there is a large variety in the size
of the polynomial elements of the surface. The distances between the points in

Bathymetry, Deconiction, Surface Generation and LR B-splines 275

the point cloud and the surface is computed to produce a distance field. In our
setting the surface is parameterized by the xy-plane and the computation can
be performed by a vertical projection mainly consisting of a surface evaluation.

Next we identify the regions of the domain that do not meet the tolerance
requirements and refine the representation in these areas to provide more degrees
of freedom for the approximation. Specifically, we identify B-splines whose sup-
port contain data points where the accuracy is not satisfied, and introduce new
knot lines, in one or two parameter directions depending on the current distance
field configuration. The new knot lines must cover the support of at least one
B-spline. In each iteration step, many new knot line segments will be inserted
in the surface description, giving rise to the splitting of many B-splines. The
splitting of one B-spline may imply that an existing knot line segment partly
covering its support will now completely cover the support of one of the new
B-splines that, in turn, is split by this knot line.

3.2 Least Squares Approximation

Least squares approximation is a global method for surface approximation where
the following penalty function is minimized with respect to the coefficients Pi,
over the surface domain, Ω:

α1J(F) + α2

K∑

k=1

(F (xk, yk) − zk)2. (1)

Here xk = (xk, yk, zk), k = 1, . . . , K, are the input data points. J(F) is a smooth-
ing term, which is added to the functional to improve the surface quality and
ensure a solvable system even if some basis functions lack data points in their
support. The approximation is weighted (by the scalars α1 and α2, α1 +α2 = 1)
in order to favour either the smoothing term or the least squares approximation,
respectively. The smoothing term is given by

J(F) =
∫∫

Ω

∫ π

0

3∑

i=1

wi

(
∂iF (x + r cos φ, y + r sin φ)

∂ri

∣∣∣∣
r=0

)
dφdxdy. (2)

The expression approximates the minimization of a measure involving surface
area, curvature and variation in curvature. Using parameter dependent measures,
the minimization of the approximation functional is reduced to solving a linear
equation system. In most cases w1 = 0 while w2 = w3. In our case, however,
w2 = 1 and w3 = 0 as we utilize 2nd degree polynomials. A number of smoothing
terms exist. The one given above is presented in [15]. Other measures can be
found in [9,19] looks into the effect of choosing different smoothing functionals.

In Eq. 2, a directional derivative is defined from the first, second and third
derivatives of the surface, and in each point (x, y) in the parameter domain,
this derivative is integrated radially. The result is integrated over the parameter
domain.

276 V. Skytt et al.

Experience shows that the approximation term must be prioritized in order to
achieve a reasonable accuracy in the data points. We use α2 = 1.0e−3 in Eq. 1 and
even if the terms have a different magnitude, this greatly favour the least squares
term and implies a conflict with the role of the smoothing term as a guarantee for
a solvable equation system. Estimated height values in areas sparsely populated
by data points, are thus included to stabilize the computations. Some details on
the stability of least squares approximation used in this context can be found
in [23].

3.3 Locally Refined Multilevel B-spline Approximation (LR-MBA)

Multilevel B-spline approximation (MBA) is a local approximation method [13].
The algorithm is explicit and does not require solving an equation system. It is
based on a B-spline approximation technique proposed for image morphing and
is explained in [26].

A set of residuals are computed as the difference between the data points
and the current approximating surface or, for the initial surface, between the
data points and an initial height level which can be selected to be zero. The
outline here assumes that the data points are parameterized by their x- and
y-coordinates and we approximate the height values, i.e., the z-coordinates. How-
ever, the computations can be performed independently in each dimension of the
geometry space to create a 3D surface.

A residual surface is computed as follows. Let xc = (xc, yc, zc), c = 1, . . . , C,
be the data points in the support of a given B-spline Ni, and rc = zc −F (xc, yc)
the corresponding residual. In an interpolative setting the residual surface would
satisfy the condition rc =

∑K
k=1 skφkNk(xc, yc) for all residuals in the support.

Here Nk, k = 1 . . . K are the B-splines overlapping the support of Ni. As the
initial point cloud is scattered, there is a large variation in the number of points
in the support. If there are no points or if the residuals for all points are smaller
than a prescribed tolerance, the coefficient corresponding to Ni is set to zero.
Otherwise, we get an under-determined system as we cannot expect interpolation
for all residuals in the support. It can be solved for each residual in a least squares
sense using the pseudo inverse of the coefficient matrix, giving

φc =
scNc(xc, yc)rc∑K

k=1(skNk(xc, yc))2
.

Since every residual is expected to lead to different values for φ, the residual
surface coefficient Pi is found by minimizing the error e(Pi) =

∑
c |PiNi(xc, yc)−

φcNi(xc, yc)|2 which leads to the expression

Pi =
∑

c(siNi(xc, yc))2φc∑
c(siNi(xc, yc))2

,

In the original setting a number of difference surfaces approximating the
distances between the point cloud and the current surface is computed.

Bathymetry, Deconiction, Surface Generation and LR B-splines 277

The final surface is evaluated by computing the sum of the initial surface and
all the difference surfaces. In the LR B-splines setting, the computed difference
function is incrementally added to the initial surface at each step giving a unified
expression for the surface.

In [23], the approximation accuracy of the LR-MBA algorithm and least
squares approximation is compared. It is concluded that LR-MBA does not
have the same approximation power as the least squares algorithm, but it is more
stable in situations with large variations in height values and when the sizes of the
polynomial patches in the surface differ by a large amount. Unlike least squares
LR-MBA is an iterative procedure. One update of the coefficient does not lead
to the best approximation for a given spline space. The approximation accuracy
is improved by applying several coefficient updates between knot insertions.

3.4 Tiling and Stitching

Very large point clouds are unfit for being approximated by one surface due to
memory restrictions and high computation times. During surface generation each
data point is accessed a number of times, and a tiling approach allows for effi-
cient parallelization over several nodes. Moreover, a large number of points are
potentially able to represent a high level of detail, which gives rise to approx-
imating LR B-spline surfaces with higher data size. The surface size should,
however, be restricted as the non-regularity of the polynomial patches penalizes
data structure traversals when the surface is large (more than 50 000 polynomial
patches).

We apply tiling to improve computational efficiency and limit the size of the
produced surface, and select a regular tiling approach to enable easy identifica-
tion of tiles based on the x- and y-coordinates of the points. Figure 2(a) shows
a regular tiling based on a dataset with 131 million points, and (b) a set of
LR B-spline surfaces approximating the points. The computation is done tile by
tile, and applying tiles with small overlaps gives a surface set with overlapping
domains. Each surface is then restricted to the corresponding non-overlapping
tile yielding very small discontinuities between adjacent surfaces.

(a) (b)

Fig. 2. (a) Regular tiling and (b) seamless surface approximating the tiled data points.

To achieve exact C1-continuity between the surfaces, stitching is applied. The
surfaces are refined locally along common boundaries to get sufficient degrees of

278 V. Skytt et al.

freedom to enforce the wanted continuity. For C0-continuity a common spline
space for the boundary curves enables the enforcement of equality of correspond-
ing coefficients. C1-continuity is most easily achieved by refining the surface to
get a tensor-product structure locally along the boundary and adapting corre-
sponding pairs of coefficients from two adjacent surfaces along their common
boundary to ensure equality of cross boundary derivatives. C1-continuity can
always be achieved in the functional setting, for parametric surfaces it may be
necessary to relax the continuity requirement to G1.

3.5 Examples

Example 1. We will describe the process of creating an LR B-spline surface
from a point cloud with 14.6 million points. The points are stored in a 280 MB
binary file. We apply Algorithm 1 using a combination of the two approximation
methods and examine different stages in the process. Figure 3 shows the point
cloud, thinned with a factor of 32 to be able to distinguish between the points.

Fig. 3. Bathymetry point cloud. Data courtesy HR Wallingford: SeaZone.

(a) (b) (c)

Fig. 4. (a) Initial surface approximation, (b) polynomial patches in the parameter
domain (element structure) and (c) corresponding distance field. White points lie closer
than a threshold of 0.5 m, red points lie more than 0.5 m above the surface and green
points lie more than 0.5 m below. (Color figure online)

The initial surface approximation with a lean tensor-product mesh is shown
in Fig. 4. While the point cloud covers a non-rectangular area the LR B-spline
surface is defined on a regular domain (b), thus the surface (a) is trimmed

Bathymetry, Deconiction, Surface Generation and LR B-splines 279

with respect to the extent of the point cloud. The last figure (c) shows the
points coloured according to the distance to the surface. The surface roughly
represents a trend in the point cloud, while the distance field indicates that the
points exhibit a wave-like pattern.

(a) (b) (c)

Fig. 5. (a) Surface approximation after one iteration, (b) element structure and
(c) corresponding distance field.

Figure 5(a) shows the approximating surface after one iteration, together with
(b) the corresponding element structure and (c) the distance field. We see that
the domain is refined in the relevant part of the surface. After 4 iterations, it
can be seen from Fig. 6 that the surface starts to represent details in the sea
floor. We see from the element structure that the surface has been refined more
in areas with local detail. The distance field reveals that most of the points are
within the 0.5 m threshold.

(a) (b) (c)

Fig. 6. (a) Surface approximation after four iterations, (b) element structure and
(c) corresponding distance field.

After 7 iterations, the surface, Fig. 7(a), represents the shape of the sea floor
very well, the corresponding element structure (b) indicates heavy refinement
in areas with local details and only a few features in the point cloud fail to be
captured by the surface (c). Table 1 shows the evolution of the approximation
accuracy throughout the iterative process.

With every iteration, the surfaces size has increased while the average dis-
tance between the points and the surface decreased, as did the number of points
outside the 0.5 m threshold. The decrease in the maximum distance, however,
stopped after 5 iterations. We also find that 2 points have a distance larger than
4 m, while 22 have a distance larger than 2 m. In contrast, the elevation inter-
val is about 50 m. If we look into the details of the last distance field (Fig. 8),

280 V. Skytt et al.

(a) (b) (c)

Fig. 7. (a) Final surface approximation after seven iterations, (b) element structure
and (c) corresponding distance field.

Table 1. Accuracy related to approximation of a 280 MB point cloud after an increas-
ing number of iterations. The second and third column show the file size of the surface
and the number of coefficients. The maximum (column 4) and average (column 5) dis-
tance between a point and the surfaces is shown along with the number of points where
the distance is larger than 0.5 m (column 6).

Iteration Surface file size No. of coefficients Max. dist. Average dist. No. out points

0 26 KB 196 12.8 m 1.42 m 9.9 million

1 46 KB 507 10.5 m 0.83 m 7.3 million

2 99 KB 1336 8.13 m 0.41 m 3.9 million

3 241 KB 3563 6.1 m 0.22 m 1.4 million

4 630 KB 9273 6.0 m 0.17 m 0.68 million

5 1.6 MB 23002 5.3 m 0.12 m 244 850

6 3.7 MB 52595 5.4 m 0.09 m 75 832

7 7.0 MB 99407 5.3 m 0.08 m 20 148

(a) (b)

Fig. 8. (a) Features not entirely captured by the approximating surface, and (b) outliers
in the point set. White points lie closer to the surface than 0.5 m, red and green points
have a larger distance. The point size and colour strength are increased with increasing
distance. (Color figure online)

we find two categories of large distances: details that have been smoothed out
(a) and outliers (b). If, in the first case, a very accurate surface representation
is required, a triangulated surface should be applied in the critical areas. Out-
liers, on the other hand, should be removed from the computation. Still, isolated
outliers, as in this case, do not have a large impact on the resulting surface.

Example 2. We approximate a point cloud composed from several data surveys
taken from an area in the British channel, and look at the result after four and

Bathymetry, Deconiction, Surface Generation and LR B-splines 281

Table 2. Approximation accuracy of the point cloud combined from 10 data surveys.
The maximum distances below (Max. bel.) and above (Max. av.) and the average
distance after 4 and 7 iterations are listed. The elevation range for each data set is
given for comparison.

Survey No. pts. 4 iterations 7 iterations Elevation

Max. bel. Max. ab. Average Max. bel. Max. ab. Average

1 71 888 −27.6 m 4.9 m 0.6 m −26.7 m 2.8 m 0.2 m 35.7 m

2 24 225 −8.3 m 6.7 m 0.6 m −5.4 m 4.2 m 0.3 m 27.1 m

3 16 248 −10.9 m 12.0 m 0.9 m −4.1 m 6.0 m 0.3 m 38.4 m

4 483 −1.4 m 6.0 m 0.7 m −1.5 m 4.1 m 0.4 m 11.3 m

5 7 886 −6.3 m 7.4 m 0.4 m −4.1 m 5.8 m 0.2 m 33.3 m

6 4 409 −8.3 m 9.2 m 0.5 m −6.1 m 5.6 m 0.2 m 31.6 m

7 12 240 −7.2 m 8.5 m 0.7 m −6.8 m 9.0 m 0.5 m 30 m

8 2 910 −6.9 m 7.8 m 1.5 m −5.5 m 4.4 m 0.7 m 15.4 m

9 1 049 951 −12.7 m 10.5 m 0.4 m −4.2 m 3.1 m 0.1 m 36.1 m

10 2 047 225 −1.7 m 2.5 m 0.1 m −1.0 m 1.1 m 0.06 m 11.9 m

seven iterations. 10 partially overlapping surveys contain a total of 3.2 million
points. The accuracy threshold is again taken to be 0.5 m. After four iterations,
the maximum distance is 27.6 m and the average distance is 0.2 m. After seven
iterations, the numbers are 26.9 m and 0.08 m, respectively. The number of points
outside the threshold are 367 593 and 38 915, respectively. Although the average
approximation error and number of points with a large distance are significantly
reduced from the 4th to the 7th iteration, the numbers are clearly poorer than
for the previous example. Table 2 gives more detailed information.

(a)

(b)

(c)

Fig. 9. (a) The combined point cloud, (b) the polynomial patches of the surface approx-
imation after 4 iterations, and (c) after 7 iterations. Data courtesy: SeaZone.

282 V. Skytt et al.

(a) (b)

Fig. 10. (a) The surface after 4 iterations, and (b) after 7 iterations.

(a) (b)

Fig. 11. (a) Detail of the distance field corresponding to the surface after 4 iterations for
data surveys 2 and 4 in Table 2, distance threshold 0.5 m, and (b) the detail positioned
in the complete surface. Green points lie closer to the surface than 0.5 m, while red
and blue points lie outside this threshold on opposite sides of the surface. (Color figure
online)

Figure 9 shows the point cloud assembled from the partially overlapping data
surveys. This construction leads to a data set with a very heterogeneous pattern,
in some areas there are a lot of data points, while in others quite few points
describe the sea floor. The polynomial patches of the surface, (b) and (c), show
that the surface has been refined significantly during the last 3 iterations.

Figure 10 shows the approximating surfaces after four and seven iterations.
In the first case (a), the surface is not very accurate, as we have seen in Table 2
and the polynomial mesh is also quite lean, as is seen in Fig. 9(b). Neither,
the second surface is very accurate, but in this case some oscillations can be
identified, Fig. 10(b), and the polynomial mesh has become very dense; it is
likely that we are attempting to model noise.

Bathymetry, Deconiction, Surface Generation and LR B-splines 283

(a) (b)

Fig. 12. (a) The same detail as in Fig. 11 corresponding to the surface after 7 iterations,
and (b) corresponding distance field with a 2m threshold.

Figures 11 and 12 zoom into a detail on the surfaces and show the distance
fields of two data surveys, number 2 and 4 in Table 2. Data set 2 is shown
as small dots and 4 as large dots. In Figs. 11(a) and 12(a), points within the
0.5 m threshold are coloured green while red points and blue points are outside
the threshold. Red points lie below the surface and blue points above. We see
that points from the two data sets lie on opposite sides of the surface while being
geographically close. In Fig. 12(b) the distance threshold is increased to 2 m, and
there are still occurrences where close points from the two data sets are placed
on opposite sides of the surface. Thus, the vertical distance between these points
is at least 4 m. The polynomial elements of the surface included in (b) indicate
that a high degree of refinement has taken place in this area. The combined data
collection clearly contains inconsistencies, and is a candidate for deconfliction.

4 Deconfliction

Overfitting or fitting to inappropriate data causes oscillations in the surface and
unreliable results. Processing the data to remove inconsistencies and selecting
the appropriate filtering criteria is a non-trivial task. This filtering process is
called deconfliction and is related to outlier detection.

4.1 Outlier Detection

An outlier is an observation that is inconsistent with the remainder of the data
set, and as such occurrences can drastically skew the conclusions drawn from a
data set. Bathymetry data may contain outliers. Erroneous measurements can be
caused by several factors, including air bubbles, complexities in the sea floor and
bad weather conditions. These measurements need to be located and excluded
from further processing to guarantee that correct results will be generated from
the cleaned data. The distinction between outliers and data points describing
real features in the sea floor is a challenge. True features should be kept and
there are no firm rules saying when outlier removal is appropriate.

Statistical methods [1] for outlier detection have been a topic for a long
time. Consider a data set, measurements of discrete points on the sea bottom.

284 V. Skytt et al.

We compare the data points to a trend surface and obtain a set of residuals,
and want to test the hyphothesis that a given point belongs to the continuous
surface of the real sea floor. Then the corresponding residual should not be
unexpectedly large. In statistical terms, the difference surface between the real
sea bottom and our trend surface is the population and the residual set is a
sample drawn from the population. The sample mean and standard deviation
can be used to estimate the population mean. In order to test if a point is an
outlier, i.e., not representative of the population, we define a confidence interval.
In a perfect world, this interval would relate to the normal distribution having
zero mean and a small standard deviation. Other distributions can, however, be
more appropriate. For instance, the so called Student’s t distribution depends
on the number of samples and is intended for small sampling sizes.

The confidence interval depends on a confidence level α, and is given by(
x̃ − zα/2

S√
n
, x̃ + zα/2

S√
n

)
. Typically α ∈ [0.001, 0.2] and the probability that

the parameter lies in this interval is 100(1 − α)%. The value zα/2 denotes the
parameter where the integral of a selected distribution to the right of the para-
meter is equal to α/2. It can be computed from the distribution, but tabulated
values are also available, see for instance [17] for the Student’s t distribution. x̃
is the sample mean and S the sample standard deviation while n is the number
of points in the sample.

In the deconfliction setting, we want to test whether the residuals from differ-
ent data sets can be considered to originate from the same sea floor. I.e., we want
to compare two distributions, which requires a slightly different test. To test for
equal means of two populations, we can apply the Two-Sample t-Test [18]. To
have equal means the value

T =
x̃1 − x̃2√

(s21/N1 + s22/N2)

should lie in an appropriate confidence interval. x̃k is the mean of sample k, k =
1, 2 and sk is the standard deviation. Nk is the number of points in the sample.
If equal standard deviation is assumed the number of degrees of freedom used to
define the confidence interval is N1 + N2 − 1, otherwise a more complex formula
involving the standard deviations is applied to compute the degrees of freedom.
This test has, depending on the number of sample points, a thicker tail than
the normal distribution, but does still assume some degree of regularity in the
data. For instance, the distribution is symmetric. Thus, we need to investigate
to what extent the test is applicable for our type of data.

For multi beam sonars, outlier detection is discussed in a number of
papers [2,5,10,11]. Traditionally outliers are detected manually by visual inspec-
tion. However, due to the size of current bathymetry data surveys, automatic
cleaning algorithms are required. The user can define a threshold as a multiple
of the computed standard deviation and use statistical methods like confidence
intervals or more application specific methods developed from the generic ones
to detect outliers. For instance, Grubbs method [11] is based on the Student’s t
distribution.

Bathymetry, Deconiction, Surface Generation and LR B-splines 285

Even though computations of statistics for outlier removals may be based
on the depth values themselves, residuals with respect to a trend surface are
often preferred. The trend surface is typically computed for subsets of the data
survey. Selecting the cell size for such subsets is non-trivial. Large cells give
larger samples for the computation of statistical criteria, but on the other hand,
the cells size must be limited for the trend surface to give a sufficiently adequate
representation of the sea floor. In [10] a multi-resolution strategy is applied to
get a reasonable level of detail in the model used for outlier detection. Also
for proximity based techniques as in k-Nearest Neighbour methods [11], the
selection of suitable neighbourhoods is a relevant topic. A problem in trend
surface analysis is that the surface tends to be influenced by the outliers. It has
been proposed [14] to minimize this influence by using a minimum maximum
exchange algorithm (MMEA) to select the data points for creating the trend
surface. In [5], the so called M-estimator is utilized for the surface generation.

4.2 Preparing for Deconfliction

Deconfliction becomes relevant when more than one data survey overlap a given
area. Two questions arise: are the data surveys consistent, and if not, which
survey to choose? The first question is answered by comparing statistical prop-
erties of the data surveys. The answer to the second is based on properties of
each survey. The data surveys are equipped with metadata information includ-
ing acquisition method, date of acquisition, number of points and point density.
Usually, the most recent survey will be seen as the most reliable, but this can
differ depending on the needs of the application, for instance when historical
data is requested. In any case, an automated procedure is applied for prioritiz-
ing the data surveys resulting in scores that allow, at any sub-area in the region
of interest, a sorting of overlapping surveys. We will not go into details about
the prioritization algorithm.

In Example 1 in Sect. 3.5, we observed a couple of outliers that could be
easily identified by their distance to the surface. Considering outlier data sets,
we want to base the identification on residuals to a trend surface, also called
reference surface. In [5] low order polynomials approximating hierarchical data
partitions defined through an adaptive procedure were used as trend surfaces.
We follow a similar approach by choosing an LR B-spline surface as the trend
surface and use the framework described in Sect. 3.1 to define a surface roughly
approximating the point cloud generated by assembling all data surveys.

The deconfliction algorithm is applied for each polygonal patch in the sur-
face. The size of this patch, or element, has a significant impact on the result.
The strategy for adaptive refinement of an LR B-spline surface implies that the
surface will be refined in areas where the accuracy is low. Thus, the size of the
polynomial elements will vary: in regions where there is a lot of local detail, the
element size will be small, while in smooth regions or regions where the point
density is too low to represent any detail, the element size is large. The adaptive
refinement strategy automatically adjusts the element size to the data configura-
tion. Figures 4, 5, 6 and 7 in Sect. 3.5 shows the element mesh for an LR B-spline

286 V. Skytt et al.

surface at different iteration levels. The number of iterations in Algorithm 1 to
create the reference surface must be selected to get a good basis for the decisions,
see Table 6 for an example.

4.3 The Deconfliction Algorithm

Outliers are data points that appear to be inconsistent with the general trend
of the data. Surface generation, even with a careful selection of approximation
method, is sensitive to patterns in the data points. Empty regions with significant
variation in the height values may lead to unwanted surface artifacts. However,
even if one data survey lacks points in an area, another survey may contain this
information. Thus, the combination of several surveys can give more complete
information than one survey alone, as long as the information from the differ-
ent surveys is consistent. Our aim is to develop an automatic outlier detection
algorithm where the outliers are subsets of data surveys.

Algorithm 2 gives an overview of the deconfliction process. The actual test
has to take the configuration of the overlapping point clouds in each element
into consideration. The point pattern for the combined point cloud and for each
individual cloud may be very non-uniform, and the number of points may differ
greatly from element to element.

The algorithm relates to a set of thresholds deduced from the surface gener-
ation tolerance and the surveys are considered consistent if the following criteria
hold:

– The sample means are within the defined threshold.
– The residual range of the candidate survey does not exceed the range of the

higher priority survey with more than a given threshold.
– Most of the residuals of the candidate survey lies within the range of the

higher prioritized one.
– The standard deviation computed from the combined data set does not exceed

the individual standard deviations with more than a small fraction.

If some of the conditions above do not apply, but the overlap between the
surveys is small, the test is repeated on a sub-domain where there is a significant
overlap. If the surveys do not overlap, they will be regarded as consistent unless
the survey residuals differ significantly.

If the two surveys have the same score and overlap barely or not at all, this
probably implies that the surveys originate from the same acquisition, but the
point set is split at some stage. This is treated as a special case.

The Two sample t-Test is very strict for this kind of data and the t-Test
value becomes very large when the standard deviations of the two samples are
small. Thus, this test is not applied directly. However, the t-Test value tends to
vary consistently with the other properties. When this tendency is contradicted
a closer investigation should be initiated. Also, if the standard deviation of one
or both data surveys is large, indicating the existence of outliers within the data
sets or a high degree of detail in the sea bottom, or the considerations on the

Bathymetry, Deconiction, Surface Generation and LR B-splines 287

Data: overlapping data surveys equipped with priority scores, an LR B-spline
reference surface roughly approximating the data set obtained by
combining all individual surveys

Result: a division of the initial surveys into points to use for further processing
and points to reject

for each data survey do
for each polynomial patch in the reference surface (element) do

Identify the points situated in the element;
for each point do

Compute the residual with respect to the reference surface;
end

end

end
for each element do

if more than one survey overlaps the element then
Compute properties of the highest prioritized sub point cloud: signed
distance range (residual range) with respect to the reference surface,
residuals mean, standard deviation of signed residuals, area of overlap
between the data survey and the element;
for each remaining survey in prioritized order do

Compute properties;
for each previously accepted survey do

Compute characteristics of the combination: standard deviation
including residuals from both surveys, the Two sample T-test
value and associated confidence interval;
Apply deconfliction test;
if Possibly conflicting data surveys and small overlap then

Apply deconfliction test in the overlap area;
end
if Test result is ambiguous then

Split the element into sub elements and compute modified
properties;
for each sub element do

Apply deconfliction test;
end
Combine sub element information;

end
Mark sub survey as accepted, rejected or uncertain;

end

end

end

end
Post process uncertain sub surveys and include information on adjacent
elements to finalize the decision;

Algorithm 2: Deconfliction algorithm applied on overlapping bathymetry
data sets

288 V. Skytt et al.

residual ranges do not give a clear answer, more testing is beneficial and a sub
element investigation is performed.

After deconfliction, the cleaned data surveys are used to update the reference
surface to obtain a final surface with better accuracy. This is done by the surface
generation algorithm described in Sect. 3 starting the process from the reference
surface. Thus, fewer iterations are required to obtain a sufficient accuracy com-
pared to the case when we start from a lean initial surface.

In the following, we will look into a couple of different classes of configurations
and discuss them in some detail.

a) b) c)

Fig. 13. (a) Pattern of residuals for two surveys, (b) high prioritized survey and
(c) survey of lower priority, Element Example 1. Red points lie above the reference
surface and green points below. (Color figure online)

Element Example 1. We look at a detail in the test case described in the first
example of Sect. 4.4. The element is overlapped by two of the data surveys, and
the patterns of the two data surveys are relatively similar as seen in Fig. 13.

Table 3. Characteristic numbers for residuals, the reference surface is created with 3
iteration levels. Element Example 1.

Survey Score No. pts. Range Mean Std. dev. Size

1 0.657 152 −0.232, 0.250 −0.021 0.0088 1863.9

2 0.650 86 −0.155, 0.172 −0.003 0.0046 1823.0

The range of the distance field, the mean distance standard deviation and
domain size for the two surveys are given in Table 3. The domain sizes are given
as the bounding box of the x- and y- coordinates of the points. The overlap
between the surveys has size 1802.3, which imply almost full overlap. The stan-
dard deviation computed from the combined point clouds is 0.007. The Two
sample t-Test value is 20.5 while the limit with α = 0.025 is 1.96. The range
and standard deviation for the low priority data surveys is smaller than for the
prioritized one. The differences between range extent and mean value for the two
surveys are small compared to the threshold of 0.5 and the standard deviation

Bathymetry, Deconiction, Surface Generation and LR B-splines 289

doesn’t increase when the two surveys are merged. Thus, the surveys look quite
consistent even if the T-test value is high compared to the confidence interval,
and this is indeed the conclusion of the test.

Element Example 2. The next example, see Fig. 14, is taken from an area
with two overlapping surveys of different patterns. The one with highest score
consists of scan lines where the points are close within one scan line, but the
distances between the scan lines are large. For the other survey, the points are
more sparse, but also more regular. In this configuration, we would prefer to
keep most of the points between the scan lines, but only as long as they are
consistent with the scan line points.

a) b) c) d)

Fig. 14. (a) Overlapping data surveys, (b) residuals pattern for both surveys restricted
to one element, (c) prioritized survey and (d) survey to be tested, Element Example 2.
Red points lie above the reference surface and green points below. (Color figure online)

Table 4. Characteristic numbers for residuals, deconfliction level 3. Element
Example 2.

Survey Score No. pts. Range Mean Std. dev. Size

1 0.640 172 −1.05, 0.625 −0.191 0.177 3045.3

2 0.576 7 −0.64, 1.19 −0.028 0.326 2435.9

The mean values of the residuals are quite similar compared to the 0.5 m
threshold, see Table 4, but the ranges don’t overlap well, which indicates a rejec-
tion of the survey with the lower score. However, the individual standard devi-
ations are relatively high, in particular for the second survey. Thus, a more
detailed investigation is initiated. In sub-domain 1, the combined standard devi-
ation is 4.75, which is way above the standard deviations for the individual sub
surveys. However, the sub surveys don’t overlap and after looking into the closest
situated points in the two surveys, the conclusion is that the surveys are consis-
tent. In sub-domain 2, the combined standard deviation is 0.537 and there is no
overlap between the two sub surveys. The conclusion is consistence for the same
reason as for the previous sub-domain. In sub-domain 3, the combined standard
deviation is 0.85. The single point from Survey 2 is well within the range of Sur-
vey 1, but the standard deviation tells a different story. However, after limiting

290 V. Skytt et al.

the domain even more to cover just the neighbourhood of the survey 2 point,
the characteristic residual numbers can be seen in Table 5 as sub-domain 3b and
the combined standard deviation is 0.003. The survey is accepted also in this
domain. In the last sub-domain, Survey 1 has no points and the final conclusion
is acceptance.

Table 5. Characteristic numbers for residuals, sub-domains of Element Example 2.

Sub-domain Survey Score No. pts. Range Mean Std. dev. Size

1 1 0.640 12 −0.96, −0.56 −0.65 0.015 13.1

1 2 0.576 2 −0.64, −0.24 −0.44 0.040 44.8

2 1 0.640 87 −1.05, 0.10 −0.48 0.062 698.4

2 2 0.576 2 −0.54, −0.15 −0.35 0.039 35.9

3 1 0.640 73 −0.26, 0.62 0.22 0.035 597.1

3 2 0.576 1 0.27, 0.27 0.27

3b 1 0.640 22 0.18, 0.37 0.30 0.004 35.8

3b 2 0.576 1 0.27, 0.27 0.27

4.4 Deconfliction Examples

Example 1. Our first example is a small region with three overlapping data
surveys, Fig. 15a. The red one (survey 1 in Table 6) has priority score 0.675, the
green (survey 2) has score 0.65 and the blue (survey 3) 0.097.

a) b)

Fig. 15. (a) Three overlapping data surveys and (b) the combined point cloud with
the final approximating surface. Data courtesy: SeaZone. (Color figure online)

Bathymetry, Deconiction, Surface Generation and LR B-splines 291

a) b)

Fig. 16. Surface approximation and (a) the cleaned point set and (b) the points
removed by the deconfliction. Green points lie closer to the reference surface than
the 0.5 m threshold, red points lie below the surface and blue points lie above, both
groups lie outside the threshold. (Color figure online)

The combined data set is approximated by a reference surface using 4 itera-
tions of the adaptive surface generation algorithm. Deconfliction is applied and
the surface generation is continued, approximating only the cleaned point set
for 3 more iterations. The result can be seen in Fig. 16. About half the points
are removed by the deconfliction algorithm and almost all the cleaned points
are within the prescribed threshold of 0.5 m of the final surface. The points that
have been removed from the computations, are more distant. However, most of
them are also close to the surface. In most of the area, the sea floor is quite
flat and even if the data surveys are not completely consistent, the threshold is
quite large. In the narrow channel at the top of the data set, the shape becomes
more steep and the difference between the cleaned and the remaining points
becomes larger. Figure 17 shows a detail close to the channel. In Fig. 17(a) two
surveys are shown, and the one with large points has highest priority score. For
the other one, some points lie outside the 0.5 m threshold (blue points), and we
can see that the corresponding scan line has different behaviour vertically than
the nearby completely green scan line of the high priority survey.

a) b)

Fig. 17. A detail with data survey nr 2 and 3, (a) both surveys and (b) only the highest
prioritized one. (Color figure online)

292 V. Skytt et al.

Table 6. Comparison with different levels of approximation for the reference surface.

Survey No. pts. No deconfliction Deconfliction at level 3 Deconfliction at level 4

Range Mean Range Mean No. pts. Range Mean No. pts.

1 All 6333 −0.83, 0.70 0.12 −0.49, 0.52 0.10 −0.48, 0.56 0.09

1 Clean −0.48, 0.52 0.10 6333 −0.48, 0.56 0.09 6333

2 All 3811 −0.64,0.70 0.15 −1.03, 1.75 0.21 −0.89,1.8 0.20

2 Clean −0.39, 0.46 0.10 1478 −0.42,0.50 0.10 1546

3 All 11364 −0.55, 0.56 0.10 −1.43, 1.50 0.18 −1.38,1.66 0.18

3 Clean −0.6, 0.5 0.10 5209 −0.49, 0.48 0.10 5430

Table 6 shows how the choice of refinement levels for the reference surface
influences the accuracy of the final surface, when 3 and 4 iterations for the refer-
ence surface is applied. For comparison, the surface approximation is performed
also on the combined points set without any deconfliction. The surveys are pri-
oritized according to their number, and the distance range and mean distance
to the reference surface is recorded for all computations in addition to the total
number of points for each data survey and the number of points in the cleaned
survey after deconfliction. All distances are given in meters. In total, for the
final surface, the number of iterations is 7 in all cases, but the data size of the
final surfaces differ: The surface generated without any deconfliction is of size
329 KB, the surface with deconfliction level 3 is 131 KB while the deconfliction
level 4 surface is of size 147 KB. The distances between the final surface and
the cleaned point clouds are slightly larger, and some more points are removed
when deconfliction is performed at iteration level 3, but the accuracy weighed
against surface size is more in favour of this choice of deconfliction level rather
than 4. When no deconfliction is applied, we get larger residuals than when the
process includes deconfliction (rows marked clean in Table 6). However, if all the
distance statistics is computed for all input points even though the ones removed
by the deconfliction process are not used for the last iterations of the surface
generation, the numbers are higher as expected. The result of this experiment
don’t clearly favour either deconfliction level 3 or 4. The numbers are roughly
comparable, but the smaller surface size for level 3 is preferable.

Example 2. This example is of a different magnitude. 255 data surveys sum up
to 1.5 GB. The data set is split into 5 × 3 tiles and are approximated by surfaces.
As we can see in Fig. 18, there is limited overlap between the data surveys.

Figure 19 shows overlap zones between three data surveys together with the
kept points (a) and the removed points (b). The distances are computed with
respect to the reference surface, which is created with deconfliction level 4. The
point colours in these zones indicate that the points from different surveys are
more than twice the tolerance apart, and consequently the overlap points from
the lowest prioritized survey are removed.

Bathymetry, Deconiction, Surface Generation and LR B-splines 293

a) b)

Fig. 18. The reference surface with (a) the points kept by the deconfliction and (b) the
points removed. Distances are computed with respect to the reference surface, green
points lie closer than 0.5 m, red points lie below and blue points above. Data courtesy:
SeaZone. (Color figure online)

a) b)

Fig. 19. A detail of the reference surface with (a) the points kept by the deconfliction
and (b) the removed points.

5 Conclusion and Further Work

A good data reduction effect has been obtained by approximating bathymetry
point clouds with LR B-spline surfaces. The approach handles inhomogeneous
point clouds and can be used also for topography data, but is mostly suitable if
the data set is to some extent smooth or if we want to extract the trend of the
data. Data sets that mainly represent vegetation are less suitable.

We have developed an algorithm for automated deconfliction given a set of
overlapping and possibly inconsistent data surveys. The cleaned point sets lead
to surfaces with a much smaller risk of oscillations due to noise in the input
data. The results so far are promising, but there is still potential for further
improvements. Interesting aspects to investigate include:

– Outlier removal in individual data surveys prior to deconfliction.
– Investigation of secondary trend surface approximations based on residuals

in situations with many points in an element and small overlaps between the
data sets, to detect if there is a systematic behaviour in the approximation
errors with respect to the current reference surface.

– Continued investigation of the effect of refinement of the LR B-spline surface
to create a suitable reference surface. Aspects to study are number of itera-
tions and a possibility for downwards limitations regarding element size and
number of points in an element.

294 V. Skytt et al.

– There is no principal difference in surface modelling and deconfliction between
projectable point clouds where the height values can be represented by a func-
tion, and when a full 3D surface is required. Still, an investigation regarding
which dimensionality to choose in different configurations could be useful.

– A data survey can be subject to a systematic difference with respect to
another survey due to differences in registration, for instance the vertical
datum can differ. Identification and correction of such occurrences are not
covered by the current work. Differences in registration is a global feature of
the data set. Indications of it can be detected locally for the reference surface
elements, but the determination of an occurrence must be made globally.

References

1. Bhattacharyya, G.K., Johnson, R.A.: Statistical Concepts and Methods. Wiley,
New York (1977)

2. Büchenschütz-Nothdurft, O., Pronk, M.J., van Opstal, L.H.: Latest Developments
in Bathymetry Data Processing and its Application to Sandwave Detection. Marine
Sandwave and River Dune Dynamics, 1–2 April 2004

3. Davydov, O., Zeilfelder, F.: Scattered data fitting by direct extension of local poly-
nomials to bivariate splines. Adv. Comp. Math. 21, 223–271 (2004)

4. Davydov, O., Morandi, R., Sestini, A.: Local hybrid approximations for scattered
data fitting with bivariate splines. CAGD 23, 703–721 (2006)

5. Debese, N.: Multibeam Echosounder Data Cleaning Through an Adaptive Surface-
based Approach. US Hydro 07 Norfolk, May 2007

6. Dokken, T., Pettersen, K.F., Lyche, T.: Polynomial splines over locally refined
box-partitions. Comput. Aided Geom. Des. 30(3), 331–356 (2013)

7. Floater, M.S., Iske, A.: Multistep scattered data interpolation using compactly
supported radial basis functions. J. Comput. Appl. Math. 73, 65–78 (1996)

8. Forsey, D.R., Bartels, R.H.: Surface fitting with hierarchical splines. ACM Trans.
Graph. 14(2), 134–161 (1995)

9. Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with
hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Shumaker,
L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 163–172. Vanderbildt
University Press, Nashville (1997)

10. Hennis, N.: Automatic outlier detection in multibeam data. Master thesis, Delft
University of Technology, September 2003

11. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell.
Rev. 22(2), 85–126 (2004)

12. Johannessen, K.A., Kvamsdal, T., Dokken, T.: Isogeometric analysis using LR B-
splines. Comput. Meth. Appl. Mech. Eng. 269, 471–514 (2013)

13. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-
splines. IEEE Trans. Visual. Comput. Graph. 3(3), 229–244 (1997)

14. Lu, D., Li, H., Wei, Y., Zhou, T.: Automatic outlier detection in multibeam
bathymetry data using robust LTS estimation. In: 2010 3rd International Congress
on Image and Signal Processing (CISP) (2010)

15. Mehlum, E., Skytt, V.: Surface editing. In: Dœhlen, M., Tveito, A. (eds.) Numer-
ical Methods and Software Tools in Industrial Mathematics. Birkhäusser, Boston
(1997)

Bathymetry, Deconiction, Surface Generation and LR B-splines 295

16. Mitas, L., Mitasova, H.: Spatial interpolation. In: Longley, P., Goodchild, M.F.,
Maguire, D.J., Rhind, D.W. (eds.) Geographic Information Systems - Principles,
Techniques, Management, and Applications, pp. 481–498 (2005)

17. NIST/SEMATECH e-Handbook of Statistical Methods (2012). http://www.itl.
nist.gov/div898/handbook/eda/section3//eda3672.htm

18. NIST/SEMATECH e-Handbook of Statistical Methods (2012). http://www.itl.
nist.gov/div898/handbook/eda/section3//eda353.htm

19. Nowacki, H., Westgaard, G., Heimann, J.: Creation of fair surfaces based on higher
order fairness measures with interpolation constraints. In: Nowacki, H., Kaklis, P.D.
(eds.) Creating Fair and Shape-Preserving Curves and Surfaces. B.G. Teubner,
Stuttgart (1998)

20. Oliver, M.A., Webster, R.: Kriging: a method of interpolation for geographical
information system. Int. J. Geogr. Inf. Syst. 4(3), 323–332 (1990)

21. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs.
ACM Trans. Graph. 22(3), 477–484 (2003)

22. Shepard, D.: A two-dimensional interpolation function for irregularly spaced data.
In: Proceedings of 23rd National Conference, pp. 517–523. ACM (1968)

23. Skytt, V., Barrowclough, O., Dokken, T.: Locally refined spline surfaces for repre-
sentation of terrain data. Comput. Graph. 49, 48–58 (2015)

24. Skytt, V., Patané, G., Barrowclough, O., Dokken, T., Spagnuolo, M.: Spatial and
environmental data approximation. In: Patané, G., Spagnuolo, M. (eds.) Heteroge-
neous Spatial Data: Fusion, Modeling and Analysis for GIS Applications. Synthesis
Lectures on Visual Computing. Morgan & Claypool Publishers, April 2016

25. Sulebak, J.R., Hjelle, Ø.: Multiresolution spline models and their applications in
geomorphology. In: Evans, I.S., Dikau, R., Tokunaga, R., Ohmori, H., Hirano, M.
(eds.) Concepts and Modeling in Geomorphology: International Perspectives, pp.
221–237. Terra Publications, Tokyo (2003)

26. Zhang, W., Tang, Z., Li, J.: Adaptive hierachical B-spline surface approximation
of large-scale scattered data. In: Sixth Pacific Conference on Computer Graphics
and Applications, Pacific Graphics 1998 (1998)

http://www.itl.nist.gov/div898/handbook/eda/section3//eda3672.htm
http://www.itl.nist.gov/div898/handbook/eda/section3//eda3672.htm
http://www.itl.nist.gov/div898/handbook/eda/section3//eda353.htm
http://www.itl.nist.gov/div898/handbook/eda/section3//eda353.htm

Application of Longest Common Subsequence
Algorithms to Meshing of Planar Domains

with Quadrilaterals

Petra Surynková1(B) and Pavel Surynek2

1 Johannes Kepler University Linz, Altenberger Str. 69, 4040 Linz, Austria
petra.surynkova@seznam.cz

2 Artificial Intelligence Research Center, AIST Tokyo Waterfront, Tokyo, Japan
pavel.surynek@aist.go.jp

Abstract. The problem of mesh matching is addressed in this work.
For a given n-sided planar region bounded by one loop of n polylines
we are selecting optimal quadrilateral mesh from existing catalogue of
meshes. The formulation of matching between planar shape and quadri-
lateral mesh from the catalogue is based on the problem of finding longest
common subsequence (LCS). Theoretical foundation of mesh matching
method is provided. Suggested method represents a viable technique for
selecting best mesh for planar region and stepping stone for further para-
metrization of the region.

Keywords: Quadrilaterals · Quadrilateral mesh · Optimal mesh ·
Longest common subsequence · n-sided planar region

1 Introduction and Motivation

Finding a quadrilateral mesh that matches a given shape - a so called mesh
matching problem - represents an important problem in computer aided design,
[2,14,20]. The task is specified by user input which describes planar shape to be
covered with quadrilateral mesh. In this work we consider only simply connected
planar domains which need to be filled by quadrilateral mesh. The planar shape
is represented by its boundary drawn in plane typically. In addition to this, the
size of mesh, that is, the number of its vertices, is specified by the user as well.

The most important is to have spatially balanced mesh which has crucial
effect on computational methods based on quadrilateral decomposition of sur-
faces of complex shapes because quality of meshes in terms of spatial balance
have great impact on accuracy of methods like IGA, [5,12], and FEM, [9]. Com-
putational methods are more efficient and accurate when quadrilateral meshing
is well balanced where all quadrilaterals are of similar sizes and angles and even
squared, [13,15]. A balance in quadrilateral mesh roughly corresponds to visual
attractiveness which is important in computer graphics, presentations, virtual
reality, and level of detail modeling.

c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 296–311, 2017.
https://doi.org/10.1007/978-3-319-67885-6_16

Application of LCS Algorithms to Meshing 297

There are many ways how to cover the given shape with a mesh as even single
mesh can be matched to the shape in many ways. Moreover there are many
non-isomorphic meshes of given number of vertices which makes the problem of
finding appropriate mesh for given shape hard.

There exist many previous works dealing with meshing. These methods can
be roughly divided into two major directions. Let us call it meshing and mesh
matching.

(i) Meshing. Meshing is focused on mesh generation for the given shape that
is algorithms generate suitable mesh with respect to given shape directly
and do not consider alternatives, [7,8], Chaps. 3, 8, and 15 in [10], [17], and
[22]. That is in these methods meshes are usually generated by adding points
incrementally, more precisely the placement of next point is determined by
unambiguous computational process.

(ii) Mesh matching - our approach. For given shape we choose suitable mesh
from catalogue consisting of a priori existing meshes where in contrast to
previous approach many alternative topologically distinct meshes are con-
sidered.

Advantage of (i) is that these methods are usually faster but while in (ii) we
are able to find topological more appropriate mesh. The idea of mesh selection in
style of (ii) is shown in Fig. 1 - an example of two matchings of different quality
between user input and quadrilateral meshes.

Fig. 1. Two examples of quadrilateral meshes for user input on the left. The first mesh
expresses the shape of user input better than the second mesh. First mesh has lower
valences of boundary vertices in convex vertices of user input and higher valences in
concave vertices. The various valences of boundary vertices have different color. (Color
figure online)

Trying to find a suitable matching between the shape and a mesh in an
intuitive way by evaluating all the possible coverings would quickly lead to com-
binatorial explosion as there is exponential number of such covering. We were
trying to mitigate this difficulty by finding an appropriate concept from com-
puter science that can be used for reasoning about the mesh matching problem
in a more efficient way. Our finding is that the concept of longest common sub-
sequence (LCS) [1,11] can be employed in mesh matching problem to avoid
the combinatorial explosion. Given an objective function for measuring quality

298 P. Surynková and P. Surynek

of matching, the suitable application of the LCS algorithm would automatically
prune out coverings of the input shape by mesh that have no chance to maximize
the objective function. Hence instead of dealing with the exponential number of
coverings the algorithm goes directly to the optimal one in polynomial number
of steps.

In this article we describe concept of mesh matching to a given planar shape
in the formal mathematical way. Having the precise mathematical formulation
of the problem we could describe objective function that corresponds to the
quality of matching. We also designed a computationally efficient method for
mesh selection which is optimal with respect to the matching quality objective.
Our method generalizes the common problem of LCS. In contrast to the original
LCS, where only the relation of equality between symbols is considered, we allow
more general relations between symbols that reflects various cases that arise in
mesh matching problem.

1.1 Contribution

Our main contribution is an introduction of a general framework of application
of the LCS problem and associated algorithms in the geometrical problem of
mesh matching to a 2D shape. The theoretical properties of LCS algorithms
ensures that optimal matching with respect to our notion of quality of matching
can be found in polynomial time. This is a significant speedup compared to the
baseline methods that exhaustively considers all the possible juxtapositions of
a mesh and input 2D shape - the LCS algorithm prunes all the juxtapositions
that are not promising in advance. In addition to the general framework we
develop a concrete application for a so called corner specific mesh matching
which is focused on consideration of mesh matching with respect to convexity
and concavity of corners in the given input 2D shape.

The paper is organized as follows. In Sect. 2, we give a short introduction
to the quadrilateral meshes and regarding terminology and introduce existing
catalogues of meshes of a certain class which we use as the input for our selection
methods. Section 3 is devoted to a description of longest common subsequence
problem. In Sect. 4 we present an application of LCS to meshing and then we
elaborate specific application of LCS to optimal corner sensitive meshing for
non-convex shapes. Short summary and future work are given lastly.

2 Background

A quadrilateral mesh, [3,19,23] is a triple (V,E,Q) where V is a set of vertices,
E is a set of edges, and Q is a set of quadrilaterals. There exists an embedding
of (V,E,Q) into 2D plane such that each vertex is assigned a point in the plane
and each edge is assigned a curve in the plane, so that curves connect vertices
and each quad is represented in the plane as a quadrilateral. In our study we
furthermore assume only quadrilateral meshes that form a connected, conforming
(i.e. free from T-junctions), orientable 2D manifold with boundary, [3,18], i.e. our

Application of LCS Algorithms to Meshing 299

quadrilateral meshes are defined for segmentation of simply connected planar
domains. Let Ω denotes set of quadrilateral meshes.

Regarding the terminology, an edge of the mesh with two incident quads
is said to be internal, while an edge with just one incident quad is said to be
boundary. A vertex of a boundary edge is said to be boundary, otherwise it is
said to be internal. The valence of a vertex is the number of edges incident to
that vertex.

2.1 Existing Catalogues of Meshes

Our work considers the existing context of literature and software in geometry
and computer aided design. Extensive works on providing catalogue of meshes
of various sizes had been done previously, [4,23]. Our approach in this work is to
integrate our mesh selection method with existing mesh catalogue that is kept
as a database generated by procedural algorithm - that is, our method will select
the optimal mesh out of the catalogue of meshes.

The catalogue of meshes which we use as the input for our selection method
consists of quadrilateral meshes of a certain class and was generated in the
previous work, [23]. Without constraints, the number of possible meshes is too
high. Thus, we consider only valences ≤ 5 for the both boundary and internal
vertices which represents standard restriction for numerical applications [16] and
what is used in related literature [21,24].

The quadrilateral meshes in the catalogue furthermore satisfy the following
invariant:

(I) At least one vertex of each internal edge is internal.

Procedural mesh catalogue generates exponential number of meshes with
respect to the number of internal vertices of mesh, i.e. the number of internal
vertices is specified as the input. Hence, our mesh selection method should make
a consideration about matching of a single mesh very quickly to be able to find
suitable mesh for given shape in reasonable time. More precisely, we cannot
afford to perform any kind of exponential time search or other time consuming
operation.

3 Longest Common Subsequence Problem

The most simplified version of the longest common subsequence problem consists
in finding common subsequence within given two sequences of symbols. Infor-
mally said, the task is to delete some symbols in given two sequences x1, x2, ..., xn

and y1, y2, ..., yk so that the resulting sequences - called common subsequences -
will be the same. The objective is to obtain as long as possible sequences at the
end (in other words we want to make as few as possible symbol deletions) - that
is, longest common subsequences.

Consider a simple example of two strings (set of symbols correspond to Latin
alphabet) “alpha” and “aleph”. These two sequences are obviously different but

300 P. Surynková and P. Surynek

after deleting last ‘a’ in the first sequence and middle ‘e’ in the second string we
obtain “alph” in both cases which is the longest common subsequence for this
example.

Fig. 2. Graphical scheme of LCS based on weighted directed graphs.

Let us explain LCS on the following graphical scheme based on weighted
directed graphs. Let us Σ denote alphabet, let w be a utility function that
expresses a match between individual symbols. Formally w : Σ×Σ → Z∪{−∞}.
Usually w is a set so that it returns positive value for a pair of identical symbols
and −∞ for a pair of distinct. For example w(a, a) = 1 and w(a, e) = −∞. LCS
with respect to w can be expressed by following graphical scheme, see Fig. 2.
Weight of diagonal edges represents the match between pair of symbols. But
there are also vertical and horizontal edges, their weights are typically zeros.
More precisely we use zero weight for vertical and horizontal edges if deletion of
corresponding symbol is allowed or −∞ if we do not allow deletion. Traversal of
a vertical edge corresponds to deletion of a respective symbol in a first string,
while horizontal edge represents deletion of a corresponding symbol in a second
string. LCS in this scheme is regarded as a directed path from upper-left corner to
bottom-right corner in the scheme that has the highest sum of edge’s weights. Let
us call this an LCS path. This LCS path represents longest common subsequences
obtained by the deletion of certain symbols. Moreover the LCS path tells us
what symbols should be deleted to obtain the resulting sequence. The described
schematic approach to LCS is just for didactic purposes, in practice more efficient
algorithms based on dynamic programming are used. As the efficient algorithm
for LCS are out of scope of our study we refer the reader to relevant literature.

The very positive aspect about the LCS problem is that a variety of efficient
(polynomial time) algorithms exist that solve this optimization problem, [25,26].

4 Application of LCS in Shape Matching

Low time complexity makes LCS algorithms good candidates for using them as a
basis for consideration about mesh matching. However, mesh matching problem

Application of LCS Algorithms to Meshing 301

and LCS problem are completely different concepts hence we need to show first
what are the similarities between these problems.

When a user specifies his planar shape we can regard his input as an abstract
information that can be annotated by a sequence of symbols. Information about
the length of edges of the boundary, which vertices on the boundary are convex,
which are concave can be read from the input. Such information can be encoded
into a sequence of symbols.

At the same time, we need to annotate boundaries of meshes stored in the
catalogue using a sequence of symbols in correspondence with annotation of
inputs. There is considerable discrepancy between user inputs in the form of
planar shapes and representation of meshes in existing catalogues - most cata-
logues represent meshes in the abstract form as list of quadrilaterals and their
interconnections. Moreover we need to reflect a certain level of flexibility of mesh
matching with respect to given shape - a mesh may be matched to the shape in
a not ideal way while no better matching is possible.

4.1 Formalization of LCS Application in Mesh Matching

We will now introduce formally application of LCS in shape matching. Σ be a
set of symbols denoting types of points on the boundary in the 2D shape. Then
for each type of point σ ∈ Σ we will introduce wσ : Ω ×N → Z∪{−∞} a weight
function that expresses a match between point of given type and selected vertex
in the mesh. Second argument of wσ represents index of the boundary vertex
assumed that boundary vertices are numbered from one.

Fig. 3. An example of a 2D shape, a quadrilateral mesh, and graphical scheme of LCS
approach.

Then the previously introduced graphical approach to LCS will naturally
emerge here within the context of mesh matching. For example, assume a 2D
shape where points are denoted σ1, σ2, ..., σn. Next assume a mesh M consisting
of k boundary vertices and consider following graphical scheme based on the
graphical scheme defining the LCS path, see Fig. 3. Weight of diagonal edges
represents the match between point of given type and a vertex in a mesh.

302 P. Surynková and P. Surynek

The weights of horizontal edges are −∞ and the weights of vertical edges are
zeros, i.e. deletion of a point in a given shape is allowed but deletion from mesh
cannot be done ever because the convenience in mesh matching says that all
vertices in mesh must be matched somewhere [4].

Mesh matching is now naturally translated to search of LCS path in the
described scheme. Moreover as the LCS patch is always optimal which means
we have just defined mesh matching that is optimal in a certain sense. From now
we will call mesh matching corresponding to LCS path in the defined directed
graph scheme and optimal mesh matching. Recall again, that this scheme is
for pedagogical purpose, in practice we use more efficient approach based on
dynamic programming.

4.2 Design of Weight Functions for Corner Specific Shape Matching

We introduce lattice of classification of mesh boundary vertices with respect to
properties of convexity, concavity, and others. We do not address the positioning
of internal vertices. We assume that internal vertices are embedded in regularly
distribution. No other topology is considered. Unlike in the case of standard
LCS where we compare a pair of symbols whether they are same or not, here
we are more flexible. When we compare a vertex from user input shape with a
boundary vertex of mesh from the catalogue, the quality of matching between
these two vertices is determined by the lattice which is a mathematical structure
best representing to our needs. For example if a convex point from user input is
being compared with a vertex from mesh, then lattice for classification of convex
vertices is used to determine the quality of correspondence between the two
(the lattice thus provide classification from complete match between convex and
convex point to complete mismatch between convex and concave point).

If we intuitively interpret what our formal definition represent we can say that
the operation of comparison between a point from user input and a boundary
vertex of a mesh comes as a parameter to an LCS algorithm instead of stan-
dard equality between symbols. The output of the algorithm hence will be pair
of sequences whose symbols at corresponding positions represent best possible
match according to the lattice. When this output is interpreted back to the world
of geometry we have an optimal matching of a given mesh from catalogue to the
given user input. Hence we are able to select optimal mesh from the catalogue
provided that consideration about the single mesh is fast enough.

The method works for fixed starting point in a testing quadrilateral mesh
which is compared to fixed point in the given user input. For finding an optimal
matching between the user input and a mesh from the catalogue we consider
all rotation of a testing mesh, i.e. for fixed point in the user input we test all
possible starting points in a mesh. This approach is illustrated in Fig. 4.

Our basic mesh matching method assumes a catalogue of meshes represented
as a list of interconnected quadrilaterals. The user input given as a planar shape
is further processed and is assigned a sequence of boundary points. We distin-
guish three types of boundary vertices, see Fig. 5:

Application of LCS Algorithms to Meshing 303

Fig. 4. An example of mesh matching between one quadrilateral mesh from the cat-
alogue and user input. Point in the user input is fixed and the rotations of mesh are
considered.

Fig. 5. Three types of boundary vertices in the given user input.

304 P. Surynková and P. Surynek

– straight point - denoted by symbol s
– convex point - denoted by symbol x
– concave point - denoted by symbol y

Convex and concave points are extracted naturally from the user defined
input planar shape. Straight points are assigned to lines of the boundary of
shape. That is, each line is assigned a certain number of internal straight points
according to its length. Longer boundary line have more internal straight vertices.

As meshes in the catalogue are represented in the abstract way there is
not much information available from which a corresponding annotation can be
constructed. The usable information about meshes with respect to the property
of concavity and convexity are valences of their boundary vertices which in case
of quadrilateral meshes are from the range 2, 3, 4, 5. Let us note that even though
we do not consider the internal vertices of meshes in the corner specific case the
general framework of mesh matching via LCS enables consideration of internal
vertices. To further increase amount of information about a given boundary
vertex we also consider valences of its neighbors which allows us to determine
which vertex is more likely convex or which vertex is more likely concave.

Intuitively convex boundary vertices have low valence while their neighbors
have high valence. To be able to formalize this likeliness to be straight, convex,
or concave point we introduce a lattice for each type of point.

The higher the vertex is classified within the lattice the more likely it can be
matched to a certain type of point on the user input. The design of lattice is a
matter of careful consideration of visual appearance of matching and experience
of the expert designer. Furthermore, each level of lattice is assigned an integer
weight that will be reflected by the modified LCS algorithm when comparing
symbol from the input sequence with mesh boundary vertex. Positive weights
represent likeliness of match between points while negative values stand for like-
liness of mismatch. Absolute value of the weight represent measure of match
or mismatch. A special weight −∞ is reserved to denote complete mismatch
between the pair of vertices (this corresponds to disequality between symbols
in the standard LCS algorithm). Figure 7 shows a suggested lattice for convex
point in the given user input. Some triples of valences of boundary points in the
lattice are weeded out because they cannot occur in our certain class of meshes.
The lattices for concave and straight points are designed analogically.

Our modified LCS algorithm assumes two input sequences of symbols - the
first from user input; the second obtained by annotating mesh from the catalogue.
The symbols of the second sequence have the following format of triples: [u, v, z]
where v ∈ 2, 3, 4, 5 is a valence of mesh boundary vertex, and u, z ∈ 2, 3, 4, 5 are
valences of counter-clock-wise and clock-wise neighbors of v respectively.

Weights are assigned to triples [u, v, z] by weight functions. Formally we
introduce a weight function for each type of point. That is, we have functions:

ws, wx, wy : {2, 3, 4, 5}3 → Z ∪ {−∞}
which assigns triples of valences their weights with respect to the lattice for

straight, convex, and concave point, respectively, see an example in Fig. 6. These

Application of LCS Algorithms to Meshing 305

weight functions are used by the modified LCS algorithm when it is making
comparing a pair of symbols (first one from the first sequence second one from
the second sequence).

Fig. 6. An example of weights of selected mesh boundary vertex with respect to the
fine-grained lattice for convex point.

We omit implementation details of the modified LCS algorithm for the sake
of brevity. However, important high level specialty of our version of LCS is that
it assumes the length of the first sequence to be at least the length of the second
sequence. Moreover, deletions of symbols can be made from the first sequence
only (from the user input). It is natural assumption as we want to match all the
vertices of the catalogue mesh to some point in the user defined shape.

The two sequences of the same length are valuated by a utility which is calcu-
lated as the sum of weights of symbols from the second sequence with respect to
lattices corresponding to respective symbols from the first sequence. The task of
our modified LCS algorithm is to compute longest common subsequence out of
given user defined input sequence (the first sequence) with the highest possible
utility.

In correspondence to general LCS-like mesh matching framework we define
overall utility function of a pair of sequences of symbols discussed above as
follows

f([σ1, ...σm], [[u1, v1, z1], ...[um, vm, zm]]) =
m∑

i=1

w(σi, [ui, vi, zi])

where

w(σi, [ui, vi, zi]) =

⎧
⎪⎨

⎪⎩

ws([ui, vi, zi]), if σi = s

wx([ui, vi, zi), if σi = x

wy([ui, vi, zi) if σi = y

The algorithm finds an LCS path which corresponds to a sequence [σ1, ...σm]
for the input pair of sequences [σ′

1, ...σ
′
n] and [[u1, v1, z1], ...[um, vm, zm] where

m ≤ n so that [σ1, ...σm] is a subsequence of [σ′
1, ...σ

′
n] and its f value is

maximum.

306 P. Surynková and P. Surynek

Fig. 7. Suggested lattice for convex point in the given user input.

4.3 Design of Lattices

The design of lattice is a matter of experience of the expert designer. We sug-
gested a lattice for each type of point in the user input. Our lattices are fine-
grained so they enable to evaluate mesh matching more precisely than coarse
lattices. An example of coarse lattice for straight point is shown in Fig. 8,

Application of LCS Algorithms to Meshing 307

Fig. 8. An example of coarse lattice for straight point in the given user input.

an example of coarse lattice for convex point is shown in Fig. 9 and an example
of coarse lattice for concave point is shown in Fig. 10.

We show illustrative examples of lattices constructed according to our intu-
ition for the mesh matching with respect to the corner specific case. These lat-
tices are planned to be evaluated in terms of visual quality of generated mesh
matching.

Note that occurrence of −∞ represents strict impossibility to match a point
of given type from user input (corresponds to the type of lattice) to a vertex
from a mesh. If the LCS algorithm cannot find a correspondence between point
from the user input and some mesh vertex so that utility other than −∞ is
assigned to that correspondence the point must be treated as deleted by the
LCS algorithm. This is the only case when LCS performs deletion from some of
its input sequences.

308 P. Surynková and P. Surynek

Fig. 9. An example of coarse lattice for convex point in the given user input.

4.4 Properties of the Method

Clearly as LCS algorithms are optimal in their nature our modified algorithm
enables finding optimal match between used defined shape and mesh from the
catalogue with respect to given objective function optimally. Moreover the algo-
rithm requires polynomial time and space which makes it an excellent candidate
for selecting a mesh with the best match for the given user input.

The time complexity of the most basic implementation of the LCS-based
matching that searches for the best mesh matching through LCS path is
O(|n × k| × log2(n × k)). This result comes from the complexity of the standard
implementation of the Dijkstra algorithm with the worst case time complexity
O(|E| × log2(|V |)), [6], where V is the set of vertices and E is the set of edges
of the underlying graph. In case of LCS path we have a special graph in which
both |V | and |E| are O(n × k) from which we obtain the above result.

The baseline naive algorithm that solves the mesh matching problem by
considering all possible coverings of the shape with given mesh needs O(k × (

k
n

)
)

Application of LCS Algorithms to Meshing 309

Fig. 10. An example of coarse lattice for concave point in the given user input.

mesh to shape comparisons which comes from the fact that there is
(

k
n

)
possible

mapping n points of the shape on k vertices of the mesh which needs to be
multiplied by 2 × k to account all rotations and orientations of the mesh. If we
omit constants in the asymptotic time complexities, we can state that this naive
algorithm can find optimal mesh matching with respect to the corner specific
case in 2×10×(

10
6

)
= 4200 steps. This optimal solution is shown in the left part

of Fig. 6. This naive method however does not scale for larger meshes and more
complex shapes - consider a mesh with 100 boundary vertices and shape with 50
points which is apparently not tractable by the naive algorithm. The LCS-based
mesh matching on the other hand can find the optimal solution from Fig. 6 in
10 × 6 × log2(10 × 6) = 354 steps and the large case 100 vertices and 50 points
becomes tractable as well.

5 Conclusions and Future Work

A new approach for finding a quadrilateral mesh from the catalogue of quadri-
lateral meshes of a certain class that matches a given user input was described

310 P. Surynková and P. Surynek

in this work. The method conceptually builds on the known problem of finding
longest common subsequence (LCS). As LCS and mesh matching are funda-
mentally different problems we proposed a series of techniques that allow us to
transform mesh matching problem to LCS. These techniques include adaptation
of the LCS algorithm and introduction of symbol comparison based on lattices
that model likelihood of correspondence between user input points and mesh
vertices.

The theoretical foundation of a method is provided. The major contribution
is that viewing mesh matching problem through the concept of LCS allows miti-
gating the combinatorial complexity. Instead of evaluating all possible matchings
between the user input and a mesh from the catalogue in the exponential time,
the adapted LCS algorithm rules out partial matchings as early as possible if
they turn out not to be optimal which leads eventually to the polynomial time.

In the future work we will focus on experimental evaluation which will be
targeted on visual comparison of match matching obtained using fine-grained
and coarse lattices. The interconnection of the mesh matching algorithm and
the procedural catalogue is planned too.

Another interesting topic for the future work is to develop new techniques
for evaluation best mesh according to the distribution of internal vertices.

References

1. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proceedings of the Seventh International Symposium on String
Processing Information Retrieval (SPIRE 2000), pp. 39–48. IEEE Computer Soci-
ety, Washington, D.C. (2000)

2. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.:
Quad-mesh generation and processing: a survey. Comput. Graph. Forum 32(6),
51–76 (2013)

3. Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., Lévy, B.: Polygon Mesh Processing.
A K Peters, Natick (2010)

4. Buchegger, F., Jüttler, B.: Planar multi-patch domain parameterization via patch
adjacency graphs. Comput. Aided Des. 82, 2–12 (2017)

5. Cohen, E., Martin, T., Kirby, R., Lyche, T., Riesenfeld, R.: Analysis-aware mod-
eling: understanding quality considerations in modeling for isogeometric analysis.
Comput. Meth. Appl. Mech. Eng. 199(5–8), 334–356 (2010)

6. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, London (2001)

7. Dı́az-Morcillo, A., Bernal-Ros, A., Nuño, L.: Mesh generation methods over plane
and curved surfaces. In: Proceedings of the 7th International Meshing Roundtable,
IMR 1998, Dearborn, Michigan, USA, 26–28 October 1998, pp. 397–407 (1998)

8. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge
University Press, New York (2001)

9. Floater, M., Hormann, K.: Surface Parameterization: A Tutorial and Survey, pp.
157–186. Springer, Heidelberg (2005)

10. Frey, P.J., George, P.L.: Mesh Generation: Application to Finite Elements. Wiley,
London (2008)

Application of LCS Algorithms to Meshing 311

11. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J.
ACM 24(4), 664–675 (1977)

12. Hughes, T., Cottrell, J., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Meth. Appl. Mech. Eng.
194(39–41), 4135–4195 (2005)

13. Jimack, P.K., Mahmood, R., Walkley, M.A., Berzins, M.: A multilevel approach
for obtaining locally optimal finite element meshes. Adv. Eng. Softw. 33(7–10),
403–415 (2002)

14. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using
branched coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

15. Knupp, P.: Remarks on Mesh Quality, Reno, NV, 7–10 January 2007
16. Liu, Y., Xing, H.L., Guan, Z.: An indirect approach for automatic generation of

quadrilateral meshes with arbitrary line constraints. Numer. Meth. Eng. 87(9),
906–922 (2011)

17. Lo, D.S.H.: Finite Element Mesh Generation. CRC Press, Boca Raton (2015)
18. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level

of Detail for 3D Graphics. Morgan Kaufmann Publishers, San Francisco (2003)
19. Mitchell, S.A.: A characterization of the quadrilateral meshes of a surface which

admit a compatible hexahedral mesh of the enclosed volume. In: Puech, C., Reis-
chuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 465–476. Springer, Heidelberg
(1996). doi:10.1007/3-540-60922-9 38

20. Nasri, A., Sabin, M., Yasseen, Z.: Filling n-sided regions by quad meshes for sub-
division surfaces. Comput. Graph. Forum 28(6), 1644–1658 (2009)

21. Peng, C.H., Barton, M., Jiang, C., Wonka, P.: Exploring quadrangulations. ACM
Trans. Graph. 33(1), 1–13 (2014)

22. Ramaswami, S., Siqueira, M., Sundaram, T.A., Gallier, J.H., Gee, J.C.: A new algo-
rithm for generating quadrilateral meshes and its application to FE-based image
registration. In: Proceedings of the 12th International Meshing Roundtable, IMR
2003, Santa Fe, New Mexico, USA, 14–17 September 2003, pp. 159–170 (2003)

23. Surynkova, P., Buchegger, F: Enumerating quadrilateral meshes. Comput. Aided
Geom. Des. (submitted 2017)

24. Takayama, K., Panozzo, D., Sorkine-Hornung, O.: Pattern-based quadrangulation
for N-sided patches. Comput. Graph. Forum 33(5), 177–184 (2014)

25. Ukkonen, E.: Algorithms for approximate string matching. Inf. Control 64(1–3),
100–118 (1985)

26. Ullman, J.D., Aho, A.V., Hirschberg, D.S.: Bounds on the complexity of the longest
common subsequence problem. J. ACM 23(1), 1–12 (1976)

http://dx.doi.org/10.1007/3-540-60922-9_38

Order-Randomized Laplacian Mesh Smoothing

Ying Yang1,2, Holly Rushmeier2, and Ioannis Ivrissimtzis3(B)

1 Fujian Provincial Key Laboratory of Information Processing
and Intelligent Control, Minjiang University, Fuzhou, China

2 Yale University, New Haven, USA
{ying.yang.yy368,holly.rushmeier}@yale.edu

3 Durham University, Durham, UK
ioannis.ivrissimtzis@durham.ac.uk

Abstract. In this paper we compare three variants of the graph Laplacian
smoothing. The first is the standard synchronous implementation, corre-
sponding to multiplication by the graph Laplacian matrix. The second
is a voter process inspired asynchronous implementation, assuming that
every vertex is equipped with an independent exponential clock. The third
is in-between the first two, with the vertices updated according to a ran-
dom permutation of them. We review some well-known results on spectral
graph theory and on voter processes, and we show that while the conver-
gence of the synchronousLaplacian is graphdependent and, generally, does
not converge on bipartite graphs, the asynchronous converges with high
probability on all graphs. The differences in the properties of these three
approaches are illustrated with examples including both regular grids and
irregular meshes.

Keywords: Laplacian smoothing · Graph Laplacian matrix · Voter
processes · Triangle meshes · Regular grids · Taubin smoothing

1 Introduction

Laplacian smoothing is used in a variety of applications as a simple yet effective
method for data denoising. Assuming that each data point has a well-defined
neighborhood, each iterative Laplacian smoothing step updates the data points
by weighted averages of their neighborhoods. Since neighborhood relations are
naturally described by graphs with their edges connecting neighboring points,
Laplacian smoothing is often described as an operator acting on graphs, smooth-
ing the values of a function defined over the graph’s vertices.

In graphics applications, Laplacian smoothing, applied either globally or
locally, is often used for smoothing discrete surfaces, especially triangle meshes.
In cases of global mesh smoothing in particular, higher quality results are
obtained by using more sophisticated variants of the fundamental technique,
such as the HC-Laplacian smoothing [18], the curvature flow smoothing [5], or
the Taubin smoothing [15]. The latter, which will be used in our experiments,
is based on the alteration between a smoothing step with a positive weight w1

and an anti-smoothing step with a negative weight w2.
c© Springer International Publishing AG 2017
M. Floater et al. (Eds.): MMCS 2016, LNCS 10521, pp. 312–323, 2017.
https://doi.org/10.1007/978-3-319-67885-6_17

Order-Randomized Laplacian Mesh Smoothing 313

Since Laplacian smoothing is simple, general and well-understood, it is often
the technique of choice when a smoothing or noise suppression algorithm needs
to be incorporated into a general mesh processing framework [10], or into a
more complex algorithm, as for example the machine learning algorithm for sur-
face reconstruction in [1], or the Boundary Element Method based evolutionary
structural optimization in [17].

In image processing applications, weighted neighborhood averaging, usually
referred as Gaussian smoothing, is a fundamental technique at the heart of classic
edge detection algorithms, or more sophisticated variants of them such as the
bilateral edge preserving smoothing in [16], a technique which has been extended
to triangle meshes [7]. Bilateral filtering has been studied through the spectrum
of the graph Laplacian in [8].

Several curve and surface subdivision algorithms can defined as combined
operators with at least one Laplacian smoothing component. The classic Lane-
Riesenfield algorithms [11] apply Laplacian smoothing on a very simple graph, i.e.
a graph with the connectivity of a polygon, while in some recent generalizations
the smoothing step corresponds to the Laplacians of more dense graphs [3].

In this paper we compare three implementations of Laplacian smoothing,
depending on the order in which vertices are updated. In the first implementation
we consider, Lsync, each step updates all graph vertices synchronously. This
implementation, which is ubiquitous in practical applications, has the major
advantage that we do not have to define a specific order in which the vertices
are updated, thus do not have to arbitrarily impose such an order.

In the second implementation, Lexp, every vertex carries an independent
exponential clock and is updated when that clock rings. Lexp has several sim-
ilarities with the discrete operators called voter processes, which are a major
modeling and simulation tool. They have been traditionally employed on regu-
lar grid settings [4] to model physical phenomena, and recently on irregular graph
settings to model social interactions, e.g. spread of influences on social media, or
consumer behavior [12,19]. In the latter cases, the basic voter processes are usu-
ally augmented with special features that allow them to capture the complexity
of social interactions. As an advantage of the Lexp operator, we note that it is
more natural than Lsync in the sense that it does not assume instant interaction
between the parts of the system, here the vertices of the graph, and as a result it
can avoid the problem of non-convergence which appears when Lsync is applied
on bipartite graphs. Moreover, it has a trivial memory efficient implementation
since, unlike Lsync, it does not require to retain the existing values of the func-
tion until the end of the current iteration. One potential disadvantage is that
the outcome in non-deterministic, something that in several applications can be
unacceptable.

In between Lsync and Lexp, we also consider an operator Lperm, which
updates the vertices one by one as in Lexp, but following a random permutation
of the vertex set rather than using independent exponential clocks. In Lperm, no
vertex will be updated twice before all vertices have been updated once, allow-
ing for a clear distinction between the iterative steps of the smoothing process,

314 Y. Yang et al.

similarly to Lsync. This is particularly convenient when Taubin smoothing is
applied and thus, we alternate between two distinct Laplacian smoothing steps.
Nevertheless, Lperm seems to be less interesting than Lsync and Lperm from a
theoretical point of view and here will only be studied experimentally.

Contribution and Limitations: The main contribution of the paper is the
demonstration of theoretical and practical shortcomings of the synchronous
implementation of the Laplacian smoothing, which have been largely overlooked
in the relevant literature. As the main limitation of the paper we note that
given the theoretical and practical shortcomings of the two randomized imple-
mentations we tested, a conclusive case for their use instead of the ubiquitous
synchronous implementation can only be made in the context of a specific appli-
cation scenario, as for example a specific mesh processing pipeline or a specific
grid simulation. The latter however is beyond the scope of this paper.

Overview: In Sect. 2, we describe the three implementations of Laplacian
smoothing in detail, and review the theoretical properties of Lsync and Lexp.
In Sect. 3, we test all three implementations on regular height maps and 3D tri-
angle meshes, using Laplacian smoothing or Taubin smoothing as appropriate.
We briefly conclude in Sect. 4.

2 Theoretical Properties of Lsync and Lexp

First, we review the convergence properties of the usual synchronous Laplacian
smoothing. While the convergence or not of Lsync is a direct consequence of well-
known spectral properties of the Laplacian matrix, to the best of our knowledge,
bipartite graphs have not been identified in the relevant literature as the class
of graphs where Lsync, generally, does not converge.

Let G = (V,E) be a connected graph with N vertices and let fn be a real
function defined over the vertex set V , which can also be written as a vector

fn = (fn(v0), fn(v1), . . . , fn(vN−1))T . (1)

One iterative step of the synchronous Laplacian smoothing Lsync updates fn by

fn+1 = L · fn (2)

where the Laplacian matrix L, indexed by the vertices of G, is given by

L = L(i, j) =

{
1/di if (vi, vj) ∈ E,

0 otherwise
(3)

where di is the valence of the vertex vi. Regarding the spectral properties of L,
see for example [2], its eigenvalues satisfy

1 = λ0 > λ1 ≥ · · · ≥ λN−1 ≥ −1, (4)

Order-Randomized Laplacian Mesh Smoothing 315

that is, all the eigenvalues are in the interval [1, −1] and the largest is equal to
1 and has multiplicity one. Moreover, λN−1 = −1 if and only if G is bipartite,
that is, when its vertices can be split into two subsets, let say the white and the
black vertices, such that only vertices in different subsets are connected with an
edge. In that case, the spectrum of L is symmetric about the origin and thus
λN−1 also has multiplicity one [2].

Let vi for i = 0, . . . , N − 1 be an orthonormal basis of R
N consisting of

eigenvectors of L. The initial function f0 of vertex values can be written in that
basis as

f0 = a0v0 + · · · + aN−1vN−1 (5)

giving
fn = Lnf0 = a0λ

n
0v0 + · · · + aN−1λ

n
N−1vN−1 (6)

which, on bipartite graphs, for large number of iterations n converges to

a0v0 + aN−1(−1)nvN−1. (7)

From Eq. 7 we see that Lsync does not converge if the graph G is bipartite and
aN−1 �= 0, i.e., the initial vertex values f0 contain a non-zero component of vN−1.
The eigenvector vN−1 of bipartite graphs has a quite simple form, namely, it has
values +1 on white vertices and −1 on black. On the other hand, for any graph G,
bipartite or not, we have

v0 = (1, . . . , 1)T . (8)

and simple computations show that if fn converges to a function f then

f = a0v0 (9)

where a0 is the coefficient of the eigenvector v0 when we write f0 in the basis of
the eigenvectors of L.

Relevance: Bipartite graphs appear often in practice. Open polygons are bipar-
tite, as well as regular quadrilateral grids and regular cubic grids. While triangle
meshes are not bipartite, regular hexagonal meshes are bipartite. Regarding gen-
eral polygonal meshes, the graph with vertex set the vertices and the faces of
the mesh, and edges from the vertex-vertices to the incident face-vertices and
the face-vertices to the incident vertex-faces, is bipartite. Thus, if we smooth
attributes defined on both vertices and faces, e.g. normals, colors or material
properties, by updating the vertices by the mean of the incident faces and the
faces by the mean of the incident vertices, then the process would generally not
converge.

2.1 Lexp Smoothing and Voter Processes

Since Lexp is a probabilistic process we cannot study it through the spectral
properties of the Laplacian matrix. Instead, we will study it through its relation
to voter processes, which can be seen as the discrete counterparts of Lexp. While

316 Y. Yang et al.

voter processes are well-understood and have already found numerous applica-
tions, to the best of our knowledge their connection with the Lexp implementa-
tion of the Laplacian smoothing has not been studied. Next we will make this
connection explicit, essentially formalizing the following simple intuitive argu-
ment; under Lexp smoothing, the values of the function f on the graph vertices
correspond to opinion expectations in a voter process.

The Lexp Smoothing Process: Following the standard terminology on voter
processes, each vertex of G carries an independent exponential clock of rate 1.
Each time a clock rings the value on its vertex is updated, becoming the mean
of the values of its 1-ring neighborhood. In matrix notation, this is equivalent to
multiplication by the matrix Lk derived from the identity matrix by substituting
its k-th row with the k-th row of the Laplacian matrix. That is,

fm+1 = Lk · fm (10)

where

Lk = Lk(i, j) =

⎧⎪⎨
⎪⎩

L(i, j) if i = k

1 if i = j �= k

0 otherwise
(11)

Let t0, t1,, tn be the sequence of vertex indices in the order they rang
during the smoothing process. We have

fn+1 = Ltn · · · Lt0f0 (12)

which, by writing f0 in the natural base becomes

fn+1 =
N−1∑
i=0

f i
0 · Ltn · . . . · Lt0 · ei (13)

where f i
0 is i-th coordinate of f0 and ei is the vector with 0’s everywhere and 1

at the i-th coordinate. From Eq. 13 we see that for large values of n the behavior
of Lexp depends on the limit of

Ltn · . . . · Lt0 · ei. (14)

The Corresponding Voter Process: In its standard form, a voter process is
defined on a graph whose vertices carry a value from the set {0, 1}, commonly
called the opinion. Each vertex carries an independent exponential clock and
upon ringing that vertex will choose with uniform random probability one of
its neighbors and adopt its opinion. To each vertex i we associate the binary
random variable Xi with

Xi(0) = 0, Xi(1) = 1 (15)

and the set of vertices V is associated to the vector of binary random variables

X = (X0, . . . , XN−1)T . (16)

Order-Randomized Laplacian Mesh Smoothing 317

Let the vector of the probability distributions of the opinions at step n be

Yn = (Y n
0 , . . . , Y n

N−1). (17)

From Eq. 13, it suffices to study the behaviour of the process for initial opinion
vector ei, in which case we have{

p(Y 0
i = 0) = 0 p(Y 0

i = 1) = 1
p(Y 0

j = 0) = 1 p(Y j
i = 1) = 0 for i �= j

(18)

and the initial expectation vector is E(X) = ei. Assuming that the clocks at the
vertices of the graph ring in the order t0, t1, . . . , tn, we have

Yn = Ltn · . . . · Lt0 · Y0 (19)

and by linearity, the expectation vector at step n is

E(X) = Ltn · . . . · Lt0 · ei. (20)

For any graph, including bipartite graphs, the above voter process reaches con-
sensus with high probability [6]. That is, for any ε > 0, after a sufficiently large
number of steps, all the vertices will have the same opinion with probability at
least 1 − ε. Moreover, the probability for the consensus being at opinion 1 is
equal to the sum of the valences of the vertices with initial opinion 1 divided by
the sum of all valences, which is twice the number of edges |E|. For the initial
opinions corresponding to the basis vector ei, the expectation vector under the
condition that consensus has been reached is

Ei
cns =

di
2|E| (1, 1, . . . , 1)T . (21)

Remark: Hassin and Peleg [9] studies a voter process where all vertices update
simultaneously, i.e., in the fashion of Lsync rather than Lexp. The main result
is that consensus is reached with high probability for all non-bipartite graphs.
In [13], these two voter processes are compared and the main result is that
the asynchronous process reaches consensus faster than the synchronous. The
latter result is reflected in our experiments regarding the speed of the smoothing
processes in Sect. 3.

The Lperm Smoothing Process: In-between Lsync and Lexp we define a third
process Lperm where the graph vertices are updated one by one, according to a
random permutation of them. Since there is no much literature on the theoretical
properties of Lperm, we will only study it experimentally, generally expecting a
behavior similar to Lexp.

The motivation for including Lperm in our investigations is two-fold. Firstly,
as Lexp is different from Lexp in that all vertices are updated the same number
of times, a comparison between the two methods can reveal the affect on Lexp

of the fact that some vertices may be updated significantly fewer times than

318 Y. Yang et al.

the average. Secondly, Lperm is similar to Lsync in that a single iteration of the
process is clearly defined, i.e. when all vertices have been updated once. This is
particularly convenient when we alternate between different steps of Laplacian
smoothing, as for example in the case of Taubin smoothing.

3 Experimental Results

In our examples we use two graph types. First, graphs with the connectivity of
a regular 2D grid and a real-valued function f : V → R defined over its vertices.
Secondly, irregular graphs with a vector valued function f : V → R

3 defined on
the vertex set. In the first case, f would typically be a spatially regular sample of
measurements of a physical quantity and will often be visualized as a 2.5D height
map. In the second case, f would typically represent the spatial coordinates of
the vertices of a polygonal mesh embedded in 3D and the Laplacian smoothing
process will be applied on each coordinate separately.

In Fig. 1 we applied the three Laplacian operators on a 50 × 50 regular grid
with values

f(x, y) = sin(2πx) + sin(2πy). (22)

Random uniform noise from the interval [−1, 1] was added on the interior ver-
tices. In all three cases the boundary of the grid is fixed and we apply the smooth-
ing operators on the interior vertices only. After 50 iterations of the Lsync, the
artifact related to the non-convergence of the operator on bipartite graphs is
clearly visible, even though the fixed boundary means that eventually the result
will be smooth as the boundary values slowly propagate towards the interior.
Next, we applied the operator Lexp until one vertex had been updated for 50
times and as expected, the result was smooth. Notice that applying Lexp until
one vertex has been updated for 50 times means that all other vertices are
updated fewer than 50 times. However, as Lexp updates vertices on the fly, it
mixes vertex values faster than Lsync. Finally, we notice that, as expected, Lperm

yielded results similar to Lexp.
The next figures show results on triangle meshes. The Fandisk model was

chosen for its flat areas and sharp edges, while the Eight model was chosen for the
absence of sharp edges and its non-trivial topology. The subdivided Dipyramid
was chosen for its rotational symmetry and its highly regular connectivity which
produce artifacts when Laplacian smoothing is applied.

Figure 2 shows the results of applying Lexp on noisy Fandisk and Eight mod-
els. We notice that while most of the noise has been removed from both models,
the edges of the Fandisk have not been preserved and there is more residual noise
compared to Lsync and Lperm, see Figs. 3 and 4. The smoothed Eight model
exhibits again some residual noise, but avoids the medium frequency artifacts
created by Lsync and Lperm for the given edge preserving choice of parameters
w1 and w2, see Fig. 3. We note that the larger amount of residual noise in Lexp

is due to the fact that some mesh vertices are smoothed a few times only and
that it can be a serious limitation in certain graphics applications.

Order-Randomized Laplacian Mesh Smoothing 319

Fig. 1. Top to bottom: noisy grid data, 50 iterations of Lsync, Lexp and Lperm

smoothing.

320 Y. Yang et al.

Fig. 2. The noisy Fandisk and Eight model smoothed with Lexp. The process termi-
nates when one of the mesh vertices reaches 50 iterations.

Fig. 3. Smoothing of the noisy meshes in Fig. 2 with Lperm and Lsync. Left to right:
50 iterations of Lperm, 50 iterations of Lsync and 100 iterations of Lsync. In all cases
the Taubin smoothing weights are w1 = 0.25 and w2 = −0.20.

Order-Randomized Laplacian Mesh Smoothing 321

Figure 3 compares Lperm and Lsync on Taubin smoothing. We notice that
while Lsync and Lperm can produce results that visually are very similar to each
other, the values of certain algorithmic variables such as the number of itera-
tions, or the weights of the Taubin smoothing, are not directly comparable. In
particular, for given Taubin smoothing weights, Lperm requires fewer iterations
than Lsync. That was expected since Lperm updates the mesh vertices on the fly
and thus, the new value of a vertex starts propagating immediately, rather than
after the iteration is complete. We also note that in our basic Matlab implemen-
tation, a single iteration of Lperm runs faster than a single iteration of Lsync.
This is because Lsync stores the updated vertex values in a temporary array
which has to be copied at the end of each iteration.

Figure 4 compares Lperm and Lsync on the range of acceptable Taubin
smoothing weights. We notice that the Lperm accepts a wider range of weights
than Lsync and in particular, the anti-smoothing weight w2 can be significantly
larger in absolute value than the smoothing weight w1.

Fig. 4. Smoothing of the noisy meshes in Fig. 2 with 200 iterations of Lperm (left)
and Lsync (right). Top: Taubin weights w1 = 0.25 and w2 = 0.25. Bottom: Taubin
weights w1 = 0.25 and w2 = 0.3.

322 Y. Yang et al.

Fig. 5. From left to right: (a) The original mesh. (b) 200 iterations of Lsync with weight
w = 0.1. (c) 200 iterations of Lperm Taubin smoothing with w1 = 0.25 and w2 = 0.20.
(d) 200 iterations of Lsync Taubin smoothing with w1 = 0.25 and w2 = 0.20.

Finally, in Fig. 5 we apply the three processes on a linearly subdivided dipyra-
mid. We notice that surface artifacts, as have been studied in [14], appear in all
three cases and are very similar to subdivision artifacts. A possible explanation
for this is that several subdivision schemes can be described as a combination a
linear subdivision step followed by a weighted Laplacian smoothing step.

4 Conclusions

We compared three different implementations of Laplacian smoothing, depend-
ing on the order in which the graph vertices are updated. We reviewed their the-
oretical properties, focusing on their different behaviors over bipartite graphs.
Our tests showed that these theoretical differences are visually significant when
Laplacian smoothing is applied on regular grids.

As we noticed in the literature review in Sect. 1, Laplacian smoothing is most
often applied in the form of several consecutive iterations of weighted Laplacian
smoothing, rather than as direct application of the Laplacian matrix in Eq. 3.
Moreover, it is often applied locally rather than globally and it is often just one
step of a more complex mesh processing algorithm. In such settings, the results in
Sect. 3 do not provide any compelling evidence against current practice of using
Lsync as the default implementation of Laplacian smoothing. In the future, we
plan to compare these three different implementations of Laplacian smoothing
in the context of a specific 3D modeling problem, in particular, machine learning
based surface reconstruction as, for example, in [1].

References

1. Annuth, H., Bohn, C.: Growing surface structures: a topology focused learning
scheme. In: Madani, K., Dourado, A., Rosa, A., Filipe, J., Kacprzyk, J. (eds.)
Computational Intelligence. SCI, vol. 613, pp. 401–417. Springer, Cham (2016).
doi:10.1007/978-3-319-23392-5 22

2. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2011).
doi:10.1007/978-1-4614-1939-6

3. Cashman, T.J., Hormann, K., Reif, U.: Generalized Lane-Riesenfeld algorithms.
Comput. Aided Geom. Des. 30(4), 398–409 (2013)

http://dx.doi.org/10.1007/978-3-319-23392-5_22
http://dx.doi.org/10.1007/978-1-4614-1939-6

Order-Randomized Laplacian Mesh Smoothing 323

4. Cox, T., Griffeath, D.: Diffusive clustering in the two dimensional voter model.
Ann. Probab. 14(2), 347–370 (1986)

5. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular
meshes using diffusion and curvature flow. In: SIGGRAPH, pp. 317–324 (1999)

6. Donnelly, P., Welsh, D.: Finite particle systems and infection models. Math. Proc.
Cambridge Philos. Soc. 94(01), 167–182 (1983)

7. Fleishman, S., Drori, I., Cohen-Or, D.: Bilateral mesh denoising. ACM Trans.
Graph. 22(3), 950–953 (2003)

8. Gadde, A., Narang, S.K., Ortega, A.: Bilateral filter: graph spectral interpretation
and extensions. In: 2013 IEEE International Conference on Image Processing, pp.
1222–1226. IEEE (2013)

9. Hassin, Y., Peleg, D.: Distributed probabilistic polling and applications to propor-
tionate agreement. Inf. Comput. 171(2), 248–268 (2001)

10. Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.-P.: Interactive multi-resolution
modeling on arbitrary meshes. In: SIGGRAPH, pp. 105–114. ACM (1998)

11. Lane, J.M., Riesenfeld, R.F.: A theoretical development for the computer gener-
ation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal.
Mach. Intell. 2(1), 35 (1980)

12. Li, Y., Chen, W., Wang, Y., Zhang, Z.-L.: Influence diffusion dynamics and influ-
ence maximization in social networks with friend and foe relationships. In: Pro-
ceedings of the Sixth ACM International Conference on Web Search and Data
Mining, pp. 657–666. ACM (2013)

13. Nakata, T., Imahayashi, H., Yamashita, M.: A probabilistic local majority polling
game on weighted directed graphs with an application to the distributed agreement
problem. Networks 35(4), 266–273 (2000)

14. Sabin, M.A., Barthe, L.: Artifacts in recursive subdivision surfaces. In: Curve and
Surface Fitting: Saint-Malo, pp. 353–362 (2002)

15. Taubin, G.: A signal processing approach to fair surface design. In: SIGGRAPH,
pp. 351–358 (1995)

16. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth
International Conference on Computer Vision, 1998, pp. 839–846. IEEE (1998)

17. Ullah, B., Trevelyan, J., Ivrissimtzis, I.: A three-dimensional implementation of the
boundary element and level set based structural optimisation. Eng. Anal. Boundary
Elem. 58, 176–194 (2015)

18. Vollmer, J., Mencl, R., Mueller, H.: Improved laplacian smoothing of noisy surface
meshes. Comput. Graph. Forum 18(3), 131–138 (1999)

19. Zhou, C., Zhang, P., Zang, W., Guo, L.: On the upper bounds of spread for greedy
algorithms in social network influence maximization. IEEE Trans. Knowl. Data
Eng. 27(10), 2770–2783 (2015)

Author Index

Albin, Eric 1

Baccou, Jean 162
Bang, Børre 145
Bracco, Cesare 23
Bressan, Andrea 42

Cripps, Robert J. 74
Cross, Ben 74

D’Angelo, Yves 1
Dahl, Heidi E.I. 270
Dalmo, Rune 145
Dantchev, Stefan 96
Dokken, Tor 270

Elber, Gershon 108
Engleitner, Nora 126

Giannelli, Carlotta 23

Harpham, Quillon 270
Hunt, Mat 74

Ivrissimtzis, Ioannis 96, 312

Jüttler, Bert 126, 251

Knikker, Ronnie 1
Kravetc, Tatiana 145
Kui, Zhiqing 162

Lávička, Miroslav 186
Liandrat, Jacques 162

Mokriš, Dominik 42
Mullineux, Glen 74

Paschereit, Christian Oliver 1

Rushmeier, Holly 312

Sabin, Malcolm 202, 218
Sauer, Tomas 233
Seiler, Agnes 251
Sestini, Alessandra 23
Skytt, Vibeke 270
Surynek, Pavel 296
Surynková, Petra 296

Vršek, Jan 186

Xin, Shihe 1

Yang, Ying 312

Zore, Urška 126

	Preface
	Organization
	Contents
	Computational Assessment of Curvatures and Principal Directions of Implicit Surfaces from 3D Scalar Data
	1 Curvatures and Principal Directions of Implicit Surfaces
	2 High Order Differentiation Schemes for Implicit Methods
	2.1 Diffuse Approximation (DA)
	2.2 Lagrange Differentiation (LD)

	3 Test of Implicit Methods
	3.1 Accuracy Assessment of Implicit Methods
	3.2 Accuracy Comparison Using a Marching Cube Extraction of Isocontours
	3.3 Accuracy Comparison Using a Regular Triangle Mesh
	3.4 Accuracy Assessment to Measure Principal Directions
	3.5 Speed Assessment of the Implicit Method

	4 Applications
	4.1 Laminar Flames
	4.2 Turbulent Flames

	5 Conclusion
	A Derivation of Formulas for Principal Directions of Implicit Surfaces
	References

	Coefficient--Based Spline Data Reduction by Hierarchical Spaces
	1 Introduction
	2 Coefficient--Based Data Reduction Operator
	3 Hierarchical Spline Spaces
	3.1 Hierarchical B--spline Bases
	3.2 THB--Spline Quasi--Interpolation

	4 THB--Spline Simplification
	4.1 The Hierarchical Coefficient--Based Operator
	4.2 The Adaptive Data Reduction Scheme

	5 Numerical Experiments
	6 Conclusions
	References

	A Versatile Strategy for the Implementation of Adaptive Splines
	1 Introduction
	2 Implementation Method
	2.1 Description
	2.2 Subspaces and Functions
	2.3 Multipatch Domains

	3 Complexity
	3.1 Space Complexity
	3.2 Time Complexity
	3.3 Local Basis and Compression
	3.4 Tensor Factorization

	4 Comparison with Bézier Extraction
	4.1 Mesh Description
	4.2 Expansion in Local Basis
	4.3 Local Basis

	5 Implemented Spaces
	5.1 Shared Code
	5.2 (Truncated) Hierarchical B-splines
	5.3 Truncated B-splines for Partially Nested Refinement
	5.4 Decoupled Hierarchical B-splines
	5.5 Hierarchical Locally Refined Splines
	5.6 Implementation Size

	6 Examples
	7 Conclusions
	References

	Machinability of Surfaces via Motion Analysis
	1 Introduction
	2 Background to the Machining Process and Tool Path Motion Analysis
	3 Mathematical Preliminaries
	3.1 Coordinate Systems and the Kinematic Chain
	3.2 The Jacobian Matrix
	3.3 Machine Singularities

	4 Case Study One: Machine-Dependent Sources of Error
	5 Case Study Two: Machine-Independent Sources of Error
	6 Discussion: Geometric Contribution to Machine Errors
	7 Conclusions
	References

	Simplicial Complex Entropy
	1 Introduction
	2 Simplicial Complex Entropy
	2.1 Example: Vietoris-Rips Simplicial Complex Entropy

	3 Properties of Simplicial Complex Entropy
	3.1 Encoding/Decoding Accuracy Rate

	4 Examples
	5 Conclusion
	References

	Precise Construction of Micro-structures and Porous Geometry via Functional Composition
	1 Introduction and Related Work
	2 Algorithm
	3 Results and Examples
	4 Discussion, Limitations, and Future Work
	5 Conclusions
	References

	Partially Nested Hierarchical Refinement of Bivariate Tensor-Product Splines with Highest Order Smoothness
	1 Introduction
	2 Preliminaries
	3 Basis Functions
	4 The Spline Space
	5 Truncation
	6 Completeness
	7 An Example: Least-Squares Fitting
	8 Conclusion
	References

	Regression Analysis Using a Blending Type Spline Construction
	1 Introduction
	1.1 The Problem
	1.2 Contribution
	1.3 Related Work

	2 Method Overview
	3 GERBS
	4 Statistical Method for Real-Time Approximation
	5 Adding Knots
	6 Results and Concluding Remarks
	References

	On the Coupling of Decimation Operator with Subdivision Schemes for Multi-scale Analysis
	1 Introduction
	2 Combining Multi-scale Transforms and Subdivision Schemes
	2.1 Multi-scale Analysis and Multi-scale Transform of Harten
	2.2 Subdivision and Decimation Schemes

	3 Construction of Decimation Operators
	3.1 Consistency Condition
	3.2 Generic Approach

	4 Analysis of the Prediction Error
	5 Examples and Applications
	5.1 Lagrange Subdivision
	5.2 Compactly Supported Wavelet Subdivision
	5.3 B-Spline Subdivision
	5.4 Penalized Lagrange Subdivision

	6 Conclusion
	References

	Translation Surfaces and Isotropic Transport Nets on Rational Minimal Surfaces
	1 Introduction
	2 Translation Surfaces
	2.1 Definition, Fundamental Properties and Singularities
	2.2 Relation of AB to AB
	2.3 Behaviour of Translation Surfaces at Infinity

	3 Transport Nets on Minimal Surfaces
	3.1 Definition and Weierstrass-Enneper Formula
	3.2 Minimal Surfaces as Translation Surfaces
	3.3 Rational Isotropic Curves and Rational Minimal Surfaces

	4 Conclusion
	References

	Towards Subdivision Surfaces C2 Everywhere
	1 Motivation
	2 Definitions
	3 Quadratic and Cubic Reproduction in Functional Subdivision over a Regular Triangulation of the Domain
	3.1 Stencil Sizes
	3.2 Construction of Cubic Quasi-interpolant
	3.3 The Basis Function
	3.4 Continuity Analysis
	3.5 Contractivity of Differences of the Basis Function
	3.6 Eigenvalue Analysis

	4 Triangulations with Extraordinary Vertices
	4.1 Conformal Characteristic Map
	4.2 Other Characteristic Maps
	4.3 Moving Least Squares

	5 Directions Still Needing Exploration
	5.1 Stronger Proof of Degree of Continuity
	5.2 End and Edge Conditions
	5.3 Extension to Higher Degrees
	5.4 Extension to Solids and Higher Dimensions

	References

	Adaptivity with B-spline Elements
	1 Motivation
	2 Prior Work
	2.1 Kraft
	2.2 Grinspun et al.
	2.3 Adaptive B-splines

	3 New Contributions
	3.1 Adaptivity When the Domain Is Univariate
	3.2 Adaptivity When the Domain Is Bivariate
	3.3 Adaptivity When the Domain Has Higher Dimension

	4 Implementation Issues
	4.1 Representation of the Discretisation of the Solution Field
	4.2 The Assembly Process
	4.3 Solution
	4.4 Error Estimation
	4.5 Result Extraction

	5 Discussion
	6 Conclusions
	References

	Reconstructing Sparse Exponential Polynomials from Samples: Difference Operators, Stirling Numbers and Hermite Interpolation
	1 Introduction
	2 Kernels of Difference Operators
	3 Stirling Numbers and Invariant Spaces of Polynomials
	4 Ideals and Hermite Interpolation
	5 Application to the Generalized Prony Problem
	6 Multiplication Tables and Multiple Zeros
	7 Conclusion
	References

	Reparameterization and Adaptive Quadrature for the Isogeometric Discontinuous Galerkin Method
	1 Introduction
	2 Preliminaries
	2.1 The Model Problem and the Multi-patch Discretization
	2.2 DG-IgA Discretization
	2.3 Integrals Along Interfaces

	3 Finding the Reparameterizations
	4 Numerical Integration
	4.1 Gauss Quadrature with Exact Splitting
	4.2 Gauss Quadrature with Uniform Splitting
	4.3 Adaptive Gauss Quadrature

	5 Numerical Results
	5.1 Reference Results
	5.2 Influence of the Quadrature Rule
	5.3 Influence of the Reparameterization
	5.4 Comparison of Exact and Adaptive Quadrature

	6 Conclusion
	References

	Deconfliction and Surface Generation from Bathymetry Data Using LR B-splines
	1 Introduction
	2 LR B-splines
	3 Surface Generation
	3.1 An Iterative Framework for Approximation with LR-spline Surfaces
	3.2 Least Squares Approximation
	3.3 Locally Refined Multilevel B-spline Approximation (LR-MBA)
	3.4 Tiling and Stitching
	3.5 Examples

	4 Deconfliction
	4.1 Outlier Detection
	4.2 Preparing for Deconfliction
	4.3 The Deconfliction Algorithm
	4.4 Deconfliction Examples

	5 Conclusion and Further Work
	References

	Application of Longest Common Subsequence Algorithms to Meshing of Planar Domains with Quadrilaterals
	1 Introduction and Motivation
	1.1 Contribution

	2 Background
	2.1 Existing Catalogues of Meshes

	3 Longest Common Subsequence Problem
	4 Application of LCS in Shape Matching
	4.1 Formalization of LCS Application in Mesh Matching
	4.2 Design of Weight Functions for Corner Specific Shape Matching
	4.3 Design of Lattices
	4.4 Properties of the Method

	5 Conclusions and Future Work
	References

	Order-Randomized Laplacian Mesh Smoothing
	1 Introduction
	2 Theoretical Properties of Lsync and Lexp
	2.1 Lexp Smoothing and Voter Processes

	3 Experimental Results
	4 Conclusions
	References

	Author Index

