ROBOD: a Real-time Online Beat and Offbeat Drummer

Sebastian Bick ', Florian Krebs 12, Amaury Durand 3 Sebastian Poll ', Raminta Balsyte !

! Department of Computational Perception, Johannes Kepler University Linz, Austria
2 Joanneum Research, Graz, Austria ® Télécom ParisTech, Paris, France

ABSTRACT

This paper describes the submission of team 24717 for the
IEEE signal processing cup 2017. The challenge is to de-
velop a real-time beat tracking system operating on an em-
bedded device. As an application, we present ROBOD, the
Real-time Online Beat and Offbeat Drummer[] ROBOD lis-
tens to a musician in a live performance, recognises beats,
downbeats and rhythmic patterns, and then accompanies the
musician on the drum set. Supplementary material including
videos presenting the system in action can be found online at
https://gitlab.cp. jku.at/ROBOD/supplementary/
wikis/homel

1. INTRODUCTION

The automatic inference of the metrical structure in music is
one of the fundamental problems in machine listening. The
task of beat tracking deals with finding the most salient level
of this metrical grid, the beat. The beat consists of a sequence
of regular time instants which usually invokes human reac-
tions like foot tapping. During the last years, many beat track-
ing algorithms have been proposed and by now are able to
achieve performance on par with human tapping [1]].

However, most of these systems require the audio signal
to be present as a whole in order to analyse it and infer the beat
positions. When processing a continuous audio stream, the
problem becomes more difficult to solve, since the decision
about a beat has to be made instantaneously given only the
past signal. Especially the beginning of musical pieces can be
challenging when no strong beat is present.

Most other challenges are of technical nature. The pro-
cessing time required and the time delay introduced by the
algorithm has to be kept as low as possible. In this paper we
present a real-time beat tracking algorithm which is based on
a state-of-the-art offline algorithm, adapted to the needs of on-
line processing of the audio signal and the limitations of the
embedded platform chosen, the Raspberry Pi.

I'We aimed at calling the system ROBD, but unfortunately it sometimes
prefers offbeats over beats.

2. SYSTEM DESCRIPTION

The presented system is based on the beat tracking approach
presented in [1]. We modified the system to be able to cope
with continuous live audio input. Therefore we had to adapt
both the structure of the recurrent neural network (RNN)
and the inference method of the dynamic Bayesian network
(DBN).

The detected beat positions are then further processed
to determine the rhythmical pattern played and the location
of the detected beats inside a bar. This part combines the
work presented in [2] and [3]. The beat positions and a
simple spectral flux-based input feature are used to obtain
beat-synchronous features which are the scored with Gaus-
sian mixture models (GMMs) and used as observations for
another DBN.

Finally, we use the inferred information to control an arti-
ficial drummer. The hardware of the drummer is able to con-
trol up to four different drums, but could be easily extended.
The structure of the whole system is depicted in Figure[I]and
described in the following sections.

The whole system is implemented in Python with the open
source madmom library [4]. To be able to process live audio
signals, we added real-time online processing capabilities to
madmom. All source code of the system will be made avail-
able at the project’s website at|https://gitlab.cp. jku.
at /ROBODL

2.1. Signal pre-processing

Both the beat tracking as well as the downbeat and pattern
tracking stage share a common signal pre-processing. We
use the short-time Fourier transform (STFT) to obtain a time-
frequency representation of the signal. The audio signal is
sampled at 48 kHz and split into overlapping frames of 2048
samples length located 480 samples apart. This results in a
frame rate of 100 frames per second. A frame is reported as
soon as enough new samples are present at the input audio
buffer.

The phase of the complex STFT is omitted and only the
magnitudes are used onwards. The magnitude spectrogram is
then filtered with a semitone filterbank and scaled logarithmi-
cally after adding a constant value of 1. Frequencies below

https://gitlab.cp.jku.at/ROBOD/supplementary/wikis/home
https://gitlab.cp.jku.at/ROBOD/supplementary/wikis/home
https://gitlab.cp.jku.at/ROBOD
https://gitlab.cp.jku.at/ROBOD

STFT

N\

v

Filterbank

Y

Positive
Differences

[
[}
[}
|
|
[}
[}
[}
[}
[}
|
|
[}
i Semitone
[}
I
I
|
[}
[}
[}
I
I
[}
|
[}
[}
|

every beat (“‘-1'“!7 ------- >
! 1
i | Beat/Feature o
!'| Synchronisation | £ :
1) ((\')S |
I <,
1 =
| vy
i o
= |
: GMMs =
| 3 |
1S v -
1 [}
! N 2
I g :
: DBN Sl
! 1
L)
(- r--"-""-"""T """ "~"~"~""=""=""-=--=- N
| E |
: S|m :
I %) = =lo i
! § g 3 2 ol
| = =
| @ S
! A L/ L/ (-E) !
[} S
[} =
: ROBOD o
| |
|)

]

Fig. 1. ROBOD system overview.

30 Hz and above 18 kHz are cut off. This reduces the dimen-
sionality of the features down to 81 frequency bands and puts
them in a range suitable for all consecutive processing steps.
These measurements are inspired the the human auditory sys-
tem. Since beats occur mostly at onset positions, we addition-
ally compute the positive first order differences to be able to
spot onsets more easily. These parameters have been found to
be useful especially in online scenarios, where audio signals
cannot be normalised (i.e. put into a pre-defined range) and
the level of the signal is not known beforehand [5].

As input to the neural network of the beat tracking stage,
we use both the logarithmically filtered and scaled spectro-
gram as well as their positive first order differences. As fea-
ture for the downbeat and pattern tracking stage we use the
spectral flux, which is computed by summing all positive first
order differences.

2.2. Beat tracking

The beat tracking part is used to predict the positions of the
beats. If only these are of interest, all remaining parts (the
lower half of Figure [T]described in Section [2.3]to[2.4) can be
omitted.

2.2.1. Recurrent neural network

The beat tracking stage is built around a recurrent neural net-
work (RNN) which is used to determine possible beat loca-
tions in the audio signal. Contrary to the original work, which
uses a bi-directional RNN to process the complete audio sig-
nal at once, we use a uni-directional network which operates
on a stream of input features on a frame-by-frame basis.

The network topology closely follows [[6] and [1]] and uses
three hidden layers with 25 long short-term memory (LSTM)
units each. For training of the networks, standard gradient de-
scent with error backpropagation and a learning rate of 1le=°
is used. We initialise the network weights with a uniform dis-
tribution with mean 0 and standard deviation of 0.1. We use
early stopping with a disjoint validation set to stop training if
no improvement over 20 epochs can be observed.

As training data we use the same data as in [7]]. To achieve
acceptable beat tracking performance we were forced to dis-
place the targets 15 ms into the future for training. Interest-
ingly, this does not lead to the same shift when predicting the
beats. We experienced a mean shift of only 5 ms instead.

2.2.2. Dynamic Bayesian network

The output of the RNN represents the beat probability at
the current time frame. This probability is used directly as
a observation likelihood for the dynamic Bayesian network
(DBN), which jointly infers tempo and phase of a beat se-
quence. The original DBN used in [[1] uses a rather large state
space. To reduce the computational demand, we replace the

state space by the one proposed in [8]]. This has the additional
advantage of increased performance.

Since we do not have the complete beat sequence at hand,
we cannot use Viterbi decoding to obtain the global best solu-
tion. Instead, we use the forward algorithm to determine the
most likely state given the RNN activations and the preceding
state probability.

2.3. Downbeat and pattern tracking

In order to accompany a musician on the drums, we need to
identify the length and position within a bar, as well as the
rhythmic pattern. To this end, we combine the systems pre-
sented in [2 3] and adapt them to our needs.

We selected six drum patterns that ROBOD should be able
to play. One with a bar length of two, two with a bar length
of three and four and one with a bar length of five beats.

2.3.1. Beat-synchronous features

To simplify the later inference with a DBN, the features are
first synchronised to the rate of the beats determined by the
beat tracking stage (cf. Section 2.2). This has the advan-
tage that the resulting beat-synchronous features are tempo-
invariant and the resolution of the downbeat tracking state
space can be reduced from frames to beat sub-divisions. In
this work, we discretise each beat into four sub-divisions.

The system presented in [2] uses a 2-dimensional feature.
However, we found that for our application the 1-dimensional
spectral flux is sufficient and thus use this.

2.3.2. Gaussian mixture models

For each pattern and each beat sub-division we fit a Gaussian
mixture model (GMM) with four mixture components to the
spectral flux extracted from the training set. This means that a
pattern with three beats is represented by 3 x 4 = 12 GMM:s.
With six patterns and in total 21 modelled beats, the model
contains 84 GMMs, whose parameters have to be learned
from data. In order to learn the parameters for the GMMs,
we recorded five 30-second long tracks for each pattern.

2.3.3. Dynamic Bayesian network

For inference of the downbeat positions, we use a combina-
tion of the approaches presented in [2] and [3]]. In contrast to
the beat DBN (Section [2.2.2)), the hidden states consist only
of beats here. For our model with 6 patterns and therefore 21
beats in total, the resulting DBN has 21 states. For a given
pattern, the states can only be visited in cyclical left to right
order (e.g. 1 — 2 — 3 — 1in a 3/4 bar). At the end of
a pattern it is possible to change a pattern with p = 0.001,
otherwise the pattern stays constant.

We use the forward path to compute the probability dis-
tribution over the 21 hidden states at every beat. The most

probable state (which determines the pattern and position of
the current beat inside the bar) is reported to the subsequent
drum control stage to coordinate the drum hits.

2.4. Drum control

The purpose of this stage is mostly to control the drum hits
and apply timing corrections needed because of the delay in-
troduced by the previous stages. These timing corrections de-
pend on the hardware used, e.g. a faster computer introduces
less delay. We also smooth the tempo by using the median
tempo of the last three tempi. In addition to tempo correc-
tions, the drum control module has to know which drum pat-
tern fits to the pattern played by the musician. In this work,
we defined these drum patterns by hand.

Because of the delay of the previous stages, this stage ex-
trapolates the next beat position from the smoothed tempo and
thus hits the drum proactively rather than waiting for the next
beat to be detected. We decided to always play a whole bar
rather than stop playing immediately even if no more beats
are detected.

3. HARDWARE / SOFTWARE IMPLEMENTATION

Since most parts of the system are already publicly available
as part of the madmom library [4] written in Python, we chose
to implement the system in the same language. Python is
an interpreted language and is thus not as fast as compiled
languages. However, madmom makes heavy use NumPy [9],
SciPy [10], and speed critical parts are written in Cython [11]].

Modern computers are able to finish all computations with
delays only recognisable by professional musicians — even if
the system is written in an interpreted language. But since the
system is implemented on an embedded device with rather
limited processor power, the individual stages contribute con-
siderable delays which are very easy to recognise.

In order to keep these delays at a minimum, we split the
two basic operating blocks processed at different sampling
rates (i.e. at 100 frames per second and at every beat, respec-
tively) into two concurrent processes. The first handles all
signal pre-processing and beat tracking related stuff, whereas
the second deals with the downbeat and pattern selection and
controls the drums.

The beat tracking stage introduces an inherent average de-
lay of ca. 6ms (the process has an average load of 60% at
100 fps). Together with the 5 ms of the RNN predictions (cf.
Section [2.2.T)), this adds up to a shift which needs to be cor-
rected in the drum control stage.

The downbeat and pattern tracking stage has an average
processing time of up to 200 ms, thus it was inevitable to split
it into a separate process to not block the processing of con-
secutive frames arriving every 10 ms. The scoring of the 84
GMMs contributes most and the DBN with its very few states

only to a minor degree to these 200 ms. Therefore, the com-
putational load of the downbeat tracker depends on the tempo
of a piece, as for faster songs the GMMs have to be evaluated
at a higher rate. Yet, the processing can be done in real-time
for tempi up to 300 bpm.

The drum control is handled with an Arduino controller
connected to the serial console of the Raspberry Pi. This
device translates a sequence of drum control messages into
servo movements.

4. CONCLUSION

In this paper we presented the inner workings of our submis-
sion for the IEEE signal processing cup 2017. It consists of a
real-time beat, downbeat and pattern tracking algorithm and
the corresponding hardware control unit to accompany musi-
cians on a drum set.

5. REFERENCES

[1] Sebastian Bock, Florian Krebs, and Gerhard Widmer,
“A multi-model approach to beat tracking considering
heterogeneous music styles,” in Proceedings of the 15th
International Society for Music Information Retrieval
Conference (ISMIR), Taipei, Taiwan, 10 2014, pp. 603—
608.

[2] Florian Krebs, Sebastian Bock, and Gerhard Widmer,
“Rhythmic pattern modeling for beat and downbeat
tracking in musical audio,” in Proceedings of the 14th
International Society for Music Information Retrieval
Conference (ISMIR), Curitiba, Brazil, 11 2013, pp. 227-
232.

[3] Florian Krebs, Sebastian Bock, Matthias Dorfer, and
Gerhard Widmer, “Downbeat Tracking using Beat-
Synchronous Features and Recurrent Neural Networks,”
In Proceedings of the 17th International Society for Mu-
sic Information Retrieval Conference (ISMIR), pp. 129—
135.

[4] Sebastian Bock, Filip Korzeniowski, Jan Schliiter, Flo-
rian Krebs, and Gerhard Widmer, “madmom: a new
Python Audio and Music Signal Processing Library,” in
Proceedings of the 24th ACM International Conference
on Multimedia, Amsterdam, The Netherlands, 10 2016,
pp. 1174-1178.

[5] Sebastian Bock, Florian Krebs, and Markus Schedl,
“Evaluating the online capabilities of onset detection
methods,” in Proceedings of the 13th International So-

ciety for Music Information Retrieval Conference (IS-
MIR), Porto, Portugal, 10 2012, pp. 49-54.

[6] Sebastian Bock and Markus Schedl, “Enhanced Beat
Tracking with Context-Aware Neural Networks,” in

(8]

[9]

[10]

(11]

Proceedings of the 14th International Conference on
Digital Audio Effects (DAFx), Paris, France, 9 2011, pp.
135-139.

Sebastian Bock, Florian Krebs, and Gerhard Widmer,
“Joint beat and downbeat tracking with recurrent neu-
ral networks,” In Proceedings of the 17th International

Society for Music Information Retrieval Conference (IS-
MIR), pp. 255-261.

Florian Krebs, Sebastian Bock, and Gerhard Widmer,
“An Efficient State Space Model for Joint Tempo and
Meter Tracking,” in Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR), Malaga, Spain, 10 2015, pp. 72-78.

Stéfan van der Walt, S. Chris Colbert, and Gaél Varo-
quaux, “The NumPy Array: A Structure for Efficient
Numerical Computation,” Computing in Science Engi-
neering, vol. 13, no. 2, pp. 22-30, 3 2011.

Eric Jones, Travis Oliphant, Pearu Peterson, et al.,
“SciPy: Open source scientific tools for Python,” 2001,
[Online; accessed 2016-03-11].

Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro
Dalcin, Dag Sverre Seljebotn, and Kurt Smith, “Cython:
The Best of Both Worlds,” Computing in Science Engi-
neering, vol. 13, no. 2, pp. 31-39, 3 2011.

	1 Introduction
	2 System description
	2.1 Signal pre-processing
	2.2 Beat tracking
	2.2.1 Recurrent neural network
	2.2.2 Dynamic Bayesian network

	2.3 Downbeat and pattern tracking
	2.3.1 Beat-synchronous features
	2.3.2 Gaussian mixture models
	2.3.3 Dynamic Bayesian network

	2.4 Drum control

	3 Hardware / software implementation
	4 Conclusion
	5 References

