SAMA

Signal, Audio \& Music Analysis

I-TOM

Today's agenda

- Surface overview of computational rhythm analysis
- Which subtopics would you like us to study further?
- Plan for 2019:
- What signal/audio/music analysis topics to study?
- Would you like to present anything?
- Spring schedule: Frequency? Dates?

Perspective taken

- Providing a mindmap of computational research in rhythm analysis in general
- Presenting general underlying concepts
- Particular focus for illustrative purpose
- Introducing techniques/methodologies
- Synthetic (and shallow) understanding of the state of the art
- Entry points for subsequent deeper studies

Rhythm analysis

- Rhythmical events: detection and characterisation (attack)
- Inferring rhythmical/metrical structure
- Periodicity
- Tracking metrical structure
- Tempo estimation vs. Beat tracking, downbeat tracking
- Audio/score alignment
- Performance analyse: tempo variation
- Pulse clarity, syncopation
- Rhythmic similarity

Event detection

- What is the sound/music characteristic of a rhythmic event?
- Dynamics
- Significant increase of amplitude/energy
- "Phenomenal accent" (Klapuri 2006)

Event detection Global dynamics

- Envelope: Outer shape of waveform, long-term dynamic evolution
- Peaks: burst of energy, percussive events

Event detection Spectral changes

Spectrum

- Spectral flux: difference between successive frames
- Peaks: spectral discontinuities

Event detection Spectral changes

- Spectral flux does not always work.
- Search on narrow frequency regions: Goto, 2001; Lartillot, 2013

Event detection

- Anything can be a rhythmical event:
- Change of dynamics
- Spectral changes
- Change of chords
- Phase based novelty (Müller)
- Both in audio recordings and scores, MIDI files.

Attack characterisation

- TIME project

Periodicity

Audio \longrightarrow Event detection curve

- Signal processing:
- Spectrum (Fourier Transform)
- Autocorrelation function
- Comb filters (Scheirer 1998)
- wavelets
- Neural network

Audio \longrightarrow Event detection curve

- Inter-Onset Intervals Clustering (Dixon 2007)

Tempo estimation

- Emphasis on the best perceived tempi

- Resonance curve (Toiviainen \& Snyder, 2003)

Pulse clarity

- Beat strength (Tzanetakis 2002): variability of the autocorrelation function across time
- Pulse clarity (Lartillot 2008): salience of periodicity, measured from autocorrelation function

Tempo estimation: "Octave error"

J.S. Bach, Brandenburg concert No. 2 in F Major, BWV I047, I st mvt

Tempo estimation: "Octave error"

Metrical structure

- Generative Theory of Tonal Music (GTTM, Lerdahl \& Jackendoff)

Metrical structure

- Preference rules (Temperley 1999)
- Event rule: prefer a structure that aligns beats with event onsets
- Length rule: prefer a structure that aligns strong beats with onsets of longer events
- Regularity rule: prefer beats at each level to be maximally evenly spaced

Metrical structure

- Tatum = temporal atom, or tick
- Tactus: preferred, primary, metrical level: tempo, beat, «foot tapping»
- Measure/Bar: indicates time signature

Metrical structure

Probabilistic state-space models

- Modelling dependencies between successive instants, using Hidden Markov Model (HMM).

Metrical structure

- Tracking all metrical levels (mirmetre, Lartillot)

Metrical levels:

Tempo estimation

- Metrical level score = \sum autocorrelation values over frames, plus a penalty if deviation of periodicity from the multiple grid
- In best hierarchy, select level using resonance curve.

mirtempo('Metre’), Lartillot

Global metrical activity

- Dynamic metrical centroid (mirmetroid)
- Centroid of periodicities of a selection of metrical levels (using their autocorrelation score as weights)
- Expressed in BPM

Metrical strength

- Summation of autocorrelation scores of selected metrical levels.

Meter identification

Autocorrelation function from event detection curves

- Machine learning (linear discriminant function, Toiviainen \& Eerola, 2006; SVM, Gouyon \& Dixon, 2004)

Meter description

0.4

Rhythm of my Heart (12/8)

Meter Class Profile, Robine et al., 2009

Beat tracking

- Finding the actual temporal position of beats
- Each agent locked on a particular tempo obtained from tempo estimation.

Downbeat tracking

Beat synchronous
features

Krebs 2016

Audio/score alignment

Performance analysis

Figure 1. Average tempo and dynamic graphs for 35 performances of mazurka in B minor, 30/2.

Syncopation

- Longuet-Higgins 1982
- Koops 2015: Corpus-Based Rhythmic Pattern Analysis of Ragtime Syncopation

Rhythmic similarity

- Panteli 2014: Modeling rhythm similarity for EDM
- Attack characterisation
- Periodicity: Characterisation of autocorrelation function
- Metrical distribution: Syncopation, symmetry, density,

Rhythm analysis

- Rhythmical events: detection and characterisation (attack)
- Inferring rhythmical/metrical structure
- Periodicity
- Tracking metrical structure
- Tempo estimation vs. Beat tracking, downbeat tracking
- Audio/score alignment
- Performance analyse: tempo variation
- Pulse clarity, syncopation, groove
- Rhythmic similarity
- Asymmetric meter
- Complexity in genres (romantic rubato, jazz, EDM, ...)
- Limitations of methods for particular types of music, importance of dance

SAMA topics

- Periodicity detection in signals (spectrum, autocorrelation, etc.)
- Attacks (TIME project)?
- Parncutt's paper suggested by Georgios
- Physical / cognitive, auditory models / corporeal / phenomenal/social entrainment
- motion/sound signal analysis (ex PQoM), motion template
- Spatialisation in rhythm/meter and more generally; sonic/movement environment
- Real-time, predictive models
- Neuroscience data jockeying

Don't forget to register to the SAMA mailing list

Cf. SAMA page in RITMO website

