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Today’s agenda
• Surface overview of computational rhythm analysis


• Which subtopics would you like us to study further?


• Plan for 2019:


• What signal/audio/music analysis topics to study?


• Would you like to present anything?


• Spring schedule: Frequency? Dates?



Perspective taken
• Providing a mindmap of computational research in rhythm 

analysis in general


• Presenting general underlying concepts


• Particular focus for illustrative purpose


• Introducing techniques/methodologies 


• Synthetic (and shallow) understanding of the state of the art


• Entry points for subsequent deeper studies



Rhythm analysis
• Rhythmical events: detection and characterisation (attack)


• Inferring rhythmical/metrical structure


• Periodicity


• Tracking metrical structure


• Tempo estimation vs. Beat tracking, downbeat tracking


• Audio/score alignment


• Performance analyse: tempo variation


• Pulse clarity, syncopation


• Rhythmic similarity



Event detection

• What is the sound/music characteristic of a rhythmic 
event?


• Dynamics


• Significant increase of amplitude/energy


• “Phenomenal accent” (Klapuri 2006)



Event detection 
Global dynamics

• Envelope: Outer shape of waveform, long-term dynamic 
evolution


• Peaks: burst of energy, percussive events
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Event detection 
Spectral changes

• Spectral flux: difference between successive frames


• Peaks: spectral discontinuities
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Event detection 
Spectral changes

• Spectral flux does 
not always work.


• Search on narrow 
frequency regions: 
Goto, 2001; Lartillot, 
2013
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Event detection

• Anything can be a rhythmical event:


• Change of dynamics


• Spectral changes


• Change of chords


• Phase based novelty (Müller)


• Both in audio recordings and scores, MIDI files.



Attack characterisation

• TIME project
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Periodicity

Events

Event detection curve

Periodicity detectionEvent detection

Audio

Score, MIDI



• Signal processing:


• Spectrum (Fourier Transform)


• Autocorrelation function


• Comb filters (Scheirer 1998)


• wavelets


• Neural network

Events

Event detection curve

Periodicity detectionEvent detection

Audio

Score, MIDI



• Inter-Onset Intervals Clustering (Dixon 2007)
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EVALUATION OF BEATROOT 6
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Figure 2. Clustering of inter-onset intervals: each interval between any pair of onsets is assigned
to a cluster (C1, C2, C3, C4 or C5)

Beat Tracking

The most complex part of BeatRoot is the beat tracking subsystem, which uses a
multiple agent architecture to find sequences of events which match the various tempo
hypotheses, and rates each sequence to determine the most likely sequence of beat times.
The music is processed sequentially from beginning to end, and at any particular point in
time, the agents represent the various hypotheses about the rate and the timing of the beats
up to that time, and make predictions of the next beats based on their current state.

Each agent is initialised with a tempo (rate) hypothesis from the tempo induction
subsystem and an onset time, taken from the first few onsets, which defines the agent’s
first beat time (phase). The agent then predicts further beats spaced according to the
given tempo and first beat, using tolerance windows to allow for deviations from perfectly
metrical time (see Figure 3). Onsets which correspond with the inner window of predicted
beat times are taken as actual beat times, and are stored by the agent and used to update
its rate and phase. Onsets falling in the outer window are taken to be possible beat times,
but the possibility that the onset is not on the beat is also considered.

Figure 4 illustrates the operation of beat tracking agents. A time line with 6 onsets (A
to F) is shown, and below the time line are horizontal lines marked with solid and hollow
circles, representing the behaviour of each agent. The solid circles represent predicted
beat times which correspond to onsets, and the hollow circles represent predicted beat
times which do not correspond to onsets. The circles of Agent1 are more closely spaced,
representing a faster tempo than that of the other agents.

Agent1 is initialised with onset A as its first beat. It then predicts a beat according
to its initial tempo hypothesis from the tempo induction stage, and onset B is within the
inner window of this prediction, so it is taken to be on the beat. Agent1’s next prediction

Preprint for Journal of New Music Research, 36, 2007/8



Tempo estimation
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• Emphasis on the best 
perceived tempi


• Resonance curve 
(Toiviainen & Snyder, 
2003)



Pulse clarity

• Beat strength (Tzanetakis 2002): variability of the 
autocorrelation function across time


• Pulse clarity (Lartillot 2008): salience of periodicity, 
measured from autocorrelation function
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Tempo estimation: 
“Octave error”
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J.S. Bach, Brandenburg concert No.2 in F Major, BWV 1047, 1st mvt

Switch from one metrical 
level to another!



Tempo estimation: 
“Octave error”



Metrical structure

12 Computer�Music�Journal

forms�a�dotted-quarter�level�of�beats;�and�every
second�beat�at�that�level�forms�a�dotted-half�(or
“one-measure”)�level.�In�addition,�there�may�also
be�one�or�two�levels�above�the�measure,�so-called
hypermetrical�levels.

Even�assuming�that�a�metrical�structure�must
involve�several�levels�of�equally�spaced�beats,�one
must�still�determine�the�duple�or�triple�relation-
ships�between�levels,�the�tempo�(the�time�inter-
vals�between�beats),�and�the�placing�of�the�beats
relative�to�the�music.�For�this�purpose,�Lerdahl
and�Jackendoff�posit�a�set�of�metrical�preference
rules,�stating�the�criteria�whereby�listeners�infer
the�correct�structure.�Consider�Figure�1,�the�tradi-
tional�American�melody�“Oh�Susannah.”�The�cor-
rect�metrical�structure�is�shown�above�the�staff.
(The�metrical�and�harmonic�analysis�shown�here
is�the�one�produced�by�our�program,�with�one�dif-
ference�that�we�will�explain.)�The�most�important
rule�is�that�beats�(especially�higher-level,�or

“strong”�beats)�should�whenever�possible�coincide
with�the�onsets�of�events.�Second,�there�is�a�prefer-
ence�for�strong�beats�to�coincide�with�longer
events.�In�“Oh�Susannah,”�for�example,�this�favors
placing�quarter-note�beats�on�even-numbered
eighth-note�beats�(the�second,�fourth,�and�so�on),
since�this�aligns�them�with�the�dotted�eighth
notes.�Similarly,�this�rule�favors�placing�half-note
beats�on�odd-numbered�quarter�notes,�since�this
aligns�the�long�note�in�measure�4�with�a�half-note
beat.�We�state�these�rules�as�follows�(our�wording
differs�slightly�from�that�in�GTTM):

Event�rule—prefer�a�structure�that�aligns
beats�with�event�onsets
Length�rule—prefer�a�structure�that�aligns
strong�beats�with�onsets�of�longer�events

Note�that�the�preferred�metrical�structure�is�the
one�that�is�preferred�on�balance;�it�may�not�be�pre-
ferred�at�every�moment�of�the�piece.�For�example,

Figure�1.�“Oh�Susannah,”

showing�the�correct�metri-

cal�and�harmonic�struc-

ture.�Each�row�of�dots

indicates�a�level�of�the

metrical�structure;�each

dot�indicates�a�beat�on

the�onset�of�the�note�be-

low.�Each�chord�symbol

represents�a�chord�span,

beginning�on�the�note�be-

low�and�extending�to�the

beginning�of�the�following

chord�span.
• Generative Theory of Tonal Music (GTTM, Lerdahl & 

Jackendoff)



Metrical structure

• Preference rules (Temperley 1999)


• Event rule: prefer a structure that aligns beats with 
event onsets


• Length rule: prefer a structure that aligns strong beats 
with onsets of longer events 


• Regularity rule: prefer beats at each level to be 
maximally evenly spaced



Metrical structure
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Analysis of the Meter of Acoustic Musical Signals
Anssi P. Klapuri, Antti J. Eronen, and Jaakko T. Astola

Abstract—A method is decribed which analyzes the basic
pattern of beats in a piece of music, the musical meter. The
analysis is performed jointly at three different time scales: at
the temporally atomic tatum pulse level, at the tactus pulse
level which corresponds to the tempo of a piece, and at the
musical measure level. Acoustic signals from arbitrary musical
genres are considered. For the initial time-frequency analysis,
a new technique is proposed which measures the degree of
musical accent as a function of time at four different frequency
ranges. This is followed by a bank of comb filter resonators
which extracts features for estimating the periods and phases of
the three pulses. The features are processed by a probabilistic
model which represents primitive musical knowledge and uses the
low-level observations to perform joint estimation of the tatum,
tactus, and measure pulses. The model takes into account the
temporal dependencies between successive estimates and enables
both causal and noncausal analysis. The method is validated
using a manually annotated database of 474 music signals from
various genres. The method works robustly for different types of
music and improves over two state-of-the-art reference methods
in simulations.
Index Terms—Acoustic signal analysis, music, musical meter

analysis, music transcription.
EDICS: 2-MUSI

I. INTRODUCTION

Meter analysis, here also called rhythmic parsing, is an
essential part of understanding music signals and an innate
cognitive ability of humans even without musical education.
Perceiving the meter can be characterized as a process of
detecting moments of musical stress (accents) in an acoustic
signal and filtering them so that underlying periodicities are
discovered [1], [2]. For example, tapping a foot to music
indicates that the listener has abstracted metrical information
about music and is able to predict when the next beat will
occur.
Musical meter is a hierarchical structure, consisting of pulse

sensations at different levels (time scales). Here, three metrical
levels are considered. The most prominent level is the tactus,
often referred to as the foot tapping rate or the beat. Following
the terminology of [1], we use the word beat to refer to the
individual elements that make up a pulse. A musical meter
can be illustrated as in Fig. 1, where the dots denote beats and
each sequence of dots corresponds to a particular pulse level.
By the period of a pulse we mean the time duration between
successive beats and by phase the time when a beat occurs
with respect to the beginning of the piece. The tatum pulse
has its name stemming from “temporal atom” [3]. The period
of this pulse corresponds to the shortest durational values
in music that are still more than incidentally encountered.
The other durational values, with few exceptions, are integer

A. P. Klapuri is with Institute of Signal Processing, Tampere University of
Technology, FIN-33720 Tampere, Finland (e-mail: Anssi.Klapuri@tut.fi).
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Fig. 1. A music signal with three metrical levels illustrated.

multiples of the tatum period and the onsets of musical events
occur approximately at a tatum beat. The musical measure
pulse is typically related to the harmonic change rate or to the
length of a rhythmic pattern. Although sometimes ambiguous,
these three metrical levels are relatively well-defined and span
the metrical hierarchy at the aurally most important levels.
The tempo of a piece is defined as the rate of the tactus pulse.
In order that a meter would make sense musically, the pulse
periods must be slowly varying and, moreover, each beat at
the larger levels must coincide with a beat at all the smaller
levels.
The concept phenomenal accent is important for meter

analysis. Phenomenal accents are events that give emphasis
to a moment in music. Among these are the beginnings of all
discrete sound events, especially the onsets of long pitched
events, sudden changes in loudness or timbre, and harmonic
changes. Lerdahl and Jackendoff define the role of phenomenal
accents in meter perception compactly by saying that “the
moments of musical stress in the raw signal serve as cues from
which the listener attempts to extrapolate a regular pattern” [1,
p.17].
Automatic rhythmic parsing has several applications. A met-

rical structure facilitates cut-and-paste operations and editing
of music signals. It enables synchronization with light effects,
video, or electronic instruments, such as a drum machine. In
a disc jockey application, metrical information can be used
to mark the boundaries of a rhythmic loop or to synchronize
two audio tracks. Provided that a time-stretching algorithm is
available, rhythmic modifications can be made to audio signals
[4]. Rhythmic parsing for symbolic (MIDI1) data is required
for time quantization, an indispensable subtask of score type-
setting from keyboard input [5]. The particular motivation for
the present work is to utilize metrical information in further
signal analysis and in music transcription [6], [7], [8].

A. Previous work
The work on automatic meter analysis originated from

algorithmic models that attempted to explain how a human

1Musical Instrument Digital Interface. A standard interface for exchanging
performance data and parameters between electronic musical devices.

Klapuri 2006

• Tatum = temporal atom, or tick


• Tactus: preferred, primary, metrical level: tempo, beat, 
«foot tapping»


• Measure/Bar: indicates time signature



Metrical structure 
Probabilistic state-space models

Klapuri 2006
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method finds periods first and then the phases (see Fig. 2).
Although estimating the phases is not trivial, the search
problem is largely completed when the period-lengths have
been found.
Musical meter cannot be assumed to remain static over the

whole duration of a piece. It has to be estimated causally at
successive time instants and there must be some tying between
the successive estimates. Also, the dependencies between
different metrical pulse levels have to be taken into account.
These require prior musical knowledge which is encoded in
the probabilistic model to be presented.
For period estimation, a hidden Markov model that de-

scribes the simultaneous evolution of four processes is con-
structed. The observable variable is the vector of instantaneous
energies of the resonators, s(τ, n), denoted sn in the following.
The unobservable processes and the corresponding hidden
variables are the tatum period τA

n , tactus period τB
n , and

measure period τC
n . As a mnemonic for this notation, recall

that the tatum is the temporally atomic (A) pulse level, the
tactus pulse is often called “beat” (B), and the musical measure
pulse is related to the harmonic (i.e., chord) change rate (C).
For convenience, we use qn = [j, k, l] to denote a “meter
state”, equivalent to τA

n = j, τB
n = k, and τC

n = l. The
hidden state process is a time-homogenous first-order Markov
model which has an initial state distribution P (q1) and tran-
sition probabilities P (qn|qn−1). The observable variable is
conditioned only on the current state, i.e., we have the state-
conditional observation densities p(sn|qn).
The joint probability density of a state sequence Q =

(q1q2 . . . qN ) and observation sequence O = (s1s1 . . . sN )
can be written as

p(Q,O) = P (q1)p(s1|q1)
N∏

n=2

P (qn|qn−1)p(sn|qn), (12)

where the term P (qn|qn−1) can be decomposed as

P (qn|qn−1) = P (τB
n |qn−1)P (τA

n |τB
n , qn−1)P (τC

n |τB
n , τA

n , qn−1).
(13)

It is musically meaningful to assume that

P (τC
n |τB

n , τA
n , qn−1) = P (τC

n |τB
n , qn−1), (14)

i.e., given the tactus period, the tatum period does not give
additional information regarding the measure period. We fur-
ther assume that given τB

n−1, the other two hidden variables at
time n−1 give no additional information regarding τB

n . For the
tatum and measure periods τ i

n, i ∈ {A,C}, we assume that
given τ i

n−1 and τB
n , the other two hidden variables at time

n − 1 give no additional information regarding τ i
n. It follows

that (13) can be written as

P (qn|qn−1) = P (τB
n |τB

n−1)P (τA
n |τB

n , τA
n−1)P (τC

n |τB
n , τC

n−1).
(15)

Using the same assumptions, P (q1) is decomposed and sim-
plified as

P (q1) = P (τB
1 )P (τA

1 |τB
1 )P (τC

1 |τB
1 ). (16)

The described modeling assumptions lead to a structure
which is represented as a directed acyclic graph in Figure 5.
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Fig. 5. Hidden markov model for the temporal evolution of the tatum, beat,
and measure pulse periods.

The arrows in the graph represent conditional dependencies
between the variables. The circles denote hidden variables and
the observed variable is marked with boxes. The tactus pulse
has a central role in meter perception and it is not by chance
that the other two variables are drawn to depend on it [1,
pp.73–74]. The assumption in (14) is not valid if the variables
are permuted.
1) Estimation of the state-conditional observation likeli-

hoods: The remaining problem is to find reasonable estimates
for the model parameters, i.e., for the probabilities that appear
in (12)–(16). In the following, we ignore the time indices
for a while for simplicity. The state-conditional observation
likelihoods p(s|q) are estimated from a database of musical
recordings where the musical meter has been hand-labeled (see
Sec. III). However, the data is very limited in size compared to
the number of parameters to be estimated. Estimation of the
state densities for each different q = [j, k, l] is impossible
since each of the three discrete hidden variables can take
on several hundreds of different values. By making a series
of assumptions we arrive at the following approximation for
p(s|q):

p(s|q = [j, k, l]) ∝ s(k)s(l)S(1/j). (17)

where s(τ) and S(f) are as defined in (9)–(10), omitting the
time indices. Appendix I presents the derivation of (17) and
the underlying assumptions in detail. An intuitive rationale of
(17) is that a truly existing tactus or measure pulse appears as
a peak in s(τ) at the lag that corresponds to the pulse period.
Analogously, the tatum period appears as a peak in S(f) at the
frequency that corresponds to the inverse of the period. The
product of these three values correlates approximately linearly
with the likelihood of the observation given the meter.
2) Estimation of the transition and initial probabilities: In

(15), the term P (τA
n |τB

n , τA
n−1) can be decomposed as

P (τA
n |τB

n , τA
n−1) = P (τA

n |τA
n−1)

P (τA
n , τB

n |τA
n−1)

P (τA
n |τA

n−1)P (τB
n |τA

n−1)
,

(18)

A: tatum

B: tactus

C: measure

Observed 
autocorrelation

Hidden 
(estimated)


metrical structure

• Modelling dependencies between successive instants, 
using Hidden Markov Model (HMM).



Metrical structure

Metrical levels:
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• Tracking all metrical levels (mirmetre, Lartillot)



Tempo estimation
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• Metrical level score =                     
∑ autocorrelation values over 
frames, plus a penalty if deviation 
of periodicity from the multiple grid


• Construct all possible metrical 
hierarchies (in which each level N 
is multiple of level N-1).


• Hierarchy score = ∑ level scores


• In best hierarchy, select level using 
resonance curve.

mirtempo(‘Metre’), Lartillot



Global metrical activity

mirtempo

mirmetroid

• Dynamic metrical 
centroid (mirmetroid)


• Centroid of 
periodicities of a 
selection of metrical 
levels (using their 
autocorrelation score 
as weights)


• Expressed in BPM



Metrical strength

• Summation of autocorrelation scores of selected metrical 
levels.



Meter identification

• Machine learning (linear discriminant 
function, Toiviainen & Eerola, 2006; 
SVM, Gouyon & Dixon, 2004)

2/4 3/4 4/4

7/8

Autocorrelation function from event detection curves



Meter description

10th International Society for Music Information Retrieval Conference (ISMIR 2009)
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Table 1. Time signatures. Most common signatures are duple, triple and quadruple time in Western tonal music. Notations
9/2, 9/4 and 9/8 may be used either for a simple measure of 9 pulses, or for a compound measure of 3 pulses.

lated to the beat subdivisions of the MCP. In our imple-
mentation, the width of the frequency bands for cumulat-
ing the energy in the ODFT and OAF has been set to 5%.
In Figure 1, the tempo has been annotated to 1.5Hz and is
showed on the OAF with a solid line. When considering
periods lower than 1

1.5 = 0.66s, energy is located around
period of 0.33s, corresponding to the beat subdivision 1/2.
The contribution to the beat subdivision of the correspond-
ing MCP is thus significant and clearly indicates a simple
meter.
The ODFT is considered in a similar way. Only the

seven sub-harmonics (2, 3, 4, 5, 7, 9, and 11) of the tempo
frequency are considered. Energywithin a thin band around
these sub-harmonics determines the amplitude related to
the beat multiples. In Figure 1, only the energy around fre-
quencies 1.5

2 ,
1.5
3 , . . . ,

1.5
11 , contributes to the first part of

the MCP. In this example, the sub-harmonic 1.5
3 is signif-

icantly predominant and results in a substantial amplitude
in the MCP. This high amplitude thus indicates that the
song is characterized by 3 beats per measure.
Other examples ofMCP computation for real audio songs

are shown in Figure 2. In each example, the MCP looks
very different, according to their metric properties. In par-
ticular, the highest value in the first part of the MCP gen-
erally indicates the number of beats per measure, whereas
the highest value of the second part is related to the beat
subdivision.

3.3 Distance between MCP

The MCP is proposed for music retrieval purposes. There-
fore, a method for computing a matching score between
two MCP has to be defined. Several distances are possible,
however this is a difficult selection due to the difference in
the analysis processes of the two parts of the MCP. We thus
propose to consider a global score s as the combination of
the two scores s1 and s2 obtained with the two parts of the
MCP:

s = �s1 + (1� �)s2 (1)

where � is a fixed weighting value in the interval [0; 1], s1

the comparison score related to the meter multiple part of
the MCP, and s2 the comparison score related to the me-
ter subdivision. These two scores s1 and s2 are calculated
according to correlation:

si(MCP1,MCP2) =
c(MCP1,MCP2)�

c(MCP1,MCP1)
�

c(MCP2,MCP2)

c(MCP1,MCP2) =
N�

i=1

MCP1(i)MCP2(i) (2)

where MCP1 and MCP2 are MCP vectors of size N .
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Figure 2. Examples of MCP computed from real audio
songs with different time signatures, respectively 9/8, 4/4,
12/8 and 5/4.

4. EXPERIMENTS

In this section, experiments are presented that demonstrate
the ability of MCP to discriminate songs that have different
metric characteristics. The first experiments deal with clus-
tering abilities, and other second concerns song retrieval.

4.1 Databases

Two databases are considered in this paper. The first one is
composed of short artificial audio musical pieces (60 sec-
onds long at 16 kHz) that have been synthesized according
to different metric properties. The tempo was set to 1 Hz
and classes have been constituted considering the time sig-
nature. Classes with 2, 3, 4, 5, 7, 9 and 11 beats per mea-
sure have been built, in simple time and in compound time.
For each class, 2 different distributions of the strong beats
in the measure have been chosen, to synthesize 200 pieces.
A process has been achieved to randomly add 16th notes
in the pieces. The database contains 2800 different files.
The second database is a collection of real pop audio

songs indexed using the time signature. The noise col-
lection contains 476 simple-meter songs with 2 or 4 beats
per measure (sampling rate 44.1 kHz).We constitute an-
other collection of 54 songs with different metric proper-
ties. Some of them are in compound time, while others are
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group them. According to Gouyon [14], this is close to
the usual description of meter that can be found in a score,
given by the time signature and the bar lines.
The time signature consists of 2 integers arranged ver-

tically, e.g. 4
4 or 6

8. The upper number of the signature in-
dicates the number of units in a bar, with the value of unit
given by the lower number of the signature (e.g. 4 for a
quarter note). If the upper number is divisible by 3 and the
lower by 2, the time is compound and the number of beats
per measure is given by the upper number divided by 3. In
this case, the unit of time, i.e. the beat, is divided triply
at the smaller level. Otherwise, in simple time, the upper
number indicates the number of beats per measure and the
beat is divided duply. Table 1 presents the time signatures
mainly used in Western tonal music.

3. METER CLASS PROFILE

We introduce in this section a new descriptor to represent
the metrical structure of the music called Meter Class Pro-
file (MCP). We describe the method used for estimating
the MCP, and provide examples for illustration of its use.

3.1 Properties

MCP is a real-valued vector providing information of the
strength of the different metrical levels within the music. It
is centered on the tactus level: the beat multiples, including
the measure level, are represented on the left, and the beat
subdivisions, including the tatum level, on the right. The
choice was made to represent the relative strength of ac-
cents at multiple rates of the tempo: 2, 3, 4, 5, 7, 9, and 11,
and also at subdivisions of the tempo: 1/2, 1/3, 1/4, 1/6,
1/8, 1/12. MCP is thus a vector of thirteen dimensions.
A MCP corresponding to a 4/4 time signature would

contain high amplitudes for the bin corresponding to 4 times
the tempo, i.e. beat multiple 4 representing the measure
periodicity, for beat multiple 2 (in 4/4, there are accents
every two beats), for beat subdivision 1/2 (because 4/4
is in simple time), and perhaps beat subdivisions 1/4 and
1/8 (if 16th or 32th notes occur). A few examples are pre-
sented in Figure 2.
As the MCP is independent from tempo, its represen-

tation does not change with tempo variations. It may be
considered as a mid-level descriptor, since the metric in-
formation is summarized to a 13-dimension vector with-
out identifying a particular time signature. Additionally,
the amplitude ratios from the different metrical levels pro-
vide a meaningful way to handle the meter of a musical
piece. The MCP could, for example, also indicate a degree
of swing, by considering the balance between duple and
triple beat subdivisions.

3.2 Estimation

The method proposed here for computing MCP relies on
existing analysis methods recently described for estimat-
ing tempo [15]. It has been implemented using the MIR
toolbox [16]. The main steps are illustrated on Figure 1,
with the example of the country songWanted (A. Jackson),
annotated with a 3/4 time signature.
In this paper, we consider only one global MCP per

audio musical signal. We thus choose to analyze a large
frame of music (length 60 seconds). The meter is assumed

to be stationary during this frame. An onset-energy func-
tion is first extracted from the audio signal by taking into
account spectral energy flux [17]. Then, dominant period-
icities (or frequencies) are estimated.
Two types of observations, respectively termed Onset

Discrete Fourier Transform (ODFT) or Onset Autocorre-
lation Function (OAF), are considered. Their complemen-
tary properties are discussed for tempo estimation in [2].
In the experiment presented in this paper, the OAF and
ODFT are both computed and normalized and the tempo
frequency is known.
The analysis method of MCP locates both periodicities

corresponding to beat multiples (related to measure) and
beat subdivisions. Estimation of multiples and subdivi-
sions is carried out using the complementary properties of
the two observations. On one hand, the ODFT of a periodic
signal is a set of harmonically related frequencies, and it is
difficult to determine predominant frequencies above the
tempo frequency. Therefore, we only estimate frequencies
lower than the tempo frequency. These frequencies corre-
spond to beat multiples (first part of MCP), in particular
that of the measure.
On the other hand, the OAF of a periodic signal is a

set of periodically related lags. It is thus difficult to mea-
sure predominant periodicities higher than the tempo pe-
riod. The OAF is only considered for estimating periods
lower than the tempo periods. These periods are related to
beat subdivisions (second part of the MCP).
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Meter Class Profile

Figure 1. Different stages of the analysis method of Meter
Class Profile for the song Wanted of A. Jackson (time sig-
nature 3/4): from top to bottom, the autocorrelation func-
tion, the spectrum of the onset function and the MCP esti-
mated, showing peaks at beat multiple 3 and beat subdivi-
sion 1/2.

With prior knowledge of the tempo, the first part of the
MCP is estimated from the ODFT and the second part is
estimated from the OAF. Consequently, period bands cor-
responding to harmonics of the frequency tempo are ana-
lyzed when considering the OAF. Only the six harmonics
(2, 3, 4, 6, 8, and 12) are taken into account. The amount
of energy of OAF within a thin frequency band around the
related periodicities directly determines the amplitude re-
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Beat tracking
• Finding the actual temporal position of beats


• Each agent locked on a particular tempo obtained from 
tempo estimation.

The next stage is to combine the information about
the clusters, by recognizing approximate integer relation-
ships between clusters. For example, in Figure 2, cluster
C2 is twice the duration of C1, and C4 is twice the
duration of C2. This information, along with the number
of IOIs in each cluster, is used to weight the clusters, and
a ranked list of tempo hypotheses is produced and passed
to the beat tracking subsystem. See Dixon (2001a) for
more details.

2.3 Beat tracking

The most complex part of BeatRoot is the beat tracking
subsystem, which uses a multiple agent architecture to
find sequences of events which match the various tempo
hypotheses, and rates each sequence to determine the
most likely sequence of beat times. The music is
processed sequentially from beginning to end, and at
any particular point in time, the agents represent the
various hypotheses about the rate and the timing of the
beats up to that time, and make predictions of the next
beats based on their current state.

Each agent is initialized with a tempo (rate) hypothesis
from the tempo induction subsystem and an onset time,
taken from the first few onsets, which defines the agent’s
first beat time (phase). The agent then predicts further
beats spaced according to the given tempo and first beat,
using tolerance windows to allow for deviations from
perfectly metrical time (see Figure 3). Onsets which
correspond with the inner window of predicted beat
times are taken as actual beat times, and are stored by

the agent and used to update its rate and phase. Onsets
falling in the outer window are taken to be possible beat
times, but the possibility that the onset is not on the beat
is also considered.

Figure 4 illustrates the operation of beat tracking
agents. A time line with 6 onsets (A to F) is shown, and
below the time line are horizontal lines marked with solid
and hollow circles, representing the behaviour of each
agent. The solid circles represent predicted beat times
which correspond to onsets, and the hollow circles
represent predicted beat times which do not correspond
to onsets. The circles of Agent1 are more closely spaced,
representing a faster tempo than that of the other agents.

Agent1 is initialized with onset A as its first beat. It
then predicts a beat according to its initial tempo
hypothesis from the tempo induction stage, and onset
B is within the inner window of this prediction, so it is
taken to be on the beat. Agent1’s next prediction lies
between onsets, so a further prediction, spaced two beats
from the last matching onset, is made. This matches
onset C, so the agent marks C as a beat time and
interpolates the missing beat between B and C. Then the
agent continues, matching further predictions to onsets E
and F, and interpolating missing beats as necessary.

Agent2 illustrates the case when an onset matches only
the outer prediction window, in this case at onset E.
Because there are two possibilities, a new agent
(Agent2a) is created to cater for the possibility that E
is not a beat, while Agent2 assumes that E corresponds to
a beat.

A special case is shown by Agent2 and Agent3 at onset
E, when it is found that two agents agree on the time and
rate of the beat. Rather than allowing the agents to
duplicate each others’ work for the remainder of the
piece, one of the agents is terminated. The choice of
agent to terminate is based on the evaluation function
described in the following paragraph. In this case,
Agent3 is terminated, as indicated by the arrow. A
further special case (not illustrated) is that an agent can
be terminated if it finds no events corresponding to its
beat predictions (it has lost track of the beat).

Fig. 2. Clustering of inter-onset intervals: each interval between
any pair of onsets is assigned to a cluster (C1, C2, C3, C4
or C5).

Fig. 3. Tolerance windows of a beat tracking agent predicting
beats around C and D after choosing beats at onsets A and B.

Fig. 4. Beat tracking by multiple agents (see text for
explanation).

42 Simon Dixon
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Performance analysis

COMPARATIVE ANALYSIS OF MULTIPLE MUSICAL PERFORMANCES

Craig Stuart Sapp
Royal Holloway, University of London

Centre for the History and Analysis of Recorded Music (CHARM)

ABSTRACT
A technique for comparing numerous performances of

an identical selection of music is described. The basic
methodology is to split a one-dimensional sequence into
all possible sequential sub-sequences, perform some op-
eration on these sequences, and then display a summary
of the results as a two-dimensional plot; the horizontal
axis being time and the vertical axis being sub-sequence
length (longer lengths on top by convention). Most types
of timewise data extracted from performances can be com-
pared with this technique, although the current focus is on
beat-level information for tempo and dynamics as well as
commixtures of the two. The primary operation used on
each sub-sequence is correlation between a reference per-
formance and analogous segments of other performances,
then selecting the best correlated performances for the sum-
mary display. The result is a useful navigational aid for
coping with large numbers of performances of the same
piece of music and for searching for possible influence
between performances.

1 INTRODUCTION

In the Mazurka Project 1 conducted at CHARM during
the past two years along with Nicholas Cook and An-
drew Earis, we have collected over 2,500 recorded perfor-
mances for 49 of Chopin’s mazurkas—on average over 50
performances for each mazurka. Keeping track of differ-
ences and similarities between numerous performances is
difficult when comparing recordings heard weeks, months
or even years apart. And remembering the distinguish-
ing features of 50 individual performances of a compo-
sition would be taxing on anyone’s memory. Often the
surface acoustics of a performance (such as reverb, micro-
phone placement, piano model, recording/playback noise)
are more noticeable and memorable than the actual perfor-
mance, so identifying related performances solely by ear
can sometimes be difficult.
A written score contains only the most basic of expres-

sive instructions. The composer relies on the performer
to interpret the work according to implicit rules as well as
the written instructions. The unwritten rules of a composi-
tion are transmitted aurally between performers as well as
passed down from teacher to student. These performance
conventions can apply to specific pieces, genres, com-
posers or entire time periods. Performances may involve
combining interpretations from several sources, such as

1 http://mazurka.org.uk

c� 2007 Austrian Computer Society (OCG).

teachers or other admired pianists; or conversely, it could
be a reaction against convention.
To help in the exploration of influences between perfor-

mances, basic descriptions of tempo and dynamics are ex-
tracted from each performance of a work which can then
be correlated against each other. A single global similarity
measurement for this data could miss interesting smaller-
scale structures. Therefore, the following plots were de-
veloped which display the closest performance to the ref-
erence at all possible timescales.
In the most interesting variation of the plot, each per-

formance is assigned a color, and when a particular perfor-
mance is most similar to the reference, its color is filled in
the corresponding point in the plot. As a result of looking
at all time spans, patterns of color emerge which can give
clues to the relative importance of other performances to
the reference performance of the plot.

2 RAW DATA

Two types of data are used for comparative analysis: beat
duration and loudness. There are many other facets of
performance which are being ignored, such as individual
note timings, voicing, pedaling, and articulation. How-
ever, tempo and overall loudness level at the beats are eas-
ier to extract from audio data than many other expressive
features and form a reasonable expressive baseline.
Both tempo and loudness data are extracted beat by

beat throughout a performance, and the data can be plot-
ted against the sequence of beats as illustrated in Figure 1.
While the data is extracted by beat from the performances
for this paper, we are also working on extracting individ-
ual note times and dynamics (including off-beats as well
as hand synchrony). Such fine-grained performance infor-
mation may prove useful in characterizing similarities or
differences between performances.
Beat durations are extracted by first recording taps in

real-time while listening to a performance in an audio ed-
itor called Sonic Visualiser developed at the Centre for

Figure 1. Average tempo and dynamic graphs for 35 per-
formances of mazurka in B minor, 30/2.

Sapp 2007



Syncopation

• Longuet-Higgins 1982


• Koops 2015: Corpus-Based Rhythmic Pattern Analysis of 
Ragtime Syncopation


•



Rhythmic similarity

• Panteli 2014: Modeling rhythm similarity for EDM


• Attack characterisation


• Periodicity: Characterisation of autocorrelation function


• Metrical distribution: Syncopation, symmetry, density, 
…



Rhythm analysis
• Rhythmical events: detection and characterisation (attack)


• Inferring rhythmical/metrical structure


• Periodicity


• Tracking metrical structure


• Tempo estimation vs. Beat tracking, downbeat tracking


• Audio/score alignment


• Performance analyse: tempo variation


• Pulse clarity, syncopation, groove


• Rhythmic similarity


• Asymmetric meter 

• Complexity in genres (romantic rubato, jazz, EDM, …) 

• Limitations of methods for particular types of music, importance of dance



SAMA topics
• Periodicity detection in signals (spectrum, autocorrelation, etc.)


• Attacks (TIME project)?


• Parncutt’s paper suggested by Georgios


• Physical / cognitive, auditory models / corporeal / phenomenal/social 
entrainment


• motion/sound signal analysis (ex PQoM), motion template


• Spatialisation in rhythm/meter and more generally; sonic/movement environment


• Real-time, predictive models


• Neuroscience data jockeying



Don’t forget to register 
to the SAMA mailing list

Cf. SAMA page in RITMO website


