

UiO:Energy Forum 28.11.2019

The value chain of batteries: from material production to recycling initiatives

Hanne Flåten Andersen

Head of Department, Battery Technology, IFE

IFE's vision: Internationally leading research institute

Turnover:

1 MRD

Annual publications:

120

1948: IFA

1980: IFE

Employees:

600

14.000

Annual visitors

Advanced laboratories:

24

Nationalities: 32

Researchers: 218

PhDs: 105

Centres for renewable energy:

2

International projects:

>30%

Better batteries
- what are the challenges?

Battery activities at IFE

Silicon- based nanoparticle production

- Producing silicon based energy materials
- Free space reactors
- Gas-phase silane polymerization
 - Understanding the chemistry of silane
 - Production control
 - Flexibility in composition
 - Up-scaling

Battery development laboratory

How to optimize the battery

- Testing different material sources
- Preparing electrodes
- Research on all components in anode (binder, carbon)
- As well as other battery components such as electrolyte, cathode
- Electrochemical testing of cells
 - Largest lab scale facility in Norway

Commercial battery testing

Battery research for end-users

- Strong cooperation with norwegian maritime industry
- Predicting life time of commercial battery cells and packs
- Evaluation of battery ageing through experiments and modelling

How does the battery work?

Silicon anodes

Main motivation:

- Graphite: LiC_6 -> 372 mAh/g
- Silicon: Li_{3.75}Si -> 3579 mAh/g

Silicon market

"It's a race among the battery makers to get more and more silicon in"

- Jeff Dahn, 3M and Tesla

Technology steps of battery cells

TESLA

SiliconX

- Using silicon nitride material produced at IFE
- Improvement of both capacity and lifetime
- Patent granted

Production of SiliconX at IFE

Life time testing of commercial cells

- The BattMarine project
- Cooperation with partners from the maritime industry
 - Fast growing sector in Norway
 - Hybrid solutions are necessary
- Safety and life time evaluation of large Li-ion cells and packs
- Develop new measurement techniques
- Risk reduction physical and economical

Li-ion battery ageing

- Calendar life loss of capacity during storage
 - Factors:
 - Temperature
 - State-of-charge
- Cycle life loss of capacity due to cycling
 - Factors:
 - Temperature
 - Current charge and discharge
 - SoC
 - Maximum
 - Minimum
 - Cycling window
 - Mechanical pressure

Recycling and reuse

- motivation

- Large need for sustainable handling of used batteries
- Control material flow within Europe
 - Urban mining through recycling possibilities
- Norwegian industry wants to position themself within recycling
- Norway will be one of the first countries to get large volumes of spent EV-batteries going into recycling or reuse
 - 50 % of all new car sales in 2019 was electric
 - Second largest market worldwide for EVs

Possible reuse of Li-ion batteries (2nd life)

- Starting research on safe and sustainable re-use of batteries
- Evaluating value, safety and cost-optimized use of Li-ion batteries at End-of-Life (EOL)
- Open questions:
 - Economical feasibility (and at what battery cost)
 - Safety ensured in second life use?
 - Integration into current energy system

BATMAN project

Lithium ion BATteries - Norwegian opportunities within sustainable end-of-life MANagement, reuse and new material streams

- Project lead by Eyde Cluster
- Will establish the current Li-ion battery market in Norway, as well control of the material flow analysis
- Will give guidelines to how Norwegian industry should position themselves within battery recycling

BATMAN project

The existing ecosystem

• Anode material (SiC as a

furniture and heating

raw material) • Cathode material (kiln

Silicon carbide (SiC) production •

- Proprietary graphitization process
- Ability to tailor make silicon powders
- Sustainable green production at large scale

NIKKELVERK

A GLENCORE COMPANY

Annual production

- 92000 Tonnes Ni
- 39000 Tonnes Cu
- 5200 Tonnes Co

agder energi

- 8.1 TWh of renewable energy on an annual basis
- Flexiable renewable energy systems

- 2 Million Tonnes Al production in 2018
- Karmøy pilot world's most climate-friendly and energy-efficient aluminium.
- EV battery pack 40% Al by weight

BATMAN project

Predictive model for material demand and secondary use/recycling volumes

Future battery market

- Battery demand estimated to 2000 GWh in 2030
- Need for many new gigafactories
- Battery prices dropping

- New areas opening up with market developments:
 - Stationary storage
 - Recycling/urban mining
 - 2nd life batteries
 - Battery production

Source: BNEF Note: Figures for 2018 and beyond are projections

Thank you!

Hanne Flåten Andersen

Battery Technology

