Resolving Energy Materials with Transmission Electron Microscopy

Dr. Calliope Bazioti

*kalliopi.bazioti@smn.uio.no

Department of Physics, Center for Materials and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway

Structure Physics group

LENS group

Materials for applications in solar cells and power electronics

Bazioti C. at al.

JOURNAL OF APPLIED PHYSICS 118.

Point and extended defects + interaction with dopants

Direct influence on semiconductor properties

Need for **precise identification of defect-types** understanding their **formation and evolution** is crucial for mastering semiconductors.

- **ZnO**, a wide direct band-gap semiconductor (3.4 eV at RT) interesting for applications in solar cells.
- doping with desirable impurities is a key process in device fabrication
- induced defects, are detrimental for the device performance
- post-annealing is typically used to minimize/remove them.

- Interstitials (Zn_i, O_i)
- Vacancies (V_{zn}, V_o)
- complexes with dopants

N-implanted ZnO	p-type doping
(ZnO) _{1-x} (GaN) _x	Bandgap engineering

Electron matter interactions

Multiple detectors: Simultaneous information through different mechanisms of electron-specimen interactions

Schematic by V.S. Olsen

FEI Titan G2 60-300 kV, NorTEM facility- UiO equipped with a **CEOS DCOR probe-corrector** and **monochromator**.

- ZOGN system. Importance of bandgap engineering in designing novel functional semiconductor materials
- ZnO(II-VI) and GaN(III-V) are wide-bandgap semiconductors

Strong band-bowing effect

significant bandgap reduction of the alloy

✓ Tailoring optical properties by only changing the composition

RF magnetron sputtered (ZnO)_{1-X}(GaN)_X thin films deposited on c-Al₂O₃ substrates

primary aim: significant bandgap reduction + good crystal quality

Schematic by: Journal of Applied Physics 115, 213506 (2014)

electrical and optical performance degraded by the formation of grain boundaries, pores and dislocations, due to charge-carriers and photons scattering. Olsen V.S., Bazioti C. et al. Phys. Status Solidi B 1800529, 2019

Olsen V.S., Bazioti C et al. Semicond. Sci. Technol. 10, 1, 2019

Olsen V. S., Baldissera G. et al. Phys. Rev. B 100, 165201, 2019

Different STEM detectors help us to have complementary views of the same area

recorded simultaneously

Z-Contrast + Diffraction Contrast

We can easily detect the localization of extended defects

Pure Z-Contrast

We can easily detect clusters of lower atomic density (zinc-vacancy clusters)

Bazioti C. et al. J. Phys.Chem. Lett. 10(16):4725 (2019)

recorded simultaneously

At low collection angles both heavy and light elements can be visualized. We see both **Zn** and **O** atomic columns.

Only heavy elements scatter at high angles. We see only **Zn** atomic columns.

We can also identify polarity:)

High Spatial resolution (0.08 nm)

We could not resolve Zn-O dumbbells some years ago, before aberration correctors!

Bazioti C.

Brief History: The state-of-art TEM

Resolution limit

Year	Resolution
1940s	~10nm
1950s	~0.5-2nm
1960s	0.3nm (transmission)
	~15-20nm (scanning)
1970s	0.2nm (transmission)
	7nm (standard scanning)
1980s	0.15nm (transmission)
	5nm (scanning at 1kV)
1990s	0.1nm (transmission)
	3nm (scanning at 1kV)
2000s	<0.1 nm (Cs correctors)

Core of the M100 galaxy seen through Hubble (source: NASA)

STEM + EELS at a zinc vacancy cluster

Monochromated spectra, Dual-EELS

Simultaneous information of: structure + chemical info + bonding

Bazioti C. et al. J. Phys.Chem. Lett. 10(16):4725 (2019)

Bandgap measurements on the nanoscale using STEM-EELS

Analysis of defect networks

HR(S)TEM images and Geometrical Phase Analysis (GPA) Strain fields at nanoscale

Dislocations bounding a stacking fault Visualization of local strain fields

Bazioti C. et al. J. Phys.Chem. Lett. 10(16):4725 (2019)

Thank you for your attention!

We would like to acknowledge support from the Research council of Norway and University of Oslo through the :

- FriPRO Toppforsk frontier research project FUNDAMENT (no. 251131)
- Norwegian Center for Transmission Electron Microscopy, NORTEM (197405/F50)
- Norwegian Micro- and Nano-Fabrication Facility, NorFab (245963/F50)
- SALIENT project (239895)