
1

Unix introduction

April 21
st
, 2015

Katerina Michalickova

The Research Computing Services Group

www.uio.no/hpc

http://www.uio.no/hpc

2

Table of Contents
1. About this tutorial.. 3

2. Login ... 3

3. Command line ... 4

3.1. Shell ... 4

3.2. Directory listing ... 5

3.2.1. Command options ... 5

3.2.2. File ownership and permissions .. 6

3.3. Moving about in the directory tree – pwd, cd .. 7

3.3.1. Home directory ... 7

3.3.2. Path.. 7

3.3.3. Special notations ... 8

3.3.4. Autocompletion ... 8

3.3.5. Wild cards ... 8

3.4. Managing your files and directories – mkdir, cp, mv, rm, rmdir ... 8

3.4.1. Practise the commands .. 9

3.5. Editing your files .. 12

3.5.1. Display a contents of a text file – cat, more, less .. 13

3.5.2. Edit a file - nano .. 13

3.5.3. Manipulate file content - diff, grep, sort, uniq .. 15

3.6. Little extra - get your bearings ... 17

4. Programs and parameters .. 18

4.1. Computer program ... 18

4.2. New program? .. 18

4.3. Executing a program .. 18

4.4. PATH .. 19

4.5. Program options ... 19

4.6. Managing command output ... 21

4.6.1. Paging though output .. 21

4.6.2. Pipeline.. 21

4.6.3. Redirecting standard output .. 22

4.6.4. Redirecting standard input .. 22

4.6.5. Standard streams ... 22

3

1. About this tutorial
Scientists often need to work with command line tools, organize files and move about the file system

efficiently using the command line environment. This tutorial is meant to prepare command line

beginners for this task. We will concentrate on learning to navigate around the file system, manage

files and run programs.

2. Login
In this tutorial, we are going to use a Linux machine called “freebee.abel.uio.no”. This system can be

used by all UiO students and staff.

1. Make sure you are connected to a network. Open a command line tool on your laptop. For

windows use Putty (http://www.putty.org/).

2. Before you log into the tutorial machine, you have to have a username and password. UiO

students and staff can use their UiO credentials, others can ask the instructor for a guest

account.

3. Log into freebee.abel.uio.no

Windows:

Open Putty and type “freebee.abel.uio.no” in the host name dialog box. Press “Open”. New

window opens and you will be prompted for a password.

http://www.putty.org/

4

MacOS or Linux:

Use ssh command (secure shell) to log into freebee. Type “ssh username@freebee.abel.uio.no”.

You will be prompted for a password.

4. When you log in you should see the following:

3. Command line

3.1. Shell

When you login into freebee, you find yourself in a “shell” (in our case the “bash shell”). Shell

provides an interface between you and the operating system of the computer. The “$” sign is the

prompt and that is where you type commands. Commands are executed by pressing “Enter” at the end.

“Command-line interfaces are often preferred by more advanced computer users, as they often provide

a more concise and powerful means to control a program or operating system.” Wikipedia

mailto:username@freebee.abel.uio.no
mailto:username@freebee.abel.uio.no

5

3.2. Directory listing

People used to graphical interfaces usually open some sort of a file manager to navigate the directories

and files on their machine. In the next sections, we will learn how to do the same the command line.

To see the contents of the current directory, type “ls” (list) at the prompt. The command displays a

simple list of files and directories. This output gives no details about the listed items though. The next

section introduces ways to modifying the command behavior.

3.2.1. Command options

The behavior of the command ls can be changed by using options (or switches or flags). Below, you

see the output of “ls -l”. The option “-l” tells the list command to display each file/directory on a

separate line in a “long” format. Typically, unix commands can be used with multiple flags. To learn

about options available, use “man command” (e.g. for ls, type “man ls“).

Note: The command “ls -l” is often shortened to “ll” for convenience.

6

3.2.2. File ownership and permissions

The output of “ls –l” above produces extra information. From the left:

 permissions

 number of hard links (can be safely ignored for now)

 user name of the owner

 group that owner belongs to

 file size

 date of last modification

 file/directory name

File ownership and permissions provide control over actions performed on files and directories. In the

above caption the owner is “katerim” and the group is “users”. The first 10 characters on each line

specify permissions (or access rights). Files (and directories) can be read (r), written into (w) or

executed (x).

The permission statement consists of 10 positions: -rwxrwxrwx. The first position is reserved for a

directory sign (d). Ordinary files have just a “-” sign. The next three rwx triads specify permissions

for the owner, group and everyone else. Each triad holds rwx permissions always in the same order.

For example, in –rwsrwxrwx statement all permissions are set and all users can read, write into and

execute a file. In -rw------- statement, the file can only be read and written to by the owner.

7

3.3. Moving about in the directory tree – pwd, cd

3.3.1. Home directory

When you log into a Unix machine and open a terminal, you find yourself in your home directory. It is

a place in the directory tree where you have permission to keep your directories and files. Type “pwd”

(print working directory) to see your home directory. The example shows home directory belonging to

the user katerim - “/usit/abel/u1/katerim”.

3.3.2. Path

Path (e.g. - “/usit/abel/u1/katerim”) specifies a position in the directory tree. There are two kinds of

paths – absolute and relative.

 Absolute path always starts at at the top of the tree (at the root directory), for example

“/home/username”. The absolute path always starts with a “/” (root).

 The relative path is the path to the destination from your current position and it does not start

with a “/”.

In the figure above, you can see a simple directory tree. Let’s pretend that you are Mike and when you

log into the computer, you will find yourself at your home directory “/home/mike”; this directory is

your current working directory.

8

 If you want to change working directory to directory called “work”, you will type “cd work”

(cd stands for change directory). By doing so you used the relative path. The way to express

this operation using absolute path would be “cd /home/mike/work”. In this example, using the

relative paths was a more convenient way of accomplishing the task.

 Consider changing directory to the “lib” (bottom left) starting from “/home/mike”. The relative

path command would be “cd ../../usr/ucb/lib” while the absolute path would look like this “cd

/usr/ucb/lib”. Here, using the absolute path is easier.

3.3.3. Special notations

There are few special notations to remember when navigating the directories.

 Typing “cd ../” will take you one directory level up (from “/home/mike” to “/home”).

 The sign “./” means current directory (“cd work” is the same as “cd ./work”).

 Typing “cd” anywhere will get you to your home directory.

 You can use “~” in the path to substitute for your home directory (e.g. “cd ~/work” is the same

as “cd /home/mike/work”).

 Typing “cd -” will send you back where you just came from. E.g. you start at

“/home/mike/src”, then “cd /home/usr”. When you need to go back to “/home/mike/src”, type

“cd -”.

 3.3.4. Autocompletion

Autocompletion means you do not have to type full file/directory name. If the fragment of the name

you have just typed is unique, pressing TAB key will complete the name. This reduces typing and

errors dramatically.

Consider that you (Mike) made a directory “/home/mike/data/results_blast_lutra”. Two months later,

you want to check the blast results. In your home directory, you start typing “cd data/results_blast…”

and then you cannot remember the name of the experiment. Use autocompletion to see all blast

directories you’ve made. When you have typed “cd data/results_blast” press the “Tab” key. If there is

exactly one matching name, it will complete automatically. If there is more than one match, all

relevant options will show when you press Tab second time.

3.3.5. Wild cards

Wildcards are symbols “*” and “?”. They can be used in pattern matching. For example, “ls results_*”

produces a list of items beginning with “results_”.

In general, “?” matches exactly one character, while “*” matches any string of any length including an

empty one.

3.4. Managing your files and directories – mkdir, cp, mv, rm, rmdir

In this section, we will learn how to create, copy, move and delete directories and files. Here is the list

of the key commands:

9

 Make a directory – mkdir

 Remove directory – rmdir

 Copy file – cp

 Move file – mv

 Delete file - rm

3.4.1. Practise the commands

This section is a hands-on exercise. We’ll set up a space for your tutorial and manipulate files to get

comfortable with using the command line. Read the text carefully and try to replicate the highlighted

commands. The screen captures demonstrate every command needed to replicate the exercise.

1. On freebee, make sure that you are in your home directory (“cd”).

2. Make a directory named tutorial “mkdir tutorial” and “ls –l” to see it

3. Cd into the tutorial directory “cd tutorial” and use “pwd” to see the path. You’ve made a new

directory for today’s tutorial.

4. Place a file into the tutorial directory. The file is available elsewhere on the machine in the

“/cluster/teaching/unix_tutorial” directory. You can copy this file to your tutorial directory by

using “cp /cluster/teaching/unix_tutorial/sequence.fa .” Note that the command ends with “a

space and a dot”.

The last “dot” is important because the copy command requires a source and destination path.

The source is “/cluster/teaching/unix_tutorial/sequence.fa” and the destination is the current

directory or “.”.

You can check if you got the file by listing the directory content (ls or ll) and you can see the

file content using “cat sequence.fa” (more about cat later).

10

5. To practise copy command some more, make a backup of the sequence.fa file. Type “cp

sequence.fa sequence_copy.fa”. List the directory content to see what happened. The contents

of the original file were copied to a new one and the directory now contains two files.

6. After looking at the directory listing, you decide that the sequence_copy.fa is not informative

enough and you that you want to change the name. This can be done using the mv command

(or move). Type “mv sequence_copy.fa sequence_orig.fa”. As with the copy command, the

move command requires target and destination paths.

7. In the tutorial directory, make a subdirectory “backup” and place your backup sequence file

there. Type “mkdir backup” and “mv sequence_orig.fa backup/”. Check what you did by “ll

backup/”. Note: this is the first time we use the list command with a path. The directory listed

is the one specified by the path.

11

8. We have learned to manipulate individual files. In the next steps, we’ll try to manipulate whole

directories.

Let’s pretend that this is not the only tutorial you are attending today and you realize that you

don’t want to have many tutorial directories in your home area. You want to make one

directory called “learning” in your home and then move the existing tutorial directory (and all

its content) into learning. We’ll proceed cautiously, first we copy the files and if all is right, we

delete the original ones.

Return to your home directory (remember a simple “cd” will do). Type “mkdir learning”. Use

the copy command to replicate the entire contents of the tutorial directory tree by typing “cp –a

tutorial/ learning/”. Examine your action by using the list command. Note: we used “-a”

option for the copy command. The –a option turns on recursive mode and preserves all

properties of the files.

9. We made sure that the all files were copied properly and now we can delete the original

“~/tutorial” directory and its contents. There is a fast way to do this, but for the sake of the

tutorial, we start deleting in steps.

From you home directory, type “rm tutorial/backup/sequence_orig.fa” to get rid of you original

sequence backup. Check the outcome by “ls –l tutorial/backup”. Next, get rid of the original

backup directory by “rmdir tutorial/backup/”. Check the outcome by “ls –l tutorial/”.

As said, it is possible to delete the whole directory subtree using one command. This is to be

used with caution. Type “rm –ri tutorial/”. The –r option turns on recursive mode, the tutorial

directory and all its contents will be removed. As this could be dangerous, I added –i option

that turns on interactive mode. See in the capture below how this works. The command asks

the user to agree with each delete first.

12

10. An alternative way of viewing your files and directories is using the “tree” command. Type

“cd” and “tree learning” to see the whole directory tree so far.

3.5. Editing your files

There are two types of files on your computer.

 text files that are human-readable (e.g. FASTA sequences)

 binary files that contain many more special characters and not easily readable (e.g. a computer

program)

The command “file” returns information about the file type. Type “file learning/tutorial/sequence.fa”

to see an output for a text file. Type “file /bin/ls” to find the type of the list command to see an

executable or binary type.

13

3.5.1. Display a contents of a text file – cat, more, less

There are several commands for displaying the content of a file:

 cat

 less

 more

Use all three to view the contents of sequence.fa file by typing “cd learning/tutorial”, “more

sequence.fa”, “less sequence.fa” and “cat sequence.fa”. You will notice that the less command behaves

differently than the others. In case of larger files, it allows scrolling up and down. Most importantly it

allows searching. Type “q” to quit the less command.

If you have a very large file and only want to check a part of it, use “head” and “tail” command. These

commands accept an option that specifies a number of lines to be displayed.

3.5.2. Edit a file - nano

Today we’ll use a simple text editor called nano. Change directory to ~/learning/tutorial and start a

simple text editor by typing “nano sequence.fa”. You will see the file contents and also menu options

on the bottom. You can navigate the text using arrow keys. The basic operations are “ctrl O” to save

and “ctrl X” to quit the editor. When saving or exiting, you are asked to confirm the operation with

“Enter”. Open the editor and try out the basic operations |(listed below). As an exercise, add some

mock text (preferable protein sequences) at the end of the file. Here is an example:

>gi|1111|gb|AA2322|liase

DELSLNKISADTTDNSGTVNQIMMMANNPEDWLSLLLKLEKNSVPLSDALLNKLIG

>gi|2222|gb|AA5657|dehydrogenase

LKLEKNSVPLSDALLNKLIGRYSQA

14

Help

^G Nano help (^X to return to edit mode)

Navigation

 ^A move to beginning of line

 ^E move to end of line

 ^Y move down a page

 ^V move up a page

 ^_ move to a specific line (^_^V moves to the top of the file, ^_^Y to the bottom)

 ^C find out what line the cursor is currently on

 ^W search for some text.

Saving and Exiting

 ^O save contents without exiting (you will be prompted for a file to save to)

 ^X exit nano (you will be prompted to save your file if you haven't)

 ^T
when saving a file, opens a browser that allows you to select a file name from a list of

files and directories

 (source http://mintaka.sdsu.edu/reu/nano.html)

http://mintaka.sdsu.edu/reu/nano.html

15

3.5.3. Manipulate file content - diff, grep, sort, uniq

“Diff” is used for comparing file contents (text and binary). Type “diff sequence.fa

backup/sequence_orig.fa”; this compares the sequence file and the backup that you made earlier. All

modifications that you introduced using nano (and saved) will show.

“Grep” is used to find a pattern in a file. Type “grep “LIGR” sequence.fa” and if the pattern is found,

the whole line from the target file is shown in the output.

Note: if the pattern does not contain any white space or special characters, you can skip the quotes.

Grep has many useful options, for example “–i” turns on text insensitive mode (“grep –i ligr

sequence.fa” produces the same result as “grep LIGR sequence.fa”).

16

Sorting of the file content is done using the “sort” command. Type “sort sequence.fa ”. Examine the

output, as expected the sequence was sorted alphabetically by lines. Note: -n option enables numerical

sorting, sorting by column (and much more) is also possible

To use the “uniq” command that removes repeated lines from a file. To demonstrate this, we have to

edit the sequence.fa file. Open the file in nano and add some lines, make sure that some of the lines are

the same (they do not have to be very long). Type “sort sequence.fa | uniq” and examine the content.

The repeated lines have been omitted.

17

3.6. Little extra - get your bearings

This section is for the more curious of you. When you log into a new machine, it might be useful to get

some basic information about this computer.

 What is the name of the machine? Type “hostname”.

 What operating system is this? Type “uname -a”.

 To find out what is your user name type “whoami”.

 The information about the cpus and memory is stored in /proc/cpuinf and /proc/meminfo

respectively.

The tutorial machines is called freebee.abel.uio.no, it is a Linux machine and has 32 cpus and 64GB or

RAM.

18

4. Programs and parameters

4.1. Computer program

A computer program is sequence of instructions written to perform a specified task. Computer

programs can be separated into the system software and application software. System software is

responsible for running your computer while application packages are used, for example, for data

analysis.

Each program consists of a source code written in a programming language. Some languages (C or

Fortran) require compilation to produce an executable binary program. Scripting languages (such as

Python or Perl) are executed using an interpreter during the run-time.

4.2. New program?

When you download a program, read instructions carefully to see if you have a binary code, source

code that requires compilation or perhaps a script that requires an interpreter.

 In case of a binary code, it is essential that you get a package that was compiled on the same

computer platform as you intend to use. Binaries differ for different flavors of Unix and also

for different versions of Windows and MacOS. It is customary to offer various platform

binaries when a package is distributed in this manner.

 When you download a source code, you have to compile it. Compilation in general requires a

compiler, the open source versions are called gcc, g++ and g95 (for C, C++ and Fortran

respectively). Proprietary compilers are produced e.g. by Intel. Before you compile, look for

instructions in the source code (or online).

 Programs written in a scripting language require an interpreter/program such “perl” or “python”

(open source and easily installed on various platforms). No compilation is required, the source

code is executed through an interpreter.

4.3. Executing a program

Check the permissions associated with the file that holds your program. No program will run without

the executable (“x”) permission being set. The program is made executable using “chmod a+x”

command (this make the program executable for all users). Executable program is executed by typing

its name including the absolute or relative path. Path has to be specified even in the case when the

program is in your current directory, then you call your program with “./program_name”.

You can call your program from any directory on your machine using just its name and no path

(similarly to Linux system commands) when the system knows where to find it. The system will

always find the program if it is installed in a directory that is included in the “PATH” variable.

19

4.4. PATH

PATH is an environment variable. Environment variables are part of your shell environment and they

might include information about your home directory, mail program, temporary files location, shell

type etc.

PATH holds a list of directories that are checked every time a command is used without a full path.

Type “echo $PATH” to see which directories are in your path.

To find out if a command is in a path, type “which”. For example, you want to compile a C program

and are wondering if you have a C compiler (gcc). Type “which gcc” to find out. The compiler is

installed in “/usr/bin” directory.

If there is no gcc compiler in the path, you have two options. You can look for it on your computer

(e.g. using the find command) or you can install it.

When you know the location of the gcc command, add it to the PATH. Let’s pretend that you installed

the compiler to the “/home/katerim/sbin” directory. Type “export PATH=$PATH:/home/katerim/sbin”

to edit your PATH. This command appends new value to the existing PATH variable. Check the value

of PATH using “echo $PATH” before and after the operation.

4.5. Program options

As we have seen with Unix commands, options modify the program behavior. Most of the software

packages have available options. Sometimes, options require arguments (or values).

The program might be called with a command line such as this: “command –i infile –o outfile –b T –a

5”.

 “-i” option takes input file as argument

 “-o” option takes output file as argument

 “-b” accepts Boolean argument (True or False)

 “-a” accepts integer arguments

20

Knowing the options (and the type of arguments) is necessary to constructing a command that will

execute the program. Often, typing “-h” or “--help” after the command shows the available options and

expected arguments.

On freebee (and on the computer cluster Abel) you can use a module command to manage you path.

Use “module load blast+” to modify your path so the blast+ program is available.

Type “blastp -h” (a program from the blast+ suite) to see what options are available for the blastp

program.

21

4.6. Managing command output

Unless specified by a program option, results are shown onto the screen (a.k.a standard output). When

the output is large or needs to be saved, this is not very useful. This section deals with redirecting the

program output.

4.6.1. Paging though output

If you want to see the output on the screen but it is too large to fit, use “command | less” construct. The

first page of the command output appears and the scrolling stops. Use the arrow keys to move up and

down the output. Type “blastp -help | less” to try this out.

4.6.2. Pipeline

Pipeline utility takes an output of a command and passes it to a second command as an input. This is

accomplished using the “|” pipe sign between commands. This utility can be used to string together

several commands. We will illustrate this on our sequence.fa file. If you have not done so earlier, edit

the sequence.fa file using nano and add another imaginary sequence entry (including the sequence

description line that starts with “>gi”). The figure below shows an example.

Type “diff sequence.fa backup/sequence_1211.fa | grep “>gi” ”. What happened? The first command

takes a difference between two files. The second command grabs the output of diff and filters out only

the lines starting with “>gi” or definition lines. This simple operation can be quite useful for a scientist

who wants to compare two biological sequence files without having to look through long sequences.

22

4.6.3. Redirecting standard output

Often, we want to capture the output of a computation into a file. If your software does not provide an

option for storing results in a file and prints to the screen, use greater than sign “>” to redirect the

output to a file. The statement “command > file_name” stores the command output in a file.

As an example, use grep on the sequence file to find a sequence pattern. Type “grep SEEEK

sequence.fa” and the output shows on the screen. Type “grep SEEEK sequence.fa > seeek.txt” to

capture output to a file named seeek.txt.

4.6.4. Redirecting standard input

One can provide an input to a command with less than “<” sign. The construct “command < infile”

executes the command on the infile. The construct “command < infile > outfile” combines both

methods. The command is executed on infile and the output captured to outfile.

4.6.5. Standard streams

Standard input and output are so-called standard streams. These are predefined channels of

communication between a program and its environment. The figure from Wikipedia illustrates the

concept. Stdandard input (stdin) comes from the keyboard while stdout is streamed to the diplay by

default. The third standard stream is standard error - stderr. Some programs stream error messages

there to separate them from data output.

23

You might have seen constructs like “command > log 2 > &1”. What does this mean? On the

command line, one can use “&0” to refer to stdin, “&1” to stdout and “&2” to stderr. Using this

notation, the above expression redirects the program output to the “log” file. The “2 > &1” at the end

of the expression redirects the standard error (&2) to standard output (&1). This way the log file

contains the program output as well as possible errors.

