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Abstract. This study draws on the challenges that composers and sound
designers face in creating and refining new tools to achieve their musical
goals. Utilising evolutionary processes to promote diversity and foster
serendipitous discoveries, we propose to automate the search through
uncharted sonic spaces for sound discovery. We argue that such diver-
sity promoting algorithms can bridge a technological gap between the
theoretical realisation and practical accessibility of sounds. Specifically,
in this paper we describe a system for generative sound synthesis using
a combination of Quality Diversity (QD) algorithms and a supervised
discriminative model, inspired by the Innovation Engine algorithm. The
study explores different configurations of the generative system and in-
vestigates the interplay between the chosen sound synthesis approach
and the discriminative model. The results indicate that a combination
of Compositional Pattern Producing Network (CPPN) + Digital Sig-
nal Processing (DSP) graphs coupled with Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) and a deep learning classifier can gen-
erate a substantial variety of synthetic sounds. The study concludes by
presenting the generated sound objects through an online explorer and
as rendered sound files. Furthermore, in the context of music composi-
tion, we present an experimental application that showcases the creative
potential of our discovered sounds.

Keywords: Sound Synthesis · Quality Diversity Search · Innovation En-
gines.

1 Introduction

Either you know what sound you’re looking for, or you don’t know what sound
you’re looking for. In the latter case, inquiry, or prompting, is impossible. To
⋆ Supported by the Research Council of Norway through its Centres of Excellence

scheme, project number 262762.
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discover new sounds, you must recognize them when you have found them. But
if you can do that, you must have known them already. Transferring such a
paraphrasing [30] of Meno’s Paradox to the domain of novel sound design can
be a way of establishing the usefulness of serendipitous sonic discoveries, where
a new sound may not have been explicitly sought after but immediately recog-
nised when heard. With all sound admissible as material for making music and
all sounds theoretically possible with digital synthesis, there is still much more to
explore considering the entirety of the sonic domain [38]. Composers and sound
designers often need to create and refine new tools in order to achieve their
musical goals. This endeavour may be hindered by a lack of technical exper-
tise. Our proposed approach leverages evolutionary processes to generate novel
sounds, thereby facilitating the creative journey and overcoming the technical
barriers that may limit composers and sound designers in expanding their sonic
repertoire.

We work towards an approach to automate navigation through previously
unexplored sonic territories. As such, while entirely novel, the discovered sounds
can be perceived as appealing and seemingly recognisable to the listener despite
their unprecedented nature. Such investigations have been carried out interac-
tively in the visual domain [34], demonstrating the usefulness of abandoning
specific objectives, or at least switching goals as stepping stones are found while
traversing paths to interesting discoveries. These findings provided a basis for
proposing the Novelty Search algorithm [19] and later other variants, forming a
family of Quality Diversity (QD) search algorithms [20,25,32,3]. These QD algo-
rithms combine the open-endedness of Novelty Search with competition between
solutions in their own “niche”, resulting in diverse and high-performing (quality)
solutions. Overall, QD algorithms serve as effective tools for illuminating high-
quality solutions within a domain and are powerful search algorithms in their
own right. This is due in part to their ability to exploit behavioral diversity and
stepping stones during the search process, which can lead to discovering a variety
of valuable solutions [7,29]. To drive automated exploration with such diversity-
promoting algorithms, the Innovation Engine algorithm abstracts the process of
human curiosity, replacing human judgement with a discriminative model that
identifies interesting ideas [28,26]. Innovation Engines integrate two key com-
ponents: Evolutionary Algorithms (EAs), such as those from the family of QD,
capable of generating and gathering various novel outputs; and a model capable
of distinguishing that novelty and evaluating its quality, such as Deep Neural
Network (DNNs), creating niches and competition within them, thus providing
selection pressure to quide QD search. The ultimate goal of this architecture is
to continuously generate interesting and innovative creations in any given field.

Compositional Pattern Producing Networks (CPPNs) [35] are a foundation of
the explorations leading to the Novelty Search and Innovation Engine algorithms.
The networks abstract unfolding development in evolutionary processes, which
build a phenotype over time. This is done by using any variety of canonical
functions at each node, based on the idea that the order in which the networks
compose functions can provide that abstraction. This can be compared with the
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process of timbral development, where musical expression depends on changes
and nuances over time. The use of patterns produced by CPPNs as sources of
sound- and control signals for sound synthesis has been explored in a novelty
seeking Interactive Evolutionary Computation (IEC) [37] configuration, which
was inspired by previous work on the generation of visual artefacts [16]. The
representation of temporal unfolding provided by CPPNs has been combined
with the evolution of Digital Signal Processing (DSP) graphs during several
iterations of investigation, detailed in [14]. This resulted in a distinct approach
to sound synthesis, where any combination of the two graphs, depicted in figure 1,
can be rendered at any duration, revealing the sub-patterns encoded by CPPNs
over varying periods of time.

rendering

evaluation

map and insert
higher-scoring solutions

MAP-Elites

selection + variation

CPPN DSP

sound genome

Created
by
Olena
Panasovskafrom
the
Noun
Project

container             (CPPN+DSP) YAMNet
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Fig. 1: The QD algorithm MAP-Elites uses the pre-trained YAMNet DNN classi-
fier to define cells in a container and the performance of an evaluation candidate
across those cells to determine placement and replacement in that archive. The
genome of each evaluation candidate is rendered to a waveform, which is sup-
plied to the classifier. Inputs to the CPPN are discussed in section 2.

Given the more diverse application of sonic artefacts as material in creative
processes, we argue that there may be an even higher incentive to investigate the
Innovation Engine algorithm’s applicability in the sound domain. Furthermore,
whereas humans can evaluate images in a split second, evaluation of sounds re-
quires more time. There is a minimal duration threshold for perceiving salient
features of sonic objects [24] and we typically perceive them holistically as mean-
ingful units in the 0.5 to 5 seconds range [10]. Experiments with interactive evo-
lution of sounds [16] revealed how fatigue can set quickly in when potentially
listening to a long series of taxing sounds. This further limits the ability of hu-
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mans to provide sufficient quantity of selection to have a significant effect on
evolution.

Automating the discovery of new sounds is the goal of this study. We achieve
this by applying the Innovation Engine algorithm to the sound synthesis ap-
proach developed in previous research on interactive novelty discovery. By using
the proposed technique for sound synthesis, the system does not need to be
trained beforehand as the evolutionary method starts from networks with no
hidden nodes and progressively evolves primitive individuals by adding nodes
and connections with the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [36]. In our initial experiments, we use a signal from a pre-trained
discriminative model to guide QD search, without human feedback in the evo-
lutionary loop. Investigating this setup is intended to pave the way for further
explorations of unbounded discovery of interesting sounds.

Our contributions include researching the application of a special type of
Innovation Engine in the sound domain with a distinct approach to sound syn-
thesis within an EA. Furthermore, we examine different configurations of our
generative system and study how our sound synthesis method interacts with the
discriminative model. We also offer a web-based interface to explore the outcomes
of our evolutionary processes through our Innovation Engine setup. Lastly, we
showcase audio artefacts rendered from the solutions discovered during the QD
runs. Experimental results, in the form of historical data from evolution runs,
elite maps and genomes from each point in time, and sounds rendered from those
genomes at final iterations, along with the source code to replicate the results,
are available in the dataset accompanying this article [15].

2 Approach and Experimental Setup

To start evaluating the applicability of the Innovation Engine algorithm in the
domain of sounds, we combine a sound synthesis technique with a supervised
discriminative model. The foundation of our sound-generating system relies on
using the patterned outputs from CPPNs as the raw materials for sound and
control signals. These signals can be utilised in their original form or further
shaped through a DSP graph. Such a design choice enables the evolutionary
state to begin from a blank slate, established with random initialization of the
CPPN and DSP graph counterparts. This avoids dataset constraints that might
limit the potential for discovery of novel sounds. The genome evolved by the
evolutionary (QD) processes is composed of the CPPN and DSP networks and
the evolvable connections between them. Details of this genome configuration
are discussed and diagrammed in [14]. Figure 1 illustrates the data flow of our
experimental setup and shows how the genome fits within the data pipeline.

Behavioural Descriptor To guide the QD search, we chose the Yet Another
Mobile Network (YAMNet) DNN classifier to define our search space. The con-
fidence scores output by the classifier for each class are used as selection signals
for the QD algorithm, as discussed in section 3.1. While this pre-trained network
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may limit our exploration, it was adopted in an effort to replicate a setup from
previous evaluations of the Innovation Engine algorithm in the visual domain.
That classifier is trained on AudioSet [9], which can be considered as a sonic
sibling of the DNN classifiers trained on the ImageNet dataset [5]. YAMNet
outputs 521 scores from a logistic (softmax) layer, corresponding to AudioSet
classes. The classifier’s output is intended “as a stand-alone audio event classifier
that provides a reasonable baseline across a wide variety of audio events.”4. Our
approach to sound generation can be somewhat likened to a unique type of sound
synthesiser, which is not crafted with the intention of mimicking natural sounds
or creating textures that easily fit into well-known categories. Many modern gen-
erative models excel at such tasks [1], building on their prior training, but we
considered the varied signal provided by this model as a good starting point for
driving the EA towards diversity. We also considered it interesting to mirror the
overall setup from experiments [28,26,18] that inspire our sonic investigations.

Periodic Signal Composition One factor potentially influencing the search
space is our choice of CPPN activation functions and node types in the DSP
graph. CPPNs have commonly been used to compose Gaussian, sigmoid, and
periodic functions, such as in [35,34]. In our case, the pattern-producing network
can only compose periodic functions, commonly used as oscillators in a variety
of sound synthesis techniques: sine, square, triangle, and sawtooth. The node
types in the DSP graph are the same as in [33], in addition to custom nodes,
which were added to the repertoire in an effort to widen the search space. Those
additional nodes are a wavetable and a specialised additive synthesis node, where
multiple audio signals are sourced from the CPPN to fill a table in the former
and represent partials or harmonics in the latter. The wavetable is traversed
according to a control signal, also sourced from the CPPN, in a manner similar
to vector synthesis. The partials in the additive synthesis node can be slightly
inharmonic, according to a mutable parameter to each.

The duration of sounds rendered from each genome is defined by a linear
ramp of values from −1 to 1 supplied to one CPPN input, while the pitch is
controlled by the rate of a periodic (sine) signal at another input. Velocity is
intended to simulate stimuli of different intensities when interacting with physical
instruments, which is achieved by scaling the sine wave input by a velocity factor.
The inputs are sampled at the same rate as the sampling rate of the audio graph.

QD Algorithm For the diversity-promoting algorithm, we chose Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) [25]. Our experiments are based on a
bespoke implementation of that algorithm, with the common addition of biasing
it away from exploring niches that produce fewer innovations. This is achieved
by assigning each niche a decrementing counter, representing a curiosity score
as defined in [3] with constants set as in [18]. The counters start at a fixed value
of 10, impacting the probability of that niche being selected for reproduction.

4 YAMNet audio event classifier: https://tfhub.dev/google/yamnet

https://tfhub.dev/google/yamnet
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The classification outputs of the discriminative model define the cells of the be-
haviour space which the QD algorithm explores, where the performance at each
niche is determined by the confidence values for each class. During our main
runs of QD search, evaluations were performed in batches of 32.

Parameter Search Considering the temporal dynamics of sounds, and that
the underlying pattern generator of our sound synthesis engine (CPPN) encodes
sub-patterns that reveal over time, we performed preliminary experiments clas-
sifying sounds rendered at a different duration for each evaluation. One of the
configurations involved 112 evaluations of each sound genome, rendering it to
sounds of 4 durations, 7 pitch variations and 4 amplitudes. To explore other
parameters of the QD search, such as mutation rates and their balance between
the CPPN and DSP genome counterparts, as well as graph and node addition or
deletion rates, we conducted a manual parameter search. Due to the computa-
tionally intensive nature of the task, these runs were based on a limited selection
of parameter values. A comprehensive collection of plots from those runs can be
found in the dataset accompanying this paper [15]. We found that evaluating
sounds with a duration of half a second frequently led to the emergence of suc-
cessful sound variants. Therefore, we decided to use this specific duration for
assessing sounds in the QD runs of our primary experiments. Runs with node-
and connection addition rates of 10% and corresponding deletion rates of 6%
resulted in the best performance during our parameter search. As such, we ran
with that as our baseline configuration along with equal probability of mutating
each genome counterpart.

3 Results

For our main experiment, we ran 10 independent runs of the MAP-Elites algo-
rithm, with the rates discussed in section 2 and behaviour evaluated by YAMNet
on 0.5-second sounds. Each run lasted for 300 thousand iterations, with a batch
or generation size of 32. At the start of each run, 50 seed iterations were per-
formed, which differ from the rest of the iterations in that each individual is
initialised from scratch rather than mutating a randomly selected elite occupy-
ing any of the cells.

3.1 Sound Generation- and QD Algorithm Variants

Aside from the set of evolution runs using our basic configuration described
above, we performed two additional sets of runs. In one set, we altered the
sound generation, and in the other set, we modified the progression of the QD
algorithm.

Signal Processing Graph To investigate the impact of merging CPPNs with
DSP graphs, we set up evolutionary runs in two distinct configurations: one in
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Fig. 2: On the left scores are plotted for the baseline configuration (section 2),
evaluating sounds of 0.5s duration, along with variants where sounds are only
rendered from CPPN mutations and where only one cell can be won at a time
by each candidate elite. Data for each variant comes from 10 runs. The plot on
the right compares the performance achieved when evaluating sounds rendered
at two different durations—0.5s and 10s—from the baseline and CPPN-only run
configurations, each independently executed 5 times.

which an evolved CPPN functioned solely as the audio signal source, providing
a single output, and another where the CPPN was paired with an evolving DSP
graph, allowing it to offer a multitude of audio and control signals, from up to
18 outputs.

In our experiments, we quantify the QD algorithm performance by calculat-
ing the QD-score [32,31]. This score is determined by summarising the confidence
levels of the elites across the various classes delineated by YAMNet. When com-
paring the results from these runs, we observe in Figure 2 that the phenotypes
(i.e., sound objects) produced from the genomes where CPPNs and DSP graphs
were co-evolved achieved the highest overall QD-score. Through informal listen-
ing sessions conducted by the authors, it was observed that the sounds rendered
from runs where the evolution of DSP graphs was allowed alongside CPPNs ex-
hibited a higher degree of subjective aesthetic appeal. This phenomenon could
potentially be attributed to the prevalence of classical synthesizer sounds, to
which our ears have grown accustomed. In this context, the DSP graph can
be seen as functioning akin to a modular synthesizer patch, rendering us less
inclined to perceive the raw output generated by CPPNs as inherently pleas-
ing. The rendered sounds can be auditioned in an online explorer (sec. 3.7) or
accompanying dataset [15].

Behaviour Space Coverage The default behaviour of our MAP-Elites im-
plementation allows each evaluated individual to win all cells where it performs
better or where there is a vacancy, so it reaches full coverage from the first seed.
To examine the effect of gradually covering the map of cells by allowing each
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candidate to potentially win only one cell, the one where it receives the highest
confidence from the classifier, we performed an identical set of runs except with
that restriction in place. Runs where at most one cell at a time is won reached
a coverage of 57.4%±3.4%, with their QD-score following a trajectory similar to
that of full coverage CPPN-only runs, as depicted in figure 2, left.

Elite Populations Figure 3 (left) shows that the range of iterations where
the current elites are found at the end of each run is sharply delimited around
iterations 150K to 250K of the CPPN-only runs, while the CPPN+DSP runs
continue to discover new elites more gradually throughout the latter half of the
runs.

The set of unique elites at the end of CPPN-only runs is smaller than when
co-evolving the DSP graphs, as plotted in figure 3 (right). Instead of distinguish-
ing between individuals by their ID, where the differences could be only slight
changes in e.g. connection weights, this plot is based on distinction between
unique combinations of CPPN and DSP node and connection counts.
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Fig. 3: Left : Distribution of iteration numbers at which the current class elite was
discovered. Right : Count of unique individuals, as it evolves through iterations
of the evolution runs.

3.2 Genome Complexity

The composition of audio graph nodes and CPPN activation functions can
be seen in figure 4, where the prominence of the custom audiograph nodes
(wavetable and additive synthesis, fig. 4, bottom) suggest that implementing
other known techniques from the history of sound synthesis may be worthwhile.
The distribution of CPPN activation function types is quite uniform in all vari-
ants of our runs (fig 4, top). It’s also interesting to observe in the left plot of fig-
ure 6 that the CPPN-only runs resulted in more complex function compositions,
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likely to compensate for the lack of a co-evolving DSP graph. This increased
CPPN complexity resulted in longer rendering times and thus increased dura-
tions of the evolution runs, as that part of the genome is more computationally
expensive, with potentially many network activations required for each sample,
as discussed in [14].
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Fig. 4: Composition of CPPN activation functions (top) and DSP graph node
types (bottom), from the different evolution run variants. It can be observed
in the DSP chart that the CPPN-only variant does not evolve a DSP graph
and only includes a source node for receiving the pattern-signal from the single
CPPN output, and a gain node for passing it through to the output.

3.3 Performance Against Pre-trained Reward Signals

The YAMNet classifier chosen in this iteration of our investigations assigned
high scores to the sounds generated by our system across most classes, as can
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be seen in figure 5. There we can see again how the co-evolution of CPPNs
with DSP graphs achieves higher scores overall. The figure also reveals how
the synthesiser struggles in the range of classes between 214 and 276, which
classify musical genres, rather than distinct sounds or instruments, such as “Pop
music”, “Rhythm and blues”, “Flamenco”, etc. This is reasonable as the system is
expected to generate sounds useful in the process of creating e.g. music, rather
than entire musical compositions. Nonetheless it can be interesting to observe
what the system came up with for those low-confidence classes, such as “Theme
music”: a filter can be set in the online explorer (sec. 3.7) to audition classes
containing the phrase “music” while scrubbing through the runs with a slider.
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Fig. 5: Confidence scores declared by the YAMNet DNN, pre-trained on AudioSet
classes (x-axis), averaged from the first 100 thousand iterations of 10 runs. Re-
sults from a set of runs where both CPPN and DSP genome counterparts are
evolved can be seen on the left while the right map shows results from a set of
runs restricted to evolution of the CPPN part of the genome, without evolving
signal processing nodes.

3.4 Evolutionary Stepping-Stones

To assess how evolution leveraged the diversity promoted by our classifier, we
conducted two measurements that explored the stepping stones across various
classes. One has been called goal switching and defined as "the number of times
during a run that a new class champion was the offspring of a champion of
another class" in [28,26]. From our runs we measured a mean of 21.7±3.6 goal
switches, 63.2% of the 34.3±4.5 mean new champions per class. This can be
compared to the 17.9% goal switches reported in [26]. Another way of measuring
how the evolutionary paths flow though the stepping stones laid out by the
classifier is to trace through the phylogenetic tree leading to each elite and then
count how often its parent comes from a class different from the one it occupies.
Counting from the current elites of each class at the end of the evolution runs,
we found a mean of 44.9±14.7 such occurrences. In lieu of a visual phylogenetic
presentation, the generation slider of the evolution runs explorer (section 3.7) can
dynamically reveal how elites for each class come from different, often unrelated
classes during the course of evolution.
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Fig. 6: Genome complexity over the course of 10 QD runs for each variant. CPPN
node counts are plotted on the left and DSP graph node counts can be seen in
the plot on the right (a flat line for the CPPN-only variant indicates that the
DSP graph is not evolved.

3.5 Abandoning Diversity

Growth of genome complexity seems to have stayed within reasonable limits,
even when CPPNs were left alone to the task of performing against the clas-
sifier (fig. 6). An exception to this is when we experimented with abandoning
diversity and adopting single objectives. Though the benefit of diversity has
been demonstrated [28,26], we investigated how a similar experiment fares in
the sound domain. To that end, we selected 10 classes5 as single objectives of
separate runs and compared the performance and genome complexity with the
performance from the QD runs on those same classes.

Interestingly, although the performance in single objective runs is higher
on average than in multi-class runs, as shown in the first plot in figure 7, the
difference is accompanied by a higher level of deviation and much higher genome
complexity. The second and third plots in figure 7 indicate that the CPPN
and DSP node counts in genomes from single objective runs are significantly
higher than those of genomes from the same set of classes in QD runs. The
computational effort required for the complex genomes evolved during the single
class runs limited our iteration count to 50 thousand, 1/6th of the iterations
performed for the baseline QD runs. The unexpected result of higher performance
from the single-class runs may be attributed to the narrow set of chosen classes;
this experiment could benefit from further investigation.

3.6 Temporal Pattern Revelation and Classifier Characteristics

Although half a second sounds were the most prevalent renditions of successful
individuals in our manual parameters search (section 2), comparing sets of runs
5 Single-class runs were performed on the classes Aircraft, Banjo, Beatboxing, Boom,

Choir, Dubstep, Fusillade, Mandolin, Synthetic singing and Whistling.
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Fig. 7: The first plot shows performance scores from single-objective vs. multi-
objective QD runs, averaged from a set of randomly selected classes. The second
and third plots show how genome complexity developes during single- and multi-
objective QD runs, in terms of CPPN and DSP graph node counts.

with two large variations in the duration of the evaluated phenotypes was in-
teresting. We chose to compare runs evaluating half a second renditions of the
evolved genomes with a set of runs evaluating ten-second renditions. One mo-
tivation for the choice of the longer duration, is that "YAMNet is trained on
1,574,587 10-second YouTube soundtrack excerpts from within ... AudioSet"6.
While CPPN-only runs achieved less overall confidence when rendering 0.5s
sounds for evaluation by the classifier, as can be seen on the left of figure 2, we
hypothesised that allowing the classifier to sample in more detail the patterns
developed by the CPPNs, when processing more frames over a longer duration,
would result in higher confidence. The opposite turned out to be the case, where
CPPN-only runs, rendering 10s sounds for evaluation achieved a lower QD score
than corresponding runs rendering 0.5s sounds. Perhaps the lack of DSP becomes
more significant in the evaluation of longer duration sounds. Duration has little
effect when DSP graphs evolve alongside the CPPNs, as the right plot in figure
2 shows.

3.7 Access to Sound Objects and their Application

We have facilitated open access to the generated artifacts through different
means. Those include an evolution runs explorer7, depicted in figure 8a. Fi-
nal elites from all runs have also been rendered to (128563) WAV files, which
have been included in the accompanying dataset [15]. The sound objects in the
pre-rendered files reflect the render-settings used to evaluate the corresponding
genome that became an elite. The online explorer7 provides greater flexibility as
it dynamically renders sounds with the default settings, but the interface also
enables users to modify these settings. This modification can potentially reveal
other intriguing sonic behaviors from the same genome.

6 YAMNet release announcement:
https://groups.google.com/g/audioset-users/c/U71MxTdHqkU

7 Evolution runs explorer: https://synth.is/exploring-evoruns

https://groups.google.com/g/audioset-users/c/U71MxTdHqkU
https://synth.is/exploring-evoruns
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As part of our investigation into the applicability of the discovered artefacts
for creating other art, we loaded subsets of them into the experimental sampler
AudioStellar [8] and used that software to drive evolutionary sequences through
the phenotypes. A playlist of live-stream recordings showcasing evolutionary
sequences using sounds discovered by QD runs is accessible online8. These com-
positions are largely automated, with human input limited to initial settings
like evolutionary sequencing rates and fundamental sound effects. Nonetheless,
they demonstrate the potential of the discovered sound objects to inspire cre-
ative endeavors. It is thought-provoking to consider if a human, given the same
dataset, could craft more aesthetically pleasing arrangements with these sonic
artefacts. We encourage the reader to obtain a copy of the files and engage in
such experimentation [15].

(a) (b)

Fig. 8: (8a) Evolution runs explorer, where it is possible to scrub through evo-
lution runs, their classes and generations. The sound properties duration, pitch
and velocity can be changed and favourites can be collected. (8b) Live streams
(recorded) of automated, evolutionary sequences through sounds rendered from
the evolutionary runs discussed in this paper, as one way of experiencing and
qualitatively evaluating the generated artefacts. The sequencing is peformed by
the experimental sampler AudioStellar.

4 Conclusion and Future Work

Applying the combination of a diversity-promoting algorithm with selection pres-
sure from a classifier reward signal to the search for sounds has been demon-
strated to be a viable approach by the results discussed in this paper. Fur-
8 Playlist with evolutionary sequences through sounds discovered by QD runs:

https://youtube.com/playlist?list=PLSYAaR-xYhEXk0czfHYKJSWmZ8vG35xEN

https://youtube.com/playlist?list=PLSYAaR-xYhEXk0czfHYKJSWmZ8vG35xEN
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thermore, the distinct approach to sound synthesis employed in this work has
achieved high confidence from a DNN based classifier in most classes. High-
scoring sounds are, in many cases, not the most realistic representatives of their
class, especially when considering non-musical instrument classes, which can be
attributed to how DNNs are easily fooled [27]. Other recently proposed classifi-
cation approaches may be more robust and could be worth investigating [11,13],
but classification robustness may not be the most sought-after quality in a cre-
ative system. With a focus on the diversity-promoting attribute of the selection
pressure applied in this investigation, the diverse and innovative sound objects
generated suggest that further explorations may be based on this system. The
intent would be to broaden the range of potential discoveries within the sonic
domain.

Adopting YAMNet as a classifier for sounds, to provide selection pressure
for a QD algorithm, was a step towards investigating a simple version of the
Innovation Engine algorithm in the domain of sounds. Further explorations may
include expanding the behaviour space to search beyond predefined classes. This
can be done by combining the feature extraction ability of a DNN, such as the
one employed in this work, with dimensionality reduction (DR), as has been
done in the visual domain in [22]. Extracting features with Variational Auto En-
coders (VAEs) [17], and applying a clustering algorithm in the resulting latent
space to define niches, as stepping stones during QD search, is another approach
[23] worth exploring further in the domain of sounds. While VAEs require a
training set, limiting the behaviour space to explore, periodically retraining a
DR algorithm on discovered sound objects could enable autonomous and unsu-
pervised discovery of the space of sounds which the generative system is able to
render, without prior training, as proposed in [2,12]. Human intuition can also
be leveraged to derive semantically meaningful diversity in the search space, as
studied in [6], which can be especially important when generating sonic material
leading to interesting discoveries according to individual aesthetics.

In the broadest sense, the concept of instruments has evolved from being a
mere means to an end to a starting point for a journey into the unknown [21,
p. 49]. The evolutionary system explored here is not intended as an instrument
for serving requests from preconceived ideas but rather as a tool for discovering
interesting sound objects that can steer the creative journey. The sound artefacts
generated by our system, as discussed in this paper, are intended to facilitate or
inspire the creation of further sonic art. This is different from the visual artefacts
produced by many generative systems, which are often seen as standalone pieces
without further utility. Instead of a top-down approach—where the end goals and
characteristics of the desired sound are pre-defined—our method encourages a
bottom-up process of exploration. This reflects the evolutionary path of human
development, where cognitive skills have been shaped by the very tools that
humans have uncovered. This echoes the saying, “the tool writes the toolmaker as
much as the toolmaker writes the tool” ([4] as cited in [21, p. 5]). An instrument
that promotes such exploratory discovery can enable us to continue on our path
of evolution by developing human abilities through technology.
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