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ABSTRACT 

We present a proof of concept by using the mobile appli-

cation MusicLab to measure motion during a livestreamed 

concert and examining its relation to musical features. 

With the MusicLab App, participants’ own smartphones’ 
inertial measurement unit (IMU) sensors can be leveraged 

to record their motion and their subjective experiences col-

lected through survey responses. The MusicLab Lock-

down Rave was an Algorave (live-coded dance music) 

livestreamed concert featuring prolific performers Renick 

Bell and Khoparzi. They livestreamed for an international 

audience who wore their smartphones with the MusicLab 

App while they listened/danced to the performances. From 

their acceleration, we computed quantity of motion and 

compared it to musical features that have previously been 

associated with music-related motion, namely pulse clarity 

and low and high spectral flux. By encountering chal-

lenges and implementing improvements, the MusicLab 

App has become a useful tool for researching music-re-

lated motion. 

1. INTRODUCTION 

Virtual concert popularity increased as a result of the 

COVID-19 pandemic as musicians adapted to the social 

distancing requirements, and they livestreamed or rec-

orded their performances for their audiences. However, 

how did this impact people’s movement to music? It is 
generally known that music makes us move. Certain gen-

res such as dance music make us move more even when 

we try to stand still [1]. Musical features, such as the 

“drop” in electronic dance music [2], or pulse clarity and 

low frequency spectral flux in popular music [3], evoke 

more movement from listeners. Furthermore, personal 

characteristics such as emotion [4], personality [5]–[7], 

and fan-status [8], and environmental factors such as social 

context [7] and liveness [8] influence music-related mo-

tion. 

Movement is an important component of engage-

ment with music because it not only influences the way 

that we enjoy music [9], but also the way that music is per-

ceived [10]. While conventional music cognition may 

consider action and perception as distinct, research from 

neuroscience, psychology and behaviour indicate that per-

ception and action are tightly linked. For example, when 

participants moved to a rhythm with an ambiguous meter 

every two or three beats, they perceived the meter as being 

duple or triple, respectively [11]. Movement can assist 

with musical timing perception [12]. Even when partici-

pants are instructed to simply imagine accented beats, this 

imagined meter is encoded in their brain signals as it would 

be if they had really heard the meter [13]. Embodied music 

cognition unites action and perception in a framework that 

situates the body at the centre of musical interaction [14], 

[15].  

Another important component of musical experi-

ence is its social nature. Music is a social phenomenon be-

cause performing and listening typically occur in the pres-

ence of others [16]. Even solitary music listening can be 

considered social because there is an imagined presence of 

the musicians. A concert is typically a very social experi-

ence in which artists and audience share time and space. A 

virtual concert may be viewed as a livestream (shared 

time) or pre-recorded. Livestreamed concerts are unique 

social contexts where audience members may be listening 

physically alone, but interacting online with other audi-

ence members and experiencing the concert at the same 

time. People may move differently depending on whether 

they are with others (e.g. move more as they dancing to-

gether or move less to fit in with social norms), or if they 

are alone (e.g. move more due to shyness or move less be-

cause they don’t have others to communicate with). Em-

bodied music cognition can support research into the social 

elements of music cognition as long as the social nature of 
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Figure 1: The MusicLab App is a mobile application that 

can be installed on participants’ own smartphones. 
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music is also considered when designing and interpreting 

research findings [17].  

Motion can be measured with a variety of tools 

ranging in features including cost, portability, and preci-

sion. Optical motion capture systems record motion in 3 

dimensions using cameras that emit and capture infrared 

light from reflective markers attached to participants. They 

are costly and often require a dedicated lab space, however 

the data has very high precision [18]. Video can measure 

motion for relatively low cost and with excellent portabil-

ity, however it lacks the high-precision offered by the 

state-of-the art optical motion capture systems. Inertial 

measurement unit (IMU) sensors consist of an accelerom-

eter, gyroscope, and magnetometer which measure accel-

eration, orientation, and geolocation, respectively. They 

are portable (present in most smartphones and can also be 

purchased separately) and are low-cost. Position measured 

from geolocation is low precision compared to video and 

optical motion capture systems, however IMU sensors 

measure acceleration at a high precision. Data privacy con-

cerns are greater with video, audio, and motion capture 

data as IMU sensors do not record pictures of faces. None-

theless, geolocation could reveal a participant’s identity 

which is why there are several protocols for obscuring lo-

cation data prior to publication [19]. A comparison be-

tween inertial sensors, video, and optical motion capture in 

a single group dance experiment highlighted that each 

measurement technique has its own strengths and weak-

nesses and combining systems is helpful for understanding 

motion [20].  

The MusicLab App is a smartphone application 

available for both Android and Apple operating systems 

that collects motion from participants’ own smartphone 
IMU sensors. The application can also collect survey re-

sponses through a connection with the University of Oslo’s 
webform system. In accordance with current privacy reg-

ulations (specifically, the GDPR), both motion and survey 

responses are stored in secure servers at the University of 

Oslo (using the Nettskjema service). The app’s source 

code is freely available and is in continuous development1 

. It was developed to be used in conjunction with Musi-

cLab events, which feature a combination of a musical per-

formance, a research component, a panel discussion, and 

“DJ”ing in the form of “Data Jockeying”, in which a re-

searcher demonstrates how the data that was collected will 

be analysed. These events aim to embody the principles of 

open science and FAIR data while managing copyright and 

privacy concerns [21].  

In the summer of 2020, live-coding performers 

Renick Bell and Khoparzi livestreamed Algorave (live-

coded dance) music for an international virtual audience2. 

The live-coded music was improvised and varied in pulse 

clarity with some sections being more danceable with a 

clear beat and others having a less clear pulse. Participants 

used the MusicLab App to measure their motion and re-

spond to questionnaires. Motion and musical features were 

extracted and compared to understand their relations in a 

virtual concert. All music, code, and anonymized data was 

 
1 https://github.com/fourMs/MoMoCapture 
2 Watch their performance here: 

https://youtu.be/hJ73IGYawuM 

published under a CC-by 4.0 license and can be accessed 

at the OSF repository3.  The main aim of this study was to 

provide a proof of concept for using the MusicLab App at 

a livestreamed concert. 

2. METHODS 

Participants were recruited and the concert was promoted 

through targeted Facebook advertising and performers’ so-
cial networks. 

2.1 Technical Set-up 

The event host was situated in Finland so she 

joined a Zoom video call that was livestreamed into 

YouTube by the first author in Norway via Open Broad-

caster Software (OBS). The YouTube stream key was sent 

to the first performer who livestreamed from Japan and 

then to the second performer who livestreamed from India. 

After the performances, the performers and researchers 

gathered on Zoom for a panel discussion. Following the 

panel discussion, a preliminary data analysis was live-

coded to reveal to the audience how their data can be used 

(code: https://github.com/fourMs/MusicLab5).  

2.2 Participant Instructions 

Participants were instructed to download the MusicLab 

app provided in links in the video description. Participants 

provided consent in the MusicLab app in accordance with 

the Declaration of Helsinki, 2013. The Norwegian Centre 

for Research Data approved the study (741882).  

Moderators provided technical support by re-

sponding to questions in the YouTube live chat. Partici-

pants were encouraged to place their phones on their upper 

bodies (such as in a shirt chest pocket) and to stand for the 

duration of the concert. They were told to dance if they felt 

the desire to do so.  

Before the concert, participants responded to a 

survey in the MusicLab App that collected demographic 

information (age, gender, nationality), musical infor-

mation (musician status, experience with Algorave and 

livestreams, fan-status), sensorimotor and social compo-

nents of the Barcelona Musical Reward Questionnaire  

[22], the ten-item personality inventory [23], and the em-

pathic concern and fantasy subscales of the interpersonal 

reactivity index [24]. After each performance they re-

sponded to questions on the performance (its danceability, 

familiarity, enjoyment, audio and video quality), motion 

(phone location, amount of their own motion to the beat 

and the performer’s motion to the beat), social experience 
(connectedness to the performer and other audience mem-

bers, perceived performer interaction with the audience, 

and whether there was anyone watching the performance 

with them), and their personal state (level of attention and 

amount of standing or sitting). 

3 OSF Repository DOI: 10.17605/OSF.IO/7J2GA 
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2.3 Alignment  

To enable aligning the motion signals with the music, par-

ticipants were instructed to begin recording while their 

phone was on a flat surface and to shake their phones twice 

when they heard the first sound from each performer. Pre-

liminary testing indicated that this shake would be easily 

identifiable in the motion signal.  

The accelerometer data was visually inspected 

during the two minutes that followed the start of the first 

sound from each performer. The first indication of a shake 

was presumed to be the shake. (There were a few partici-

pants that had several shake-like features in close proxim-

ity to the start of the song.) Since participants picked up 

their phones and then shook them at the first sound they 

heard, the initiation of the shake was manually selected as 

the start of the performance. Performance duration was 

used to demarcate the end of the performance.  

2.4 Motion Features 

Acceleration had average sampling rates near 60 Hz. How-

ever, this was variable between devices and also within 

some devices.  

 Acceleration signals were low-passed filtered 

with a Butterworth filter with a cutoff at 5 Hz to focus on 

meaningful human motion. The filtered acceleration was 

then downsampled to 10 Hz. The quantity of motion time 

series (QoM) was calculated as in equation (1) for the du-

ration of the performance, taking the absolute change of 

the accelerometer data per sample to represent when par-

ticipants were moving to the music [25]. 𝑸𝒐𝑴 =  √(𝒙𝒕𝟐 − 𝒙𝒕𝟏)𝟐 + (𝒚𝒕𝟐 − 𝒚𝒕𝟏)𝟐 + (𝒛𝒕𝟐 − 𝒛𝒕𝟏)𝟐 

(1) 

The resulting QoM data was smoothed using a Savitzky-

Golay filter (order: 1, window: 299).  

2.5 Musical Features 

Musical recordings were trimmed in REAPER to remove 

silence from the beginning and end. Musical features were 

extracted using the MIRtoolbox for MATLAB (2019) 

[26]. We chose to analyze only musical features that have 

previously been related with motion: pulse clarity, and low 

and high-frequency spectral flux [3], [27], [28]. Pulse clar-

ity estimates how clear the beat of the music is [30], and 

was computed using frame decomposition with the default 

values for window length (5 s) and hop length (500 ms). 

Spectral flux quantifies the amount that the frequency 

spectrum of a signal changes over time. The sub-band flux 

was computed by splitting it into 10 bands of 1 octave 

each, and using the frame decomposition method as in 

Alluri and Toiviainen comparing consecutive frames with 

a window length of 25 ms half overlapping (i.e. hop length 

of 12.5 ms) [30].  Low-frequency spectral flux has previ-

ously been related to greater speed of head movement [27] 

and more entrainment to the beat and bar levels of the 

musical rhythms [3]. In accordance with previous litera-

ture, low-frequency spectral flux was defined by the fre-

quency ranges 50–100 Hz (sub-band no. 2; [27]) and 100–
200 Hz (sub-band no. 3; [28]). We chose to examine both 

sub-bands of low-frequency spectral flux to ensure we cap-

tured any existing relations between these musical features 

and the motion. High-frequency spectral flux was defined 

as the range 6400–12800 Hz (sub-band no. 9) and has pre-

viously been related to greater speed of head and hand 

movement and amount of movement [27]. This sub-band 

flux represents rhythmic information in sounds resembling 

cymbals and hi-hats.  

2.6 Analysis 

QoM and musical features were compared using Spearman 

correlations. To compare these measures, both time series 

were resampled to 2 Hz. Time series were trimmed to re-

move the first 30-seconds. Spearman correlations were 

conducted for each point in the time series. Several partic-

ipants had data loss events and rather than filling these mo-

tion gaps when resampling, any gaps in the original signal 

that were greater than 1 second were removed from the 

analysis.  

3. RESULTS 

3.1 Participants 

Due to issues with the versions of the app at the time, there 

were several data loss events and challenges, especially 

with the Apple version of the application. In particular, 

Apple does not permit background recording, and there-

fore there are gaps in the data if the screen turns off or if 

the user navigates away from the MusicLab App. Certain 

Android phones also have battery optimization procedures 

that prevent background recording unless an application is 

given permission.  

Figure 2: Geolocation data was collected from 14 partici-

pants 

There were 7 participants with accelerometer data 

during Renick Bell’s performance. Exclusion criteria in-

cluded alignment issues, unrealistic human motion (com-

plete stillness), and other data issues. One of the partici-

pants began recording after the start of the performance 

therefore a shake was not measured within an appropriate 

timeframe. Another participant had a shake that was much 

later than the other participants. Since this makes the 
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alignment questionable, we excluded them for this analy-

sis. Therefore, the sample size of Renick Bell’s audience 
is n = 5 for this analysis. Of these participants, n = 4 filled 

the pre-concert survey and the post-performance survey 

for Renick. Due to the small sample sizes, this paper 

should be interpreted as a proof of concept and no conclu-

sions on the relation between motion and musical features 

can be drawn. 

There were 7 participants with accelerometer data 

during Khoparzi’s performance. One of the participants 
had a sampling frequency of 9 Hz on average, which is 

much lower than the other participants and it appeared as 

though the phone was static as if it wasn’t secured to a 

body, therefore this participant was excluded. Another par-

ticipant had three shakes in very close proximity. Since it 

was challenging to guarantee proper alignment, this partic-

ipant was excluded. Another participant had only 4 

minutes of data. Therefore, the final sample size of 

Khoparzi’s audience is n = 4 for this analysis. Of these par-
ticipants, all 4 filled the pre-concert survey and the post-

performance survey for Khoparzi. Two participants had 

data during both Renick’s and Khoparzi’s performances. 

3.2 Alignment Method Assessment 

The alignment method could be improved. Due to the na-

ture of the signal, the solution that worked best for identi-

fying the shake was visual inspection. Automating align-

ment could improve the functionality of the MusicLab app, 

especially if there was a larger amount of data.  

3.3 Music-related Motion 

Correlations were conducted on each individual for illus-

trative purposes. Due to the small sample size, results 

should be interpreted with caution and should simply serve 

as a proof of concept. The correlations between quantity of 

motion and audio features are generally very low.  

Renick PC Low Low 2 High 

1 -0.024 0.067 0.034 -0.019 

2 -0.0082 0.013 -0.023 0.049 

3 0.1 0.17 0.13 0.14 

4 -0.031 -0.018 -0.019 -0.026 

5 -0.048 -0.067 -0.055 0.016 

Khoparzi PC Low Low 2 High 

2 0.18 0.042 0.092 0.11 

4 0.098 0.024 0.038 0.13 

6 0.07 0.048 0.066 -0.022 

7 -0.13 -0.12 -0.11 0.097 

Table 1: Correlations between quantity of motion and mu-

sical features  

3.3.1 Pulse Clarity 

In Renick’s audience, one participant demonstrated a pos-

itive correlation between quantity of motion and pulse 

clarity. Interestingly, this participant reported that he en-

joyed the performance more than all other participants 

(level of 6 out of 7; average level of enjoyment of other 

participants: 4), but he did not feel like he was moving to 

the beat (2/7).  

 

Figure 3: Pulse clarity and quantity of motion for each par-

ticipant (1, 2, 3, 4, and 5), during Renick Bell’s perfor-
mance. Note that the y-axis is scaled to 1.5 x the maximum 

QoM trend for each participant and that some QoM peaks 

are cut off by the scaling. This scaling allows visualization 

of the variability within a single participant, but refer to the 

y-axis for the variability between participants. 

  
Figure 4: Pulse clarity and quantity of motion for each par-

ticipant (2, 4, 6, and 7) during Khoparzi’s performance. 
Note that the y-axis is scaled to 1.5 x the maximum QoM 

trend for each participant and that some QoM peaks are cut 

off by the scaling. This scaling allows visualization of the 

variability within a single participant, but refer to the y-

axis for the variability between participants. 
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In Khoparzi’s audience, three participants 
demonstrated a positive correlation between quantity of 

motion and pulse clarity, however one participant had a 

negative correlation. When visually inspecting this partic-

ipant’s motion, it appears that they were very still for most 

of the performance but moved around the middle of the 

performance. Unfortunately, there is no post-performance 

questionnaire for the participant therefore we are unable to 

investigate if this participant could have been sitting in the 

first half of the concert. 

Spectral flux 

 

 
Figure 5: Spectrograms of each audio clip and spectral flux 

in low and high frequency flux bands for Renick and 

Khoparzi’s performances. Note that for spectral flux, the 
y-axis is scaled to each sub-band, so refer to the y-axes for 

the variability between performers.  

In Renick’s audience, two participants demonstrated a pos-
itive correlation between QoM and low frequency spectral 

flux. The participant that showed the positive correlation 

with pulse clarity is the same with the strongest correlation 

in the low frequency sub-band. In the higher low frequency 

sub-band (band no. 3), this same participant has the strong-

est correlation again. For high frequency spectral flux, 

there were two participants with positive correlations, the 

same participant as before and another participant that did 

not show correlations in the low frequency flux.  

In Khoparzi’s audience, one audience member 
showed a negative correlation between QoM and low fre-

quency flux (band no. 2). In the higher low frequency flux, 

two participants demonstrated positive correlations and the 

same participant as before demonstrated a negative corre-

lation.  

Khoparzi had a higher level of pulse clarity than 

Renick. The differences in pulse clarity are also easily 

heard in the audio, where there are more irregular rhythms 

during Renick’s performance. Renick performed with 

more spectral flux in all frequency bands. In addition to the 

performances being quantitatively different, they were 

qualitatively different featuring different timbres rhythmic 

components, and coding/musical styles.  

 

3.4 Shared Location 

Through data exploration, it was observed that two 

individuals (participants 2 and 4) had the same geolocation 

and they indeed reported that they were watching the per-

formance together with another person. They both had mo-

tion data during Khoparzi’s performance therefore we cal-

culated a Pearson correlation between their quantity of mo-

tion (r = .26). The other participants’ quantity of motion 
were much less correlated (r ranging from -.08 to .01). A 

visual inspection of the motion indicated that it may be that 

one of their motion datasets was misaligned because shift-

ing one later by 17 seconds aligned the signals even better 

for a Pearson correlation of r = .43. 

 

 

Figure 5: Two participants watched the concert together 

and showed high correlation between their quantity of mo-

tion. The trends are displayed here normalized for each 

participant.  However, the correlation was improved by 

shifting the data in time which may indicate that the align-

ment method could be improved in future research.  

It appears that the participant indicated in blue may 

have begun recording too late and thus shook their phone 

too late such that the first sound actually happened before 

the participant began recording. This further indicates that 

the alignment method used for this experiment was flawed 

and taking care to ensure that participants are warned well 

Khoparzi 
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in advance of when to begin their motion recording should 

prevent situations like this.  

4. DISCUSSION 

The MusicLab Lockdown Rave concert experiment served 

as a proof of concept showing that remote motion meas-

urement is indeed a useful way of measuring music-in-

duced motion. Accelerometer data collected from the iner-

tial measurement units of participants’ own smartphones 
can be converted into quantity of motion data and subse-

quently compared to musical features, or to other individ-

uals’ movement.  
The analysis presented here indicates two im-

portant components of working with these types of appli-

cations. The alignment method conducted for this experi-

ment proved to be challenging to automate during analysis. 

It is also prone to participant error since it relied on partic-

ipants reacting quickly to a sound. One solution would be 

to simultaneously record audio from the participants’ own 
smartphones. While an audio synchronization might be 

convenient, privacy concerns, technical complications, 

and app distributor constraints render this an untenable 

strategy at this time. 

Through trying to solve this alignment challenge, 

we developed a new strategy in which participants tap on 

their smartphones to a recording of an isochronous beat at 

two distinct tempi. Our testing shows that the tap of a fin-

ger on the phone produces sufficient acceleration to be de-

tected in the signal. However, due to participant errors 

when tapping, such a method still requires some visual in-

spection to ensure that alignment occurs properly.  

Previous research indicated that movement can 

be influenced by musical features including pulse clarity 

and high and low spectral flux, with more flux and pulse 

clarity leading to greater quantity of motion [3].The differ-

ences between the results presented here and the existing 

literature could be attributed to several factors including 

differences in the variability of pulse clarity in the stimuli. 

The live-coded algorave music that was improvised at this 

concert was a different genre than previously explored. 

Each performer used a distinct system for creating their 

music and the differences in sonic texture and rhythmicity 

between them and from music that has typically been ex-

amined in relation to music-induced motion may explain 

the observed differences.  

In previous research participants’ motion was 
measured in a laboratory context which offers more exper-

imental control than measuring motion in participants’ 
homes. Despite experimenter instructions and participants’ 
best intentions, participants may be distracted from their 

task due to various interruptions that occur regularly in 

home life. 

Virtual concerts are also very different experi-

ences than live concerts due to differences in social and 

environmental factors. Due to social distancing guidelines, 

people may be watching virtual concerts alone rather than 

in groups and this would create a different propensity for 

movement. Research suggests that perceiving movement 

activates the same regions of the brain that are involved in 

producing the movement [31]. Therefore, if we are in the 

presence of others and perceiving others’ actions, we may 
be more likely to move as well.  

The social element of music listening, even dur-

ing virtual concerts was shown by comparing two individ-

uals who shared the concert experience together. The sim-

ilarity between their quantity of motion may be indicative 

of similar movements. Given that motor entrainment pro-

motes prosocial benefits [32], even when the entrainment 

occurs in virtual reality [33], it is possible that sharing vir-

tual concert experiences could promote bonding, espe-

cially during times of social distancing. Indeed research 

supports that viewing livestreamed, but not pre-recorded 

virtual concerts promotes social connectedness and allevi-

ates feelings of loneliness [34], [35]. Whether movement 

plays a role in feelings of togetherness at a virtual concert 

remains unexplored, however the MusicLab App is a use-

ful tool for examining movement remotely. 

After the MusicLab Algorave project, develop-

ment on the application and the protocols associated with 

data collection continued based on the issues that arose. 

Rather than a pre- and post-concert survey, now up to 13 

surveys can be administered at the same event. To reduce 

data loss during events, we have implemented a function 

so that data is submitted as 1-minute packages. In new app 

versions, surveys and motion data are also linked more re-

liably. Participants can withdraw their participation di-

rectly in the App. There are still some limitations including 

not being able to record motion in the background on all 

Apple and some Android devices. However, we imple-

mented a screen dimming functionality that reduces screen 

brightness when data is being recorded. This feature will 

not only help prolong battery life, but it will also help make 

screens less disturbing to concertgoers. 

Future applications of the MusicLab App include 

usage at live, hybrid, and virtual musical events, examina-

tion of coordination between audience members, and fur-

ther exploration in different musical and ecologically valid 

contexts. The motion could also undergo more elaborate 

analyses than quantity of motion including periodicity or 

frequency-based analyses.  

As a result of the improvements that were imple-

mented through challenges discovered during the Musi-

cLab Algorave project, the MusicLab App was ready for 

the next project. MusicLab Copenhagen was a large con-

cert in which the Danish String Quartet performed to live 

and livestreaming audiences. There we successfully cap-

tured data from 79 participants in the live audience and 34 

participants in the virtual audience. Adjustable phone 

holders were purchased so that the phones could sit high 

on wearers’ chests, which provided a uniform position for 

recording across the live audience. Surveys were provided 

in the app in both English and Danish for livestreaming 

viewers to choose their preferred language. The MusicLab 

App has already proved itself a formidable tool for meas-

uring motion remotely at virtual concerts and together in a 

live concert hall.  

5. CONCLUSIONS 

The MusicLab App is a mobile application developed to 

measure motion and collect surveys in musical audiences, 

who may be viewing a live concert together, or a virtual 
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concert apart. It leverages the inertial measurement unit 

(IMU) sensor to track acceleration, rotation, and geoloca-

tion. Audience motion and survey responses can effec-

tively be collected and used to understand how participants 

engage with and experience virtual concerts. The Musi-

cLab App has undergone a number of improvements and 

has proved itself as a viable tool in the embodied music 

cognition researcher’s toolkit.  
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