Fast, Accurate, and Robust Pitch Estimation NordicSMC Winter School 2019

March 7, 2019

Jesper Kjær Nielsen jkn@create.aau.dk

Audio Analysis Lab, CREATE Aalborg University, Denmark Website: http://audio.create.aau.dk YouTube: http://tinyurl.com/yd8mo55z

Motivation

Periodic signals

A periodic signal repeats itself after some period τ or, equivalently, with some frequency ω_0 .

- We refer to ω₀ as either the pitch (perceptual) or the fundamental frequency (physical).
- How do we estimate this value from possibly noisy and non-stationary data?

Motivation

Some examples of periodic signals and applications:

- Voiced speech and singing
 - Are people singing on-key?
 - Diagnosis of the Parkinson's disease
- Many musical instruments (e.g., guitar, violin, flute, trumpet, piano)
 - Tuning of instruments
 - Music transcription
- Electrocardiographic (ECG) signals
 - Measure your heart rate or heart rate variability
 - Heart defect diagnosis
- Rotating machines
 - Vibration analysis
 - Rotation speed

Example: RPM estimation from tachometer signal SNR: 40 dB

Example: RPM estimation from tachometer signal

Figure 1: Example tachometer signal with processing parameters labeled.

Figure courtesy of A. Brandt, Noise and vibration analysis: signal analysis and experimental procedures. John Wiley & Sons, 2011.

Example: RPM estimation from tachometer signal SNR: 0 dB

Nonlinear Least Squares Methods

The Nonlinear Least Squares (NLS) Estimator The Harmonic Summation (HS) estimator*

Comparison of Methods

Robustness to noise Time-frequency resolution Summary

Model Improvements

Summary

Nonlinear Least Squares Methods Comparison of Methods Model Improvements Summary

For a periodic signal x(n) with a period $\tau = 2\pi/\omega_0$, we have that

$$x(n) = x(n-\tau) = x(n-2\pi/\omega_0)$$
. (1)

- Unfortunately, τ is unknown so we have to try out different τ's (or ω₀'s) to find one that satisfies the above equation.
- Real-world signals are not perfectly periodic so we might never find one.
- ► Instead, the estimate of *τ* is the value which minimises some objective function.

NEW GROU

Consider the objective function

$$J(a,\tau) = \sum_{n=\tau_{MAX}}^{N-1} |e(n)|^2$$
 (2)

for a segment of data $\{x(n)\}_{n=0}^{N-1}$ where

 $e(n) = x(n) - ax(n-\tau)$, $a > 0 \land \tau \in [\tau_{\text{MIN}}, \tau_{\text{MAX}}]$ (3)

Often referred to as comb-filtering.

$$x(n) \longrightarrow 1 - a e^{-j\omega\tau} \longrightarrow e(n)$$

Correlation-based Methods

SHO NEW GROUTO

ProAG UNIVERSIT

Correlation-based Methods

SHO NEW GROUTO

PIBORG UNIVE

RIGORG UNIVERSIT

Conditioned on τ , the optimal value for *a* is

$$\hat{a}(\tau) = \max\left(\frac{\sum_{n=\tau_{MAX}}^{N-1} x(n)x(n-\tau)}{\sum_{n=\tau_{MAX}}^{N-1} x^2(n-\tau)}, 0\right)$$
(4)

Inserting this into the objective $J(a, \tau)$ yields the estimator

$$\hat{\tau} = \operatorname*{argmax}_{\tau \in [\tau_{\mathsf{MIN}}, \tau_{\mathsf{MAX}}]} \max\left(\phi(\tau), 0\right) \tag{5}$$

where $\phi(\tau) \in [-1, 1]$ is the normalised cross correlation function given by

$$\phi(\tau) = \frac{\sum_{n=\tau_{MAX}}^{N-1} x(n) x(n-\tau)}{\sqrt{\sum_{n=\tau_{MAX}}^{N-1} x^2(n) \sum_{n=\tau_{MAX}}^{N-1} x^2(n-\tau)}}$$
(6)

SHO NEW GROUTO

SHO NEW GROUTO

HONEW GROUND

.... but is anyone actually using the comb filtering method?

- PRAAT: (Boersma, 1993), well over 1000 citations (Google Scholar) Maximises a windowed normalised cross-correlation function
 - RAPT: (Talkin, 1995), nearly 1000 citations (Google Scholar) Maximises a normalised cross-correlation function
 - YIN: (Cheveigné, 2002), nearly 2000 citations (Google Scholar) Minimises the comb filtering error for a = 1
 - Kaldi: (Ghahremani et al., 2014), nearly 150 citations (Google Scholar) Maximises a normalised cross-correlation function

Was that really everything?

No! Four problems with the correlation-based methods:

- 1. is prone to producing subharmonic errors,
- 2. has a sub-optimal time-frequency resolution,
- 3. is not robust to noise, and
- 4. not statistically efficient.

HING NEW GROUNS

Correlation-based Methods Subharmonic error

SHO NEW GROUTO

ProoAG UNIVERSIT

Correlation-based Methods Subharmonic error

Correlation-based Methods

What can we do about these problems?

- Hundreds of published pitch estimators trying to solve these problems using various heuristics.
- ► A fundamental flaw of the comb-filtering principle?

HING NEW GROUNS

Correlation-based Methods

Five minutes active break

Please complete the SMCNordic pitch survey.

- ► Go to http://tinyurl.com/y3ny4n4n
- Fill out the form to the best of your ability

HING NEW GROUTO

Nonlinear Least Squares Methods

The Nonlinear Least Squares (NLS) Estimator The Harmonic Summation (HS) estimator*

Comparison of Methods

Model Improvements

Summary

Nonlinear Least Squares Methods

SHO NEW GROUND

TRADAG UNI

VERSIT

Nonlinear Least Squares Methods

HHO NEW GROUND

TIBORG U

Nonlinear Least Squares Methods

HHO NEW GROUND

TIBORG U

Nonlinear Least Squares Methods

Mathematical Model

The signal model for any periodic signal is

$$s(n) = \sum_{l=1}^{L} h_l(n) = \sum_{l=1}^{L} A_l \cos(\omega_0 ln + \phi_l)$$
(7)

where

- A₁ real amplitude of the *I*th harmonic
- ϕ_I initial phase of the *I*th harmonic
- ω_0 fundamental frequency in radians/sample
 - L the number of harmonics/model order

HING NEW GROUNS

Nonlinear Least Squares Methods

Can we actually use models?

In 1987, G. E. P. Box (a British statistician) wrote

Essentially, all models are wrong, but some are useful.

Nonlinear Least Squares Methods

Can we actually use models?

In 1987, G. E. P. Box (a British statistician) wrote

Essentially, all models are wrong, but some are useful.

- Do NOT think about models as exact physical representations of a phenomenon in the real world.
- Instead, think of models as an explicit way of stating your assumptions about the phenomenon.
- Models can be critisised (and improved on) since the assumptions are explicit.
- Models allow us to assert under which conditions a problem is optimally solved.

Nonlinear Least Squares Methods Method of Least Squares

Instead of considering the comb-filtering error

$$e(n) = x(n) - ax(n-\tau) , \qquad (8)$$

we consider the least-squares error

$$e(n) = x(n) - s(n, \theta)$$
, $n = 0, 1, ..., N - 1$ (9)

where $s(n, \theta)$ is a harmonic model given by

$$s(n,\theta) = \sum_{l=1}^{L} A_l \cos(l\omega_0 n + \phi_l)$$
(10)
$$\theta = \begin{bmatrix} A_1 & \cdots & A_L & \phi_1 & \cdots & \phi_L & \omega_0 \end{bmatrix}^T$$
(11)

HON NEW GROUND

Nonlinear Least Squares Methods Method of Least Squares

The method of least-squares

- The vector θ contains the model parameters
- The signal $s(n, \theta)$ is produced by the signal model
- ► The signal *x*(*n*) is the observed data
- ► The error consists of noise and model inaccuracies

Nonlinear Least Squares Methods Method of Least Squares

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} J(\theta)$$
 (12)

where $J(\theta)$ measures the squared error

$$J(\theta) = \sum_{n=0}^{N-1} |e(n)|^2 = \sum_{n=0}^{N-1} |x(n) - s(n,\theta)|^2$$
(13)

- Solving this problem naïvely is very computationally demanding since the fundamental frequency is a nonlinear parameter.
- Asymptotically, however, an efficient solution exists which for historical reasons is called harmonic summation (Noll, 1969).

HING NEW GROU

Nonlinear Least Squares Methods The Nonlinear Least Squares (NLS) Estimator The Harmonic Summation (HS) estimator* Comparison of Methods Model Improvements

Summary

The NLS Estimator

Areone UNIVERSIT

The harmonic model

$$x(n) = \sum_{l=1}^{L} \left[a_l \cos(l\omega_0 n) - b_l \sin(l\omega_0 n) \right] + e(n)$$
(14)

for $n = n_0, n_0 + 1, ..., n_0 + N - 1$ can be written as

$$\boldsymbol{x} = \boldsymbol{Z}_L(\omega_0)\boldsymbol{\alpha}_L + \boldsymbol{e} \tag{15}$$

where

$$\begin{aligned} \boldsymbol{Z}_{L}(\omega) &= \begin{bmatrix} \boldsymbol{c}(\omega) & \boldsymbol{c}(2\omega) & \cdots & \boldsymbol{c}(L\omega) & \boldsymbol{s}(\omega) & \boldsymbol{s}(2\omega) & \cdots & \boldsymbol{s}(L\omega) \end{bmatrix} \\ \boldsymbol{c}(\omega) &= \begin{bmatrix} \cos(\omega n_{0}) & \cdots & \cos(\omega(n_{0}+N-1)) \end{bmatrix}^{T} \\ \boldsymbol{s}(\omega) &= \begin{bmatrix} \sin(\omega n_{0}) & \cdots & \sin(\omega(n_{0}+N-1)) \end{bmatrix}^{T} \\ \boldsymbol{\alpha}_{l} &= \begin{bmatrix} \boldsymbol{a}_{L}^{T} & -\boldsymbol{b}_{L}^{T} \end{bmatrix}^{T}, \ \boldsymbol{a}_{L} &= \begin{bmatrix} a_{1} & \cdots & a_{L} \end{bmatrix}^{T}, \ \boldsymbol{b}_{L} &= \begin{bmatrix} b_{1} & \cdots & b_{L} \end{bmatrix}^{T} \end{aligned}$$
The NLS Estimator

THORE UNIVERSIT

The least squares error is

$$\sum_{n=0}^{N-1} \boldsymbol{e}^{2}(n) = \boldsymbol{e}^{T} \boldsymbol{e} = \left[\boldsymbol{x} - \boldsymbol{Z}_{L}(\omega_{0})\alpha_{L}\right]^{T} \left[\boldsymbol{x} - \boldsymbol{Z}_{L}(\omega_{0})\alpha_{L}\right]$$
(16)

Conditioned on ω_0 , the estimate of α_L is

$$\hat{\alpha}_{L}(\omega_{0}) = \left[\boldsymbol{Z}_{L}^{T}(\omega_{0})\boldsymbol{Z}_{L}(\omega_{0})\right]^{-1}\boldsymbol{Z}_{L}^{T}(\omega_{0})\boldsymbol{x}$$
(17)

Inserting this back into the objective yields the NLS estimator

$$\hat{\omega}_{0,L} = \operatorname*{argmax}_{\omega_0 \in [\omega_{\text{MIN}}, \omega_{\text{MAX}}]} \boldsymbol{x}^T \boldsymbol{Z}_L(\omega_0) \left[\boldsymbol{Z}_L^T(\omega_0) \boldsymbol{Z}_L(\omega_0) \right]^{-1} \boldsymbol{Z}_L^T(\omega_0) \boldsymbol{x}$$
(18)

The NLS estimator has been known since (Quinn and Thomson, 1991), but is costly to compute.

The NLS Estimator

1. Compute NLS cost function

$$\hat{\omega}_{0,L} = \operatorname*{argmax}_{\omega_0 \in [\omega_{\mathrm{MIN}}, \omega_{\mathrm{MAX}}]} \boldsymbol{x}^T \boldsymbol{Z}_L(\omega_0) \left[\boldsymbol{Z}_L^T(\omega_0) \boldsymbol{Z}_L(\omega_0) \right]^{-1} \boldsymbol{Z}_L^T(\omega_0) \boldsymbol{x} \quad (19)$$

on an F/L-point uniform grid for all model orders $L \in \{1, ..., L_{MAX}\}.$

- 2. Optionally refine the L_{MAX} grid estimates.
- 3. Do model comparison.

HING NEW GROUTO

The NLS Estimator Fast NLS Algorithm

A MATLAB implementation of the NLS estimator

```
% create an estimator object (the data independent step is computed)
f0Estimator = fastFONIs(nData, maxNoHarmonics, f0Bounds);
% analyse a segment of data
[f0Estimate, estimatedNoHarmonics, estimatedLinParam] = ...
f0Estimator.estimate(data);
```

- ► The algorithm also includes model comparison.
- The algorithm can also be set-up to work for a model with a non-zero DC-value.
- ► A C++-implementation is also available (although not as refined as the MATLAB implementation).
- Can be downloaded from https://github.com/jkjaer/fastF0Nls.

Correlation-based Methods

Nonlinear Least Squares Methods The Nonlinear Least Squares (NLS) Estimator The Harmonic Summation (HS) estimator*

Comparison of Methods

Model Improvements

Summary

The Harmonic Summation (HS) estimator

Harmonic summation (HS) estimator

Asymptotically,

$$\lim_{N\to\infty}\frac{2}{N}\boldsymbol{Z}_{L}^{T}(\omega_{0})\boldsymbol{Z}_{L}(\omega_{0})=\boldsymbol{I}_{L}.$$
(20)

Using this limit as an approximation gives the harmonic summation estimator (NoII, 1969)

$$\hat{\omega}_{0,L} = \operatorname*{argmax}_{\omega_0 \in [\omega_{\mathsf{MIN}}, \omega_{\mathsf{MAX}}]} \boldsymbol{x}^{\mathsf{T}} \boldsymbol{Z}_L(\omega_0) \boldsymbol{Z}_L^{\mathsf{T}}(\omega_0) \boldsymbol{x} = \operatorname*{argmax}_{\omega_0 \in [\omega_{\mathsf{MIN}}, \omega_{\mathsf{MAX}}]} \sum_{l=1}^L |X(\omega_0 l)|^2$$

The HS estimator is also referred to as approximate NLS (aNLS).

AND NEW GRO

Harmonic summation (HS) estimator

Some remarks:

- The HS method works very well, unless the fundamental frequency is low or the maximum harmonic component is close to the Nyquist frequency.
- The HS method can be implemented very efficiently using a single FFT.
- The order of complexity for NLS has recently been decreased to that of HS (Nielsen et al., 2017).

HONEW GROUN

Correlation-based Methods Nonlinear Least Squares Methods

Comparison of Methods

Robustness to noise Time-frequency resolution Summary

Model Improvements

Summary

Comparison of Methods

THONEW GROUTO

What could be evaluated?

- 1. Estimation accuracy
- 2. Robustness to noise
- 3. Time-frequency resolution
- 4. Computational complexity

Correlation-based Methods Nonlinear Least Squares Methods

Comparison of Methods Robustness to noise

Time-frequency resolution Summary

Model Improvements

Summary

Comparison of Methods Robustness to noise

Simulation setup

- Segment size of 25 ms at a sampling frequency of 8000 Hz.
- ► Estimate the pitch from 1000 Monte Carlo runs for every SNR.
- ► In each run, the true pitch is randomly selected from [90, 380] Hz and the true phases are also generated at random.
- ► The true amplitudes are exponentially decreasing.
- ► The true model order is 7.
- ► Each method searches for a pitch in the range [80, 400] Hz.
- The maximum model order in NLS is set to 15.
- ▶ The noise is white and Gaussian.
- ► No pitch tracking used in any method.

Comparison of Methods Robustness to noise

SHO NEW GROUTO

ProoAG UNIVERSIT

Comparison of Methods Robustness to noise

HO NEW GROUND

A Pridore ur

Comparison of Methods Robustness to noise

SHO NEW GROUTO

PLOORG UT

Comparison of Methods Robustness to noise

42/76

Comparison of Methods Robustness to noise

Average computation times in MATLAB Fast NLS: 7.6 ms, Comb filter: 2.4 ms, YIN: 0.7 ms

Comparison of Methods Robustness to noise

Comparison of Methods Robustness to noise

No noise and window size of 25 ms.

HAND NEW GROUND

Comparison of Methods Robustness to noise

THORE UNIVERSIT

20 dB SNR and window size of 25 ms.

Comparison of Methods Robustness to noise

15 dB SNR and window size of 25 ms.

46/76

HAND NEW GROUND

Comparison of Methods Robustness to noise

10 dB SNR and window size of 25 ms.

47/76

HAND NEW GROUND

Comparison of Methods Robustness to noise

5 dB SNR and window size of 25 ms.

HAND NEW GROUND

AORG UN

Comparison of Methods Robustness to noise

0 dB SNR and window size of 25 ms.

AHO NEW GROUND

BOAG UNIVERS

Comparison of Methods Robustness to noise

ALBORG UNIVERSIT

-5 dB SNR and window size of 25 ms.

Comparison of Methods Robustness to noise

-10 dB SNR and window size of 25 ms.

HING NEW GROUTO

PORG UNIVERS

Correlation-based Methods Nonlinear Least Squares Methods

Comparison of Methods

Robustness to noise Time-frequency resolution Summary

Model Improvements

Summary

HUN BROUMS

Simulation setup

- ► SNR of 30 dB at a sampling frequency of 8000 Hz.
- Estimate the pitch from 1000 Monte Carlo runs for every segment time.
- ► In each run, the true pitch is randomly selected from [90, 380] Hz and the true phases are also generated at random.
- ► The true amplitudes are exponentially decreasing.
- ► The true model order is 7.
- ► Each method searches for a pitch in the range [80, 400] Hz.
- ► The maximum model order in NLS is set to 15.
- ▶ The noise is white and Gaussian.
- ► No pitch tracking used in any method.

Comparison of Methods

SHO NEW GROUTO

TI BORG UN

Comparison of Methods

SHO NEW GROUTO

TRIBORG UT

Comparison of Methods

HAND NEW GROUND

".

Comparison of Methods Time-frequency resolution

HAND NEW GROUND

".

Sustained vowel

Window size of 25 ms and no noise.

SHO NEW GROUTO

Pro QUNIVERSI

THOMEW GROUTO

Window size of 20 ms and no noise.

ALDORG UNIVERSIT

Window size of 16 ms and no noise.

Window size of 15 ms and no noise.

SHO NEW GROUTO

Pro ORG UNIVERSI

THORE UNIVERSIT

Window size of 14 ms and no noise.

Window size of 12 ms and no noise.

HHO NEW GROUND

PLOORG UNIVERSI

Window size of 11 ms and no noise.

HHO NEW GROUND

PLO AG UNIVERS

Window size of 10 ms and no noise.

AHO NEW GROUND

PLOAG UNIVERSI

Window size of 9 ms and no noise.

HANNEW GROUND

PORG UNIVERS

Correlation-based Methods Nonlinear Least Squares Methods

Comparison of Methods

Robustness to noise Time-frequency resolution Summary

Model Improvements

Summary

Comparison of Methods

Correlation-based Methods

A periodic signal satisfies that

$$x(n) = x(n-\tau) \tag{21}$$

where $\tau = 2\pi/\omega_0$ is the period.

- + Intuitive and simple
- + Low computational complexity
- + Mature and refined set of methods
- +/- No need to estimate the model order
 - Interpolation needed for fractional delay estimation
 - Poor time-frequency resolution
 - Are sensitive to noise

Comparison of Methods

Parametric Methods Estimate the parameters in

$$\mathbf{x}(n) = \sum_{l=1}^{L} A_l \cos(l\omega_0 n + \phi_l) + \mathbf{e}(n)$$
(22)

+ High estimation accuracy

)

- + Work very well in even noisy conditions
- + Good time-frequency resolution
- +/- The model order has to be estimated
 - Higher computational complexity
 - Early stage methods without fine tuning (yet)
 - Might produce over-optimistic results (e.g., due to non-stationarity)

Correlation-based Methods Nonlinear Least Squares Meth

Comparison of Methods

Model Improvements

Summary

Model Improvements What is wrong with the harmonic model?

The harmonic model So far, we have used the model

$$x(n) = s(n) + e(n) = \sum_{l=1}^{L} A_l \cos(\omega_0 ln + \phi_l) + e(n)$$
(23)

What could be improved?

Noise model Noise is typically not white, but coloured.

Pitch tracking The pitch is typically smoothly evolving between successive frames.

Inharmonic pitch For, e.g., stiff-stringed instruments, the frequencies of the harmonics $\{\omega_l\}$ deviate (slightly) from whole multiples of the pitch ($\omega_l = \omega_0 I \sqrt{1 + Bl^2}$).

Non-stationary pitch Within a segment, the pitch is typically not stationary, but time-varying.

Model Improvements Non-stationary pitch estimation

Non-stationary pitch estimation

- Real-world signals are non-stationary since the fundamental frequency is continuously changing.
- The harmonic model assumes that the fundamental frequency is constant in a segment of data
- We can extend the model of the phase of the /th harmonic component to

$$\theta_l(n) \approx \phi_l + I\omega_0 n + I\beta_0 n^2/2 \tag{24}$$

where β_0 is the fundamental chirp rate.

► We refer to this model as the harmonic chirp model

$$s(n) = \sum_{l=1}^{L} A_l \cos(\frac{I\beta_0 n^2}{2} + I\omega_0 n + \phi_l)$$
(25)

Model Improvements Non-stationary Pitch Estimation

Nonlinear least squares (NLS) objective

$$J_{L}(\omega_{0},\beta_{0}) = \boldsymbol{x}^{T} \boldsymbol{Z}_{L}(\omega_{0},\beta_{0}) \left[\boldsymbol{Z}_{L}^{T}(\omega_{0},\beta_{0}) \boldsymbol{Z}_{L}(\omega_{0},\beta_{0}) \right]^{-1} \boldsymbol{Z}_{L}^{T}(\omega_{0},\beta_{0}) \boldsymbol{x}$$
(26)

Harmonic chirp summation objective:

Model Improvements Non-stationary Pitch Estimation

Window size of 30 ms, 75 % overlap, and no noise

Model Improvements Non-stationary Pitch Estimation

Window size of 30 ms, 75 % overlap, and no noise

Correlation-based Methods Nonlinear Least Squares Methods Comparison of Methods Model Improvements

Summary

- Published correlation-based methods are more mature than published parametric methods in that they tend to include everything (pitch detection, estimation, and tracking) and are less computationally costly.
- However, parametric pitch estimation methods typically outperform correlation-based methods in terms of estimation accuracy, noise robustness, and time-frequency resolution.
- ► The modelling assumptions are explicit in parametric methods.
- Consequently, we can easily extend the model to take more complex phenomena into account.
- Besides NLS, examples of other parametric methods are subspace and filtering methods (Christensen and Jakobsson, 2009).

Resources

- Audio Analysis Lab: https://audio.create.aau.dk/
- Pitch Estimation for Dummies: http://madsgc.blog.aau.dk/resources/
- MATLAB code: https://github.com/jkjaer/fastF0Nls
- ► YouTube videos: http://tinyurl.com/yd8mo55z
- J. K. Nielsen, T. L. Jensen, J. R. Jensen, M. G. Christensen, and S. H. Jensen, "Fast fundamental frequency estimation: Making a statistically efficient estimator computationally efficient," *Elsevier Signal Processing*, vol. 135, pp. 188–197, 2017.
- J. K. Nielsen, M. G. Christensen, and S. H. Jensen,
 "Default Bayesian estimation of the fundamental frequency," IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 3, pp. 598–610, Mar. 2013.
- [3] M. G. Christensen and A. Jakobsson,

Multi-Pitch Estimation,

San Rafael, CA, USA: Morgan & Claypool, 2009.