
Fast, Accurate, and Robust Pitch Estimation
NordicSMC Winter School 2019

March 7, 2019

Jesper Kjær Nielsen
jkn@create.aau.dk

Audio Analysis Lab, CREATE
Aalborg University, Denmark

Website: http://audio.create.aau.dk
YouTube: http://tinyurl.com/yd8mo55z



Jesper Kjær Nielsen | Fast, Accurate, and Robust Pitch Estimation

Motivation
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Periodic signals
A periodic signal repeats itself after some period τ or, equivalently,
with some frequency ω0.

I We refer to ω0 as either the pitch (perceptual) or the fundamental
frequency (physical).

I How do we estimate this value from possibly noisy and
non-stationary data?

1 / 76



Jesper Kjær Nielsen | Fast, Accurate, and Robust Pitch Estimation

Motivation

Some examples of periodic signals and applications:
I Voiced speech and singing

- Are people singing on-key?
- Diagnosis of the Parkinson’s disease

I Many musical instruments (e.g., guitar, violin, flute, trumpet,
piano)

- Tuning of instruments
- Music transcription

I Electrocardiographic (ECG) signals
- Measure your heart rate or heart rate variability
- Heart defect diagnosis

I Rotating machines
- Vibration analysis
- Rotation speed
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Motivation

Example: RPM estimation from tachometer signal
SNR: 40 dB
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Motivation

Example: RPM estimation from tachometer signal

Figure courtesy of A. Brandt, Noise and vibration analysis: signal analysis and experimental
procedures. John Wiley & Sons, 2011.
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Motivation

Example: RPM estimation from tachometer signal
SNR: 0 dB
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Correlation-based Methods
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For a periodic signal x(n) with a period τ = 2π/ω0, we have that

x(n) = x(n − τ) = x(n − 2π/ω0) . (1)

I Unfortunately, τ is unknown so we have to try out different τ ’s (or
ω0’s) to find one that satisfies the above equation.

I Real-world signals are not perfectly periodic so we might never
find one.

I Instead, the estimate of τ is the value which minimises some
objective function.
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Correlation-based Methods

Consider the objective function

J(a, τ) =
N−1∑

n=τMAX

|e(n)|2 (2)

for a segment of data {x(n)}N−1
n=0 where

e(n) = x(n)− ax(n − τ) , a > 0 ∧ τ ∈ [τMIN, τMAX] (3)

Often referred to as comb-filtering.

x(n) 1 − ae−jωτ e(n)

9 / 76



Jesper Kjær Nielsen | Fast, Accurate, and Robust Pitch Estimation

Correlation-based Methods
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Correlation-based Methods
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Correlation-based Methods

Conditioned on τ , the optimal value for a is

â(τ) = max

(∑N−1
n=τMAX

x(n)x(n − τ)∑N−1
n=τMAX

x2(n − τ)
, 0

)
(4)

Inserting this into the objective J(a, τ) yields the estimator

τ̂ = argmax
τ∈[τMIN,τMAX]

max (φ(τ), 0) (5)

where φ(τ) ∈ [−1, 1] is the normalised cross correlation function
given by

φ(τ) =

∑N−1
n=τMAX

x(n)x(n − τ)√∑N−1
n=τMAX

x2(n)
∑N−1

n=τMAX
x2(n − τ)

(6)
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Correlation-based Methods
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Correlation-based Methods
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Correlation-based Methods
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Correlation-based Methods
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Correlation-based Methods
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Correlation-based Methods

.... but is anyone actually using the comb filtering method?
PRAAT: (Boersma, 1993), well over 1000 citations (Google

Scholar)
Maximises a windowed normalised cross-correlation
function

RAPT: (Talkin, 1995), nearly 1000 citations (Google Scholar)
Maximises a normalised cross-correlation function

YIN: (Cheveigné, 2002), nearly 2000 citations (Google
Scholar)
Minimises the comb filtering error for a = 1

Kaldi: (Ghahremani et al., 2014), nearly 150 citations (Google
Scholar)
Maximises a normalised cross-correlation function
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Correlation-based Methods

Was that really everything?
No! Four problems with the correlation-based methods:

1. is prone to producing subharmonic errors,
2. has a sub-optimal time-frequency resolution,
3. is not robust to noise, and
4. not statistically efficient.
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Correlation-based Methods
Subharmonic error
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Correlation-based Methods
Subharmonic error
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Correlation-based Methods

What can we do about these problems?
I Hundreds of published pitch estimators trying to solve these

problems using various heuristics.
I A fundamental flaw of the comb-filtering principle?
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Correlation-based Methods

Five minutes active break
Please complete the SMCNordic pitch survey.

I Go to http://tinyurl.com/y3ny4n4n

I Fill out the form to the best of your ability
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Nonlinear Least Squares Methods
Harmonic Model
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Nonlinear Least Squares Methods
Harmonic Model

Mathematical Model
The signal model for any periodic signal is

s(n) =
L∑

l=1

hl (n) =
L∑

l=1

Al cos(ω0ln + φl ) (7)

where
Al real amplitude of the l th harmonic
φl initial phase of the l th harmonic
ω0 fundamental frequency in radians/sample
L the number of harmonics/model order
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Nonlinear Least Squares Methods
Harmonic Model

Can we actually use models?
In 1987, G. E. P. Box (a British statistician) wrote

Essentially, all models are wrong, but some are useful.

I Do NOT think about models as exact physical representations of
a phenomenon in the real world.

I Instead, think of models as an explicit way of stating your
assumptions about the phenomenon.

I Models can be critisised (and improved on) since the
assumptions are explicit.

I Models allow us to assert under which conditions a problem is
optimally solved .
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Nonlinear Least Squares Methods
Method of Least Squares

Instead of considering the comb-filtering error

e(n) = x(n)− ax(n − τ) , (8)

we consider the least-squares error

e(n) = x(n)− s(n,θ) , n = 0, 1, ... , N − 1 (9)

where s(n,θ) is a harmonic model given by

s(n,θ) =
L∑

l=1

Al cos(lω0n + φl ) (10)

θ =
[
A1 · · · AL φ1 · · · φL ω0

]T (11)
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Nonlinear Least Squares Methods
Method of Least Squares

The method of least-squares

Data
generation Σ e(n)

Signal Model θ

x(n) error

−s(n,θ)

I The vector θ contains the model parameters
I The signal s(n,θ) is produced by the signal model
I The signal x(n) is the observed data
I The error consists of noise and model inaccuracies
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Nonlinear Least Squares Methods
Method of Least Squares

The nonlinear least squares (NLS) method is that of solving

θ̂ = argmin
θ

J(θ) (12)

where J(θ) measures the squared error

J(θ) =
N−1∑
n=0

|e(n)|2 =
N−1∑
n=0

|x(n)− s(n,θ)|2 (13)

I Solving this problem naïvely is very computationally demanding
since the fundamental frequency is a nonlinear parameter.

I Asymptotically, however, an efficient solution exists which for
historical reasons is called harmonic summation (Noll, 1969).
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The NLS Estimator

The harmonic model

x(n) =
L∑

l=1

[
al cos(lω0n)− bl sin(lω0n)

]
+ e(n) (14)

for n = n0, n0 + 1, ... , n0 + N − 1 can be written as

x = Z L(ω0)αL + e (15)

where

Z L(ω) =
[
c(ω) c(2ω) · · · c(Lω) s(ω) s(2ω) · · · s(Lω)

]
c(ω) =

[
cos(ωn0) · · · cos(ω(n0 + N − 1))

]T
s(ω) =

[
sin(ωn0) · · · sin(ω(n0 + N − 1))

]T
αl =

[
aT

L −bT
L

]T
, aL =

[
a1 · · · aL

]T , bL =
[
b1 · · · bL

]T
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The NLS Estimator

The least squares error is

N−1∑
n=0

e2(n) = eT e = [x − Z L(ω0)αL]T [x − Z L(ω0)αL] (16)

Conditioned on ω0, the estimate of αL is

α̂L(ω0) =
[
Z T

L (ω0)Z L(ω0)
]−1

Z T
L (ω0)x (17)

Inserting this back into the objective yields the NLS estimator

ω̂0,L = argmax
ω0∈[ωMIN,ωMAX]

xT Z L(ω0)
[
Z T

L (ω0)Z L(ω0)
]−1

Z T
L (ω0)x (18)

The NLS estimator has been known since (Quinn and Thomson,
1991), but is costly to compute.
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The NLS Estimator
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1. Compute NLS cost function

ω̂0,L = argmax
ω0∈[ωMIN,ωMAX]

xT Z L(ω0)
[
Z T

L (ω0)Z L(ω0)
]−1

Z T
L (ω0)x (19)

on an F/L-point uniform grid for all model orders
L ∈ {1, ... , LMAX}.

2. Optionally refine the LMAX grid estimates.
3. Do model comparison.
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The NLS Estimator
Fast NLS Algorithm

A MATLAB implementation of the NLS estimator
% create an estimator object (the data independent step is computed)
f0Estimator = fastF0Nls(nData, maxNoHarmonics, f0Bounds);
% analyse a segment of data
[f0Estimate, estimatedNoHarmonics, estimatedLinParam] = ...

f0Estimator.estimate(data);

I The algorithm also includes model comparison.
I The algorithm can also be set-up to work for a model with a

non-zero DC-value.
I A C++-implementation is also available (although not as refined

as the MATLAB implementation).
I Can be downloaded from
https://github.com/jkjaer/fastF0Nls.
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The Harmonic Summation (HS) estimator

Harmonic summation (HS) estimator
Asymptotically,

lim
N→∞

2
N

Z T
L (ω0)Z L(ω0) = IL . (20)

Using this limit as an approximation gives the harmonic summation
estimator (Noll, 1969)

ω̂0,L = argmax
ω0∈[ωMIN,ωMAX]

xT Z L(ω0)Z T
L (ω0)x = argmax

ω0∈[ωMIN,ωMAX]

L∑
l=1

|X (ω0l)|2

The HS estimator is also referred to as approximate NLS (aNLS).
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Harmonic summation (HS) estimator
NLS vs. HS

Some remarks:
I The HS method works very well, unless the fundamental

frequency is low or the maximum harmonic component is close
to the Nyquist frequency.

I The HS method can be implemented very efficiently using a
single FFT.

I The order of complexity for NLS has recently been decreased to
that of HS (Nielsen et al., 2017).
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Comparison of Methods

What could be evaluated?
1. Estimation accuracy
2. Robustness to noise
3. Time-frequency resolution
4. Computational complexity
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Comparison of Methods
Robustness to noise

Simulation setup
I Segment size of 25 ms at a sampling frequency of 8000 Hz.
I Estimate the pitch from 1000 Monte Carlo runs for every SNR.
I In each run, the true pitch is randomly selected from [90, 380] Hz

and the true phases are also generated at random.
I The true amplitudes are exponentially decreasing.
I The true model order is 7.
I Each method searches for a pitch in the range [80, 400] Hz.
I The maximum model order in NLS is set to 15.
I The noise is white and Gaussian.
I No pitch tracking used in any method.
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Comparison of Methods
Robustness to noise
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Comparison of Methods
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Comparison of Methods
Robustness to noise
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Comparison of Methods
Robustness to noise
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Comparison of Methods
Robustness to noise

No noise and window size of 25 ms.
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Comparison of Methods
Robustness to noise

20 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

15 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

10 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

5 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

0 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

-5 dB SNR and window size of 25 ms.
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Comparison of Methods
Robustness to noise

-10 dB SNR and window size of 25 ms.
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Comparison of Methods
Time-frequency resolution

Simulation setup
I SNR of 30 dB at a sampling frequency of 8000 Hz.
I Estimate the pitch from 1000 Monte Carlo runs for every

segment time.
I In each run, the true pitch is randomly selected from [90, 380] Hz

and the true phases are also generated at random.
I The true amplitudes are exponentially decreasing.
I The true model order is 7.
I Each method searches for a pitch in the range [80, 400] Hz.
I The maximum model order in NLS is set to 15.
I The noise is white and Gaussian.
I No pitch tracking used in any method.
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Comparison of Methods
Time-frequency resolution
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Comparison of Methods
Time-frequency resolution
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Window size of 25 ms and no noise.
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Comparison of Methods
Time-frequency resolution

Window size of 16 ms and no noise.

58 / 76



Jesper Kjær Nielsen | Fast, Accurate, and Robust Pitch Estimation

Comparison of Methods
Time-frequency resolution

Window size of 15 ms and no noise.
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Window size of 14 ms and no noise.
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Comparison of Methods
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Window size of 12 ms and no noise.
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Window size of 11 ms and no noise.
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Window size of 10 ms and no noise.
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Comparison of Methods
Time-frequency resolution

Window size of 9 ms and no noise.
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Comparison of Methods
Summary

Correlation-based Methods
A periodic signal satisfies that

x(n) = x(n − τ) (21)

where τ = 2π/ω0 is the period.
+ Intuitive and simple
+ Low computational complexity
+ Mature and refined set of methods

+/- No need to estimate the model order
- Interpolation needed for fractional delay estimation
- Poor time-frequency resolution
- Are sensitive to noise
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Comparison of Methods
Summary

Parametric Methods
Estimate the parameters in

x(n) =
L∑

l=1

Al cos(lω0n + φl ) + e(n) (22)

+ High estimation accuracy
+ Work very well in even noisy conditions
+ Good time-frequency resolution

+/- The model order has to be estimated
- Higher computational complexity
- Early stage methods without fine tuning (yet)
- Might produce over-optimistic results (e.g., due to

non-stationarity) 67 / 76
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Model Improvements
What is wrong with the harmonic model?

The harmonic model
So far, we have used the model

x(n) = s(n) + e(n) =
L∑

l=1

Al cos(ω0ln + φl ) + e(n) (23)

What could be improved?
Noise model Noise is typically not white, but coloured.
Pitch tracking The pitch is typically smoothly evolving between

successive frames.
Inharmonic pitch For, e.g., stiff-stringed instruments, the frequencies

of the harmonics {ωl} deviate (slightly) from whole
multiples of the pitch (ωl = ω0l

√
1 + Bl2).

Non-stationary pitch Within a segment, the pitch is typically not
stationary, but time-varying.
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Model Improvements
Non-stationary pitch estimation

Non-stationary pitch estimation
I Real-world signals are non-stationary since the fundamental

frequency is continuously changing.
I The harmonic model assumes that the the fundamental

frequency is constant in a segment of data
I We can extend the model of the phase of the l th harmonic

component to
θl (n) ≈ φl + lω0n + lβ0n2/2 (24)

where β0 is the fundamental chirp rate.
I We refer to this model as the harmonic chirp model

s(n) =
L∑

l=1

Al cos(lβ0n2/2 + lω0n + φl ) (25)

70 / 76



Jesper Kjær Nielsen | Fast, Accurate, and Robust Pitch Estimation

Model Improvements
Non-stationary Pitch Estimation

Nonlinear least squares (NLS) objective

JL(ω0,β0) = xT Z L(ω0,β0)
[
Z T

L (ω0,β0)Z L(ω0,β0)
]−1

Z T
L (ω0,β0)x (26)

Harmonic chirp summation objective:

JL(ω0,β0) = xT Z L(ω0,β0)Z T
L (ω0,β0)x (27)
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Model Improvements
Non-stationary Pitch Estimation

Window size of 30 ms, 75 % overlap, and no noise
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Summary

I Published correlation-based methods are more mature than
published parametric methods in that they tend to include
everything (pitch detection, estimation, and tracking) and are less
computationally costly.

I However, parametric pitch estimation methods typically
outperform correlation-based methods in terms of estimation
accuracy, noise robustness, and time-frequency resolution.

I The modelling assumptions are explicit in parametric methods.
I Consequently, we can easily extend the model to take more

complex phenomena into account.
I Besides NLS, examples of other parametric methods are

subspace and filtering methods (Christensen and Jakobsson,
2009).
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Resources

I Audio Analysis Lab: https://audio.create.aau.dk/
I Pitch Estimation for Dummies:
http://madsgc.blog.aau.dk/resources/

I MATLAB code: https://github.com/jkjaer/fastF0Nls
I YouTube videos: http://tinyurl.com/yd8mo55z
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