Eksamen i EXFAC03-FIL, Exfac03-Filosofivarianten, Høsten 2008 Fredag 12.desember kl. 9.00-13.00 (4 timer)

Ingen hjelpemidler tillatt

Oppgavesettet består av 7 sider

Del 1

Gjør kort rede for hvorfor det i følge Nagel er et spenningsforhold mellom et subjektivt og et objektivt perspektiv på verden.

Del 2

There are four main sections

Part I: Sentential translation

Part II: Predicate translations

Part III: Sentential derivations

Part IV: Predicate derivations

PART I

Translate each of the following statements into the language of sentential logic. Assign letters to each atomic statement; write down what atomic statement each letter stands for. Letters should stand for positively stated sentences, not negatively stated ones; for example, the negative sentence 'I am not hungry' should be symbolized as '~ H' using H to stand for 'I am hungry'. Identify logical connectives.

For example: "Although it is raining I will jog" It is raining.: A I will jogg.: B A & B "not' ('ikke'): ~ "and' ('og'): & "or'/ 'either ... or' ('eller' / 'enten ... eller'): 'v' 'if ... then' ('hvis .. da'): \supset "If and only if' (hvis og bare hvis': \equiv

- 1. I am tired and I don't want to go out.
- 2. Tom and Garry are good friends.
- 3. Tom and Garry are good in logic.
- 4. If I am tired I will stay at home and go to bed.
- 5. It is necessary to have oblig approved in order to take the exam.
- 6. I will graduate this semester only if I pass intro logic.
- 7. Kay will attend the party only if Jay does not.
- 8. If neither Jay nor Kay is home this weekend, we will go to the beach; other wise, we will stay home.
- 9. If I am not feeling well this weekend, I will not go out unless it is warm and sunny.
- 10. If you concentrate only if you are threatened, then you will not pass unless you are threatened provided that concentrating is a necessary condition for passing.

PART II

1. Symbolize the following sentences in PL using the given symbolization key.

UD: {humans} Lxy: x loves y Txy: x is attracted to y Mx: x is a man Wx: x is a women Ax: x is powerful Bx: is beautiful a: Agatha b: Bertram c: Charles

- a. Agatha loves Bertram but she is attracted to Charles.
- b. Agatha loves Bertram and is she is loved by him.
- c. Bertram and Charles are attracted to Agatha but they don't love her.
- d. If Agatha is beautiful then all men are attracted to her.
- e. All women are beautiful.
- f. If it is not the case that all women are beautiful then some women are not beautiful
- g. Men are attracted to beautiful and powerful women.
- *h*. All men and women are beautiful and powerful
- *i*. Men are attracted to beautiful women but don not love powerful ones.

PART III

All derivations in this section are in SD ($\underline{NOT SD+}$). The complete set of rules for derivations is on the last page

1. Choose a) or b)

a) Derive (S V G) & (B v F)

	$S \supset B$ S & M	A A
3.		
4.		

b) Derive (D v S) & ~ N

1. $\sim N$ A 2. $(D \equiv \sim N)$ A 3.

2. Choose a) or b)

a) Derive ~U

1. $(U\&M) \supset S$ A 2. <u>M & ~S A</u> 3. b) Derive (H \supset (K \supset L))

1. $(\underline{K} \vee \underline{G}) \supset (\underline{S} \& \underline{L})$ <u>A</u> 2.

3.

a) Derive $(\sim Q \supset P) \supset (\sim P \supset R)$

1.
$$(\sim P \& Q) \supset R$$
 A
2.

PART IV

All derivations are in PD (<u>NOT in PD+</u>). The complete set of allowed rules is on the last page.

1. Choose a), b) or c)

a) Derive (∀x)(Fx & Gx)

1. $(\forall x)$ Fx & $(\forall x)$ Gx A 2.

- c) Derive $(\forall x)(\forall y)$ Fyx
- 1. $(\forall x)(\forall y)$ Fxy A
- 2.

b) Derive (∃x)(Gx & Hx)

- 1. $(\forall x) (Fx \supset Gx)$ 2. $(\forall x) (Gx \supset Hx)$ 3. Fa
- 4.

2. Choose a) or b)

- a) Derive ($\forall x$) Fx \supset ($\forall x$) Gx
- 1. $(\forall x)(Fx \supset Gx)$ A 2.

- b) Derive $(\forall x)(Fx \supset Hx)$
- 1. $(\forall x)(Fx \supset Gx)$
- 2. $(\forall x)(Gx \supset Hx)$ A
- 3.

3. Choose a) or b)

a) Derive (∃x)(Gx & Hx)

- 1. $(\forall x)(Fx \supset Hx)$ A
- $\begin{array}{ccc} 2. & (\exists x)(Fx \& Gx) & A \\ \end{array}$

3.

b) Derive (∃x)Gx

- 1. $(\exists x)Fx v (\exists x)Gx$ A
- $2. \quad \underline{(\forall x)} \sim Fx \qquad A$

Derivation Rules for SD

Conjunction Introduction &IConjunction Elimination &EPQP & QQ \rightarrow P \rightarrow Q \rightarrow P & Q \rightarrow Q

Disjunction Introduction vI

Р	Q
\rightarrow P v Q	\rightarrow P v Q

Disjunction Elimination vE

 $\begin{array}{c} P \lor Q \\ \underline{P} & \underline{A} \\ R \\ \underline{Q} & \underline{A} \\ R \\ \overrightarrow{R} \\ \overrightarrow{R} \end{array}$

Conditional introduction $\supset E$

 $\frac{P}{Q} \xrightarrow{A} P \supset Q$

 $P \supset Q$ P

Conditional Elimination ⊃I

$$\rightarrow Q$$

Negation Introduction ~I

 $\begin{array}{c} \underline{P} & \underline{A} \\ Q & \\ \neg Q & \\ \overrightarrow{Q} & \\ \neg P & \end{array}$

Negation Elimination ~E

 $\begin{array}{cc} \xrightarrow{\sim P} & A \\ Q \\ \xrightarrow{\sim Q} \\ \rightarrow P \end{array}$

Biconditional Introduction =I

6

Derivation Rules for PD

Universal Introduction $\forall I$

 \rightarrow ($\forall x$) P

Provided

- i) a does not occur in an undischarged premise
- ii) a does not occur in $(\forall x) P$

Universal Elimination $\forall E$

 $\stackrel{(\forall x) P}{\rightarrow P(a/x)}$

Existential introduction $\exists I$

 $\begin{array}{c} P(a/x) \\ \rightarrow (\exists x) \ P \end{array}$

Existential elimination $\exists E$

$$(\exists x) P \\ \frac{P(a/x) \qquad A}{Q} \\ Q$$

Providedi) a does not occur in an undischarged premise

ii) a does not occur in $(\exists x) P$

iii) a does not occur in Q