SPR4106 - Syntax and semantics in formal terms

Lecture II: Functional structure

12 February 2015

What's in an f-structure?

- The functional structure is where LFG models grammatical functions
- Grammatical functions do not correspond one to one to either c-structure or semantics (thematic roles), so they need a separate representation
- The functional structure is modelled in an attribute-value matrix, i.e. a set of attributes with certain values
- The attributes are either grammatical functions (subject, object etc.), or syntactically relevant features such as tense, number, gender etc.
- Three types of values:
- linguistic "atoms" such as plural, singular, present etc.
- new, embedded feature structures
- semantic symbols, "predicators"

Sample f-structure

$\left[\begin{array}{lll}\text { PRED } & \text { 'SEE < SUBJ, OBJ > ' } \\ \text { TENSE } & \text { PRESENT } & \\ \text { SUBJ } & {\left[\begin{array}{ll}\text { PRED } & \text { 'PETER' } \\ \text { NUMBER } & \text { SG }\end{array}\right]} \\ \text { OBJ } & {\left[\begin{array}{ll}\text { PRED } & \text { 'MARY' } \\ \text { NUMBER } & \text { SG }\end{array}\right]}\end{array}\right]$

- The value of PRED is always a semantic symbol
- Syntactic features such as TENSE and NUMBER take atomic values such as PRESENT
- The values of grammatical functions are feature structures

Features

- There is a "received set" of grammatical functions in LFG, but no corresponding received set of features that are not grammatical functions
- The usual suspects are traditional features like TENSE, NUMBER, GENDER, DEF; there are also less typical features like PCASE
- Will vary with the morphological resources of the language, but should not be equated with morphological features
- Morphological features are only present in the f-structure if they are syntactically relevant
- Words can "speak about their environment": contribute features to other f-structures than their own (agreement)

Semantic symbols

- Semantically contentful words are represented with semantic symbols

```
saw 'SEE < SUBJ, OBJ>'
John 'JOHN'
him 'PRO'
rains 'RAIN < > SUBJ'
```

- the semantic symbol includes a representation of the meaning (conventionally in English)
- words that require arguments also list these
- semantic arguments are listed inside angular brackets, non-thematic (purely syntactic) arguments outside
- unique to each instance!

Argument functions

SUBJ subject
OBJ object
OBJ2 second object (NB : sometimes called OBJ_{θ})
OBL_{θ} oblique
COMP complement clause
POSS (certain) arguments of nouns

Non-argument functions

FOCUS focus
TOPIC topic
ADJ adjunct

Classifying grammatical functions

- In stating generalizations it is often useful to refer to certain classifications of GFs
- SUBJ, OBJ and OBJ_{2} are collectively known as core functions or term functions
- Many grammatical process are sensitive to the functional hierarchy
- SUBJ $>$ OBJ $>\mathrm{OBJ}_{2}>\mathrm{OBL}_{\theta}$
- TOPIC, FOCUS and sometimes SUBJ are referred to as grammaticized discourse functions or overlay functions

Subcategorization

- Our VP rule \rightarrow V DP DP PP* (IP|CP) would seem to allow the following sentences (given that all nodes are optional)
(1) I donated a book to the library.
(2) ${ }^{*}$ I donated to the library.
(3) \quad I donated the university a book to the library.
- The c-structures are all well-formed. Instead, the ungrammaticality is accounted for at f-structure

(In)completeness

PRED	'DONATE < SUBJ, OBJ, OBLgoal OBJ > '
SUBJ	["I"]
OBL goal	$\left[\begin{array}{ll}\text { PCASE } & \text { OBLgoal } \\ \text { OBJ } & {[" T H E \text { LIBRARY" }}\end{array}\right]$

(4) ${ }^{*}$ I donated to the library.

- All argument functions specified in the value of the PRED feature must be present in the local f-structure

(In)coherence

$\left[\begin{array}{ll}\text { PRED } & \text { 'DONATE < SUBJ, OBJ, OBL goal OBJ }>' \\ \text { SUBJ } & {[" I "]} \\ \text { OBJ } & {[" A \text { BOOK" }]} \\ \text { OBJ }_{2} & {[\text { "THE UNIVERSITY" }]} \\ \text { OBL goal } & {\left[\begin{array}{ll}\text { PCASE } & \text { OBL goal }^{\prime} \\ \text { OBJ } & {[\text { "THE LIBRARY" }]}\end{array}\right]}\end{array}\right]$
(5) *I donated the university a book to the library.

- All argument functions in an f-structure must be selected by their local PRED

Grammaticality

$\left[\begin{array}{ll}\text { PRED } & \text { 'DONATE <SUBJ, OBJ, OBL goal OBJ }>\text { ' } \\ \text { SUBJ } & {[\text { "I" }]} \\ \text { OBJ } & {[\text { "A BOOK" }]} \\ \text { OBL goal } & {\left[\begin{array}{ll}\text { PCASE } & \text { OBLgoal } \\ \text { OBJ } & {[" T H E ~ L I B R A R Y " ~}\end{array}\right]}\end{array}\right]$

Expletives

- Some lexical items - e.g. expletives (there, it) and idiom chunks (keep the tabs on) - are meaningless; they do not provide a PRED-value
- Some predicates, e.g. rain, require purely syntactic (non-thematic) arguments
- We modify completeness and coherence to account for these

Completeness All argument functions specified in the value of the PRED feature must be present in the local f-structure. All functions that receive a thematic role must have a PRED feature.

Coherence All argument functions in an f-structure must be seleected by their local Pred. Any argument function that has its own PRED feature must be assigned a thematic role

What goes wrong here?

(6) *We rain
$\left[\begin{array}{ll}\text { PRED } & \text { 'Rain }<>\text { SUBJ' } \\ \text { SUbJ } & {\left[\begin{array}{ll}\text { PRED } & \text { 'PRO' } \\ \text { NUMBER } & \text { PLURAL } \\ \text { PERSON } & 1\end{array}\right]}\end{array}\right]$

- Incoherent!

What goes wrong here?

(7) *I donated there to the library

PRED	'DONATE < SUBJ, OBJ, OBL goal OB
SUBJ	$\left[\begin{array}{ll}\text { PRED } & \text { 'PRO' } \\ \text { PERSON } & 1\end{array}\right]$
	NUMBER PL
OBJ	$\left[\begin{array}{ll} \text { PERSON } & 3 \end{array}\right]$
	PCCASE OBL ${ }_{\text {goal }}$
OBL goal	OBJ [$\left[\begin{array}{ll}\text { PRED } & \text { 'LIBRARY' } \\ \text { DEF } & +\end{array}\right]$
	OBJ $\left.\quad \left\lvert\, \begin{array}{ll}\text { DEF } & + \\ \text { PERSON } & 3\end{array}\right.\right]$

Extended coherence

- What about discourse functions and adjuncts?
- There something wrong with these:
- *It that came rained.
- *The man who I saw the woman crossed the street.
- Intuitively, meaningless items cannot be modified, and discourse functions (who) must not "dangle"

Extended coherence

All functions in an f-structure must be incorporated into the semantics. Argument functions are subject to the Coherence condition. Discourse functions must be identified with arguments or adjuncts. Adjuncts must be in f-structures containing PREDS.

Uniqueness

- Every attribute has a single value.
- This falls out of the formal setup of LFG
- So we disallow f-structures with, say, two different tense values or two different objects
- What about adjuncts?

Relating c- and f-structures

(8) *I donated the university a book to the library.

$\left[\begin{array}{ll}\text { PRED } & \text { 'DONATE < SUBJ, OBJ, OBLgoal OBJ }>\text { ' } \\ \text { SUBJ } & {[" I "]} \\ \text { OBJ } & {[\text { "A BOOK" }]} \\ \text { OBJ2 } & {[" T H E \text { UNIVERSITY" }]} \\ \text { OBLgoal } & {\left[\begin{array}{ll}\text { PCASE } & \text { OBLgoal } \\ \text { OBJ } & {[" T H E ~ L I B R A R Y "]}\end{array}\right]}\end{array}\right.$

Relating c- and f-structure

- The c-structure is well-formed by the phrase structure rules and the first f-structure is well-formed by the principles we just saw, and yet something is clearly wrong.
- Informally, the c-structure and the f-structure do not correspond in the required way
- The second, incoherent f-structure is intuitively the correct correspondent to the c-structure
- Intuitively, the f-structure that corresponds to the c-structure is the one that contains all the information in the c-structure (and nothing more)
- Technically, we will say that a c-structure and an f-structure correspond iff the f-structure is the minimal solution to the f -description offered by the c-structure

F-structures as functions

PRED	'DONATE < SUBJ, OBJ, OBLgoal OBJ>'
SUBJ	$f_{2}[" I "]$
OBJ	$f_{3}[\text { "A BOOK"] }$
OBL goal	

- $f_{1}($ SUBJ $)=f_{2}$, or in LFG notation $\left(f_{1}\right.$ SUBJ) $)=f_{2}$
- $\left(f_{1}\right.$ OBJ $)=f_{3},\left(f_{1}\right.$ OBLgoal $)=f_{4},\left(f_{4}\right.$ OBJ $)=f_{5}$
- (f_{1} PRED $)=$ 'donate $<$ SUBJ, OBJ, OBLgoal OBJ $>$ '
- $\left(\mathrm{f}_{4}\right.$ PCASE $)=$ OBL $_{\text {goal }}$

F-descriptions

- Equations such as (f_{1} SUBJ) $=f_{2}$ are known as functional descriptions
- We extracted f-descriptions from the f-structure, but it works the other way around too: we can build an f-structure from the f-description

- $\left(f_{1}\right.$ SUBJ $)=f_{2}$
- $\left(f_{1}\right.$ OBJ $)=f_{3}$
- $\left(f_{1}\right.$ OBL $\left._{\text {goal }}\right)=f_{4}$
- $\left(f_{4}\right.$ OBJ $)=f_{5}$
- $\left(f_{1}\right.$ PRED $)=$ 'donate $<$ SUBJ, OBJ, OBL goal OBJ >'
- $\left(\mathrm{f}_{4}\right.$ PCASE $)=$ OBLgoal

The f-structure contains all and only the information in the f-descriptions

An aside: Identification

- We have several statements about f_{1}, e.g.
- $\left(f_{1}\right.$ SUBJ $)=f_{2}$
- $\left(f_{1}\right.$ OBJ $)=f_{3}$
- We could also state this in the following way:
- $\left(f_{1}\right.$ SUBJ $)=f_{2}$
- $\left(f_{5}\right.$ OBJ $)=f_{3}$
- $f_{1}=f_{5}$
- The minimal solution remains the same, because the labels aren't essential

$$
f_{1}, f_{5}\left[\begin{array}{cc}
\text { SUBJ } & f_{2}[\\
\text { OBJ } & f_{3}[
\end{array}\right]
$$

Unification

- Why would we want to do such a thing?
- Syntactic information can arise in different places in the c-structure
- We want to be able to unify this information in a single f-structure

- The IP node "knows" that John is the subject
- The VP node "knows" that Mary is the object
- The I node "knows" that the tense is future
- The V node "knows" that PRED is 'kiss <SUBJ, OBJ >'
- We want to unify this information

Unification II

- The unification of two f-structures A and B is the f-structure C such that it contains all attribute value-pairs of from A and B
- So we collect all features from both f-structures
- If there are duplicated attribute-value pairs, that is not a problem
- If there are conflicting values for the same attribute, the result will fail uniqueness and hence not be a licit f-structure

Unification III

$\left[\begin{array}{ll}\text { NUMBER } & \mathrm{SG} \\ \text { PERSON } & 3\end{array}\right]+\left[\begin{array}{ll}\text { GENDER } & \text { FEM }\end{array}\right]=\left[\begin{array}{ll}\text { NUMBER } & \text { SG } \\ \text { PERSON } & 3 \\ \text { GENDER } & \text { FEM }\end{array}\right]$
$\left[\begin{array}{ll}\text { NUMBER } & \text { SG } \\ \text { PERSON } & 3 \\ \text { GENDER } & \text { FEM }\end{array}\right]+\left[\begin{array}{ll}\text { GENDER } & \text { FEM }\end{array}\right]=\left[\begin{array}{ll}\text { NUMBER } & \text { SG } \\ \text { PERSON } & 3 \\ \text { GENDER } & \text { FEM }\end{array}\right]$
$\left[\begin{array}{ll}\text { NUMBER } & \mathrm{SG} \\ \text { PERSON } & 3 \\ \text { GENDER } & \text { FEM }\end{array}\right]+\left[\begin{array}{ll}\text { GENDER } & \text { MASC }\end{array}\right]=\left[\begin{array}{ll}\text { NUMBER } & \text { SG } \\ \text { PERSON } & 3 \\ \text { GENDER } & \text { FEM } \\ \text { GENDER } & \text { MASC }\end{array}\right]$
$[$ PRED \quad 'RAIN $<>$ SUBJ' $]+\left[\begin{array}{ll}\text { PRED } & \text { 'RAIN }<>\text { SUBJ' }]= \\ \text { P }\end{array}\right.$ $\left[\begin{array}{ll}\text { PRED } & \text { 'RAIN }<>\text { SUBJ' }{ }_{1} \\ \text { PRED } & \text { 'RAIN }<>\text { SUBJ }^{2}{ }_{2}\end{array}\right]$

Back to the c -/f-structure mapping

- $\left(f_{1}\right.$ SUBJ $)=f_{2}$
- $f_{2}=f_{3}$
- $f_{3}=f_{4},\left(f_{4}\right.$ DEF $)=+$
- $f_{3}=f_{5}$
- $f_{5}=f_{6},\left(f_{6}\right.$ PRED $)={ }^{\prime}$ boy $^{\prime}$
- $f_{1}=f_{7}$
- $f_{7}=f_{8},\left(f_{8}\right.$ TENSE $)=f u t$
- $f_{7}=f_{9}$
- $f_{9}=f_{10},\left(f_{10}\right.$ PRED $)=$ 'kiss $<$ SUBJ, OBJ $>^{\prime}$
- $\left(f_{9}\right.$ OBJ $)=f_{11}$

The minimal solution

$$
\begin{aligned}
& \text { - } f_{7}=f_{8},\left(f_{8} \text { TENSE }\right)=f u t \\
& \text { - } f_{7}=f_{9} \\
& \text { - } f_{9}=f_{10},\left(f_{10} \text { PRED }\right)=\text { 'kiss }< \\
& \text { SUBJ, OBJ }>^{\prime} \\
& \text { - }\left(f_{9} \text { OBJ }\right)=f_{11}
\end{aligned}
$$

The tree revisited

Introducing metavariables

Designators

- \downarrow and \uparrow are metavariables referring to the f-structure of the current node and of the mother of the current node respectively
- We can form complex designators or "paths" through the f-structure
- (\uparrow SUBJ $) \equiv$ my mother's f-structure's subject
- (\uparrow COMP SUBJ \equiv my mother's f-structure's complement's subject
- $\left(\uparrow_{\mathrm{GF}}{ }^{*}\right) \equiv$ an f-structure arbitrarily embedded under my mother's f-structure
- We can go the other way ("outside-in"):
- (SUBJ $\uparrow) \equiv$ the f-structure that my mother is the subject of
- $((\operatorname{SUBJ} \uparrow)$ OBJ $) \equiv$ the object of the f-structure that my mother is the subject of

Agreement

- How can we capture agreement with lexical information?

Agreement

- This one is ungrammatical - how can we capture that?

Prodrop

- This one is grammatical in Italian - how can we capture that?

Annotated phrase structure rules

Functional maximal projections
CP \rightarrow
XP
C'
$(\uparrow$ FOCUS $)=\downarrow \quad \uparrow=\downarrow$
$\mathrm{IP} \quad \rightarrow \quad(\mathrm{DP}|\mathrm{CP}| \mathrm{PP})$
I^{\prime}
$(\uparrow$ SUBJ $)=\downarrow \quad \uparrow=\downarrow$
DP \rightarrow

$$
\begin{array}{cc}
\mathrm{DP} & \mathrm{D}^{\prime} \\
(\uparrow \mathrm{POSS})=\downarrow & \uparrow=\downarrow \\
(\uparrow \mathrm{DEF})=+ & \\
(\downarrow \mathrm{CASE})={ }_{c} \text { GEN } &
\end{array}
$$

Functional single-bar projections

$$
\begin{array}{cccc}
\mathrm{C}^{\prime} & \rightarrow & \mathrm{C} & \mathrm{IP} \\
& & \uparrow=\downarrow & \uparrow=\downarrow \\
\mathrm{I}^{\prime} & \rightarrow & \mathrm{I} & \mathrm{VP} \\
& & \uparrow=\downarrow & \uparrow=\downarrow \\
& & & \\
\mathrm{D}^{\prime} & \rightarrow & \mathrm{D} & \mathrm{NP} \\
& & \uparrow=\downarrow & \uparrow=\downarrow
\end{array}
$$

Lexical phrases

VP	\rightarrow	$\begin{gathered} V \\ \uparrow=\downarrow \end{gathered}$	$\begin{gathered} \text { DP }^{*} \\ (\uparrow \text { OBJ })=\downarrow \downarrow \\ (\uparrow \text { OBJ } 2)=\downarrow \end{gathered}$	$\begin{gathered} \mathrm{PP}^{*} \\ \left(\uparrow \mathrm{oBL}_{\theta}=\downarrow\right) \end{gathered}$	$\begin{gathered} (\mathrm{IP} \mid \mathrm{CP}) \\ (\uparrow \text { cOMP })=\downarrow \end{gathered}$
PP	\rightarrow	$\begin{gathered} \mathrm{P} \\ \uparrow=\downarrow \end{gathered}$	$\begin{gathered} \text { DP } \\ (\uparrow \mathrm{OBJ})=\downarrow \end{gathered}$	$\begin{gathered} \mathrm{PP} \\ \left(\uparrow \mathrm{oBL}_{\theta}=\downarrow\right) \end{gathered}$	$\begin{gathered} \text { IP } \\ (\uparrow \text { COMP })=\downarrow \end{gathered}$
NP	\rightarrow	$\begin{gathered} \mathrm{N} \\ \uparrow=\downarrow \end{gathered}$	$\begin{gathered} \mathrm{PP}^{*} \\ \left(\uparrow \mathrm{oBL}_{\theta}=\downarrow\right) \end{gathered}$	$\begin{gathered} \text { CP } \\ (\uparrow \text { COMP })=\downarrow \end{gathered}$	
AP	\rightarrow	$\begin{gathered} \mathrm{A} \\ \uparrow \stackrel{\rightharpoonup}{=} \end{gathered}$	$\begin{gathered} \mathrm{PP} \\ \left(\uparrow \mathrm{oBL}_{\theta}=\downarrow\right) \end{gathered}$	$\begin{gathered} (\mathrm{IP} \mid \mathrm{CP}) \\ (\uparrow \text { COMP })=\downarrow \end{gathered}$	

Constraining equations

- We have already seen a couple of so-called constraining equations
- PERSON $\neq 3$
- CASE $={ }_{c}$ GEN
- Existential equations are another type
- (\uparrow TENSE) means TENSE should have some value
- $\neg(\uparrow$ TENSE $)$ means tense should have not have any value
- Useful for capturing the selectional restrictions of the complementizers to and that

Exercises: English (adapted from Falk 2001)

(9) The hamsters might sell the gorilla's house to John

the	D	DEF $=+$
hamsters	N	$(\uparrow$ PRED $)=$ 'hamster'
		$(\uparrow$ NUMBER $)=$ PL
might	I	$(\uparrow$ TENSE $)=$ PRES
		$(\uparrow$ MOOD $)=$ POSSIBILITY
		$(\uparrow$ VFORM $)={ }_{c}$ INF
sell	V	$\begin{aligned} & (\uparrow \text { PRED })=\text { 'sell <SUBJ, OBJ, OBL }{ }_{\theta}>\text { ' } \\ & (\uparrow \text { VFORM })=\mathrm{INF} \end{aligned}$
gorilla's	N	$(\uparrow$ PRED $)=$ 'gorilla'
		$(\uparrow$ NUMBER $)=$ SG
		$(\uparrow$ CASE $)=$ GEN
		(POSS \uparrow)
house	N	$(\uparrow$ PRED $)=$ 'house $<$ POSS $>$ '
		$(\uparrow$ NUMBER $)=\mathrm{SG}$
to	P	$(\uparrow$ PRED $)=$ 'to <OBJ>'
John	D	$(\uparrow$ PRED $)=$ 'John'
		$(\uparrow$ NUMBER $)=$ SG

The solution: c-structure

The solution: f-structure

SUBJ	$\left[\begin{array}{ll}\text { DEF } & + \\ \text { PRED } & \text { 'HAMSTER' } \\ \text { NUMBER } & \text { PL }\end{array}\right]$
TENSE	PRES
MOOD	POSSIBILITY
PRED	'SELL < SUBJ, OBJ, OBL ${ }_{\text {goal }}$ >
VFORM	INF
	$\left[\begin{array}{ll}\text { PRED } & \text { HOUSE } \\ \text { DEF } & + \\ \text { NUMBER } & \text { SG }\end{array}\right]$
OBJ	
OBL goal	$\left[\begin{array}{ll}\text { PRED } & \text { 'TO <OBJ }>' \\ \text { OBJ } & {\left[\begin{array}{ll} \\ \text { PRED } & \text { 'JOHN' }\end{array}\right]}\end{array}\right]$

Exercises: Warlpiri (adapted from Bresnan 2001)

(10) Kurdu-jarra-rlu wita-jarra-rlu ka-pala maliki child-dual-ERG small-dual-ERG PRES-DUAL dog-ABS wajilipi-nyi
chase-NONPAST
'The two small children are chasing the dog.'
(11) Kurdu-jarra-rlu ka-pala maliki wajilipi-nyi
child-DUAL-ERG PRES-DUAL dog-ABS chase-NONPAST wita-jarra-rlu
small-DuAL-ERG
'The two small children are chasing the dog.'
(12) Maliki ka-pala kurdu-jarra-rlu wajilipi-nyi dog-abs Pres-dual child-dual-erg chase-nonpast
wita-jarra-rlu
small-DUAL-ERG
'The two small children are chasing the dog.'

Exercises: Warlpiri (adapted from Bresnan 2001)

