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Cross-modality
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Sonic objects and action objects

If musical sound is made up from sonic objects, maybe we could learn
more about how people perceive musical sound by observing their
responses to short sonic objects?

= "Sound-tracing”
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Sound-tracing on a digital tablet

Godgy, Haga, Jensenius (2006): “Exploring music-related gestures by sound-tracing. A preliminary study”, in 2nd ConGAS International

Symposium on Gesture Interfaces for Multimedia Systems, Leeds, UK.
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3D sound-tracing
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Experiment design

Some things to to think about when designing a sound-tracing
experiment...

@ Sounds

e how many?
e what types?
o controlled (e.g. sine tones) or natural?

@ Motion
e How to record?
@ Participants

@ Questionnaire?

+ more....

All depends on what you want to study...

E.g. If the goal is to study differences between experienced musicians and
non-musicians, your subjects should be chosen accordingly.
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3D sound-tracing
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3D sound-tracing
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3D sound-tracing
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3D sound-tracing

Experiment 1 (2009): Experiment 2 (2010):
@ 15 participants (4 female) @ 38 participants (9 female)
@ 10 sounds @ 18 sounds
@ 3 recordings per sound @ 1 recordings per sound
@ 450 recordings in total @ 684 recordings in total
o

Rod used for recording @ Two handles used for recording
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Sounds
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Recordings
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Example 1: Impulsive sound
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Recordings
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Example 4: Engine metaphor
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Data processing
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Visualisations:

Sounds represented by waveform Movement represented by motion
and spectrogram images and motiongram
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Data processing
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Feature Extraction: Time-varying features (examples)

Sound features Movement features
------------ «.._Hand position

Spectral centroid

_"\/_/

Loudness A Absolute velocity

Absolute acceleration

Pitch
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Data processing
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Feature Extraction: Global features (examples)

Sound features Movement features

o Categorical: o Categorical:

o “Ballistic”, "“Sustained”, or e “Ballistic”, “Sustained”, or
“Iterative” “Iterative”

e “Rising” pitch o “Two-handed”

o Calculations: o Calculations:
e Duration e Mean vertical velocity
e Overall dynamic energy o Mean absolute acceleration
o Onset rise time e Mean change in distance

between hands
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Analysis

Methods:

@ Statistical tests
@ Pattern recognition
@ Correlation of time-series

@ Canonical correlation analysis
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Analysis
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Statistical tests

Example experiment:
Ask people to rate the expressivity of some musical performance beteen 1
and 10. Compare the results of “musical experts” to “non-experts”

non-experts | experts
5 6
7 8
8 5
5 5
5 5
2 6
6 5
6 7

mean non-experts: 5.5
mean experts: 5.9
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Statistical tests

Example experiment:
Ask people to rate the expressivity of some musical performance beteen 1
and 10. Compare the results of “musical experts” to “non-experts”

non-experts | experts
5 6
7 8
8 5
5 5
5 5 o T-test
2 6
6 5
6 7

mean non-experts: 5.5
mean experts: 5.9
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Statistical tests

Example experiment:
Ask people to rate the expressivity of some musical performance beteen 1
and 10. Compare the results of “musical experts” to “non-experts”

non-experts | experts
5 6
7 8
8 5
5 5
5 5 o T-test
2 6 @ Anova
6 5
6 7

mean non-experts: 5.5
mean experts: 5.9
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Statistical tests
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Statistical tests
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Statistical tests
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Statistical tests
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The meaning of the p-value
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p: the probability that the two selections stem from the same population

Typical thresholds for p to claim statistical significance: 0.05, 0.01, 0.001

fourMs
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The meaning of the p-value

p: the probability that the two selections stem from the same population
Typical thresholds for p to claim statistical significance: 0.05, 0.01, 0.001
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Analysis
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My results

Motion feature ‘ Comparison ‘ df ‘ t | P

OnsetAcceleration Impulsive vs non-impulsive sounds | 526 | 13.65 | < 0.01
VerticalVelocityMean | Rising vs falling sounds 284 | 18.89 | < 0.01
AbsAccelerationMean | Pitched vs noise-based sounds 179 5.53 | < 0.01
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Analysis

Pattern recognition classifier

Sound 1
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Pattern recognition classifier

Analysis
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Sounds
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Analysis
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Classification results: based on all features

True 1| True2 | True 3 | True 4 | True 5 | True 6 | True 7 | True 8 | True 9 | True 10| Class
Precision

Pred. 1 34 6 1 1 1 0 0 0 0 4 723 %
Pred. 2 9 36 0 0 0 1 0 2 0 0 75.0 %
Pred. 3 0 0 36 2 0 2 0 0 0 0 90.0 %
Pred. 4 0 0 2 32 1 0 1 3 0 0 82.1%
Pred. 5 0 0 1 2 31 6 1 2 1 0 70.5 %
Pred. 6 1 0 3 0 6 32 0 1 2 0 1.1 %
Pred. 7 0 0 0 0 1 0 40 3 0 0 90.9 %
Pred. 8 1 0 0 6 3 1 0 34 0 0 75.6 %
Pred. 9 0 1 0 0 2 2 0 0 36 6 76.6 %
Pred. 10 0 0 0 0 0 0 0 0 6 34 85.0 %
Class 75.6 % | 83.7 % | 83.7 % | 74.4 % | 68.9 % | 72.7 % | 95.2 % | 75.6 % | 80.0 % | 77.3 %

Recall

Overall classification accuracy: 78.6 %
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Classification results: based on only vertical features

True 1| True 2 | True 3 | True 4 | True 5 | True 6 [ True 7 | True 8 | True 9 | True 10| Class
Precision

Pred. 1 7 1 0 0 0 0 1 0 0 4 304 %
Pred. 2 7 5 0 1 0 0 0 0 0 0 385%
Pred. 3 0 0 - 0 2 10 0 1 1 0

Pred. 4 0 2 1 22 6 1 1 3 0 0 61.1%
Pred. 5 0 1 0 3 5 4 0 9 0 0 22.7%
Pred. 6 0 0 3 2 3 2 2 0 0 0 16.7%
Pred. 7 9 5 2 6 2 6 16 3 6 6 262 %
Pred. 8 0 0 0 4 1 0 0 21 0 1 56.8%
Pred. 9 14 15 3 1 12 14 7 6 31 18 25.6%
Pred. 10 8 4 0 4 4 7 15 2 7 15 22.7%
Elnssll 15.6 % | 11.6 % - 51.2% | 11.1 % | 4.6 % | 38.1 % |46.7 % | 68.9 % | 34.1 %

ecal

Overall classification accuracy: 36 %
For only the sounds with changing pitch: 61 %
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Correlation of time-series

Spectral centroid
o
Loudness / Absolute velocity
——_
- \‘ Tt
Pitch | Absolute acceleration M‘L
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How related are the two variables?
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Canonical Correlation

1 Sound Motion
Starting with a sound file

and a correspondin
motion recording.

frequncy (Hz)

| e

2
The sound and the motion
are represented by features
(only two sound features
and two motion features
are used in this example
for thesake of larity).

loudness
- pitch

motion features (normaised)

Sound features (normalisad)

1 time(s) 2 3 o 1 time(s) 2 3
) time (5) time (5)

To see more clearly what
happens, we represent the two
features in a two-dimensional

Look at correlation feature space.
between two sets of

va ri a b | es 4 0 loudness (normalised) 1 0 velocity (normalised) 1
The features are projected
The process s handled by the
canoncorr function in Matlab.

(2. scaled,streched,and rotated)
)
5 “4 15t canonical component O 2 st canonical component 4

&
3

pitch (nomalised)
iand distance (normalised)

b

into a new space spanned by
the canonical components. This

the first canonical components.

2nd canornical component

g
3
8
5
2nd canonical component

time

By plotting the canonical Canonical & (motion)
components on a timeline,

we see that the 1t canonical
components bear similarities
to each other. In this case, the
correlation between the 1st
canonical components is 0.75,
and between the 2nd canonical
components correlation is 0.25.

st
2nd

o 1 time(s) 2 3 o 1 time(s) 2 3
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