kground 3D sound-tracing

iounds

Recordings 0000 Data processin 000

< 口 > < 同 >

Analysis 00000000000000

프 > 프

Analyse av koblinger mellom lyd og bevegelse

Kristian Nymoen fourMs — Music, Mind, Motion, Machines Institutt for Informatikk, UiO

12 februar 2013

Cross-mo	dality				
Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
●000	000		0000	000	000000000000

UiO **University of Oslo**

・ロン ・雪と ・雨と

æ

Background 3D sound-tracing Sounds Recordings Data processing Analysis 0000 000 000 000 000 00000000000 Sonic objects and action objects

If musical sound is made up from sonic objects, maybe we could learn more about how people perceive musical sound by observing their responses to short sonic objects?

 \Rightarrow "Sound-tracing"

Sound-tracing on a digital tablet

Godøy, Haga, Jensenius (2006): "Exploring music-related gestures by sound-tracing. A preliminary study", in 2nd ConGAS International Symposium on Gesture Interfaces for Multimedia Systems, Leeds, UK.

Some things to to think about when designing a sound-tracing experiment...

- Sounds
 - how many?
 - what types?
 - controlled (e.g. sine tones) or natural?
- Motion
 - How to record?
- Participants
- Questionnaire?
- + more....

All depends on what you want to study ...

E.g. If the goal is to study differences between experienced musicians and non-musicians, your subjects should be chosen accordingly.

UiO University of Oslo

ヘロト ヘ戸ト ヘヨト ヘヨト

-

UiO: University of Oslo

Background	3D sound-tracing	Recordings	Data processing	Analysis
0000	000	0000	000	00000000000
3D sou	nd-tracing			

fourMs

Experiment 1 (2009):

- 15 participants (4 female)
- 10 sounds
- 3 recordings per sound
- 450 recordings in total
- Rod used for recording

UiO: University of Oslo

Experiment 2 (2010):

- 38 participants (9 female)
- 18 sounds
- 1 recordings per sound
- 684 recordings in total
- Two handles used for recording

0000	•	0000	000	000000000000000000000000000000000000000
Sounds				

Sound	Pitch	Sp.Centroid	Dyn.Env.	Sound	Pitch	Sp.Centroid	Dyn.Env.
1	Rising	Falling	Non-impulsive ¹	10	Noise	Falling	Non-impulsive ¹
2	Falling	Rising	Non-impulsive ¹	11	Noise	Rising	Non-impulsive ²
3	Falling	Falling	Non-impulsive ¹	12	Noise	Steady	Non-impulsive ²
4	Rising	Rising	Non-impulsive ¹	13	Steady	Rising slightly	Non-impulsive ²
5	Rising	Steady	Non-impulsive ²	14	Steady	Falling slightly	Non-impulsive ²
6	Falling	Steady	Non-impulsive ²	15	Rising	Falling	Impulsive
7	Steady	Falling	Non-impulsive ¹	16	Steady	Steady	Impulsive
8	Steady	Rising	Non-impulsive ¹	17	Noise	Steady	Impulsive
9	Steady	Steady	Non-impulsive ²	18	Noise	Falling	Impulsive

UiO: University of Oslo

문 🛌 문

UiO: University of Oslo

< ∃→

(日)、

3

Example 2	2. Steady so	und			
0000	000	0	0000	000	000000000000
Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis

E	2. On a star	. talaana			
0000	000	0	0000	000	000000000000
Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis

Example 3: Opposing ideas

Exa	mple 4	1: Engine m	netaphor			
0000	ind	3D sound-tracing	Sounds O	Recordings 000●	000	Analysis 0000000000000

UiO **University of Oslo**

э

Sounds represented by waveform and spectrogram

Movement represented by motion images and motiongram

ヘロト ヘヨト ヘヨト

э

- ∢ ≣ ▶

(日)、

э.

Sound features

- Categorical:
 - "Ballistic", "Sustained", or "Iterative"
 - "Rising" pitch
- Calculations:
 - Duration
 - Overall dynamic energy
 - Onset rise time

Movement features

- Categorical:
 - "Ballistic", "Sustained", or "Iterative"
 - "Two-handed"
- Calculations:
 - Mean vertical velocity
 - Mean absolute acceleration
 - Mean change in distance between hands

(日)、

ъ

Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
0000	000	0	0000	000	000000000000000000000000000000000000000
Analysia	-				

Methods:

- Statistical tests
- Pattern recognition
- Correlation of time-series
- Canonical correlation analysis

Background	3D sound-tracing		Recordings	Data processing	Analysis
0000	000	0	0000	000	0 00000 000000
Statistica	l tests				

Example experiment:

Ask people to rate the expressivity of some musical performance beteen 1 and 10. Compare the results of "musical experts" to "non-experts"

fourMs

non-experts	experts
5	6
7	8
8	5
5	5
5	5
2	6
6	5
6	7
mean non-exper	rts: 5.5

Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
0000	000	O	0000	000	○●00000000000
Statistica	l tests				

Example experiment:

Ask people to rate the expressivity of some musical performance beteen 1 and 10. Compare the results of "musical experts" to "non-experts"

	non-experts	experts			
	5	6			
	7	8			
	8	5			
	5	5			
	5	5	• T	-test	
	2	6			
	6	5			
	6	7			
	mean non-exper mean experts: \$	rts: 5.5 5.9			
Ui	O :University	of Oslo	fourMs		

Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
0000	000	O	0000	000	
Statistica	l tests				

Example experiment:

Ui

Ask people to rate the expressivity of some musical performance beteen 1 and 10. Compare the results of "musical experts" to "non-experts"

non-experts	experts	
5	6	
7	8	
8	5	
5	5	
5	5	• T-test
2	6	 Anova
6	5	
6	7	
mean non-expe	rts: 5.5	
mean experts:	5.9	
		fourMa
	01 0510	

Statistical tests

Background

 $\overline{\mathcal{X}}$

fourMs

Sounds

Analysis

<u><u> </u></u>			
Sta	tist	tical	tests
014		cicai	10010

Background

778 F F 9 8 (R) R R R R 8 R R MP 8 REATRES Ŧ ¶ ¥ 70 Ø ĝ (A)P Å f Ŷ 7 f 2 79 Ę, Ĩ A 2 7 R F F 8 8 P 39 f IFA Ŷ Ø ð PERF Ŷ ₹₹¶₹₹ 17A ŶĨ ΦÅ. 2 Ŷ ጽ Q. Q ¶ 89888888 (P) P 7 ĴR & 9 R 7 80 7 ĴĨĔĨĨ 27 899 39 799 P Ĩ Υ Ϋ́ 1911000 ****** 针 8 9 9 R P RTRATE 早年日 R PP F K ¶₽.¥ 1 8 Ŷ P 38733 Å Ŷ 7 f ¥ 999 R 7 899 R 17A f REF 787 RAPP Ã 9 Ŷ Î REFERENCE FEE 8

fourMs

Sounds

Analysis

Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
0000	000	O	0000	000	○OO●OO○○○○○
Statistic	al tests				

UiO **University of Oslo**

표 🛌 표

- Spread of distribution

- Sample size

UiO University of Oslo

э

< 3

< □ > < 同 > .

p: the probability that the two selections stem from the same population Typical thresholds for p to claim statistical significance: 0.05, 0.01, 0.001

p: the probability that the two selections stem from the same population Typical thresholds for p to claim statistical significance: 0.05, 0.01, 0.001

UiO: University of Oslo

э

< D > < P > < E >

Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis
0000	000	0	0000	000	00000000000
My resu	ılts				

Motion feature	Comparison	df	t	p
OnsetAcceleration	Impulsive vs non-impulsive sounds	526	13.65	< 0.01
VerticalVelocityMean	Rising vs falling sounds	284	18.89	< 0.01
AbsAccelerationMean	Pitched vs noise-based sounds	179	5.53	< 0.01

UiO **University of Oslo**

3

ł

UiO: University of Oslo

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Classific	ation result	s [.] based	on all fea	atures	
0000	000	0	0000	000	000000000000000000000000000000000000000
Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis

fourMs

<<p>(日)

ъ

э

	True 1	True 2	True 3	True 4	True 5	True 6	True 7	True 8	True 9	True 10	Class Precision
Pred. 1	34	6	1	1	1	0	0	0	0	4	72.3 %
Pred. 2	9	36	0	0	0	1	0	2	0	0	75.0 %
Pred. 3	0	0	36	2	0	2	0	0	0	0	90.0 %
Pred. 4	0	0	2	32	1	0	1	3	0	0	82.1 %
Pred. 5	0	0	1	2	31	6	1	2	1	0	70.5 %
Pred. 6	1	0	3	0	6	32	0	1	2	0	71.1 %
Pred. 7	0	0	0	0	1	0	40	3	0	0	90.9 %
Pred. 8	1	0	0	6	3	1	0	34	0	0	75.6 %
Pred. 9	0	1	0	0	2	2	0	0	36	6	76.6 %
Pred. 10	0	0	0	0	0	0	0	0	6	34	85.0 %
Class Recall	75.6 %	83.7 %	83.7 %	74.4 %	68.9 %	72.7 %	95.2 %	75.6 %	80.0 %	77.3 %	

Overall classification accuracy: 78.6 %

Classifica	tion result	s [.] hased	on only y	vertical feat	ures
0000	000	0	0000	000	000000000000000000000000000000000000000
Background	3D sound-tracing	Sounds	Recordings	Data processing	Analysis

	True 1	True 2	True 3	True 4	True 5	True 6	True 7	True 8	True 9	True 10	Class Precision
Pred. 1	7	11	0	0	0	0	1	0	0	4	30.4 %
Pred. 2	7	5	0	1	0	0	0	0	0	0	38.5 %
Pred. 3	0	0	34	0	2	10	0	1	1	0	70.8 %
Pred. 4	0	2	1	22	6	1	1	3	0	0	61.1 %
Pred. 5	0	1	0	3	5	4	0	9	0	0	22.7 %
Pred. 6	0	0	3	2	3	2	2	0	0	0	16.7 %
Pred. 7	9	5	2	6	2	6	16	3	6	6	26.2 %
Pred. 8	0	0	0	4	11	0	0	21	0	1	56.8 %
Pred. 9	14	15	3	1	12	14	7	6	31	18	25.6 %
Pred. 10	8	4	0	4	4	7	15	2	7	15	22.7 %
Class Recall	15.6 %	11.6 %	79.1 %	51.2 %	11.1 %	4.6 %	38.1 %	46.7 %	68.9 %	34.1 %	

Overall classification accuracy: 36 %

For only the sounds with changing pitch: 61 %

How related are the two variables?

UiO: University of Oslo

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Canonical Correlation

Look at correlation between two <u>sets</u> of variables

UiO University of Oslo

3.5 3