
MIRtoolbox PRIMER
for absolute beginners

with concrete musical applications

Olivier Lartillot
Finnish Centre of Exce"ence in Interdisciplinary Music Research

University of Jyväskylä, Finland
February, 17th, 2011

MIRtoolbox Primer# 1

1 . BASICS

Matlab Environment

L A U N C H M A T L A B
To start Matlab in Mac OS X 10.6, open the Applications folder (on the right of the dock, at the
bottom-right of the screen) and click on the MATLAB icon.

M A T L A B C O M M A N D W I N D O W
Once Matlab is launched, you should see a new window with many panels. The most important
part of this window is the large white area called ‘Command Window’ where you can dialog with
Matlab by writing some little commands.

mirplay: Playing an audio file

E X A M P L E A U D I O F I L E S
MIRtoolbox includes a set of musical examples that can be used to test the software. One of
those files is a short excerpt of a piano ragtime, and is named ragtime.wav. To simply play that
audio file, just write the following command in Matlab Command Window:

mirplay('ragtime')

and then press enter to execute that command.

Y O U R A U D I O F I L E S
Now let’s try to load and play one of your own audio file. The file should be in WAV, MP3 or
AU format, and should be stored in a folder accessible to your computer (for instance, your
‘Desktop’ folder). First of all, you need to tell Matlab that the Current Directory you want to con-
sider now is that particular folder where your file is located. To set the Current Directory, just
click on the ‘Browse for folder’ icon (‘...’ button next to the Current Directory field in the main
Matlab toolbar:)

This opens a file browser where you can select that particular folder, and click ‘Open’.

MIRtoolbox Primer# 2

Once you have selected that folder, you should now see the content of that folder on the
‘Command Directory’ panel on the left of the Matlab window. In particular, the file you want to
analyze should be indicated in that panel. Now you can simply play that file as before. If for
instance your file is called myfile.wav, then just write the following command:

mirplay('myfile')

P L A Y I N G A F O L D E R O F F I L E S
You can also play a complete folder by writing the following command:

mirplay('Folder')

H O W T O A B O R T A P R O C E S S
If some particular process you have launched in Matlab takes too much time, you can abort it
at any point. For instance, if you asked to play all the audio files of a folder, you can stop that
playlist by pressing on both keys ‘ctrl’ and ‘c’ altogether. It might sometime takes some time to
abort. If Matlab still does not react, try pressing this key combination several times.

miraudio: Audio waveform
MIRtoolbox offers a set of tools for the analysis of audio recordings, of music in particular. The
simplest representation that can be obtained from an audio recording is the waveform repre-
sentation of the audio signal.

To display the audio waveform of the ragtime file, just write the following:

miraudio('ragtime')

This opens a new Figure window that contains the graphical representation of the audio wave-
form.

S A V I N G F I G U R E S A S I M A G E S
You can save that image by selecting ‘Save’ in the ‘File’ menu on the top of the Figure window.
Matlab can save in various image format, that you can see in the File Format list. If for instance
you want to save the image for further use in Microsoft Office, you can save it for instance
using a file name with the PNG extension, such as myimage.png.

Y O U R A U D I O F I L E
To display the audio waveform of a file called myfile.wav located in the Current Directory, just
write the following:

MIRtoolbox Primer# 3

miraudio('myfile')

A N A L Y Z I N G A F O L D E R O F F I L E S
To display the audio waveforms of all the audio files located in the Current Directory, just
write the following:

miraudio('Folder')

E X T R A C T I N G A P A R T
You can focus on one particular part of your audio file. If for instance, you want to see only the
excerpt starting at t = 20 seconds and ending at t = 30 seconds, just write the following:

miraudio('myfile', 'Extract', 20, 30)

P L A Y I N G A N E X C E R P T
You can store your excerpt in a variable – let’s call it a, for instance:

a = miraudio('myfile', 'Extract', 20, 30);

TIP: If you don’t want to see the graphical output of this command, just add ‘;’ at the end of
the line, as in the previous example.

In this way you can then play the result (i.e., that particular excerpt) by simply writing:

mirplay(a)

2. SPECTRAL ANALYSIS

mirspectrum: Spectral decomposition

G L O B A L R E P R E S E N T A T I O N
One common representation of sound is by displaying the repartition of energy along the dif-
ferent frequencies. To get this spectral representation for the ragtime example, just write the
following:

mirspectrum('ragtime')

MIRtoolbox Primer# 4

This first representation simply gives the global repartition for the whole piece of music. You
can use the magnifier button in the toolbar to zoom in in the picture, or alternatively you can
select a particular frequency region, for instance below 3000 Hz:

mirspectrum('ragtime', 'Max', 3000)

T E M P O R A L E V O L U T I O N
Alternatively, we can also see the evolution over time of this spectral representation, by using
the ‘Frame’ keyword:

mirspectrum('ragtime', 'Frame')

Now the different frequencies are represented on the vertical axis, the horizontal axis corres-
ponds to the temporal evolution of the music. Similarly, you can zoom in, or select a frequency
region, for instance:

mirspectrum('ragtime', 'Frame', 'Max', 3000)

A N A L Y Z I N G A N E X C E R P T
You can get the spectral representation of the excerpt you have selected:

a = miraudio('myfile', 'Extract', 20, 30)

mirspectrum(a)

And similarly, for the temporal spectral evolution of that excerpt:

mirspectrum(a, 'Frame')

S P E C T R A L F L U X
You can compare the spectrum between each successive frame, that gives a temporal curve,
called spectral flux:

s = mirspectrum('myfile', 'Frame')

mirflux(s)

The peaks in this curve shows where there are important changes in the spectrum.

MIRtoolbox Primer# 5

mirbrightness: How bright is the sound?
mirbrightness('myfile', 'Frame')

The brightness curve shows the evolution of brightness throughout the piece of music. High
values indicates moments in the music where most of the sound energy is on the high-frequen-
cy register, whereas low values indicates moments where most of the sound energy is on the
low-frequency register.

You can also compute the curve for a given excerpt of your audio file, for instance between t =
20 seconds and t = 30 seconds:

a = miraudio('myfile', 'Extract', 20, 30)

mirbrightness(a, 'Frame')

You can also compute a global brightness value for each audio files in your Current Directory.
We suggest for instance to select the folder ShortClips as Current Directory. Write then:

b = mirbrightness('Folder')

So that you can now play the audio files in increasing order of brightness:

mirplay('Folder', 'Increasing', b)

mircentroid: Spectral centroid
mircentroid('ragtime', 'Frame')

The spectral centroid curve is quite similar to the brightness curve. It shows, for each successive
instant of the music, around which frequencies the sound energy is centered. High values indi-
cates moments in the music where most of the sound energy is on the high-frequency register,
whereas low values indicates moments where most of the sound energy is on the low-frequency
register.

You can also compute the curve for a given excerpt of your audio file, for instance between t =
20 seconds and t = 30 seconds:

a = miraudio('ragtime', 'Extract', 20, 30)

mircentroid(a, 'Frame')

MIRtoolbox Primer# 6

You can also compute a global spectral centroid value for each audio files in your Current Di-
rectory:

c = mircentroid('Folder')

So that you can now play the audio files in increasing order of spectral centroid:

mirplay('Folder', 'Increasing', c)

mirroughness: Sensory dissonance
mirroughness('ragtime')

The roughness curve shows the amount of sensory dissonance at each successive moments
throughout the piece of music. This sensory dissonance corresponds to the “beating” pheno-
menon when several sound are heard with nearly the same frequency, but with just a few Hz of
difference. When roughness is high, the sounds feels more harsh, containing more strange os-
cillations.

You can also compute the curve for a given excerpt of your audio file, for instance between t =
20 seconds and t = 30 seconds:

a = miraudio('ragtime', 'Extract', 20, 30)

mirroughness(a)

You can also compute a roughness curve for each audio files in your Current Directory:

r = mirroughness('Folder')

Then get the average of roughness for each separate file, so that we have now one global value
for each file:

m = mirmean(r)

So that you can now play the audio files in increasing order of roughness:

mirplay('Folder', 'Increasing', m)

MIRtoolbox Primer# 7

3 . TEMPO

mirtempo: Tempo estimation
You can get a tentative estimation of the tempo of a given recording by writing for instance:

mirtempo('myfile')

A temporal evolution of tempo, or tempo curve, can also be obtained:

mirtempo('myfile', 'Frame')

You can also compute a global tempo value for each audio files in your Current Directory. We
suggest for instance to select the folder LongClips as Current Directory. Write then:

t = mirtempo('Folder')

So that you can now play the audio files in increasing order of tempo:

mirplay('Folder', 'Increasing', t)

mirpulseclarity: Clarity of the pulsation
It is possible to get an estimation of the strength of the beat – i.e., the relative importance of
the regular pulsation – by using the command:

mirpulseclarity('myfile')

mirpulseclarity('myfile', 'Frame')

You can also compute a global pulse clarity value for each audio files in your Current Directory:

p = mirpulseclarity('Folder')

So that you can now play the audio files in increasing order of pulse clarity:

mirplay('Folder', 'Increasing', p)

MIRtoolbox Primer# 8

4. TRANSCRIPTION

mironsets: Detection of the successive notes
In order to detect the notes that are contained in a recording, we first need to find where in
time the notes starts. For that, a onset curve can be computed like this:

mironsets('myfile')

The peaks of the curve indicates the point where the energy is the highest. We can suppose
that these peaks corresponds the successive notes in the music. These peaks are highlighted
with red circles.

Before the peak of each note, there is the attack phase where the energy progressively increase.
We can see the attack phase of each note:

mironsets('myfile', 'Attacks')

Similarly, we can also see the release phase, where the energy of the note progressively decreases
after the peak:

mironsets('myfile', 'Attacks', 'Releases')

mirattackslope: Attack of notes
These attack phases show how each note is attacked: if a note has a steep attack (short attack
but with a very fast increase), it sounds more aggressive than if a note has a more gradual at-
tack. We can display the attack slope of each successive note, which indicates whether each
note has a steep attack (high attack slope value) or gradual attack (low attack slope value).

mirattackslope('myfile')

mireventdensity: Density of notes
You can display the density of notes over time, like this:

mireventdensity('myfile', 'Frame')

High values in the curve indicates moment where there is a lot of notes, low values shows mo-
ments when there is not a lot of notes.

MIRtoolbox Primer# 9

mirpitch: Pitch height
We saw in section 2 that we can have a first simple representation of the successive notes with
their pitch by computing the spectrogram, for instance using:

mirspectrum(a, 'Frame')

We can see some kind of music score emerging from this picture, but if we need more explicit
information about these pitch height, we need to perform more complex operations. Hopeful-
ly, you don’t need to do these operations yourself, you can use advanced operators, like mirpitch,
to get these advanced operations, for instance:

mirpitch('myfile', 'Frame')

This shows the progressive pitch height discovered throughout the audio recording.

5. TONALITY

mirchromagram: Pitch class profile
mirchromagram('myfile')

The chromagram curve shows the distribution of energy along the 12 pitch classes.

You can also see the evolution of this distribution over time, using the 'Frame' option:

mirchromagram('myfile', 'Frame')

mirkeystrength: Tonal analysis
mirkeystrength('myfile')

The key strength curve shows the probability for each different key, major (in blue) and minor
(in red). The most probable key is the one with the highest value.

You can also see the evolution of this key estimation over time, using the 'Frame' option:

mirkeystrength('myfile', 'Frame')

As usual, the horizontal axis represents the time, and here the different key candidates are the
different lines. Red colors shows the most probable keys at each particular instant.

MIRtoolbox Primer# 10

mirkey: Tonal analysis
mirkey('myfile')

This simply returns the most probable key found.

You can also see the evolution of this key estimation over time, using the 'Frame' option:

mirkey('myfile', 'Frame')

mirmode: Major vs. minor
mirmode('myfile')

mirmode tries to estimate if the piece is in major, or in minor mode. A high positive value indi-
cates majorness and a high negative value indicates minorness. A value close to 0 indicates an
ambiguity between major and minor.

You can also see the evolution of this mode estimation over time, using the 'Frame' option:

mirmode('myfile', 'Frame')

mirkeysom: Key map
mirkeysom('myfile')

This keysom maps locates the tonality of the piece in a 2D maps where all the tonalities are re-
presented with suitable perceptive distance between them.

You can also see the evolution of this keysom estimation over time, using the 'Frame' option:

mirkeysom('myfile', 'Frame')

6. STRUCTURE

mirsimatrix: Similarity matrix
mirsimatrix('myfile')

The similarity matrix shows the similarity between each instant of the piece of music and each
other instant of that same piece. Time is displayed both in the horizontal and in the vertical
axis. By default it is computed based on the spectral representation (mirspectrum).

MIRtoolbox Primer# 11

You can also compute the similarity matrix for other representations, for instance:

c = mirchromagram('myfile', 'Frame')

mirsimatrix(c)

Try both methods (the default with mirspectrum and the one with mirchromagram) and observe
the results. You can try with the different pieces in the LongClips folder.

There is also a timbral feature we haven’t look at yet, called MFCC, whose actual definition is
quite technical. One interest of it is that it is useful to show temporal evolutions in the timbral
domain:

c = mirmfcc('myfile', 'Frame')

mirsimatrix(c)

mirnovelty: Novelty curve
mirnovelty('myfile')

The novelty curve shows the moments in time where there is the most important contrasts. By
default, it is based, like mirsimatrix, on mirspectrum.

You can also compute the similarity matrix for other representations, for instance:

c = mirchromagram('myfile', 'Frame')

s = mirsimatrix(c)

n = mirnovelty(s)

Try both methods (the default with mirspectrum and the one with mirchromagram) and observe
the results. You can try with the different pieces in the LongClips folder.

You can then automatically highlight the peaks in the novelty curve:

p = mirpeaks(n)

MIRtoolbox Primer# 12

mirsegment: Segmentation
Then you can segment the audio files at the position of those peaks, by writing:

s = mirsegment('myfile', p)

Then play the result of this segmentation:

mirplay(s)

You can then perform any analysis you like on this segmentation, for instance:

p = mirpitch(s)

mirplay(p)

7. WHAT CAN I DO NOW?
Now there are plenty of different kind of analyses you can perform with all the building blocks
you just discovered. And other tools are available as well in MIRtoolbox. More details in the
User’s Guide.

You can also get a synthetic list of commands available in MIRtoolbox by typing:

help mirtoolbox

Each MIRtoolbox command, even all those we saw in this short tutorial, offers a large set of
possible options. You can see more details about these command by looking at the online help
for each command by typing, for instance:

help miraudio

But the best documentation is the one presented in the User’s Guide, with explanations, figures,
etc.

If you want to see the actual numerical values of the output of your computations, use mirget-
data:

s = mirspectrum('ragtime');

mirgetdata(s)

MIRtoolbox Primer# 13

You can also get basic statistics from your analyses, for instance:

t = mirtempo('myfile', 'Frame')

mirstat(t)

Finally, you can export your analyses to text files, that you can use in other programs, such as
SPSS for instance:

t = mirtempo('myfile', 'Frame')

b = mirbrightness('myfile', 'Frame')

mirexport('myresults.txt', t, b)

Again, don’t forget to have a look at the extensive documentation offered in the User’s Guide.

Have fun!

MIRtoolbox Primer# 14

