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Part 2

• Rhythm, metrical structure

• Tonal analysis

•   Segmentation, structure

•   Statistics

•   Music & emotion

• Advanced use



mirevents 
event detection function
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• mirevents(‘ragtime.wav’)
• mirpeaks(mirsum(mirspectrum(…, ‘Frame’)))

• mirevents(‘ragtime.wav’, ‘Filter’)
• mirpeaks(mirsum(mirenvelope(mirfilterbank(…, ‘NbChannels’, 40))))

• mirevents(‘ragtime.wav’, ‘SpectralFlux’)
• mirpeaks(mirflux(…, ‘Inc’, ‘Halfwave’))

mirevents(…, 
‘Contrast’, 

…)



C.P.E. Bach, Concerto for cello in A major, WQ 172, 3rd mvt• ‘Envelope’, ‘Filter’: 
changes in dynamics

• ‘SpectralFlux’: global 
spectral changes

• ‘Emerge’: local 
changes in particular 
frequency regions
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mirevents 
event detection function



J.S. Bach, Orchestral suite No.3 in D minor, BWV 1068, Aria
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mirevents 
event detection function

• ‘Envelope’, ‘Filter’: 
changes in dynamics

• ‘SpectralFlux’: global 
spectral changes

• ‘Emerge’: local 
changes in particular 
frequency regions



mirevents(..., ‘Attack’)
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mirattackslope 
average slope of note attacks

• o = mirevents(‘ragtime.wav’, ‘Attacks’)

• mirattackslope(o)
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mirattackleap 
amplitude of note attacks

• o = mirevents(‘ragtime.wav’, ‘Attacks’)

• mirattackleap(o)
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Tempo estimation?

• ‘george.wav’

• What tempo in BPM? You can tap on the 
beat while listening:

• http://www.all8.com/tools/bpm.htm

• How to estimate tempo using the MIRtoolbox 
operators presented last week?

http://www.all8.com/tools/bpm.htm


mirtempo 
tempo (in beats per minute)
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Roughly:

• o = mirevents(‘file.wav’, ‘Filter’)

• do = mirevents(o, ‘Diff ’)

• ac = mirautocor(do, ‘Resonance’)

• pa = mirpeaks(ac, ’Total’, 1)

In short:

• [t, pa] = mirtempo(‘file.wav’)
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• mirautocor(…, ‘Resonance’, ‘Toiviainen’) (Toiviainen & Snyder, 2003)

• mirautocor(…, ‘Resonance’, ‘vanNoorden’) (van Noorden & Moelants, 2001)

• Emphasis on the best perceived tempi
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• How to estimate tempo for such audio 
excerpt?

• ‘czardas.wav’

mirtempo 
tempo estimation
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mirtempo 
tempo (temporal evolution)

• o = mirevents(’mysong’, ‘Detect’, ‘No’)

• do = mirevents(o, ‘Diff ’)

• f = mirframe(do)

• ac = mirautocor(f, ‘Resonance’)

• pa = mirpeaks(ac, ’Total’, 1)

In short:

• [t, pa] = mirtempo(’mysong’, ‘Frame’)



Switch from one 
metrical level to 

another!

mirtempo
Try for instance: mirtempo(‘george.wav’, ‘Frame’)



Metrical levels:
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• Level N’s period 
is N times    
level 1’s period.

mirmetre 
tracking all metrical levels

Try for instance: mirmetre(‘george.wav’)



• The tempo curve is associated to one particular 
metrical level.

mirmetre 
tracking all metrical levels

• m = mirmetre(…)

• t = mirtempo(m)

or:

• [t m] = mirtempo(…, 
‘Metre’)



‘Emerge’

M. Bruch,
 Violin Concerto 
No.1 in G minor, 

op.26, Finale 
(Allegro energico)

‘Spectral
Flux’

1=

.16=

mirmetre 
tracking all metrical levels

Influence of the 
onset detection 

method



• Subjective judgment:

• How easily I can perceive the underlying 
pulsation in music.

high

medium

low

(tempo = 148 BPM)

(tempo = 148 BPM)

A

B

C
(Lartillot et al., 2008)

Beat/rhythmic/metrical 
strength, clarity



mirpulseclarity
beat strength
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(Lartillot et al., 2008)

• Characterisation of the autocorrelation function

• cf. also beat strength (Tzanetakis, Essl & Cook, 
2002): variability of the autocorrelation curve 
throughout time



mirchromagram 
energy distribution along pitches

• s = mirspectrum(a)

• c = mirchromagram(s, 

‘Wrap’, ‘no’)

• c = mirchromagram(c, 

‘Wrap’, ‘yes’)



C Major profile

mirkeystrength 
probability of key candidates

mirchromagram

C major

C# major

D major

C minor

C# minor

D minor

Cross-Correlations



mirkeystrength 
probability of key candidates

• Chromagram compared to typical chromagrams 
representing each possible key (or mode).

• Detection of the most probably key (or mode).

C major

C# major

D major

C minor

C# minor

D minor

Krumhansl, Cognitive foundations of musical pitch. Oxford UP, 1990. Gomez, “Tonal description of 
polyphonic audio for music content processing,” INFORMS Journal on Computing, 18-3, pp. 294–304, 2006.



mirkey 
tonality estimation

mirpeaks(mirkeystrength(...))mirkeystrength 

• [k c s] = mirkey(...)



mirkey 
tonality estimation

• [k c s] = mirkey(..., ‘Frame’)
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mirkey 
tonality estimation

monteverdi.wav tiersen.wav

beethoven9.wav schoenberg.wav



• [k c s] = mirkey(..., ‘Frame’)
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mirmode 
mode estimation
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mirkeysom 
self-organizing map projection of chromagram

Toiviainen & Krumhansl, “Measuring and modeling real-time responses to music: The dynamics of tonality in- 
duction”, Perception 32-6, pp. 741–766, 2003.



• Any musical feature as input x:

• Spectrum

• Timbre(MFCC, ...)

• Tonality (Chroma, key 
strength, ...)

• Rhythm, etc.

• Frames are compared using a 
distance measure (such as 
cosine distance)

Similarity matrix
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mirsimatrix 
dissimilarity matrix

mirspectrum(a, 
‘Frame’)

mirsimatrix(a,
‘Dissimilarity’)

mirsimatrix(...,
‘Distance’,
‘cosine’)
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2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

Foote, Cooper. “Media Segmentation using Self-Similarity Decomposition”, 
SPIE Storage and Retrieval for Multimedia Databases, 5021, 167-75.

v i

v j
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similarity matrix
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Foote, Cooper. “Media Segmentation using Self-Similarity Decomposition”, 
SPIE Storage and Retrieval for Multimedia Databases, 5021, 167-75.

mirsimatrix(a, ‘Similarity’, ‘exponential’)

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.
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The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
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Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
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mirsimatrix 
similarity matrix

• Observe the structure of this excerpt along 
different musical dimensions:

• ‘george.wav’

• For instance:

• s = mirspectrum(…, ‘Frame’, …)

• mirsimatrix(s)
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mirnovelty 
novelty, kernel method

• Observe the structure of this excerpt using 
different kernel sizes:

• ‘george.wav’

• mirnovelty(…, ‘Kernel’, N)

• where N is the kernel size



Kernel size:

• 64 frames

• 16 frames

Similarity matrix
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• nv = mirnovelty(sm)

• p = mirpeaks(nv)

• sg = mirsegment(‘mysong’, 
p)

• mirplay(sg)

• s = mirmfcc(sg)

• sm = mirsimatrix(s)
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Statistics
• mirstat

• mean

• standard deviation

• slope

• periodicity

• mirhisto

• distribution histograms

• moments

• mircentroid

• mirspread

• mirskewness

• mirkurtosis



mirfeatures 
batch of features

• mirzerocross

• mircentroid

• mirbrightness

• mirspread

• mirskewness

• mirkurtosis

• mirrolloff

• mirentropy

• mirflatness

• mirroughness

• mirregularity

• mirinharmonicity

• mirmfcc

• mirfluctuation

• mirattacktime

• mirattackslope

• mirlowenergy

• mirflux

• mirpitch

• mirchromagram

• mirkeystrength

• mirkey

• mirmode

• mirhcdf

• mirtempo

• mirpulseclarity

mirfeatures(‘Folder’, ‘Stat’)



mirexport 
exportation of statistical data to files

• mirexport(filename, ...) adding one or several 
data from MIRtoolbox operators.

• mirexport(‘result.txt’, ...) saved in a text file.

• mirexport(‘result.arff’, ...) exported to WEKA 
for data-mining.

• mirexport(‘Workspace’, ...) saved in a Matlab 
variable.



Stimulus set

activity
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valence

happy

sad

tender

fear

anger

Eerola & Vuoskoski. A comparison of the discrete and dimensional models of emotion in music. 
Psychology of Music.



valence

Stimulus set

3D 2D

R²
β

R²
β

v a t v a

happy .89 .93 .79 -.35 .89 .85 .49
sad .63 -.20 -.84 -.22 .63 -.05 -.69

tender .77 .33 -.45 -.58 .77 .50 -.51
fear .87 -.83 .07 .63 .87 -.90 .24

anger .64 -.52 .32 .35 .64 -.55 .35
mean .76 .76

activity

te
ns

io
n

Eerola & Vuoskoski. A comparison of the discrete and dimensional models of emotion in music. 
Psychology of Music.



T. Eerola, O. Lartillot, P.  Toiviainen, "Prediction of Multidimensional Emotional Ratings in Music From Audio 
Using Multivariate Regression Models", ISMIR, Kobe, 2009.

miremotion
R² h s t f a

MLR .55 .56 .42 .51 .54
PCA .34 .40 .23 .13 .27
PLS .59 .64 .52 .60 .57
MLR .62 .58 .44 .60 .63
PCA .38 .49 .47 .45 .62
PLS .65 .61 .55 .64 .67

happy
Feature β

fluctuation 
peaks

-.40
sp. centroid .13
sp. spread -.19

chrom. peaks -.05
majorness .03

sad
Feature β

roughness .12
register -.08

register var .09
majorness .02

harm. change -.03

tender
Feature β
RMS var -.42

sp. centroid .14
key clarity .11

harm. change -.10
tonal novelty -.01

fear
Feature β
RMS var -.79

fluctuation 
peaks

-.21
key clarity -.09

harm. change .08
tonal novelty -.02

anger
Feature β
RMS var .44

pulse clarity -.13
sp. centroid -.13
key clarity -.04

tonal novelty .02

Bo
x-

C
ox

http://ismir2009.ismir.net/program.html


Part 2

• Rhythm, metrical structure

• Tonal analysis

•   Segmentation, structure

•   Statistics

•   Music & emotion

• Advanced use



mirgetdata 
return data in Matlab format

Encapsulated data
numerical data,

related sampling rates,
related file name,

etc.

s = mirspectrum(‘file’);

s

vector

mirgetdata(s)



mirgetdata 
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s = mirspectrum(‘file’, 
‘Frame’);

s

matrix

mirgetdata(s)



mirgetdata 
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

f = mirfilterbank(‘file’, 
‘Frame’);

f

mirgetdata(f)

3D-matrix



mirgetdata 
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s

cell array

mirgetdata(s)

...

sg = mirsegment(‘file’) 
s = mirspectrum(sg, 

‘Frame’);

3D-matrix 3D-matrix



mirgetdata 
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s

mirgetdata(s)

sg = mirsegment(‘Folder’) 
s = mirspectrum(sg, ‘Frame’);

cell array

...

cell array

...

matrix matrix

file1
segm1 segm2

cell array

...

matrix matrix

file2
segm1 segm2



mirgetdata 
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

p

mirgetdata(p)

p = mirpeaks(a)

peak values

... ... ...

cell array
cell array

peak positions

... ... ...

cell array
cell array

matrix



get 
returns fields of encapsulated data

• get(a, ‘xName’)

• get(a, ‘xData’)

• get(a, ‘yName’)

• get(a, ‘yData’)

• get(a, ‘yUnit’)

• get(a, ‘FramePos’)

• get(a, ‘Sampling’)

• get(a, ‘NBits’)

• get(a, ‘Title’)

• get(a, ‘FileName’)

• get(a, ‘Label’)

• get(a, ‘Channels’)

• get(a, ‘xPeakSample’)

• get(a, ‘xPeakUnit’)

• get(a, ‘xPeakInterpol’)

• get(a, ‘yPeak’)

• get(a, ‘yPeakInterpol’)

Encapsulated dataa = miraudio(‘ragtime’);



get 
returns fields of encapsulated data

• get(s, ‘Frequency’) = get(s, ‘xData’)

• get(s, ‘Magnitude’) = get(s, ‘yData’)

• get(s, ‘Phase’)

• get(s, ‘xScale’) (= ‘Freq’, ‘Mel’, ‘Bark’)

• get(s, ‘Power’)

• get(s, ‘dB’)

Encapsulated datas = mirspectrum(‘ragtime’);

etc.



memory management
mirenvelope(‘hugefile’);

hugefile

mirenvelope

Automatic
hugefile

chunk



mirchunklim 
chunk size limitation

mirenvelope(‘hugefile’);

chunk

mirenvelope

mirchunklim by default: 500 000 samples

mirchunklim(50000) set to 50 000 samples

hugefile

 If memory overflow problems, decrease mirchunklim:



• a = miraudio(‘hugefile’);

• c = mirmfcc(a)
a

c

avoid useless call to miraudio

hugefile
miraudio

• c = mirmfcc(‘hugefile’)

mirmfcc
hugefile



• a = miraudio(‘Folder’);

• c = mirmfcc(a)

miraudio

a

c

• c = mirmfcc(‘Folder’)

mirmfcc

avoid useless call to miraudio

file1 file2 file3 file4

file1 file2 file3 file4



• f = mirframe(‘hugefile’);

• c = mirmfcc(f)

mirframe

f

c

• c = mirmfcc(‘hugefile’, ‘Frame’)

mirmfcc

avoid useless call to mirframe

hugefile

hugefile



?
• a = miraudio(‘hugefile’, ‘Sampling’, 11025);

• c = mirmfcc(a)

chunk

miraudio

a

c

what if miraudio (or mirframe) really necessary?

hugefile



mireval 
flowchart design and evaluation

• a = miraudio(‘Design’, ‘Sampling’, 11025);

• c = mirmfcc(a);

• mireval(c, ‘hugefile’)

chunk

mirmfcc

miraudio

a

c

hugefile



mireval 
flowchart design and evaluation

• s = mirspectrum(‘Design’, ‘Frame’);

• c = mircentroid(s);

• mireval(c, ‘hugefile’)

chunk

mircentroid

mirspectrum

s

c

hugefile



mireval 
flowchart design and evaluation

• s = mirspectrum(‘Design’, ‘Frame’);

• c = mircentroid(s);

• mireval(c, ‘Folder’)

mircentroid

mirspectrum

s

c

file1 file2 file3 file4



mireval 
flowchart evaluation?

• s = mirspectrum(‘Design’, ‘Frame’);

• cent = mircentroid(s);

• cent = mireval(cent, ‘Folder’);

• ceps = mircepstrum(s);

• ceps = mireval(ceps, ‘Folder’);

s

cent

ceps

cent

ceps

s is evaluated twice!



myflow

mirstruct 
complex flowchart

• myflow = mirstruct;

• myflow.tmp.s = 
mirspectrum(‘Design’, ‘Frame’);

• myflow.cent = 
mircentroid(myflow.tmp.s);

• myflow.ceps = 
mircepstrum(myflow.tmp.s);

• res = mireval(myflow, ‘Folder’);

myflow.tmp.s

myflow.cent

myflow.ceps

res.cent res.ceps



• f = mirstruct;

• f.dynamics.rms = mirrms(‘Design’, ‘Frame’)

• f.tmp.onsets = mironsets(‘Design’);

• f.rhythm.tempo = mirtempo(f.tmp.onsets, ‘Frame’);

• f.tmp.attacks = mironsets(f.tmp.onsets, ‘Attacks’);

• f.rhythm.attack.time = mirattacktime(f.tmp.attacks);

• f.rhythm.attack.slope = mirattackslope(f.tmp.attacks);

f rms

dynamics tmp.onsets

tmp.attacksattack

time slope

complex flowchart

rhythm

tempo


