
MIRtoolbox:
Sound and music analysis of

audio recordings using Matlab
MUS4831, Olivier Lartillot

Part II, 9.11.2017

Part 2

• Rhythm, metrical structure

• Tonal analysis

• Segmentation, structure

• Statistics

• Music & emotion

• Advanced use

mirevents
event detection function

time (s)
0.5 1 1.5 2 2.5 3 3.5 4

am
pl

itu
de

0.2

0.4

0.6

0.8

1
Onset curve (Envelope)

• mirevents(‘ragtime.wav’)
• mirpeaks(mirsum(mirspectrum(…, ‘Frame’)))

• mirevents(‘ragtime.wav’, ‘Filter’)
• mirpeaks(mirsum(mirenvelope(mirfilterbank(…, ‘NbChannels’, 40))))

• mirevents(‘ragtime.wav’, ‘SpectralFlux’)
• mirpeaks(mirflux(…, ‘Inc’, ‘Halfwave’))

mirevents(…,
‘Contrast’,

…)

C.P.E. Bach, Concerto for cello in A major, WQ 172, 3rd mvt• ‘Envelope’, ‘Filter’:
changes in dynamics

• ‘SpectralFlux’: global
spectral changes

• ‘Emerge’: local
changes in particular
frequency regions

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

Onset curve (Envelope)

time (s)

am
pl

itu
de

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

Onset curve (Envelope)

time (s)

am
pl

itu
de

0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

Onset curve (Envelope)

time (s)

am
pl

itu
de

mirevents
event detection function

J.S. Bach, Orchestral suite No.3 in D minor, BWV 1068, Aria

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

Onset curve (Envelope)

time (s)

am
pl

itu
de

0.5 1 1.5 2 2.5 3 3.5 4

0

0.2

0.4

0.6

0.8

1
Onset curve (Envelope)

time (s)

am
pl

itu
de

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

Onset curve (Envelope)

time (s)

am
pl

itu
de

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

2

4

6

8

10

12
Envelope

time (s)

am
pl

itu
de

mirevents
event detection function

• ‘Envelope’, ‘Filter’:
changes in dynamics

• ‘SpectralFlux’: global
spectral changes

• ‘Emerge’: local
changes in particular
frequency regions

mirevents(..., ‘Attack’)

time (s)
0.5 1 1.5 2 2.5 3 3.5 4

am
pl

itu
de

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Onset curve (Envelope)

mirattackslope
average slope of note attacks

• o = mirevents(‘ragtime.wav’, ‘Attacks’)

• mirattackslope(o)

4 5 6 7 8 9

!0.5

0

0.5

1

1.5

2

2.5

Envelope (centered)

time (s)

a
m

p
lit

u
d
e

mirattackleap
amplitude of note attacks

• o = mirevents(‘ragtime.wav’, ‘Attacks’)

• mirattackleap(o)

4 5 6 7 8 9

!0.5

0

0.5

1

1.5

2

2.5

Envelope (centered)

time (s)

a
m

p
lit

u
d
e

Tempo estimation?

• ‘george.wav’

• What tempo in BPM? You can tap on the
beat while listening:

• http://www.all8.com/tools/bpm.htm

• How to estimate tempo using the MIRtoolbox
operators presented last week?

http://www.all8.com/tools/bpm.htm

mirtempo
tempo (in beats per minute)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
!0.4

!0.2

0

0.2

0.4

0.6
Envelope autocorrelation

lag (s)

c
o
e
ff
ic

ie
n
ts

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08
Onset curve (Envelope)

time (s)

a
m

p
lit

u
d

e

0 1 2 3 4 5
!0.05

0

0.05

0.1

0.15
Onset curve (Differentiated envelope)

time (s)

a
m

p
lit

u
d

e

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
!0.4

!0.2

0

0.2

0.4

0.6
Envelope autocorrelation

lag (s)

c
o

e
ff

ic
ie

n
ts

o

do

ac

pa

Roughly:

• o = mirevents(‘file.wav’, ‘Filter’)

• do = mirevents(o, ‘Diff ’)

• ac = mirautocor(do, ‘Resonance’)

• pa = mirpeaks(ac, ’Total’, 1)

In short:

• [t, pa] = mirtempo(‘file.wav’)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Envelope autocorrelation

lag (s)

co
ef

fic
ie

nt
s

• mirautocor(…, ‘Resonance’, ‘Toiviainen’) (Toiviainen & Snyder, 2003)

• mirautocor(…, ‘Resonance’, ‘vanNoorden’) (van Noorden & Moelants, 2001)

• Emphasis on the best perceived tempi

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag 0

A
m

pl
itu

de

.5 s
(= 120 BPM)

1 s
(= 60 BPM)

mirtempo
resonance curves

Lag 0

A
m

pl
itu

de

.5 s 1 s

mirautocor mirautocor(…, ’Resonance’)

• How to estimate tempo for such audio
excerpt?

• ‘czardas.wav’

mirtempo
tempo estimation

0 2 4 $ % 10 12 14
!1

0

1

2
Onset curve (Differentiated envelope)

time (s)

a
m

p
lit

u
d
e

0 2 4 6 8 10 12
130

140

150

160

170

180
Tempo

Temporal location of events (in s.)

c
o
e
ff
ic

ie
n
t
v
a
lu

e
 (

in
 b

p
m

)

f

pa

t

mirtempo
tempo (temporal evolution)

• o = mirevents(’mysong’, ‘Detect’, ‘No’)

• do = mirevents(o, ‘Diff ’)

• f = mirframe(do)

• ac = mirautocor(f, ‘Resonance’)

• pa = mirpeaks(ac, ’Total’, 1)

In short:

• [t, pa] = mirtempo(’mysong’, ‘Frame’)

Switch from one
metrical level to

another!

mirtempo
Try for instance: mirtempo(‘george.wav’, ‘Frame’)

Metrical levels:

2
3
4

5
6
7
8

0.5

2.5

1(dominant)

• Level N’s period
is N times
level 1’s period.

mirmetre
tracking all metrical levels

Try for instance: mirmetre(‘george.wav’)

• The tempo curve is associated to one particular
metrical level.

mirmetre
tracking all metrical levels

• m = mirmetre(…)

• t = mirtempo(m)

or:

• [t m] = mirtempo(…,
‘Metre’)

‘Emerge’

M. Bruch,
 Violin Concerto
No.1 in G minor,

op.26, Finale
(Allegro energico)

‘Spectral
Flux’

1=

.16=

mirmetre
tracking all metrical levels

Influence of the
onset detection

method

• Subjective judgment:

• How easily I can perceive the underlying
pulsation in music.

high

medium

low

(tempo = 148 BPM)

(tempo = 148 BPM)

A

B

C
(Lartillot et al., 2008)

Beat/rhythmic/metrical
strength, clarity

mirpulseclarity
beat strength

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Envelope autocorrelation

lag (s)

co
ef

fic
ie

nt
s

Lag 0

A
m

pl
itu

de

.5 s 1 s240 BPM 0

‘KurtosisAutocor’
‘TempoAutocor’
‘EntropyAutocor’

‘MaxAutocor’ ‘MinAutocor’

(Lartillot et al., 2008)

• Characterisation of the autocorrelation function

• cf. also beat strength (Tzanetakis, Essl & Cook,
2002): variability of the autocorrelation curve
throughout time

mirchromagram
energy distribution along pitches

• s = mirspectrum(a)

• c = mirchromagram(s,

‘Wrap’, ‘no’)

• c = mirchromagram(c,

‘Wrap’, ‘yes’)

C Major profile

mirkeystrength
probability of key candidates

mirchromagram

C major

C# major

D major

C minor

C# minor

D minor

Cross-Correlations

mirkeystrength
probability of key candidates

• Chromagram compared to typical chromagrams
representing each possible key (or mode).

• Detection of the most probably key (or mode).

C major

C# major

D major

C minor

C# minor

D minor

Krumhansl, Cognitive foundations of musical pitch. Oxford UP, 1990. Gomez, “Tonal description of
polyphonic audio for music content processing,” INFORMS Journal on Computing, 18-3, pp. 294–304, 2006.

mirkey
tonality estimation

mirpeaks(mirkeystrength(...))mirkeystrength

• [k c s] = mirkey(...)

mirkey
tonality estimation

• [k c s] = mirkey(..., ‘Frame’)

0 0.5 1 1.5 2 2.5 3 3.5
D#

E

F

F#

G

G#

A

A#

Temporal location of events (in s.)

c
o

e
ff

ic
ie

n
t

v
a

lu
e

Key

min

maj

k

0 0.5 1 1.5 2 2.5 3 3.5
0.55

0.6

0.65

0.7

0.75

0.8
Key clarity

Temporal location of events (in s.)

c
o

e
ff

ic
ie

n
t

v
a

lu
e

c

0 0.5 1 1.5 2 2.5 3 3.5

CM
C#M

DM
D#M

EM
FM

F#M
GM

G#M
AM

A#M
BM
Cm

C#m
Dm

D#m
Em
Fm

F#m
Gm

G#m
Am

A#m
Bm

Key strength

temporal location of beginning of frame (in s.)

to
n

a
l
c
e

n
te

r

s

K
ey

s

5 10 15 20 25 30

C
C#

D
D#

E
F

F#
G

G#
A

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Key, Umile01

maj
min

5 10 15 20 25 30

C
C#

D
D#

E
F

F#
G

G#
A

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Key, Umile01

maj
min

20 40 60 80 100 120 140 160

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Key, son5.wav

20 40 60 80 100 120 140

C
C#

D
D#

E
F

F#
G

G#
A

A#
B

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Key, son27.wav

20 40 60 80 100 120
C#

D
D#

E
F

F#
G

G#
A

A#
B

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Key, son32.wav

mirkey
tonality estimation

monteverdi.wav tiersen.wav

beethoven9.wav schoenberg.wav

• [k c s] = mirkey(..., ‘Frame’)

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
Key clarity, son31.wav

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Tchaïkovski, Swan Lake, Act one

unclear

clear
tonality

20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1
Key clarity, son24.wav

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Prokofiev, Violon concerto No. in D major, Scherzo: Vivacissimo

unclear

clear

mirmode
mode estimation

20 40 60 80 100 120 140
−0.4

−0.2

0

0.2

0.4
Mode, son28.wav

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

Schubert, Piano Trio No.2 in E-flat major, Andante con moto

minor

major

Mozart, Piano Concerto No.23 in A major, Adagio
20 40 60 80 100 120 140

−0.4

−0.2

0

0.2

0.4
Mode, son22.wav

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

minor

major

mirmode
mode estimation

mirkeysom
self-organizing map projection of chromagram

Toiviainen & Krumhansl, “Measuring and modeling real-time responses to music: The dynamics of tonality in-
duction”, Perception 32-6, pp. 741–766, 2003.

• Any musical feature as input x:

• Spectrum

• Timbre(MFCC, ...)

• Tonality (Chroma, key
strength, ...)

• Rhythm, etc.

• Frames are compared using a
distance measure (such as
cosine distance)

Similarity matrix

temporal location of frame centers (in s.)

te
m

po
ra

l l
oc

at
io

n
of

 fr
am

e
ce

nt
er

s
(in

 s
.)

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

A

B

A1

A2

B1

B2a B2

A2a

mirsimatrix
similarity matrix

mirsimatrix
dissimilarity matrix

mirspectrum(a,
‘Frame’)

mirsimatrix(a,
‘Dissimilarity’)

mirsimatrix(...,
‘Distance’,
‘cosine’)

Dissimilarity matrix

temporal location of frame centers (in s.)

te
m

p
o
ra

l
lo

c
a
ti
o
n
 o

f
fr

a
m

e
 c

e
n
te

rs
 (

in
 s

.)

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

Foote, Cooper. “Media Segmentation using Self-Similarity Decomposition”,
SPIE Storage and Retrieval for Multimedia Databases, 5021, 167-75.

v i

v j

mirsimatrix
similarity matrix

Similarity matrix

temporal location of frame centers (in s.)

te
m

p
o

ra
l
lo

c
a

ti
o

n
 o

f
fr

a
m

e
 c

e
n

te
rs

 (
in

 s
.)

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

Dissimilarity matrix

temporal location of frame centers (in s.)

te
m

p
o
ra

l
lo

c
a
ti
o
n
 o

f
fr

a
m

e
 c

e
n
te

rs
 (

in
 s

.)

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

Foote, Cooper. “Media Segmentation using Self-Similarity Decomposition”,
SPIE Storage and Retrieval for Multimedia Databases, 5021, 167-75.

mirsimatrix(a, ‘Similarity’, ‘exponential’)

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

2. SIMILARITY ANALYSIS FOR MULTIMEDIA
2.1. Constructing the similarity matrix
Self-similarity analysis is a non-parametric technique for studying the global structure of time-ordered streams.
The first step is to parameterize the source audio. For this, we calculate spectral features from the short
time Fourier transform (STFT) of 0.05 second non-overlapping windows in the source audio. We have also
experimented with alternative parameterizations including Mel Frequency Cepstral Coefficients (MFCCs), and
subspace representations computed using principal components analysis of spectrogram data. The window size
may also be varied, though in our experience, robust audio analysis requires resolution on the order of 20 Hz.
Here, the parameterization is optimized for analysis, rather than for compression, transmission, or reconstruction.
The sole requirement is that similar source audio samples produce similar features.

The analysis proceeds by comparing all pairwise combinations of audio windows using a quantitative similarity
measure. Represent the B-dimensional spectral data computed for N windows of a digital audio file by the vectors
{vi : i = 1, · · · , N} ⊂ IRB. Using a generic similarity measure, d : IRB × IRB #→ IR, we embed the resulting
similarity data in a matrix, S as illustrated in the right panel of Figure 1. The elements of S are

S(i, j) = d(vi, vj) i, j = 1, · · · , N . (1)

The time axis runs on the horizontal (left to right) and vertical (top to bottom) axes of S and along its main
diagonal, where self-similarity is maximal. A common similarity measure is the cosine distance. Given vectors
vi and vj representing the spectrograms for sample times i and j, respectively,

dcos(vi, vj) =
< vi, vj >

|vi||vj |
. (2)

There are many possible choices for the similarity measure including measures based on the Euclidean vector
norm or non-negative exponential measures, such as

dexp(vi, vj) = exp (dcos(vi, vj) −1) . (3)

The right panel of Figure 1 shows a similarity matrix computed from the song “Wild Honey”by U2 using the
cosine distance measure (see (2)) and low frequency spectrograms. Pixels are colored brighter with increasing
similarity, so that segments of similar audio samples appear as bright squares along the main diagonal. Brighter
rectangular regions off the main diagonal indicate similarity between segments.

2.2. Audio Segmentation
Segmentation is a crucial first step in many audio analysis approaches. The structure of S suggests a straight-
forward approach to segmentation.6 Consider a simple “song”having two successive notes of different pitch,
for example a cuckoo call. When visualized, S for this example will exhibit a 2 × 2 checkerboard pattern.
White squares on the diagonal correspond to the notes, which have high self-similarity; black squares on the
off-diagonals correspond to regions of low cross-similarity. The instant when the notes change corresponds to
the center of the checkerboard. More generally, the boundary between two coherent audio segments will also
produce a checkerboard pattern. The two segments will exhibit high within-segment (self) similarity, producing
adjacent square regions of high similarity along the main diagonal of S. The two segments will also produce
rectangular regions of low between-segment (cross) similarity off the main diagonal. The boundary is the crux
of this checkerboard pattern.

To identify these patterns in S, we take a matched-filter approach. To detect segment boundaries in the
audio, a Gaussian-tapered “checkerboard”kernel is correlated along the main diagonal of the similarity matrix.
Peaks in the correlation indicate locally novel audio, thus we refer to the correlation as a novelty score. An
example kernel appears in the left panel of Figure 2. The right panel shows the novelty score computed from the
similarity matrix in Figure 1. Large peaks are detected in the resulting time-indexed correlation and labelled as
segment boundaries.

mirsimatrix
similarity matrix

• Observe the structure of this excerpt along
different musical dimensions:

• ‘george.wav’

• For instance:

• s = mirspectrum(…, ‘Frame’, …)

• mirsimatrix(s)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

Novelty

Temporal location of events (in s.)

c
o
e
ff
ic

ie
n
t
v
a
lu

e

• Convolution with
checkerboard
kernel along the
diagonal of
mirsimatrix

• Peaks indicate
transitions between
phases

Similarity matrix

temporal location of frame centers (in s.)

te
m

p
o

ra
l
lo

c
a

ti
o

n
 o

f
fr

a
m

e
 c

e
n

te
rs

 (
in

 s
.)

1 2 3 4 5 6 7

1

2

3

4

5

6

7

2
0

4
0

6
0

8
0

1
0
0

1
2
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

mirnovelty
novelty, kernel method

mirnovelty
novelty, kernel method

• Observe the structure of this excerpt using
different kernel sizes:

• ‘george.wav’

• mirnovelty(…, ‘Kernel’, N)

• where N is the kernel size

Kernel size:

• 64 frames

• 16 frames

Similarity matrix

temporal location of frame centers (in s.)

te
m

po
ra

l l
oc

at
io

n
of

 fr
am

e
ce

nt
er

s
(in

 s
.)

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

160

A

B

A1

A2

B1

B2a B2

A2a

- end of intro
& start of A1

- start of A2a
- start of B1
- start of B2a
- transition

A1a/A1b

mirnovelty
novelty, kernel method

• nv = mirnovelty(sm)

• p = mirpeaks(nv)

• sg = mirsegment(‘mysong’,
p)

• mirplay(sg)

• s = mirmfcc(sg)

• sm = mirsimatrix(s)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

Novelty

Temporal location of events (in s.)

co
ef

fic
ie

nt
 v

al
ue

nv

0 1 2 3 4 5 6 7

!0.5

0

0.5

1

Audio waveform

time (s)

a
m

p
lit

u
d
e

sg

0 1 2 3 4 5 6 7

5

10

15

20

MFCC

time axis (in s.)

c
o
e
ff
ic

ie
n
t
ra

n
k
s

s

sm

mirsegment
segmentation

Statistics
• mirstat

• mean

• standard deviation

• slope

• periodicity

• mirhisto

• distribution histograms

• moments

• mircentroid

• mirspread

• mirskewness

• mirkurtosis

mirfeatures
batch of features

• mirzerocross

• mircentroid

• mirbrightness

• mirspread

• mirskewness

• mirkurtosis

• mirrolloff

• mirentropy

• mirflatness

• mirroughness

• mirregularity

• mirinharmonicity

• mirmfcc

• mirfluctuation

• mirattacktime

• mirattackslope

• mirlowenergy

• mirflux

• mirpitch

• mirchromagram

• mirkeystrength

• mirkey

• mirmode

• mirhcdf

• mirtempo

• mirpulseclarity

mirfeatures(‘Folder’, ‘Stat’)

mirexport
exportation of statistical data to files

• mirexport(filename, ...) adding one or several
data from MIRtoolbox operators.

• mirexport(‘result.txt’, ...) saved in a text file.

• mirexport(‘result.arff’, ...) exported to WEKA
for data-mining.

• mirexport(‘Workspace’, ...) saved in a Matlab
variable.

Stimulus set

activity

te
ns

io
n

valence

happy

sad

tender

fear

anger

Eerola & Vuoskoski. A comparison of the discrete and dimensional models of emotion in music.
Psychology of Music.

valence

Stimulus set

3D 2D

R²
β

R²
β

v a t v a

happy .89 .93 .79 -.35 .89 .85 .49
sad .63 -.20 -.84 -.22 .63 -.05 -.69

tender .77 .33 -.45 -.58 .77 .50 -.51
fear .87 -.83 .07 .63 .87 -.90 .24

anger .64 -.52 .32 .35 .64 -.55 .35
mean .76 .76

activity

te
ns

io
n

Eerola & Vuoskoski. A comparison of the discrete and dimensional models of emotion in music.
Psychology of Music.

T. Eerola, O. Lartillot, P. Toiviainen, "Prediction of Multidimensional Emotional Ratings in Music From Audio
Using Multivariate Regression Models", ISMIR, Kobe, 2009.

miremotion
R² h s t f a

MLR .55 .56 .42 .51 .54
PCA .34 .40 .23 .13 .27
PLS .59 .64 .52 .60 .57
MLR .62 .58 .44 .60 .63
PCA .38 .49 .47 .45 .62
PLS .65 .61 .55 .64 .67

happy
Feature β

fluctuation
peaks

-.40
sp. centroid .13
sp. spread -.19

chrom. peaks -.05
majorness .03

sad
Feature β

roughness .12
register -.08

register var .09
majorness .02

harm. change -.03

tender
Feature β
RMS var -.42

sp. centroid .14
key clarity .11

harm. change -.10
tonal novelty -.01

fear
Feature β
RMS var -.79

fluctuation
peaks

-.21
key clarity -.09

harm. change .08
tonal novelty -.02

anger
Feature β
RMS var .44

pulse clarity -.13
sp. centroid -.13
key clarity -.04

tonal novelty .02

Bo
x-

C
ox

http://ismir2009.ismir.net/program.html

Part 2

• Rhythm, metrical structure

• Tonal analysis

• Segmentation, structure

• Statistics

• Music & emotion

• Advanced use

mirgetdata
return data in Matlab format

Encapsulated data
numerical data,

related sampling rates,
related file name,

etc.

s = mirspectrum(‘file’);

s

vector

mirgetdata(s)

mirgetdata
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s = mirspectrum(‘file’,
‘Frame’);

s

matrix

mirgetdata(s)

mirgetdata
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

f = mirfilterbank(‘file’,
‘Frame’);

f

mirgetdata(f)

3D-matrix

mirgetdata
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s

cell array

mirgetdata(s)

...

sg = mirsegment(‘file’)
s = mirspectrum(sg,

‘Frame’);

3D-matrix 3D-matrix

mirgetdata
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

s

mirgetdata(s)

sg = mirsegment(‘Folder’)
s = mirspectrum(sg, ‘Frame’);

cell array

...

cell array

...

matrix matrix

file1
segm1 segm2

cell array

...

matrix matrix

file2
segm1 segm2

mirgetdata
return data in Matlab format

Encapsulated data
grouped numerical data,
related sampling rates,

related file name,
etc.

p

mirgetdata(p)

p = mirpeaks(a)

peak values

...

cell array
cell array

peak positions

...

cell array
cell array

matrix

get
returns fields of encapsulated data

• get(a, ‘xName’)

• get(a, ‘xData’)

• get(a, ‘yName’)

• get(a, ‘yData’)

• get(a, ‘yUnit’)

• get(a, ‘FramePos’)

• get(a, ‘Sampling’)

• get(a, ‘NBits’)

• get(a, ‘Title’)

• get(a, ‘FileName’)

• get(a, ‘Label’)

• get(a, ‘Channels’)

• get(a, ‘xPeakSample’)

• get(a, ‘xPeakUnit’)

• get(a, ‘xPeakInterpol’)

• get(a, ‘yPeak’)

• get(a, ‘yPeakInterpol’)

Encapsulated dataa = miraudio(‘ragtime’);

get
returns fields of encapsulated data

• get(s, ‘Frequency’) = get(s, ‘xData’)

• get(s, ‘Magnitude’) = get(s, ‘yData’)

• get(s, ‘Phase’)

• get(s, ‘xScale’) (= ‘Freq’, ‘Mel’, ‘Bark’)

• get(s, ‘Power’)

• get(s, ‘dB’)

Encapsulated datas = mirspectrum(‘ragtime’);

etc.

memory management
mirenvelope(‘hugefile’);

hugefile

mirenvelope

Automatic
hugefile

chunk

mirchunklim
chunk size limitation

mirenvelope(‘hugefile’);

chunk

mirenvelope

mirchunklim by default: 500 000 samples

mirchunklim(50000) set to 50 000 samples

hugefile

 If memory overflow problems, decrease mirchunklim:

• a = miraudio(‘hugefile’);

• c = mirmfcc(a)
a

c

avoid useless call to miraudio

hugefile
miraudio

• c = mirmfcc(‘hugefile’)

mirmfcc
hugefile

• a = miraudio(‘Folder’);

• c = mirmfcc(a)

miraudio

a

c

• c = mirmfcc(‘Folder’)

mirmfcc

avoid useless call to miraudio

file1 file2 file3 file4

file1 file2 file3 file4

• f = mirframe(‘hugefile’);

• c = mirmfcc(f)

mirframe

f

c

• c = mirmfcc(‘hugefile’, ‘Frame’)

mirmfcc

avoid useless call to mirframe

hugefile

hugefile

?
• a = miraudio(‘hugefile’, ‘Sampling’, 11025);

• c = mirmfcc(a)

chunk

miraudio

a

c

what if miraudio (or mirframe) really necessary?

hugefile

mireval
flowchart design and evaluation

• a = miraudio(‘Design’, ‘Sampling’, 11025);

• c = mirmfcc(a);

• mireval(c, ‘hugefile’)

chunk

mirmfcc

miraudio

a

c

hugefile

mireval
flowchart design and evaluation

• s = mirspectrum(‘Design’, ‘Frame’);

• c = mircentroid(s);

• mireval(c, ‘hugefile’)

chunk

mircentroid

mirspectrum

s

c

hugefile

mireval
flowchart design and evaluation

• s = mirspectrum(‘Design’, ‘Frame’);

• c = mircentroid(s);

• mireval(c, ‘Folder’)

mircentroid

mirspectrum

s

c

file1 file2 file3 file4

mireval
flowchart evaluation?

• s = mirspectrum(‘Design’, ‘Frame’);

• cent = mircentroid(s);

• cent = mireval(cent, ‘Folder’);

• ceps = mircepstrum(s);

• ceps = mireval(ceps, ‘Folder’);

s

cent

ceps

cent

ceps

s is evaluated twice!

myflow

mirstruct
complex flowchart

• myflow = mirstruct;

• myflow.tmp.s =
mirspectrum(‘Design’, ‘Frame’);

• myflow.cent =
mircentroid(myflow.tmp.s);

• myflow.ceps =
mircepstrum(myflow.tmp.s);

• res = mireval(myflow, ‘Folder’);

myflow.tmp.s

myflow.cent

myflow.ceps

res.cent res.ceps

• f = mirstruct;

• f.dynamics.rms = mirrms(‘Design’, ‘Frame’)

• f.tmp.onsets = mironsets(‘Design’);

• f.rhythm.tempo = mirtempo(f.tmp.onsets, ‘Frame’);

• f.tmp.attacks = mironsets(f.tmp.onsets, ‘Attacks’);

• f.rhythm.attack.time = mirattacktime(f.tmp.attacks);

• f.rhythm.attack.slope = mirattackslope(f.tmp.attacks);

f rms

dynamics tmp.onsets

tmp.attacksattack

time slope

complex flowchart

rhythm

tempo

