
AST2000 Lecture Notes

Part 2A
The special theory of relativity: Basic principles

Questions to ponder before the lecture

1. You have already used the Lorentz transformations. Do you know where they come from? Which
basic principles/formulas would you use if you wanted to deduce the Lorentz transformation?

2. You may have heard about the twin paradox: one of the twins is launched into space, travels
with a speed close to the speed of light and returns to the Earth. After returning, which of the
twins are older?

3. You have already learned how time goes slower when travelling close to the speed of light. So in
principle, it is not a paradox that the two twins have different ages after the space trip. What
is then the paradox of the twin paradox?
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AST2000 Lecture Notes

Part 2A
The special theory of relativity: Basic principles

1 Simultaneity

We all know that ’velocity’ is a relative term.
When you specify velocity you need to specify
velocity with respect to something. If you sit in
your car which is not moving (with respect to the
ground) you say that your velocity is zero with re-
spect to the ground. But with respect to the Sun
you are moving at a speed of 30 km/s. From the
point of view of an observer passing you in his car
with a velocity of 100 km/h with respect to the
ground, your speed is −100 km/h (see Figure 1).
Even though you are not moving with respect to
the ground, you are moving backwards at a speed
of 100 km/h with respect to the passing car.

In the following we will use the expression ’frame
of reference’ to denote a system of observers hav-
ing a common velocity. All observers in the same
frame of reference have zero velocity with respect
to each other. An observer always has velocity
zero with respect to his own frame of reference.

An observer on the ground measures the velocity
of the passing car to be 100 km/h with respect
to his frame of reference. On the other hand,
the driver of the car measures the velocity of the
ground to be moving at −100 km/h with respect
to his frame of reference. We will also use the
term ’rest frame’ to denote the frame of refer-
ence in which a given object has zero velocity. In
our example we might say: In the rest frame of
the passing car, the ground is moving backwards
with 100 km/h.

Figure 1: Velocities are relative.

You are observing a truck coming towards you
with a speed of vground

truck = −50 km/h with respect
to the ground (see Figure 2, velocities are de-
fined to be positive to the right in the figure).
From your frame of reference, which is the same
frame of reference as the ground, the speed of
the truck is |vground

truck | = 50 km/h towards you.
Now you start driving your car in the direction
of the truck with a speed of vground

car = +50 km/h
with respect to the ground (see again Figure 2).
From your frame of reference you observe the
ground to be moving backwards with a velocity of
vcar

ground = −50 km/h. Again, from your frame of
reference you now observe the velocity of the ap-
proaching truck to be vcar

truck = vground
truck − vground

car =
(−50 km/h)−(50 km/h) = −100 km/h (whereas
from the frame of reference of an observer on the
ground, the truck still has vground

truck = −50 km/h).
Now you make a turn so that you drive in the op-
posite direction: Now your velocity is −50 km/h
with respect to the ground, but now you are driv-
ing in the same direction as the truck. You are
now moving in the same direction as the truck
with exactly the same speed with respect to the
ground. From your frame of reference (which is
now the same frame of reference as the truck) the
truck is not moving.

So far, so good. This was just stating some ob-
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vious facts from everyday life in a difficult way.
Now, replace the truck with a beam of light (a
photon) and the car with the Earth. The situ-
ation is depicted in Figure 3. You observe the
speed of light from a distant star at two instants:
One at the 1st of January, another at the 1st of
July. In January you are moving away from the
photons approaching you from the distant star.
In July you are moving towards the photons ar-
riving from the star. If the speed of light with
respect to the distant star is c, then in January
you expect to measure the speed of the light beam
from the star to be c − v where v = 30 km/h is
the speed of the Earth with respect to the same
star (we assume that the star does not move with
respect to the Sun, so this is also the orbital speed
of the Earth). In July you expect to measure the
speed of light from the star to be c + v, just as
for the truck in the example above: The speed of
the light beam seen from your frame of reference
is supposed to be different depending on whether
you move towards it or away from it.

Figure 2: The velocity of the truck seen from the car de-
pends on the velocity of the car.

In 1887 Michelson and Morley performed ex-
actly this experiment which is now famous as the

’Michelson-Morley experiment’. The result how-
ever, was highly surprising: They measured ex-
actly the same speed of light in both cases. The
speed of light seemed to be the same indepen-
dently of the frame of reference in which it is
measured. This has some quite absurd conse-
quences: Imagine that you see the truck driving
at the speed of light (or very close to the speed
of light, no material particle can ever travel at
the speed of light). You are accelerating your
car, trying to pass the truck. But no matter at
which speed you drive, you see the truck mov-
ing with the speed of light with respect to your
frame. Even when you reach half the speed of
light, you still see the truck moving with velocity
c. But how is this possible? An observer at rest
with respect to the ground measures the truck
moving with the speed of light as well, not with
the velocity c + c/2 = 3c/2 as you would expect
given that it moves with velocity c with respect
to something moving with velocity c/2.

Figure 3: The velocity of the starlight is measured when
the Earth has velocity 30 km/s towards and away from
the light beam.
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Figure 4: Event A: Lightning strikes the front part of the
train. Event B: Lightning strikes the rear part of the
train. These two events are observed by observer O on
the ground and observer P in the train. The train has
length L.

This was one of the first signs showing that some-
thing was wrong with classical physics. The fact
that the speed of light seemed to be constant in
all frames of reference led to several contradic-
tions. We have already seen one example of such
a contradiction. We will now look at another one
which might shed some light on the underlying
reason for these contradictions.

In Figure 4 we show the situation. Observer O is
standing on the ground (at rest with respect to
the ground), observer P is standing in the mid-
dle of a train of length L moving with velocity v
with respect to the ground. Observer O sees two
lightnings striking the front and the rear of the
train simultaneously. We call the two events A
and B (An event is a point in space and time, a
point with a space and time coordinate): Event
A is the lightning striking the front, event B is
the lightning striking the rear. Events A and B
are simultaneous.

The light from these two lightnings start trav-
eling from the front and back end of the train
towards observer P. The beam approaching ob-
server P from the front is called beam 1 and the
beam approaching from the rear is called beam 2.

Both observers had synchronized their clocks to
t = 0 at the instant when the lightnings strike the
train. Both observers have also defined their own
coordinate systems x (observer on the ground)
and x′ (observer in the train) which is such that
the position of observer P is at x = x′ = 0 in
both coordinate systems at the instant t = 0
when the lightenings strike. Thus the lightnings

hit the train at the points x = x′ = L/2 and
x = x′ = −L/2 as seen from both observers. We
will now look how each of these observers experi-
ence these events:

From the point of view of observer O stand-
ing on the ground:

The frame of reference of observer O on the
ground is often referred to as the laboratory frame
. It is the frame of reference which we consider to
be at rest. At what time t = tC does observer P
see beam 1 (we call this event C)? To answer this
question, we need to have an expression for the
x-coordinate of observer P and the x-coordinate
of beam 1 at a given time t. Observer P moves
with constant velocity v so his position at time
t is xP = vt. Beam 1 moves in the negative x-
direction with the speed of light c starting from
x1 = L/2 at t = 0. The expression thus becomes
x1 = L/2 − ct. Observer P sees beam 1 when
x1 = xP at time tC . Equating these two expres-
sions, we find

tC =
L/2

c+ v
. (1)

At what time t = tD does observer P see beam
2 (we call this event D)? Following exactly the
same line of thought as above, we find

tD =
L/2

c− v
. (2)

So according to observer O in the laboratory
frame, tC < tD and observer P should see the
light beam from the lightning in front before the
light from the back. This sounds reasonable: Ob-
server P is moving towards beam 1 and away from
beam 2 and should therefore see beam 1 first.

From the point of view of observer P stand-
ing in the train:

At what time t = tC does observer P see beam 1?
We have just agreed on the fact that the speed of
light is independent of the frame of reference. The
result is that the speed of light is c also for the
observer in the train. Seen from the frame of ref-
erence of observer P, observer P himself is at rest
and the ground is moving backwards with speed
v. Thus from this frame of reference, observer P
is always standing at the origin x′P = 0 (the co-
ordinate system x′ moves with observer P). The
expression for x′1 is the same as seen from observer
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O:x′1 = L/2−ct (convince yourself that this is the
case!). Again we need to set x′1 = x′P giving

tC =
L/2

c

At what time t = tD does observer P see beam 2?
Again we follow the same procedure and obtain

tD =
L/2

c

As calculated from the frame of reference of ob-
server P, the two beams hit observer P at exactly
the same time.

So not only are the exact times tC and tD differ-
ent as calculated from the two frames of reference,
but there is also an even stronger contradiction:
Observer P should be hit by the two beams si-
multaneously as calculated from the frame of ref-
erence of observer P himself, but as calculated
from the laboratory frame, beam 1 hits observer
P before beam 2. What does really happen? Do
the beams hit observer P simultaneously or not?
Well, let’s ask observer P himself:

So observer P, two lightnings struck your train si-
multaneously at the front and rear end. Did you see
these two lightnings simultaneously or did you see
one flash before the other?
Observer P: Sorry? I think you are not well informed.
The two lightnings did not happen simultaneously.
There was one lightning which struck the front part
and then shortly afterwards there was another one
striking the rear. So clearly I saw the flash in the
front first.
Observer O: No, no, listen, the lightnings did strike
the train simultaneously, there was no doubt about
that. But you were moving in the direction of beam
1 and therefore it appeared to you that the front
was hit by the lightning first.
Observer P: So you didn’t watch very carefully I
see. It is impossible that the two lightnings struck
at the same time. Look, I was standing exactly in
the middle of the train. The speed of light is al-
ways the same, no matter from which direction it
arrives. Beam 1 and beam 2 had to travel exactly
the same distance L/2 with exactly the same speed
c. If the beams were emitted simultaneously I MUST
have seen the two flashes at the same time. But I
didn’t....beam 1 arrived before beam2, and so event
A must have happened before event B

So beam 1 did indeed hit observer P before beam
2. And indeed, observer P has got a point: From
observer P the two lightnings could not have oc-
curred at the same time. Asking observer O one
more time he says that he is absolutely certain
that the two lightnings struck simultaneously.
Who is right?

We have arrived at one of the main conclusions
that Einstein reached when he was discovering
the theory of relativity: simultaneity is relative.
If two events happen at the same time or not de-
pends on who you ask. It depends on your frame
of reference. In the example above, the two light-
nings were simultaneous for the observer at rest
on the ground, but not for the observer moving
with velocity v. This has nothing to do with the
movement of the light beams, it is simply time
itself which is different as seen from two differ-
ent frames of reference. Simultaneity is a rela-
tive term in exactly the same way as velocity is:
When you say that two events are simultaneous
you need to specify that they are simultaneous
with respect to some frame of reference.

In order to arrive at the conclusion of the relativ-
ity of simultaneity, Einstein excluded an alterna-
tive: Couldn’t it be that the laws of physics are
different in different frames of reference? If the
laws of physics in the train were different from
those in the laboratory frame, then simultaneity
could still be absolute. The problem then is that
we need to ask the question ’Physics is different
in frames which move with respect to which frame
of reference?’. In order to ask this question, ve-
locity would need to be absolute. If velocity is
relative, then we can just exchange the roles: The
observer in the train is at rest and the observer
on the ground is moving. Then we would need to
change the laws of physics for the observer on the
ground. This would lead to contradictions. In or-
der to arrive at the theory of relativity, Einstein
postulated the Principle of Relativity . The prin-
ciple of relativity states that all laws of physics,
both the mathematical form of these laws as well
as the physical constants, are the same in all free
float frames. In the lectures on general relativ-
ity we will come back to a more precise definition
of the free float frame. For the moment we will
take a free float frame to be a frame which is not
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accelerated, i.e. a frame in which we do not ex-
perience fictive forces. You can deduce the laws
of physics in one free float frame and apply these
in any other free float frame. Imagine two space-
ships, one is moving with the velocity v = 1/2c
with respect to the other. If you close all windows
in these spaceship there is no way, by performing
experiments inside these spaceships, that you can
tell which is which. All free float frames are equiv-
alent, there is no way to tell which one is at rest
and which one is moving. Each observer in a free
float frame can define himself to be at rest.

2 Invariance of the spacetime in-
terval

We have seen that two events which are simulta-
neous in one frame of reference are not simultane-
ous in another frame. We may conclude that time
itself is relative. In the same way as we needed
two coordinate systems x and x′ to specify the po-
sition in space relative to two different frames, we
need two time coordinates t and t′ to specify the
time of an event as seen from two different frames.
We are used to think of time as a quantity which
has the same value for all observers but we now
realize that each frame of reference has its own
measure of time. Clocks are not running at the
same pace in all frames of reference. Observers
which are moving with respect to each other will
measure different time intervals between the same
events. Time is not absolute and for this reason
simultaneity is not absolute.

Figure 5: The position of two points A and B measured in
two different coordinate systems rotated with respect to
each other.

Look at Figure 5. It shows two points A and B
and two coordinate systems (x, y) and (x′, y′) ro-
tated with respect to each other. The two points
A and B are situated at a distance ∆xAB = L and
at the same y-coordinate ∆yAB = 0 in the (x, y)
system. In the rotated (x′, y′) system however,
there is a non-zero difference in the y-coordinate,
∆yAB 6= 0. Now, replace y with t. Do you see the
analogy with the example of the train above?

If we replace y with t and y′ with t′, then the two
points A and B are the events A and B in space-
time. Our diagram is now a spacetime diagram
showing the position of events in space x and time
t, rather than a coordinate system showing the
position of a point in space (x, y). Consider the
two coordinate systems (x, t) and (x′, t′) as mea-
surements in two different frames of reference, the
lab frame and the frame of observer P. We see that
in the (x, t) system, the two events are simultane-
ous ∆tAB = 0 whereas in the (x′, t′) system, the
events take place at two different points in time.

We are now entering deep into the heart of the
special theory of relativity: We need to consider
time as the fourth dimension. And moreover,
we need to treat this fourth dimension similar
(but not identical) to the three spatial dimen-
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sions. That is, we need to talk about distances
in space and distances in time. But, you might
object, we measure distances in space in meters
and time intervals in seconds. Can they really be
similar? Yes they can, and you will soon get rid of
the bad habit of measuring space and time in dif-
ferent units. From now on you will either measure
both space and time in meters, or both time and
space in seconds. By the time you have finished
this course you will, without thinking about it,
ask the lecturer how many meters the exam lasts
or complain to your friends about how small your
room in the dormitory is, giving them the size in
square seconds.

How do you convert from meters to seconds and
vice versa? The conversion factor is given by the
universal factor c, the speed of light. If you have
a time interval measured in seconds, multiply it
by c and you have the time interval in meters.
If you have a distance in space measured in me-
ters, divide it by c and you obtain the distance
measured in seconds:

x = ct, t = x/c.

From now on we will drop the factor c and sup-
pose that distances in space and time are mea-
sured in the same units. When you put numbers
in your equations you need to take care that you
always add quantities with the same units, if you
need to add two quantities with different units,
the conversion factor is always a power of c.

Measuring time in meters might seem strange,
but physically you can think about it this way:
Since the conversion factor is the speed of light,
a time interval measured in meters is simply the
distance that light travels in the given time inter-
val. If the time interval between two events is 2
meters, it means that the time interval between
these events equals the time it takes for light to
travel 2 meters. We might say that the time inter-
val between these events is 2 meters of light travel
time. Similarly for measuring distances in sec-
onds: If the spatial distance between two events is
10 seconds, it means that the distance equals the
distance that light travels in 10 seconds. The dis-
tance is 10 light seconds. Actually you are already
accustomed to measure distances in time units:
You say that a star is 4 light years away, meaning

that the distance equals the distance that light
travels in four years. Note also one more effect of
measuring space and time in the same units: Ve-
locities will be dimensionless. Velocity is simply
distance divided by time, if both are measured in
meters, velocity becomes dimensionless. We can
write this as vdimensionless = dx/(cdt) = v/c (to
convert dt to units of length we need to multiply
it by c, thus cdt). If the velocity v = dx/dt = c
is just the speed of light, we get vdimensionless = 1.
From now on we will just write v for vdimensionless.
Note that some books use β to denote dimen-
sionless velocity, here we will use v since we will
always use dimensionless velocities when working
with the theory of relativity. The absolute value
of velocity v is now a factor in the range v = [0, 1]
being the velocity relative to the velocity of light.

This was the first step in order to understand the
foundations of special relativity. Here comes the
second: Let us, for a moment, return to the spa-
tial coordinate systems (x, y) and (x′, y′) in Figure
5. Clearly the coordinates of the points A and B
are different in the two coordinate systems. But
there is one thing which is identical in all coor-
dinate systems: The distance between points A
and B. If we call this distance ∆sAB we can write
this distance in the two coordinate systems as

(∆sAB)2 = (∆xAB)2 + (∆yAB)2

(∆s′AB)2 = (∆x′AB)2 + (∆y′AB)2

(check that you understand why!). The distance
between A and B has to be equal in the two co-
ordinate systems, so

(∆sAB)2 = (∆s′AB)2.

Is this also the case in spacetime? Can we mea-
sure intervals between events in spacetime? This
is now, at least in theory, possible since we mea-
sure space and time separations in the same units.
In a spatial (x, y, z) system we know the geomet-
rical relation,

(∆s)2 = (∆x)2 + (∆y)2 + (∆z)2,

from Euclidean geometry: The square of the dis-
tance between two points (called the line element)
is simply the sum of the squares of the coordinate
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distances between these two points. But do the
rules of Euclidean geometry apply to spacetime?
No, not entirely. The geometry of spacetime is
called Lorentz geometry. The distance between
two events (line element) in Lorentz spacetime
∆s2, is given by

The spacetime interval

(∆s)2 = (∆t)2 − (∆x2 + ∆y2 + ∆z2).

Note the minus sign. This minus sign is the
only thing which distinguishes space from time.
The square of the spacetime distance between two
events equals the square of the time separation
between these events minus the square of the spa-
tial separations between the events. And in the
same way as the distance between two points in
space is the same in all coordinate systems, the
distance in spacetime, the spacetime interval is
the same in all frames of reference. We say that
the spacetime interval is invariant. A quantity
is invariant if it has the same value in all frames
of reference. We already know another invariant
quantity: the speed of light.

So far in this section, we’ve determined that two
simultaneous events in one frame of reference are
not simultaneous in another. The question now
is, does this imply that there exists a frame of
reference in which an event does not occur at all?
The answer to this question is a resounding NO!
Take the following example into consideration:
imagine there exists a bomb that is detonated
when two separate laser detectors are activated
simultaneously; it is nonsensical to imagine that
the bomb would both detonate and remain un-
detonated at the same time, since that would
lead to paradoxical situations in which a person
in its proximity could be both alive and dead. As
a result, the event must occur in all frames of
reference, though the time and place may differ.
This is summed up in the following axiom:

An event which happens in one frame of refer-
ence must happen in all frames of reference.
The time and position might differ but the
event will happen.

So, that was it. We’re done. Now you know what
the special theory of relativity is all about. Con-

gratulations! You now see that we may write the
special theory of relativity in two sentences: Mea-
suring space and time intervals in the same units,
you can calculate the spacetime interval between
two events using the formula for the line element
in Lorentz geometry. This spacetime interval be-
tween two events is invariant, it has the same
value as measured from all frames of reference.
We will now see what this means in practice. But
before you continue, take a walk, go for a coffee
or simply take half an hour in fresh air. Your
brain will need time to get accustomed to this
new concept.

3 An example

A train is moving along the x-axis of the labora-
tory frame. The coordinate system of the labora-
tory frame is (x, y) and of the train, (x′, y′). In
the train a light signal is emitted directly upwards
along the y-axis (event A). Three meters above,
it is reflected in a mirror (event B) and finally
returns to the point where it was emitted (event
C). In the train frame it takes the light beam 3
meters of time to reach the mirror and 3 meters of
time to return to the point where it was emitted.
The total up-down trip (event A to event C) took
6 meters of time in the frame of the train (light
travels with a speed of v = 1, one meter per meter
of light travel time). From event A to event C,
the train had moved 8 meters along the x-axis in
the laboratory frame. Because of the movement
of the train, the light beam moved in a pattern
as shown in Figure 6 seen from the lab frame.

Figure 6: The light emitted (event A) upwards in the train
is reflected (event B) and received (event C) at the same
place (in the train frame) as it was emitted.

1. Use the figure to find the total distance d
traveled by the light beam in the laboratory
frame. Dividing the triangle into two smaller
triangles (see the figure), we find from one
triangle that the distance traveled from the
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emission of the light beam to the mirror is
d/2 =

√
(4 m)2 + (3 m)2 = 5 m and simi-

larly for the return path. Thus, the total dis-
tance traveled by the light beam from event
A to event C is d = 10 m.

2. What was the total time it took for the light
beam from event A to event C in the labora-
tory frame? We have just seen that in the
laboratory frame, the light beam traveled 10
meters from event A to event C. Since light
travels at the speed of one meter per meter
of time, it took 10 meters of time from event
A to event C. In the frame of the train, it
took only 6 meters of time.

3. What is the speed of the train? The train
moved 8 meters in 10 meters of time, so the
speed is v = 8/10 = 4/5, 4/5 the speed of
light.

4. What is the spacetime interval ∆s′ between
event A and event C with respect to the train
frame? In the train frame, event A and event
C happened at the same point, so ∆x′ = 0.
It took 6 meters of time from event A to
event C, so ∆t′ = 6 m. The spacetime in-
terval is thus ∆s′ =

√
(6 m)2 − 0 = 6 m.

(check that you also got this result!)

5. What is the spacetime interval ∆s between
event A and event C with respect to the lab-
oratory frame? In the laboratory frame,
the distance between the events were ∆x =
8 m and the time interval was ∆t =
10 m. The spacetime interval is thus ∆s =√

(10 m)2 − (8 m)2 = 6 m (check that you
also got this result!), exactly the same as ∆s′

in the train frame.

6. Was there an easier way to answer the previ-
ous question? Oh. . . uhm, yes, you’re right,
the spacetime interval is the same in all
frames of reference so I should immediately
had answered ∆s = ∆s′ = 6 m without any
calculation. . . much easier!

Indeed much easier. . . remember that this will be
very useful when calculating distances and inter-
vals with respect to frames moving close to the
speed of light.

4 Observer O and P revisited

Armed with the knowledge of the invariance of the
spacetime interval we now return to observer O
and P in order to sort out exactly what happened
for each of the observers. We know that with re-
spect to the laboratory frame, the two lightnings
struck simultaneously (events A and B were si-
multaneous) at points x = ±L/2 at the time
t = 0 when observer P was at the origin xP = 0.
But at what time did the two lightnings strike
with respect to observer P in the train? We have
learned that with respect to the frame of refer-
ence following the train, the events A and B were
not simultaneous. But in the reference frame of
observer P, at what time t′A and t′B did the two
lightnings strike? The two observers exchange a
signal at t = 0 such that their clocks are both
synchronized to t = t′ = 0 at the instant when
observer P is at the origin in both coordinate sys-
tems xP = x′P = 0. Did event A and B happen
before or after t′ = 0 on observer P’s wristwatch?
(It is common to talk about wristwatches when
referring to the time measured in the rest frame
of a moving object, i.e. the time measured by ob-
servers moving with the object. This wristwatch
time is also called proper time).

We know that an event is characterized by a po-
sition x and a time t in each of the frames of
reference. Let’s collect what we know about the
position and time of event A, B and the event
when observer P passes x = x′ = 0 which we call
event P:

Event P:

x = 0 t = 0

x′ = 0 t′ = 0

Event A:

x = L/2 t = 0

x′ = L0/2 t′ = t′A

Event B:

x = −L/2 t = 0

x′ = −L0/2 t′ = t′B

Note that the length of the train is L0 for ob-
server P and L for observer O. We have already
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Fact sheet: Near the beginning of his career, Albert Einstein
(1879 - 1955) thought that Newtonian mechanics was no longer
enough to reconcile the laws of classical mechanics with the laws
of the electromagnetic field. This led to the development of his
special theory of relativity (1905). It generalizes Galileo’s princi-
ple of relativity – that all uniform motion is relative, and that there
is no absolute and well-defined state of rest – from mechanics to
all the laws of physics. Special relativity incorporates the prin-
ciple that the speed of light is the same for all inertial observers
regardless of the state of motion of the source. This theory has a
wide range of consequences that have been experimentally veri-
fied, including length contraction, time dilation and relativity of
simultaneity, contradicting the classical notion that the duration
of the time interval between two events is equal for all observers.
On the other hand, it introduces the spacetime interval, which is
invariant.

seen that observers in different frames of reference
only agree on the length of the spacetime interval,
not on lengths in space or intervals in time sepa-
rately. For this reason, we do expect L and L0 to
be different. Look also at Figure 5, the distance
∆xAB between the points A and B differ between
the two coordinate systems, in the system (x, y)
it is ∆xAB = L, but in the system (x′, y′) it is
∆x′AB = x′B−x′A ≡ L′. The length of the train in
the rest frame of the train, L0, is called the proper
length. We will later come back to why it is given
a particular name.

We want to find at which time t′A and t′B observed
from the wristwatch of observer P, did events A
and B happen? Did they happen before or after
event P? For observer O all these events were si-
multaneous at t = 0, the moment in which the
two observers exchanged a signal to synchronize
their clocks. For observer P, could these events
possibly had happened before they happened for
observer O? Or did they happen later than for
observer O?

In order to solve such problems, we need to take
advantage of the fact that we know that the space-
time interval between events is invariant. Let’s
start with the spacetime interval between events
A and B.

Spacetime interval AB: From each of the
frames of reference it can be written as

∆s2
AB = ∆t2AB −∆x2

AB,

∆(s′AB)2 = (∆t′AB)2 − (∆x′AB)2.

(note that the y and z coordinates are always 0
since vy = v′y = vz = v′z = 0, so ∆y = ∆y′ = 0
and ∆z = ∆z′ = 0). In order to calculate the
spacetime interval, we need the space and time
intervals ∆x2

AB, ∆t2AB, (∆x′AB)2 and (∆t′AB)2 sep-
arately. In both frames, the spatial distance be-
tween the two events equals the length of the train
in the given frame of reference. So ∆xAB = L
and ∆x′AB = L0. For observer O the events
were simultaneous ∆tAB = 0, whereas for ob-
server P the events happened with a time differ-
ence ∆t′AB = t′A− t′B. Setting the two expressions
for the spacetime interval equal we obtain,

L2 = L2
0 − (t′A − t′B)2. (3)

(check that you obtain this as well!). We have
arrived at one equation connecting observables in
one frame with observables in the other. We need
more equations to solve for t′A and t′B. Let’s study
the spacetime interval between events A and P.

Spacetime interval AP: From each of the
frames of reference it can be written as

∆s2
AP = ∆t2AP −∆x2

AP

∆(s′AP )2 = (∆t′AP )2 − (∆x′AP )2

In order to calculate the spacetime interval, we
need the space and time intervals ∆x2

AP , ∆t2AP ,
(∆x′AP )2 and (∆t′AP )2 separately. In both frames,
the spatial distance between the two events equals
half the length of the train in the given frame of
reference. So ∆xAP = L/2 and ∆x′AP = L0/2.
For observer O the events were simultaneous
∆tAP = 0, whereas for observer P the events hap-
pened with a time difference ∆t′AP = t′A−0 = t′A.
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Setting the two expressions for the spacetime in-
terval equal we obtain,

(L/2)2 = (L0/2)2 − (t′A)2. (4)

Note that we have three unknowns, t′A, t′B and
L. We need one more equation and therefore one
more spacetime interval. The spacetime interval
between B and P does not give any additional in-
formation, so we need to find one more event in
order to find one more spacetime interval. We will
use event C, the event that beam 1 hits observer
P.

Spacetime interval CP: Again, we need

∆s2
CP = ∆t2CP −∆x2

CP ,

∆(s′CP )2 = (∆t′CP )2 − (∆x′CP )2.

In the first section we calculated the time tC when
beam 1 hit observer P in the frame of observer O.
The results obtained in the laboratory frame were
correct since the events A and B really were si-
multaneous in this frame. As we have seen, the
results we got for observer P were wrong since
we assumed that events A and B were simulta-
neous in the frame of observer P as well. Now
we know that this was not the case. We have
∆tCP = tC−0 = tC = L/2/(v+1) (from equation
1, note that since we measure time and space in
the same units c = 1). As event C happens at the
position of observer P, we can find the position of
event C by taking the position of observer P at
time tC giving ∆xCP = v∆tCP = vL/2/(v + 1).
In the frame of observer P, event C clearly hap-
pened at the same point as event P so ∆x′CP = 0.
The time of event C was just the time t′A of event
A plus the time L0/2 it took for the light to
travel the distance L0/2 giving ∆t′CP = t′A+L0/2.
Equating the line elements we have

L2/4

(v + 1)2
(1− v2) = (t′A + L0/2)2 (5)

Now we have three equations for the three un-
knowns. We eliminate L from equation (5) using
equation (4). This gives a second order equa-
tion in t′A with two solutions, t′A = −L0/2 or
t′A = −vL0/2.

The first solution is unphysical: The time for
event C is in this case t′C = t′A + L0/2 = 0 so

observer P sees the lightning at t′ = 0. Remem-
ber that at t = t′ = 0 observer O and observer P
are synchronizing their clocks, so at this moment,
and only this moment, their watch show the same
time. This means that observer P sees flash A at
the same moment as the lightening strikes for ob-
server O. Thus at t = t′ = 0, the lightning hits the
front of the train for observer O, but at the same
time he would see the light from the lightening hit
observer P. The light from event A would there-
fore have moved instantaneously from the front
of the train to the middle of the train.

Disregarding the unphysical solution we are left
with

t′A = −vL0

2
.

Thus event A happened for observers in the train
before it happened for observers on the ground.
Now we can insert this solution for t′A in equation
4 and obtain L,

Length contraction

L = L0

√
1− v2 ≡ L0/γ, (6)

with γ ≡ 1/
√

1− v2. So the length of the train
is smaller in the frame of observer O than in the
rest frame of the train. We will discuss this result
in detail later, first let’s find t′B. Substituting for
t′A and L in equation (3) we find

t′B = v
L0

2
= −t′A.

So event B happened later for observers in the
train than for observers on the ground. To sum-
marize: Event A and B happened simultaneously
at t = t′ = 0 for observers on the ground. For
observers in the train event A had already hap-
pened when they synchronize the clocks at t = 0,
but event B happens later for the observers in the
train. Note also that the time t′A and t′B are sym-
metric about t′ = 0. If you look back at Figure 5
we see that the analogy with two coordinate sys-
tems rotated with respect to each other is quite
good: If we replace y by t we see that for the
events which were simultaneous ∆yAB = 0 in the
(x, y) frame, event A happens before y = 0 and
event B happens after y = 0 in the rotated system
(x′, y′). But we need to be careful not taking the
analogy too far: The geometry of the two cases
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are different. The spatial (x, y) diagram has Eu-
clidean geometry whereas the spacetime diagram
(x, t) has Lorentz geometry. We have seen that
this simply means that distances are measured
differently in the two cases (one has a plus sign
the other has a minus sign in the line element).

We have seen that for observer P event A hap-
pens before event P when they synchronize their
clocks. But does he also see the lightning before
event P? As discussed above, this would be un-
physical, so this is a good consistency check:

t′C = t′A +
L0

2
= −vL0

2
+ L0/2 = L0/2(1− v),

which is always positive for v < 1. Thus ob-
server P sees the flash after event P. When does
observer P see the second flash (event D) mea-
sured on the wristwatch of observer P? Again we
have t′D = t′B + L0/2 giving

t′D = L0/2(1 + v),

so the time interval between event C and D mea-
sured on the wristwatch of a passenger on the
train is

∆t′ = t′D − t′C = vL0

How long is this time interval as measured on the
wristwatch of observer O? We already have tC and
tD from equations (1) and (2). Using these we get
the time interval measured from the ground,

∆t = vL0/
√

1− v2

So we can relate a time interval in the rest frame
of the train with a time interval on the ground as

Time dilation

∆t =
∆t′√
1− v2

= γ∆t′. (7)

Note that index CD has been skipped here since
this result is much more general: It applies to
any two events taking place at the position of ob-
server P. This is easy to see. Look at Figure 7.
We define an observer O which is at rest in the
laboratory frame using coordinates (x, t) and an
observer P moving with velocity v with respect to
observer O. In the frame of reference of observer
P we use coordinates (x′, t′).

Figure 7: Two reference frames: (x, y) coordinates are
used for the system defined to be at rest and (x′, y′) co-
ordinates are used for the system defined to be moving.
In the upper figure, observer O is in the laboratory frame
with observer P in the frame moving with velocity v. In
the lower figure, the two systems have exchanged roles and
v → −v. All equations derived in the above system will
be valid for the system below by exchanging v → −v.

We now look at two ticks on the wristwatch of
observer P. Observer P himself measures (on his
wrist watch) the time between two ticks to be ∆t′

whereas observer O measures the time intervals
between these two ticks on P’s watch to be ∆t
(measured on observer O’s wrist watch). In the
coordinate system of observer P, the wristwatch
does not move, hence the space interval between
the two events (the two ticks) is ∆x′ = 0. For ob-
server O, observer P and hence his wristwatch is
moving with velocity v. So observer O measures
a space interval of ∆x = v∆t between the two
events. The spacetime interval in these two cases
becomes

(∆s)2 = ∆t2 −∆x2 = ∆t2 − (v∆t)2

= (∆t)2(1− v2)

(∆s′)2 = (∆t′)2.

Spacetime intervals between events are always
equal from all frames of reference so we can equate
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these two intervals and we obtain equation (7).

Going back to the example with the train: If the
train moves at the speed v = 4c/5 then we have
∆t = 5/3∆t′ ≈ 1.7∆t′. When observer O on the
ground watches the wristwatch of observer P, he
notes that it takes 1.7 hours on his own wrist-
watch before one hours has passed on the wrist-
watch of observer P. If observer P in the train is
jumping up and down every second on his own
wristwatch, it takes 1.7 seconds for each jump
as seen from the ground. For observers on the
ground it looks like everything is in slow-motion
inside the train.

How does it look for the observers in the train?
Remember that velocity is relative. Being inside
the train, we define ourselves as being at rest.
From this frame of reference it is the ground which
is moving at the speed −v. Everything has been
exchanged: Since we now define the train to be
at rest, the coordinate system (x, t) is now for the
train whereas the coordinate system (x′, t′) is for
the ground which is moving at velocity −v (see
Figure 7). Note the minus sign: The motion of
the ground with respect to the train is in the op-
posite direction than the motion of the train with
respect to the ground.

We can now follow exactly the same calculations
as above for two events happening at the posi-
tion of observer O instead of observer P. For in-
stance we watch two ticks on the clock of observer
O. Then we find again formula (7) but with the
meaning of ∆t and ∆t′ interchanges. Assuming
again a speed of v = −4c/5 (note again the minus
sign), observer P sees that it takes 1.7 hours on
his wristwatch for one hour to pass on the wrist-
watch of observer O. It is the opposite result with
respect to the above situation. While observers
on the ground observe everything in the train
in ’slow-motion’, the observers on the train ob-
serve everything on the ground in ’slow-motion’.
This is a consequence of the principle of relativ-
ity: There is no way to tell whether it is the train
which is moving or the ground which is moving.
We can define who is it rest and who is moving,
the equations of motion that we obtain will then
refer to one observer at rest and one observer in
motion. When we change the definition, the roles
of the observers in the equation will necessarily

also change. Thus, if we define the ground to be
at rest and the train to be moving and we de-
duce that observers on the ground will see the
persons in the train in ’slow-motion’, the oppo-
site must also be true: If we define the train to
be at rest and the ground to be moving, then the
observers on the train will observe the observers
on the ground in ’slow-motion’. Confused? Wel-
come to special relativity!

Consider two observers, both with their own
wristwatch, one at rest in the laboratory frame
(observer O) another moving with velocity v with
respect to the laboratory frame (observer P). Go-
ing back to equation (7) we now know that if ∆t′

is the interval between two ticks on the wristwatch
of observer P, then ∆t is the time interval between
the same two ticks of observer P’s watch measured
on observer O’s wristwatch. Using equation 7 we
see that the shortest time interval between two
ticks is always the time measured directly in the
rest frame of the wristwatch producing the ticks.
Any other observer moving with respect to ob-
server P will measure a longer time interval for
the ticks on observer P’s wristwatch. This is of
course also valid for observer O: The shortest time
interval between two ticks on observer O’s wrist-
watch is the time that observer O himself mea-
sures. The wristwatch time is called the proper
time and is denoted τ . It is the shortest interval
between these two events that can be measured.

Note that the proper time between two events
(two ticks on a wristwatch) also equals the space-
time interval between these events. This is easy
to see: consider again the ticks on observer
P’s wristwatch. In the rest frame of observer
P, the wristwatch is not moving and hence the
spatial distance between the two events (ticks)
is ∆x = 0. The time interval between these
two events is just the proper time ∆τ . Con-
sequently we have for the spacetime interval
∆s2 = (∆t′)2 − (∆x′)2 = ∆τ 2 − 0 = ∆τ 2.

Proper time

∆s2 = ∆τ 2

in the rest frame.

Now, let’s return to another result, the length of
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the train L as measured by observer O on the
ground. Again, the result in equation 6 can be
shown in a similar manner to be more general.
The length L0 can be the length of any object in
the rest frame of this object. We see from equa-
tion 6 that any observer which is not at rest with
respect to the object will observe the length L
which is always smaller than the length L0. The
length of an object measured in the rest frame of
the object is called the proper length of the ob-
ject. An observer in any other reference frame
will measure a smaller length of the object. The
proper length L0 is the longest possible length of
the object. This also means that an observer in
the moving train will measure the shorter length
L for another identical train being at rest with
respect to the ground (being measured to have
length L0 by observers on the ground).

5 The Lorentz transformations

Given the spacetime position (x, t) for an event in
the laboratory frame, what are the correspond-
ing coordinates (x′, t′) in a frame moving with
velocity v along the x-axis with respect to the
laboratory frame? So far we have found expres-
sions to convert time intervals and distances from
one frame to the other, but not coordinates. The
transformation of spacetime coordinates from one
frame to the other is called the Lorentz transfor-
mation. In the exercises you will deduce the ex-
pressions for the Lorentz transformations. Here
we state the results. We start by the equations
converting coordinates (x′, y′, z′, t′) in the frame
moving along the x-axis to coordinates (x, y, z, t)
in the laboratory frame,

The Lorentz transformations

t = vγx′ + γt′, (8)

x = γx′ + vγt′, (9)

y = y′,

z = z′.

To find the inverse transformation, we have seen
that we can exchange the roles of the observer
at rest and the observer in motion by exchang-
ing the coordinates and let v → −v (see Figure 7),

The Lorentz transformations (cont.)

t′ = −vγx+ γt, (10)

x′ = γx− vγt, (11)

y′ = y,

z′ = z.

Here

γ =
1√

1− v2
.

6 List of expressions you should
know by now

Laboratory frame → page 4
Principle of relativity → page 5
Free float frame → page 5
Space time diagram → page 6
Line element → page 7
Lorentz geometry → page 8
Spacetime interval → page 8
Invariance → page 8
Proper time → page 9
Proper length → page 10

7 Introduction to MCAst

During your journey through relativity you will
get acquainted with the 3D-application MCAst.
MCAst will be excessively used during almost all
the exercises in relativity, and is therefore nec-
essary. Go and download the software from the
link provided on the course-page. Once MCAst is
downloaded grab a partner (or two) and be pre-
pared to cooperate on the exercises. Most of the
exercises are meant and should be cooper-
ated on, but they can be done alone. Each stu-
dent gets her/his frame of reference and is sup-
posed to calculate what is going on in the other
frame of reference. It is very important that you
do not get tempted to download the videos of
both frames, you will loose a significant part of
the learning process by doing this: you need to
agree with your partner who does which frame,
then you download only your video. When you
are done you will meet and look at each others
videos and check your results.

To use MCAst during the exercises you will need
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to use the corresponding xml-file. For the stan-
dard variant of the course you will find these on
the course web page with names corresponding
to the exercise numbers. For the project stu-
dents these xml-files will be generated through
the AST2000SolarSystem class with your own
specific solar system (seed) and planet. The in-
formation on how to generate the xml-file, your
own personal seed and how to find the informa-
tion regarding your solar system can be found
in AST2000SolarSystem documentation. Each
unique seed generate unique videos with different
numerical answer. When generating the videos a
corresponding solution for the numerical answers
will be generated. For those experiencing error
when trying to generate the xml-file, you can use
the xml-files on the course page.

Put the xml-file for your frame in the data di-
rectory of MCAst. Then launch MCAst and you
can load the xml and start the video. Note that
after starting MCAst, you can use the option ’set-
tings’ where can choose between using a GPU ren-
derer, or switch off GPU using instead your com-
puter’s CPU. The graphics will be much better
when using GPU, but it requires your computer
to have a powerful graphics processor. Impor-
tant: the random generator is different between
the GPU/CPU. This means that the landscape,
events and the exercises in general will be differ-
ent depending on whether you use CPU or GPU.
It is therefore very important that you agree with
you partner whether you will use GPU or CPU,
both of you must use the same.

In the upper left corner, there will be a clock
showing the time in your frame of reference.
There will also be a ruler on top to measure the
position of events. The numbers which always ap-
pear next to the pointer shows the position mea-
sured on this ruler. The slider on the left can be
used to adjust how fast the video plays.

Note: In almost all videos you can assume that
the camera receives light from everything in-
stantaneously (it is clearly written in the exer-
cise when this assumption does not hold). This
means that we have not taken into account the
time it takes for light to travel from the plan-
ets/objects/events and to the camera. In this
way, all the times and positions of the events are

seen immediately as they happen. You therefore
see events happening when and where they actu-
ally happen, but since light has a limited velocity
a real observer would see some of the scenes quite
differently. As an example, taking into account
the effect of a non-zero light travel time a planet
would not appear length contracted: it would still
appear spherical but you would see the back side
of the planets towards the edges.
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8 Exercises

Exercise 2A.1

We have seen the effects of Lorentz contractions,
namely that a stick of proper length1 L0 moving
at a speed v along the x-axis in the laboratory
frame has a measured length of L = L0/γ. What
happens to the size of the stick in the y and z
directions measured from the laboratory frame?
Does the stick become thinner?

Figure 8: Does a moving cylinder become both thinner
and contracted as observed from the laboratory frame?
We will study this more closely in Problem 1.

To determine whether or not a contraction oc-
curs in a direction orthogonal to the cylinder’s
movement, picture two identical hollow cylinders
A and B. If the radius of one cylinder becomes
smaller than the other, it should be able to slide
into the larger cylinder (see Figure 8). The axes
of both cylinders are aligned with the x-axis at
y = z = 0. Thus both cylinders are centered
around the x-axis. Cylinder A is at rest in the
laboratory frame, cylinder B is moving at a ve-
locity v along the x-axis, approaching cylinder A.

1. We know that the length of cylinder B
as measured from the laboratory frame de-
creases. Assume that the same effect takes
place in the y and z directions such that the
radius of cylinder B gets smaller as mea-
sured in the laboratory frame. What hap-
pens when the two cylinders meet?

2. Now, consider the same situation from the
point of view of an observer sitting on cylin-
der B. What happens when the two cylinders
meet?

3. Using the above conclusions, explain why we
must have that y = y′ and z = z′ in the
Lorentz transformation2

Exercise 2A.2

Relevant theory: Section 1 - 4.
In this exercise we will study a spaceship’s failed
attempt to land on a planet. The first (rather
unlucky) observer will be sitting in the spaceship,
while the other will be standing on the planet’s
surface, and will eventually be hit by the crashing
spaceship. Use MCAst to load the xml file cor-
responding to this exercise; there are two frames
with one xml file for each. You and your part-
ner should agree upon who is in charge of which
frame. You should only look at the video for your
frame until you are told otherwise.

In this exercise there are exactly two frames of ref-
erence, one for the person standing on the planet,
and one for the spaceship; both are placed at the
origin in their respective frames. In the left corner
of the video, the time elapsed when the spaceship
enters the atmosphere and then crashes will be re-
turned with a message indicating which event is
taking place. The necessary distances to perform
the calculations will also be given.

Your main task will be to calculate the time
elapsed starting when the ship enters the planet’s
atmosphere, up until it crashes; the catch here is
that you must determine the time elapsed as seen
from the other observer’s frame of reference.

1. How much time passes (in your frame of ref-
erence) from the moment the spaceship en-
ters the atmosphere until it crashes?

2. In your frame of reference, what’s the dis-
tance from the ground to the beginning of
the atmosphere?

3. What is the velocity of the spaceship or the
planet in each frame of reference?

4. Calculate the spacetime interval between
these two events (entering the atmosphere
and crashing) in your frame of reference, give
the answers in milliseconds.

1Meaning the length measured in the stick’s rest frame.
2Note: this transformation holds strictly for movements along the x-axis. For multidimensional movement, the Lorentz transformation

becomes significantly more complicated. This is outside the scope of this course.



8 EXERCISES 17

5. Write an expression for the same space-
time interval in the other frame of reference.
Use the invariance of the spacetime inter-
val to calculate the time elapsed from when
the spaceship enters the atmosphere until it
crashes in the other frame of reference.
Hint for one of the frames: distances can
rewritten using the equation of constant mo-
tion x = vt and you may need to calculate a
velocity.

6. Now meet your partner and look at the
videos in both frames.

When high energy cosmic ray protons collide with
atoms in the upper atmosphere, so-called muon
particles are produced. These muon particles
have a mean lifespan of about 2 µs (2 × 10−6 s)
after which they decay into other types of par-
ticles. They are typically produced about 15 km
above the surface of the Earth. We will now study
a cosmic ray muon approaching the surface with
the velocity of 0.999c.

7. How long time does it take for a muon to ar-
rive at the surface of the Earth as measured
from the Earth frame?

8. Ignore relativistic effects: Do you expect
many muons to survive to the surface of the
Earth before decaying? (compare with the
mean life time)

9. Now use invariance of the space-time inter-
val (think of the muon as the spaceship), to
find the time it takes to reach the surface of
the Earth in the muons frame of reference.
Does it change your conclusion on the previ-
ous question?

Exercise 2A.3

Relevant theory: Section 1 - 4.
In this exercise there are a total of two frames of
reference. There are therefore two xml files, one
for each frame and person, and all the necessary
information will be given in the upper left cor-
ner for each frame. You and your partner should
agree upon who is in charge of which frame. You
should only look at the video for your frame until
you are told otherwise. The two frames of refer-
ence correspond to:

• The frame of reference of the spaceship with
primed coordinate system (x′, t′), the space-
ship is always at origin x′ = 0.

• The frame of reference of the planet with
unprimed corresponding coordinate system
(x, t). At time t = 0, the spaceship is posi-
tioned at x = 0. At this moment the clocks
are synchronized such that also t′ = 0.

The relative velocity between the spaceship and
the planet is given in the upper left corner of the
video.

The spaceship is traveling through the atmo-
sphere of the planet and is struck by two light-
enings. The two lightenings are yellow and blue,
both strike the spaceship. Thus we have two
events: event ’Y’ which is the event of the yel-
low lightening striking and event ’B’ which is the
event of the blue lightening striking.

The purpose of this exercise is to use invariance
of the space-time interval to calculate the time in-
terval between the two events in the other frame.

1. For both frames:

(a) Write a table with the times and posi-
tions of event Y and B in your frame
of reference. (for the planet frame, you
may need some very basic physics to cal-
culate the positions)

(b) What is the time interval between the
two strikes in your frame?

2. For the frame of the spaceship:

(a) Express the planet-frame-position of the
two lightenings, xY and xB, using the
relative velocity v and the (for you) un-
known times tY and tB (the times of the
events in the planet frame). Hint: At
t = 0 the origin of both systems are
aligned: look at the landscape just be-
low the space ship at this moment. This
point in the landscape corresponds to
x = 0 in the frame of the planet. At any
later time t, what is the position of the
space ship x at that moment measured
in the planet frame? Since both events
take place at the position of the space
ship, you can use this information to find
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expressions for the planet-position of the
lightenings.

(b) Express the space-time interval between
event Y and B in the planet frame
with the unknown variables tY and tB.
Thereafter express the known space-
time interval in your frame using vari-
ables v, t′Y and t′B, not numbers.

(c) Insert ∆t for the time interval in the
planet frame and ∆t′ for the time inter-
val in your frame (do not insert numbers
for the times). Do you find the expres-
sion for time dilation?

(d) Now insert numbers to find the time
interval between the lightenings in the
planet frame.

3. For the frame of the planet:

(a) What are the positions x′Y and x′B for
the two lightenings in the frame of the
spaceship? Hint: Where is origin in the
frame of the spaceship?

(b) Express the space-time interval between
event Y and B in the spaceship frame
with the unknown variables t′Y and t′B.
Thereafter express the known space-
time interval in your frame using vari-
ables v, tY ,and tB, not numbers.

(c) Insert ∆t for the time interval in the
planet frame and ∆t′ for the time inter-
val in the spaceship frame (do not insert
numbers). Do you find the expression
for time dilation? Hint: you will need
to find an expression for the positions xY
and xB of the lightenings in your frame,
as a function of velocity v and time of
events tY and tB.

(d) Now insert numbers to find the time
interval between the lightenings in the
spaceship frame.

4. Now watch both videos with your partner
and check that your numbers were correct.
Look at the landscape to see the position of
the spaceship at both events. Although it
might be difficult to see, they should both
occur above the same positions in the land-

scape. Imagine that the lightenings burned
the landscape just below each lightening.
Look at the distance between these two po-
sitions in the landscape. In which frame is
the distance between these larger?

Exercise 2A.4

Relevant theory: Section 1 - 4.
In this exercise there are a total of two frames
of reference. There are therefore two xml files,
one for each frame, and all the necessary infor-
mation will be given in the upper left corner for
each frame. In this exercise you do not need a
partner. In the beginning you are only supposed
to look at frame 1 until further notice. The two
frames of reference correspond to:

• The frame of reference of the spaceships with
primed coordinate system (x′, t′), the left-
most spaceship is always at origin x′ = 0.

• The frame of reference of the planet with un-
primed coordinate system (x, t).

The idea behind this exercise is to make you redis-
cover what Einstein discovered: that the invari-
ance of the light speed must imply that simulta-
neous events are not simultaneous in all frames.
To do this we use following problem:

Two spaceships are moving with equal speed with
respect to the ground. In the frame of the space-
ships, both spaceships simultaneously shoot a
laser beam towards the other (event A and B, left
spaceship shooting is event A). When the laser
beams hit, the ships explode creating two more
events (event C and D, leftmost explosion is event
C). In this exercise, we will study these 4 events
from two different frames of reference.

Event A, the emission of the laser beam from the
leftmost spaceship, takes place at x = x′ = 0 and
t = t′ = 0 in both frames.

Part 1

In part 1 until further information is given special
relativity is for you an unknown concept, but you
do know that the velocity of light is the same for
all observers (as has been shown empirically).

The two spaceships are firing laser beams simul-
taneously in the spaceship frame. Stationed per-
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fectly in the middle between the two spaceships
we have observer M(iddle). Observer M, as the
spaceships, is at rest in the spaceship frame.

1. Why will observer M observe events A and
B simultaneously? (Note that we know that
the events are simultaneous for observer M
since she is in the same frame of reference as
the spaceships, the question is why she will
also observe these events simultaneously?)
Check in MCast that this is really the case.

2. Now we will try to figure out what happens
in the planet frame without having looked at
the planet frame video: Using that

• we know observer M sees the two light
beams crossing just at her position (why
must this be the case in both frames?),

• the fact that observer M is in the middle
between the spaceships,

• that the laser beams were emitted simul-
taneously in the space ship frame,

we can conclude that in the planet frame,
the laser beams where not emitted simulta-
neously, but at two different times. Why?
Try to think how the spaceship and observer
M are moving while the laser beams are emit-
ted.

3. In order for the laser beams to cross exactly
at the position of observer M, which of the
laser beams must have been emitted first in
the planet frame? Why? Try to imagine the
movements of the space ships and the laser
beams in the planet frame.

4. In the spaceship frame the explosions are si-
multaneous, is this still the case in the planet
frame? Again, in the spaceship frame, the
lights from the explosions will reach observer
M who is stationed in the middle, simulta-
neously.

5. Which explosion occurs first in the planet
frame? Hint: think twice before answering,
the correct answer might not necessarily be
the first idea that comes to your mind.

6. Now order events A, B, C and D in chrono-
logical order in the planet frame. Write a
short summary of why this has to be the

case. Imagine how this will look. Then only
after you have really tried to imagine
how this looks, look at the video for the
planet frame.

Now that you have gained some understanding in
why the planet frame events must have a different
order that the spaceship frame events, it is time
to calculate numbers for the times and positions
in the rest of part 1:

7. Make a table of the times t′ and positions x′

of all four events in the spaceship frame, all
expressed in km. Also calculate the distance
L′ between the spaceships in the spaceship
frame. We will call the unknown distance
between the spaceships in the planet frame
L.

8. Write the times and positions of these same
4 events in the planet frame, expressed in
terms of the velocity v and the unknown
planet frame quantities tB, tC , tD and L.
Use the video for the planet frame (not using
numbers just qualitatively looking at what is
happening) as assistance to find expressions
for xB, xC and xD.

9. Make a function for the position of the laser
beam emitted in event A as a function of
time. Use this function together with a func-
tion for the position of the rightmost space-
ship to find an expression for the time tD of
event D expressed in terms of the unknown
L as well as the velocity. Rewrite the expres-
sion for xD.

10. Use invariance of the space-time interval
∆sAC to find a value for the time tC of event
C expressed for the moment in km. Use this
to find xC , also in km.

11. In the planet frame, make a function for the
position of the laser beam emitted in event
B as a function of time. Use this function
together with a function for the position of
the leftmost spaceship to find an expression
for the time tB of event B expressed in terms
of the unknown L. Find also an expression
for xB.

12. Use invariance of the space-time interval
∆sBD to find the value of L. This calcula-
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tion might be long and ugly if you don’t do it
right: Wait by inserting the expressions you
have for tB and tD until you have simplified
the expression as much as you can, remem-
ber you also have an expression for tD.

Part 2

In the second part of this exercise, we will now
again imagine that we do not know about length
contraction and time dilation. Our goal now is to
try to imagine being Einstein when he just dis-
covered relativity. Using only the fact that the
speed of light is the same in both frames, we will
try to arrive at the expression for time dilation
using the situation with the spaceships and pure
reasoning. Be prepared that we might not quite
arrive though.

In the following we will not use numbers, only
symbols for times, positions and distances in the
planet frame.

1. Write equations for the positions of (1) the
leftmost spaceship, (2) the observer in the
middle, and (3) the light beam emitted from
the leftmost spaceship as a function of time
t, velocity v, the time tA and the distance
L. Remember that at time t = 0 (which is
the origo event), the position of the leftmost
spaceship is x = 0.

2. Use the fact that at the time tM (when the
two beams cross at the position of the mid-
dle observer), the position of the middel ob-
server equals the position of the beam emit-
ted from the leftmost spaceship, to show that

tA = tM −
L/2

1− v
.

(is the light beam emitted before, at or after
the origo event?)

3. Write also the position of the beam emitted
from the rightmost spaceship as a function of
time t expressed in terms of the time tM , L
and v. Use this equation and the fact that at
time tC , the position of the leftmost space-
ship equals the position of the beam emitted
from the rightmost spaceship to show that

tC = tM +
L/2

1 + v
.

4. From an observer at the planet, how long
time ∆t does it take from the beam is emit-
ted from the leftmost spaceship at time tA to
the time the leftmost spaceship explodes at
time tC? Express the answer in terms of L
and v only. What is the corresponding time
∆t′ in the frame of the spaceships?

5. Clearly these time intervals are different,
which should come as a surprise given that
you do not know anything about relativity.
This shows that time needs to run differently
in the two frames, or could there be a differ-
ent solution to this discrepancy?

6. What is the ratio between ∆t′ in the space-
ship frame and ∆t in the planet frame? Does
it look similar to the expression for time di-
lation in special relativity? Why is it dif-
ferent? Having our (wrong) assumptions in
mind, and knowing the real formula for time
dilation, could you actually have guessed this
result?

Exercise 2A.5

Relevant theory: Section 1 - 4.
In this exercise there are a total of two frames
of reference. There are therefore two xml files,
one for each frame, and all the necessary infor-
mation will be given in the upper left corner for
each frame. You do not need a partner for this
exercise. In the beginning you are only supposed
to look at frame 1 (spaceship frame), informa-
tion will be given when you are allowed to look
at frame 2. The two frames are:

• The frame of reference of the spaceships with
primed coordinate system (x′, t′), the left-
most spaceship is at origin.

• The frame of reference of the space station
(and planet) with unprimed coordinate sys-
tem (x, t), the space station (shown as a
white disc) is at the origin.

In this exercise we will play cosmic ping-pong
with a laser beam. Two spaceships with equal ve-
locity moving to the left with respect to the space
station are located at a fixed distance L′ (space-
ship frame) apart. Both spaceships are equipped
with mirrors which enables them to reflect laser
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beams. The leftmost spaceship emits a laser beam
which results in the following events:

• Event A which is the emission of the laser
beam at t = t′ = 0 at the position x = x′ =
0.

• Event B which is the first reflection from the
rightmost spaceship.

• Event D which is the when the laser reflected
in event B reaches the leftmost spaceship and
is reflected again.

• Event C which is a random explosion that
happens on the space station simultaneously
with event B in the spaceship frame.

Your task in this exercise is therefore to denote
the time differences between the reflections in the
space station frame, some general intuition of how
the scene looks in the other frame and why, as
well as the difference between the relativistic and
the non-relativistic case. We will start with the
visual understanding, therefore in the first ques-
tions you are only supposed to do reasoning, no
calculations.

1. We start by comparing the time it takes for
the laser beam to go from left to right, com-
pared to the time it takes to go from right
to left. In the spaceship frame, which time
interval if any is the largest ∆t′AB or ∆t′BD?
Why?

2. Now try to imagine the whole scene in the
space station frame: remember that the
speed of light is invariant and that the space
ships move at a speed close to the speed of
light. How are the space ships and laser
beam moving? Try visualizing.

3. Which time interval will therefore be the
largest ∆tAB or ∆tBD in the space station
frame? Why?

4. Do not yet look at frame 2. There is how-
ever a third xml-file: For visualizing how the
time intervals change depending on the ve-
locity of the spaceships watch frame 3. Here
the ships will increase velocity for every sec-
ond reflection until they reach a velocity of
0.8c (note that in this illustration video, the
ships move in the opposite direction).

Let’s now look at the same situation only non-
relativistic. Suppose the laser beam is now a
ping pong ball moving back and forth always at
80km/h with respect to the spaceships and the
spaceships are moving at 50km/h with respect
to the planet. As with the light beam, the ping
pong ball is always moving with the same veloc-
ity with respect to the space ships. Therefore,
one should think that the same argument as in
the previous questions is valid in the space station
system: When the ball is moving to the right it
moves towards the spaceship which is approach-
ing the ball. When it moves left, it moves towards
the spaceship which moves away from the ball.
As with the light beam, it should therefore take
longer going left than going right.

5. It looks as if the two different observers will
observe different travel times for the ball,
just as for the light beam. Can this really
be the case? If not, where is the error in the
argument? Did we use an important princi-
ple from relativity which is not applicable in
this case?

6. Going back to the relativistic case with the
light beam: Decide whether event C or B
happens first in the space station frame.
Hint: To solve this exercise, imagine an ob-
ject located in the middle between event B
and C with velocity equal to the spaceships.
How will the light from the explosion in event
C and the reflection from event B pass this
object? You will see that this situation cor-
responds to the one from exercise 2A.4.

7. Now try to visualize how the video for frame
2 will look like. In particular, think about
the order of the event and the positions of
the spaceships and space station during the
events.

8. Look at the video for frame 2. Does it look
like you imagined?

We are now done with the visualization, and from
here on out we will calculate the exact times of
the events.

9. Write down the time t′ and position x′ of
all events in the spaceship frame. Use these
to find the distance L′ between the space-
ships as well as the time intervals between
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the first reflections, ∆t′AB and ∆t′BD in the
spaceship frame. It is convenient to convert
all numbers to time units, milliseconds will
make reasonable numbers.

10. Now our task will be to find ∆tAB and ∆tBD

in the space station frame: We will do this
step by step in the following questions. Start
by writing down the positions and times of
events in the space station frame. Some po-
sitions may be expressed through the veloc-
ity and the unknown time of an event in or-
der to reduce the number of unknowns. The
only unknowns should be xB, tB, tD and tC ,
other unknown positions and events should
be written in terms of these.

11. Write the spacetime intervals ∆sAB and
∆s′AB between events A and B in the two
frames. Show that invariance of the interval
gives xB = tB in the space station frame.
Could you have guessed this using physical
arguments without any calculations?

12. Write the spacetime intervals ∆sAC and
∆s′AC between events A and C in the two
frames. Show that invariance of the interval
gives a number for tC in the space station
frame.

13. Write the spacetime intervals ∆sBC and
∆s′BC between events B and C in the two
frames. Show that invariance of the interval
gives tB in the space station frame.

14. Use invariance of the spacetime interval for
appropriate events to find at what time tD
event D happened in the space station frame.

15. In the space station frame, how long time
did it take from the light was emitted to the
first reflection?

16. How long time did it take from the first re-
flection to the second reflection?

17. Which event happened first in the space sta-
tion frame, event B or C? Is it consistent
with you reasoning above?

Exercise 2A.6

Relevant theory: Section 1 - 4.
In this exercise there are a total of two frames of

reference. There are therefore two xml files, one
for each frame and person, and all the necessary
information will be given in the upper left cor-
ner for each frame. You and your partner should
agree upon who is in charge of which frame. You
should only look at the video for your frame until
you are told otherwise. The two frames of refer-
ence corresponds to:

• The frame of reference of the spaceship with
primed coordinate system (x′, t′), the space-
ship is always at origin x′ = 0.

• The frame of reference of the planet with
unprimed corresponding coordinate system
(x, t), the spaceship starts at x = 0.

The space ship starts at x = 0 and moves along
the positive x-axis in the planet frme. In the space
ship frame: note at which point in the landscape
above which the space ship starts. Remember
that this is the origin x = 0 in the planet frame.
When the space ship moves, this point in the
landscale moves backwards, but remember that
from an observer on the ground, the space ship
moves along the positive x-axis.

The goal of this exercise is to deduce the Lorentz
transformation using only invariance of spacetime
interval. This will be done through the following
situation:

A spaceship is traveling through a planets atmo-
sphere. In the atmosphere there are a total of
four lightning strikes giving a total of four events:

• Event G which is the green light, which oc-
curs at t = t′ = 0 at position x = x′ = 0.

• Event P which is the pink light.

• Event B which is the blue light, which occurs
simultaneously with event P in the planet
frame and at origin in the spaceship frame.

• Event Y which is the yellow light, which
occurs simultaneously with event P in the
spaceship frame and at origin in the planet
frame.

Those who are working with the planet frame will
be using event G, P and B. Those who are work-
ing with the spaceship frame will be using event
G, P and Y.
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Our main task here is to deduce the time and po-
sition of the pink lightening in the other frame us-
ing only information obtained from observations
in our own frame as well as the invariance of the
space-time interval.

1. Write a table with the space-time coordi-
nates for the events in both frames of refer-
ence. During this exercise you are supposed
to use both variables and numbers but keep
them separate. The space-time coordinates
of event P and the time of event B/Y in the
other frame is supposed to be the only un-
known variables.

2. In the frame of the spaceship:

(a) Use invariance of the space-time inter-
val ∆sGY and ∆s′GY to find the time of
event Y in the planet frame tY .

(b) Use invariance of the space-time inter-
val ∆sGP and ∆s′GP to find an expres-
sion for the position xP of event P in
the planet frame, expressed in terms of
the unknown time tP of event P in the
planet frame.

(c) Use invariance of the space-time inter-
val ∆sPY and ∆s′PY to find an expres-
sion for the time tP . What is the time of
event P (use numbers)? Tips: You are
supposed to insert the equation deduced
from the previous exercise to eliminate
the unknown xP . You should not get a
second order equation here. If you do,
you have got one of the events wrong:
look carefully at the videos again and
read carefully the information given at
the beginning of this exercise.

(d) Now use the time tP to obtain a num-
ber for the position xP of event P in the
planet frame.

3. In the frame of the planet:

(a) Use invariance of the space-time inter-
val ∆sGB and ∆s′GB to find the time of
event B in the spaceship frame t′B.

(b) Use invariance of the space-time inter-
val ∆sGP and ∆s′GP to find an expres-
sion for the position x′P of event P in

spaceship frame, expressed in terms of
the unknown time t′P of event P in the
spaceship frame.

(c) Use invariance of the space-time inter-
val ∆sPB and ∆s′PB to find an expres-
sion for the time t′P . What is the time of
event P (use numbers)? Tips: You are
supposed to insert the equation deduced
from the previous exercise to eliminate
the unknown x′P . You should not get a
second order equation here. If you do,
you have got one of the events wrong:
look carefully at the videos again and
read carefully the information given at
the beginning of this exercise.

(d) Now use the time t′P to obtain a num-
ber for the position x′P of event P in the
spaceship frame.

4. With your partner, look at both videos to-
gether and observe in particular event B/Y.
Discuss the differences (order of the events).

Now here is the main point of this exercises: we
will now deduce the Lorentz transformations us-
ing event P: The Lorentz transformations are two
equations relating x, t for an event in one frame
with x′, t′ for the same event in another frame.
Here we will use event P and thereby deduce the
relation between xP , tP and x′P , t

′
P where the re-

lation also contains the velocity v between the
frames.

5. Your task is therefore to deduce the Lorenz
transformation using the equations you al-
ready have deduced. Tips: You should have
five variables being tP , xP , t′P , x′P and tY (or
t′B). The time tY or t′B can be rewritten in
terms of the velocity v as done in exercise
2A.3. The rest is algebraic magic.

The student in the spaceship frame should have
obtained the expression for the forward Lorenz
transform (equations 8 and 9), and the student in
the planet frame should have obtained the expres-
sion for the backward Lorenz transform (equa-
tions 10 and 11).

Exercise 2A.7

Relevant theory: Section 5.
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We will now return to the cosmic ping-pong in
exercise 2A.5 and solve this using the Lorentz
transformations instead of the spacetime interval.
Your task is again to calculate the time intervals
∆tAB and ∆tBD in the other frame of reference.
Using the Lorentz transformations we will only
need events A, B and D.

1. Again, write up the coordinates (x, t) and
(x′, t′) for these three events, some as num-
bers, some expressed through other coordi-
nates. The following are unknown: xB, tB
and tD in the other frame of reference.

2. Use the Lorentz transformations to find tB
and tD. You do not need to find xB.

3. Now find ∆tAB and ∆tBD in the other frame
of reference.

Exercise 2A.8

Relevant theory: Section 1 - 5.
We will finish this part on special relativity
by studying the twin paradox in detail. This
long and detailed exercise is very important to
gain some basic understanding for the underly-
ing physics of many of the so-called paradoxes
in the theory of relativity. There are three xml
files for this exercise and you should be three stu-
dents doing this exercise together: you may do
part 1 alone, then it is recommended that you
meet starting from part 2 and do the rest to-
gether. Please note that you will really loose
many important points if you do this exer-
cise alone, in particular it is important to
be able to see the different videos at the
same time without having to switch con-
tinuously between xml files.

Astronaut Lisa is traveling from her homeplanet
Homey to another planet Destiny located 200
light years away. She travels in her spaceship
Apollo-Out with velocity v = 0.99c. Important
note; the planets do NOT move with respect to
each other and are therefore in the same frame of
reference . To begin with we therefore have two
frames of reference:

• The frame of reference of the planets
with unprimed space-time coordinates (x, t).
Homey is always at origin with Destiny lo-

cated 200 light years away long the positive
x-axis.

• The frame of reference of Apollo-Out
with primed space-time coordinates (x′, t′).
Apollo-Out is always at origin in this frame.

We also have two events:

• Event A occurs at x = x′ = 0 and t = t′ = 0
and is when Apollo-Out is departing from
Homey.

• Event B is when Apollo-Out arrives at Des-
tiny.

Part 1

Before we can truly start on the paradox we need
to get some basic math done first.

1. How long does the trip from Homey to Des-
tiny (event A to B) take for observers on
Homey? How long does it take measured on
Lisa’s clock (use the formula for time dila-
tion)?

2. After arriving on Destiny, Lisa quickly starts
the return flight. She travels with exactly
the same velocity v = 0.99 back towards
Homey. Use the same arguments (or sym-
metry arguments) to find the time ∆t and
∆t′ it took from Destiny and back to Homey
in the two frames of reference.

If you have done your calculations correct, here is
a summary of the situation, the whole trip took
404 years measured on Homey-clocks, while it
took 57 years measured on Lisa’s wrist watch. So
while many generations have passed on Homey,
Lisa returns 57 years older.

Part 2

During this part and ONLY this part we will
switch frames, this is to uncover the paradox.
The laboratory frame (x, t) is now the frame of
Apollo-Out and the moving frame (x′, t′) is the
planet frame. Because of the principle of relativ-
ity we are allowed to switch the roles and should
still arrive at exactly the same result using the
same laws of physics.
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From Lisa’s point of view, event A can be viewed
as Homey departing from the spaceship with v =
0.99c, and event B is Destiny arriving at Apollo-
Out with velocity v = 0.99c. Remember from
part 1 where you calculated that it took Lisa 28.5
years to arrive on Destiny.

1. Use time dilation again (and make sure not
to confuse ∆t and ∆t′, check who is the ob-
server ’at rest’ here) to show that the clocks
on Homey at the moment when Destiny ar-
rives at Lisa’s position show 4 years. Above
you showed that 202 years had passed. Now,
this might look like a paradox, but we will
show further down that it is not. No matter
how strange this might sound, it is consis-
tent. The paradox is still to come.

Quickly after Destiny arrives at Lisa’s position,
Destiny departs and Homey approaches you again
with a velocity of v = 0.99c. From earlier calcula-
tions you know that this trip took 28.5 years for
Lisa.

2. By using time dilation (or symmetry) how
long does it take in the planet frame for
Homey to reach Lisa?

If you made the last calculation correct, this is
now the situation: It took Lisa 57 years from
Homey departed until Homey returned. How-
ever, on Homey, the trip took 8 years. So while
Lisa is 57 years older, only 8 years have passed
on Homey. Above we found that 404 years had
passed on Homey. Now, this is a paradox!

Clearly we made an error somewhere in the cal-
culations. Or maybe we simply forgot some basic
principles from special relativity? It appears at
first sight that the two roles (traveling to Destiny
and traveling from Destiny) are equal, that we
can choose whether we consider the planet frame
as the laboratory frame or the Apollo-Out frame
as the laboratory frame.

4. Are the two roles really identical? If not
what is the difference?

Don’t read on until you have found an answer
to the previous question. Here comes the solu-
tion: The difference is that whereas the observers
on Homey always stay in the same frame of refer-
ence, Lisa changes frame of reference: Apollo-Out

needs to accelerate at Destiny in order to change
direction and return towards Homey. Homey does
not undergo such an acceleration. The expression
∆t = γ∆t′ was derived for constant velocity (look
back at its derivation). It is not valid when the ve-
locity is changing. In order to solve this problem
properly one needs to either use general relativity
which deals with accelerations or we can view the
acceleration as an infinite number of different free
float frames, frames with constant velocity, and
apply special relativity to each of these frames.
We will not do the exact calculation here, but we
will do some considerations giving you some more
understanding of what is happening.

Part 3

In this part we will study the ’paradox’ in detail
and see what happened when Lisa changed frame
of reference. To do this, we will introduce one
more planet and one more astronaut. The third
planet, Beyond, is located 400 light years from
Homey along the positive x-axis. The locations
of the planets is illustrated in Figure 9. There is
also a second spaceship, Apollo-In, traveling from
Beyond with velocity v = −0.99c with astronaut
Peter (denoted P in the figure). There is therefore
a total of three reference frames:

• The frame of reference of the planets with
unprimed coordinate system (x, t). Homey
is always at origin with Destiny located 200
light years away and Beyond located 400
light years away.

• The frame of reference of the spaceship
Apollo-Out traveling from Homey to Des-
tiny with primed coordinate system (x′, t′).
Apllo-Out with astronaut Lisa is always at
origin in this frame.

• The frame of reference of the space-
ship Apollo-In traveling from Beyond to
Homey with double primed coordinate sys-
tem (x′′, t′′). Apollo-In with astronaut Peter
is always at origin in this frame.

Now let’s introduce a new way of thinking. In-
stead of one spaceship traveling from Homey, we
will look at it as a queue of infinite amounts of
spaceships, all traveling with the same velocity in
the same direction. In all the spaceships before
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and after Lisa there are other observers. The sit-
uation is depicted in Figure 9, in this illustration
the queue is an elevator. During the rest of the
exercise there will be two elevators, the elevator
from Homey to Beyond will be called ’outgoing
elevator’ (the primed reference system using co-
ordinates (x′, t′)) and the elevator from Beyond
to Homey will be called ’returning elevator’ (with
double primed reference system using coordinates
(x′′, t′′)). During this part we have these events:

• Event A occurs at xA = x′A = 0 and tA =
t′A = 0 and is when Lisa is jumping aboard
the outgoing elevator at Homey.

• Event B is when Lisa arrives at Destiny
and launches herself to the returning eleva-
tor from the outgoing elevator.

• Event B’ is defined in the following way: At
the same time (outgoing elevator frame) as
Lisa arrives at planet Destiny, another as-
tronaut in the same elevator but in another
space ship (thus in the same frame of ref-
erence with clocks synchronized with Lisa’s
clock, but in another elevator compartment)
passes Homey at position xB′ = 0. Event B’
is that he looks at the clocks on Homey as
he passes by and sends a light signal from
his spaceship which is observed at Homey.
In short: B’ takes place at the position of
Homey at the same time as Lisa arrives at
Destiny in her frame of reference.

In the following questions you should use Lorentz
transformations to transform between the coordi-
nate systems when necessary. During this part,
write the distance between planet Homey and
Destiny in the planet frame as L0.

Figure 9: The elevators between planet Homey and planet
Beyond.

1. At what time tB in the planet frame does
Lisa arrive at planet Destiny? (express the
answer in terms of L0 and v)

2. Use the Lorentz transformations to find an
expression for t′B, the time when Lisa arrives
at Destiny measured on her wrist watch. In-
sert numbers and check that you still find
that the trip takes 28.5 years for her.

3. Show that the time tB′ can be written as
tB′ = L0/v − vL0. Insert numbers. Hint:
You first need to find the position x′B′ of
event B’ in the outgoing elevator frame, to
find t′B′ , which you also need, thoroughly
read the event description.

The time tB′ which you just calculated is the time
when the observer in the outgoing elevator reads
the time at Homey clocks at the same time (in
his frame) as Lisa arrives at Destiny. At this mo-
ment, observers at Homey receives the signal from
the space ship in the outgoing elevator (at the
position of Homey) that Lisa has reached Des-
tiny. Remember that in the planet frame, this
trip takes 202 years so in the planet frame, Lisa
has NOT yet reached Destiny.

4. Now is the time to look at the videos:
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Apollo-Out is yellow. When arriving at Des-
tiny, Lisa is launching herself from the yel-
low to a red spaceship (Apollo-In with astro-
naut Peter) in the incoming elevator using a
spherical space capsule (event B). Then Lisa
returns to Homey in the red spaceship. Can
you see the blue light signal from the space-
ship in frame 1? Compare the numbers you
calculated from the earlier exercises with the
numbers in the MCAst videos.

5. Explain the result which we found earlier
when using Apollo-Out as the laboratory
frame: Namely that when Destiny arrived at
the spaceship, we calculated that on Homey
clocks only 4 years had passed. Why is this
not a surprise? Those who were surprised
earlier, do you now understand which error
you made when you got surprised? Which
basic principle of relativity had you forgot-
ten?

We learned in the previous questions that even if
Homey clocks were observed at the same moment
as the spaceship/elevator arrived at Destiny (in
the outgoing frame), these two events (the obser-
vation of Homey clocks and the arrival at Destiny)
were not simultaneous in the planet frame. For
Lisa, only 4 years have passed on Homey when
she arrives at Destiny. For observers on Homey
on the other hand, Lisa arrived at Destiny when
202 years had passed.

Part 4a

We will now tie all the loose treads together. Es-
pecially how time passes during the change of
frame at event B. This is where the paradox will
be answered.

We will start this part by introducing a couple of
new events:

• Event D is when Peter jumps aboard the re-
turning elevator from Beyond. This occurs
in the planet frame at time t = 0 and at a
distance x = 2L0 from Homey. In the re-
turning elevator frame this occurs at x′′ = 0
and t′′ = 0. In the returning elevator frame,
Peter is always at the origin. In the planet
frame, event A and even D happen at the
same time (Lisa and Peter start their jour-

ney simultaneously), they need to travel the
same distance L0 to Destiny with the same
velocity v and therefore arrive simultane-
ously at Destiny at event B where Lisa is
transferred to Peter’s elevator and frame of
reference.

• Event B” is conceptually similar to event B’:
Event B” takes place at the same time as
event B in the frame of the returning eleva-
tor. The event is a person in the returning
elevator at the position of Homey, looking
at the clocks at Homey and sending a blue
light signal (check the video). Thus exactly
at the same time (returning elevator frame)
as Lisa is arriving in the returning elevator
and meets Peter, event B” takes place at the
position of planet Homey.

In the following, we cannot use the Lorentz trans-
formation because the clocks in the double primed
reference system is not correctly synchronized
with Homey clocks. We therefore need to use the
space time interval.

1. We will in the following try to find the time
t′′B at Peter’s wrist watch when he arrives
at Destiny. Write down the space and time
intervals ∆xBD, ∆tBD, ∆x′′BD and ∆t′′BD.
Show that invariance of the spacetime inter-
val gives

L2
0

v2
− L2

0 = (t′′B)2,

which gives t′′B = L0/(vγ). Compare with
your expression for t′B.

2. By using intuition you should be able to de-
duce that the spacecrafts from event A and
D to event B use equal amount of time in
their respective frame. The reason for this is
that both have equal velocity and no accel-
eration. Now check the result comparing the
videos of the frame of the outgoing (yellow)
spaceship and the incoming (red) spaceship:
when both meet at Destiny, what is the time
in each of the spaceships? Compare with the
numbers you have calculated.

We will now try to find the time on Homey at
the moment when Peter is reaching Destiny in
the returning elevator frame. We will use the
same ’trick’ as earlier with event B’, and use an
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observer in an elevator compartment positioned
at Homey in the returning elevator at the same
time as event B occurs in the returning elevator
frame. This means that an observer will be send-
ing a light signal at Homey in the returning eleva-
tor frame to an observer at Homey in the planet
frame to tell that Lisa now has been transferred to
the returning elevator and has met Peter. (note
that the person in the returning elevator frame
which is positioned next to Homey and is sending
the signal can not know for sure that Lisa actu-
ally managed to meet Peter, he can only infer this
from looking at his clock and calculating the time
at which this should happen in his frame).

We found that only 4 years had passed on Homey
when Lisa arrived at Destiny (seen from outgo-
ing elevator frame). We will now make the same
check from the returning elevator. We will now
try to find out what time tB′′ the observer in the
returning elevator saw when looking at Homey
clocks (and sending the signal) at event B”. For
this we will use the space-time interval ∆sDB′′ .

3. Show that the space and time intervals from
each frame are the following:

∆xDB′′ = 2L0

∆tDB′′ = tB′′

∆x′′DB′′ = L0/γ

∆t′′DB′′ = L0/(γv)

You might be a bit surprised by one of these
results, but if you have doubts, do the fol-
lowing: Make one drawing for event D and
one for event B”. Show the position of the
zero-point (the position of Peter is the zero
point of the x′′ axis) of each of the x-axes
in both drawings and find the distances be-
tween events.

4. Use invariance of the space-time interval
(event D and B”) to show that

tB′′ =
L0

v
+ L0v

Inserting numbers should give tB′′ = 400 years.
Use the video of the planet frame to check at
which time the astronaut in the incoming space-
ship reads the clocks on Homey and as sends the

blue light signal. Surprised? What has hap-
pened?

Lisa is still at event B, she made a very fast trans-
fer so almost no time has passed since she was in
the outgoing elevator. But just before the trans-
fer, only 4 years had passed on Homey since she
started her journey. Now, less than the fraction of
a second later, 400 years have passed on Homey.
So in the short time that the transfer lasted, 396
years passed on Homey! This is were the solu-
tion to the twin paradox is hidden: When she
makes the transfer, she changes reference frame:
She is accelerated. Special relativity is not valid
for accelerated frames (actually one could solve
this looking at the acceleration as an infinite sum
of reference frames with different constant veloc-
ities). When she is accelerated, she experiences
fictive forces. This does not happen on Homey,
the planet does not experience the same accel-
eration. This is the reason for the asymmetry:
If her speed had been constant, she and Homey
could exchange roles and you would get consis-
tent results. But since she is accelerated during
transfer while Homey is not, there is no symme-
try here, her frame and the planet frame cannot
switch roles.

Let’s summerize the situation: In the planet
frame, Lisa started her journey at t = t′ = 0
and arrived on Destiny after t′ = 28.5 years. In
the planet frame she arrived on Destiny after 202
years of travel. In her frame, the clocks on Homey
show 4 years when she arrives on Destiny. Only
4 years have passed on Homey at the time she
arrives at Destiny, seen from her frame. Then she
is launched to the returning elevator. Her watch
still shows t′ = t′′ = 28.5 years. But now she
has switched frame of reference. Now suddenly
400 years have passed on Homey, Homey clocks
went from 4 years to 400 years during the time she
launched herself from one elevator to the other, in
her frame. In the planet frame, the clock showed
202 years during her transfer.

Seen from Homey, she also needs 202 years to
return, so the total time of her travel measured
in the frame of reference of the planets is t = 404
years. In her own frame, the return trip took 28.5
years (by symmetry to the outgoing trip), so her
total travel time was 57 years. But according to
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her frame of reference, Homey clocks again aged 4
years during her return trip (by symmetry to the
outgoing trip). When she was at Destiny, the ob-
server in her frame of reference saw that Homey
clocks showed 400 years. In her frame, 4 years
passed on Homey during her return trip. So con-
sistenly she finds Homey clocks to show 404 years
when she sets her feet on Homey again. This is
also what we find making the calculation in the
planet frame 202 × 2 = 404. But hundreds of
generations have passed, and she has only aged
57 years. But after all these strange findings I’m
sure you find this pretty normal by now. Every-
thing clear? Now check the clocks in the video
of the returning (red) spaceship as well as in the
planet frame at the moment you return to Homey.
Is everything consistent? Read through one more
time.

4. Now comes the most important part
of this exercise: Use the videos, and only
the videos, not the text, to tell this story
together, explaining every detail and every
possible paradox.

Part 4b

We will end part 4 with a very different view on
the solution to the twin paradox. You have by
now probably learned about spacetime diagrams
from the next lecture, you will need spacetime
diagrams here:

We will now look at an analogy to explain the
’paradox’. Look at Point Q in Figure 10: It is
located at (2, 2) in the (x, y) coordinate system.
Your friend has for some reason been able to con-
vince you that the (x′, y′) coordinate system is
better so you decide to switch coordinate sys-
tems. Unfortunately you didn’t finish 10th grade,
which is why you forgot to change the value of
your (x, y) coordinates as you switched to the
new coordinate system. The result is you actually
changed your original point Q to a new, uterlly
unrelated point B.

x

y

x′

y′

Q
B

Figure 10: An illustration of a fundamental mistake: for-
getting to change your coordinates when changing the co-
ordinate system. You wish to go from the black dashed
lines to the blue dashed lines, but fail to change the values
of the coordinates, which results in the red dashed lines.

The mistake we made in Figure 10 may seem
blatantly obvious, but it is actually identical to
the resolution of the twin paradox. As a visual
representation, Figure 10 serves as a great tool.
However, we did not confuse Euclidean space co-
ordinates in our paradox; we confused Minkowski
spacetime coordinates. The problem arose as Lisa
reached Destiny and changed her velocity. By
doing so she effectively changed her coordinate
system, but we forgot to change her spacetime
coordinates! In particular, her time coordinate
when she arrives on Destiny is not the same as the
time coordinate as she leaves Destiny. Treating
time as pure coordinate is a strange experience
at first, but you need to get used to it!

Let’s review simultaneity using two frames of ref-
erence: S (planet frame) and S ′ (Lisa’s frame).
Assume two events, M and N. Both frames ob-
serve events M and N , but only S ′ observes the
events simultaneously.

1. What is the value of ∆t′MN?.

The Lorentz transformations are:

∆t = γ
(
∆t′ + v∆x′

)
(12)

∆x = γ
(
∆x′ + v∆t′

)
(13)

∆t′ = γ
(
∆t− v∆x

)
(14)

∆x′ = γ
(
∆x− v∆t

)
(15)

2. Use the Lorentz transformations in order to
find ∆tMN as a function of ∆xMN .

What does your new-found expression mean?
Well, it actually allows us to draw a line of si-



multaneity in a spacetime digram. Lines of si-
multaneity are exactly what they sound like: lines
that show the time t and position x in frame S of
events which are simultaneous ∆t′ = 0 in frame
S ′. Let’s return to the Twin Paradox:

3. Plot Lisa’s worldline as seen from the planet
frame of reference when v = 0.99 and L =
200 ly.

Recall the failure of our preconcieved notion that
the time coordinates of Lisa’s arrival and depar-
ture from Destiny were the same. Instead of
claiming her coordinates must be the same, let’s
now investigate the lines of simultaneity.

4. Assuming Lisa is arriving on Destiny with
v = 0.99, use your expression from ques-
tion 2 in order to plot her line of simultane-
ity through event B in the outoing elevator
system on top of your plot from question 3.
Hint: You want to draw the line of simul-
taneity through event B, thus you want to
find the line showing all times t and positions
x such that ∆t = t − tB and ∆x = x − xB
in frame S for which ∆t′ = 0 in frame S ′.

In particular look at where the line of si-
multaneity crosses the position x = 0, the
position of the planet and event B’.

5. Assuming now that Lisa is departing Destiny
with v = −0.99, use your expression from
question 2 in order to plot her line of simul-
taneity through event B in the returning el-
evator system on top of your plot from ques-
tion 4. In particular look at where the line
of simultaneity crosses the position x = 0,
the position of the planet and event B”.

6. Use your results to explain in a new way why
the Twin paradox is not a paradox.

You may feel as though this answer is incom-
plete, but it is really not. If you had a spaceship
capable of instantaneously changing its velocity
from v to −v, you would actually experience this
mind-boggling effect. Obviously such spaceships
don’t exist in reality, there will always be an ac-
celerated phase which takes much more than zero
time.

30
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