
AST2000 Lecture Notes

Part 2B
Four vectors and relativistic dynamics

Questions to ponder before the lecture

1. A position vector is a vector pointing to a position in 3 dimensions. In relativity it could be
useful to include the position in time and make a four dimensional position vector. Would such
a vector obey the usual rules for vector aritmetics? (try to think about some simple examples,
i.e. of adding position vectors)

2. We have seen that in the special theory of relativity, also the pace of time changes when you
move. Could this be interpreted as you having a four-dimensional velocity including a time
component of your velocity vector? How could you define such a 4 dimensional velocity?

3. The velocity of an object changes when you change your frame of reference. Does this mean
that also momentum and energy are relative quantities? What happens in this case to the law
of conservation of energy?
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AST2000 Lecture Notes

Part 2B
Four vectors and relativistic dynamics

1 Worldlines

In the spacetime diagram in figure 1 we see the
path of a particle (or any object) through space-
time. We see the different positions (x, t) in space
and time that the particle has passed through.
Such a path showing the points in spacetime that
an object passed is called a worldline. We will
now study two events A and B (on the world-
line of a particle) which are separated by a small
spacetime interval ∆s. These events could be the
particle emitting two flashes of light or the parti-
cle passing through two specific points in space.
The corresponding space and time intervals be-
tween these two events in the laboratory frame
are called ∆t and ∆x. From the figure you see
that ∆t > ∆x. You can see that this also holds
for every small spacetime interval along the path.
This has to be this way: The speed of the parti-
cle at a given instant is v = ∆x/∆t. If ∆x = ∆t
then v = 1 and the particle travels at the speed
of light. That ∆t > ∆x simply means that the
particle travels at a speed v < c which it must.
The worldline of a photon would thus be a line
at 45◦ with the coordinate axes. The worldline of
any material particle will therefore always make
less than 45◦ with the time axis.

Events which are separated by spacetime dis-
tances such that ∆t > ∆x are called timelike
events. Timelike events may be causally con-
nected since a particle with velocity v < c would
have the possibility to travel from one of the
events to the other event. There is a possibil-
ity that the second event could have been caused
by the first event since it is possible for a signal to
travel between the events. Timelike events have

positive line elements,

∆s2 = ∆t2 −∆x2 > 0.

Figure 1: The worldline, the trajectory of a particle in a
spacetime diagram. Two events A and B along the path
of the particle have been marked.

Events for which ∆t = ∆x are called lightlike
events. Only a particle traveling at the speed of
light (v = ∆x/∆t = 1) could travel from the first
event to the second. Lightlike events have zero
spacetime interval,

∆s2 = ∆t2 −∆x2 = 0.

Note one consequence of this: Remember that the
proper time interval ∆τ 2 equals the spacetime in-
terval ∆s2. Thus, photons always have ∆τ = 0,
the wristwatch attached to a photon would not
change. Photons and other particles traveling at
the speed of light do not feel the effect of time.

Events for which ∆x > ∆t are called spacelike
events. For these events, the spatial component
of the distance is larger than the time compo-
nent. No worldline could ever connect two space-
like events as it would require a particle to travel
faster than light. Thus, spacelike events are not
causally connected. The first event could not have
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caused the second. The spacetime interval for
spacelike events is negative,

∆s2 = ∆t2 −∆x2 < 0.

Figure 2: Different worldlines connecting the two events
A and B.

In figure 2 we see two events A and B and three
different worldlines between these events. These
events could be a car passing position xA and po-
sition xB in the laboratory frame. In the space-
time diagram we see three worldlines each corre-
sponding to a car. The straight worldline must
correspond to a car driving with constant speed
v = ∆x/∆t = constant. The two other worldlines
must correspond to cars accelerating (changing
their speed and thereby changing the slope of the
worldline) along the way from xA to xB, but all
cars reach point xB at the same time (event B).
All cars also passed point xA at the same time
(event A). Same time here means ’same time’ for
all frames of reference: all the cars meet at event
A and B, so if they meet simultaneously in one
frame of reference they must meet simultaneously
in all other frames of reference (did you get this?
If not, read the sentences again!).

We will now ask a question which answer may
seem obvious in this case, but which might not
be so obvious in other situations. The question
is: Given a particle (or a car) going from event
A to event B. If this particle is in free float (in
special relativity this means that no forces act
on the particle), which worldline will the parti-
cle take between event A and event B? Looking
back at figure 2 we see three possible worldlines,
but in fact there is an infinite number of possible
worldlines connecting the two events. The ob-
vious answer in this case is that it will follow a
straight line in spacetime, i.e. the straight world-
line corresponding to constant velocity. This is
just a modern way of saying Newton’s first law:

A body which is not under the influence of ex-
ternal forces will continue moving with constant
velocity. But is there a deeper principle behind?
In the theory of relativity there is, and this princi-
ple is called the principle of maximal aging. This
is a fundamental principle in the special as well
as in the general theory of relativity.

The principle of maximal aging says that a par-
ticle in free float (no forces act on the particle)
will follow the worldline which corresponds to the
longest possible proper time interval between the
two events. We remember that proper time is the
wristwatch time, the time measured on the clock
attached to the particle. So let different particles
take different paths in spacetime between the two
events. Attach a wristwatch to each of the par-
ticles. At event B, you look at the time interval
between event A and B measured on the wrist-
watch of each of the particles. The particle which
measures the longest proper time, i.e. the parti-
cle with the wristwatch which made most ticks
during the trip from event A to event B, is the
particle taking the path that a particle in free-
float would take.

How do we calculate the proper time interval that
a given particle takes from event A to event B?
The clue is to remember that the proper time in-
terval ∆τ between two events equals the space-
time interval, or the total length of the path in
spacetime ∆s taken between the two events. For
the worldline of a particle with constant velocity,
we know that the distance in spacetime traveled
from event A to event B is just ∆s =

√
∆t2 −∆x2

where ∆x and ∆t are space and time intervals
measured in an arbitrary frame of reference. To
measure the total spacetime interval along the
worldline of a particle which does not move with
constant velocity, we need to break the path up
into small path lengths ds. This path length
is so small that we can assume the velocity to
be constant during the time it takes to travel
this interval in spacetime. We can thus write
ds =

√
dt2 − dx2 where dx and dt are the corre-

sponding small space and time displacement mea-
sured in the arbitrary frame of reference. To ob-
tain the total length of the path in spacetime
traveled between two events A and B, we need
to integrate all these tiny spacetime intervals ds
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giving

∆s =

∫ B

A

√
dt2 − dx2. (1)

This equals measuring the length s of a curved
path between two points A and B in the x-y plane:

∆s =

∫ B

A

√
dx2 + dy2.

Note again a huge difference here: The minus
sign in the spacetime interval. We know from
Euclidean geometry that the shortest path s be-
tween two points A and B in the plane, is the
straight line. The minus sign in the line element
for Lorentz geometry gives rise to the opposite re-
sult (which we will not derive here): The longest
path s between two events A and B in space-
time is the straight worldline. Therefore, if we
measure the length of the spacetime path for all
the three worldlines in figure 2 using the integral
in (1), we find that the longest path in space-
time is the straight worldline, i.e. the worldline of
the car driving with constant velocity. Remember
again that the length of the spacetime interval ∆s
equals the total proper time ∆τ measured on the
wristwatch of the particle. So the longest proper
time interval between two events is measured on
the particle taking the straight line in spacetime,
i.e. the particle which has constant velocity. We
have just deduced Newton’s first law from the
principle of maximal aging. When we come to
the general theory of relativity, we will see that
the spacetime geometry and hence the form of
the line elements ∆s is different in a gravitational
field. We will need the principle of maximal ag-
ing to tell us how a free float particle is moving
in this case.

2 Four-vectors

So far we have used three dimensional vectors to
determine a position in space. A generalized way
way of writing a vector is as follows

~x = (x1, x2, x3),

which can potentially be the three spatial dimen-
sions (x, y, z). A general 4-vector is similarly de-
fined

x = (x0, x1, x2, x3),

where the components may potentially be the po-
sition (t, x, y, z) of an event in four dimensional
spacetime. In the latter case, the four-vector
points to an event in spacetime for a given frame
of reference. We have already learned that in or-
der to transform spacetime coordinates from one
frame of reference to another, we need the Lorentz
transformations. Thus, we may write the trans-
formation of a four-vector x in one frame of ref-
erence to x′ in another frame of reference by a
matrix multiplication,

x′0
x′1
x′2
x′3

 =


γ −vγ 0 0
−vγ γ 0 0

0 0 1 0
0 0 0 1



x0
x1
x2
x3

 .

For the case where this 4-vector is indeed the
spacetime position of an event (t, x, y, z), com-
pare with the expression for the Lorentz transfor-
mation in the previous lecture notes. Check that
the matrix multiplication gives you the correct
equations. For those of you liking linear algebra,
the matrix multiplication can be thought of as a
type of coordinate mapping between different co-
ordinate systems (or reference frames) using the
Lorentz transformation (Compare the upper part
of this equation with matrices which are used to
rotate between coordinate systems in two spatial
dimensions, do you see a similarity? Remember
the analogy used in the previous lecture notes be-
tween a coordinate change in the (x, y) plane and
the (x, t) diagram).

A relativistic 4-vector cannot be any collection
of four numbers, in order for a four dimensional
vector to be a relativistic 4-vector, the compo-
nents need to be (1) physical quantities and (2)
these physical quantities need to transform from
one frame of reference to another by the Lorentz
transformation. If these two conditions are not
fullfilled, the vector is not a 4-vector. We have
so far only seen one example of a 4-vector: the po-
sition of an event in spacetime. We will soon see
more examples, but first we need to learn some
notation.

For components of a normal three dimensional
vector, we use Latin letters, typically i and j, for
the indices: The components of ~x are xi where
i goes from 1 to 3. For the components of a 4-
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Fact sheet: An example of a light cone, the three-dimensional
surface of all possible light rays arriving at and departing from a
point in spacetime. Here it is depicted with one spatial dimen-
sion suppressed. In general, there are three types of curves in
spacetime: 1) Time-like curves, with a speed less than the speed
of light. These curves must fall within a cone defined by light-
like curves. 2) Light-like curves, having at each point the speed
of light. They form a cone in spacetime, dividing it into two
parts. 3) Space-like curves, falling outside the light cone. (Fig-
ure: Wikipedia)

vector, we use Greek indices, typically µ and ν.
The components of a four-vector x are xµ where
µ run from 0 to 3, 0 being the time component.
If we wish to separate the time and space part of
a four-vector we might also write it as x = (t, xi)
where xi refers to all three spatial components.

The matrix multiplication (Lorentz transforma-
tion) introduced earlier can be written as

x′µ =
3∑

ν=0

cµνxν ,

where cµν is the matrix above. This is the equa-
tion which transforms any four-vector from one
frame of reference to another. We will now write
this equation using the so-called Einstein conven-
tions which will be covered more thoroughly in
future courses, but for now will save you from a
lot of writing. Instead of writing the sum sym-
bol, the Einstein conventions say that when two
factors in a term contain the same index, there
is an implicit sum over this index. If the index
is Latin, then there is a sum over the three spa-
tial dimensions, if the index is Greek, there is a
sum over the three spatial dimensions plus time.
Using this convention we can write the previous
equation simply as

x′µ = cµνxν (2)

which is the formal mathematical definition of a
4-vector: as mentioned above, this equation, say-
ing that a 4-vector transforms from one frame of
reference to another, needs to hold for the vector
to be a 4-vector.

It can be shown that four-vectors follow the nor-
mal rules for summations and subtractions (see
exercise 2B.2). We will now look at the scalar
product. For three dimensional vectors, the usual
scalar product can be written as,

~x · ~y =
3∑
i=1

xiyi = xiyi,

where the Einstein convention was used in the last
expression. We can also define a scalar product
for four-vectors. Instead of writing a dot between
the vectors, one usually writes the scalar product
with one upper index and one lower index,

xµyµ = x0y0 − xiyi.

One index µ is written high and the other low
to show that this is the scalar product and not
a normal sum. Note that the scalar product is
defined with a minus sign in front of the spatial
part. If we had written both indices low, this
would mean,

xµyµ = x0y0 + xiyi,

using the Einstein summation convention. This
is different from the scalar product. It should
be clear where the minus sign comes from, con-
sider a spacetime interval ∆xµ (a spacetime in-
terval is an interval between two points x1µ and

x2µ in time and space such that ∆xµ = x1µ − x2µ =
(∆t,∆x,∆y,∆z)). The scalar product of a space-
time interval with itself gives,

∆xµ∆xµ = ∆t2 −∆x2 = ∆s2
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(assuming ∆y = ∆z = 0). The result is the
scalar ∆s2. A scalar is a quantity which is in-
variant, which has the same value in all frames
of reference. We already knew that the space-
time interval ∆s2 is a scalar (where did we learn
this?). For infinitesimal distances between events,
we may write this as,

ds2 = dxµdxµ.

We learned above that a four vector is a vec-
tor which transforms according to the Lorentz
transformation (equation 2) when changing from
one frame of reference to another frame of refer-
ence having velocity v with respect to the first.
This has an important consequence: You cannot
choose 4 numbers on random, put them together
and call it a 4-vector! The numbers entering in a
four-vector need to be physical quantities which
are such that the 4-vector transforms accoring to
equation 2. We thus need to take care when per-
forming mathematical operations with 4-vectors:
The result may not necessarily be a 4-vector.

As an example we will now investigate what hap-
pens with a 4-vector when multiplying it with
some random physical quantity. Say that you
for some reason need to multiply a spacetime dis-
tance ∆xµ = (∆t,∆x,∆y,∆z) with the corre-
sponding time interval ∆t forming

∆uµ = ∆t∆xµ.

Is ∆uµ a 4-vector? We can easily check this by
checking whether it transforms according to equa-
tion 2 when changing frame of reference. We
therefore need to find ∆u′µ as

∆u′µ = ∆t′∆x′µ

and test if equation 2 is satisfied.

We know that ∆xµ follows this transformation.
We also now that ∆t′ = (1/γ)∆t when changing
frame of reference. We thus have for ∆u′µ in a
new frame of reference

∆u′µ = ∆t′∆x′µ = (1/γ)∆tcµν∆xν = (1/γ)cµν∆uν .

Because of the factor 1/γ we see that ∆uµ does
not transform according to equation 2 and ∆uµ is
therefore NOT a 4-vector. We thus cannot mul-
tiply a 4-vector with a time interval and obtain a
4-vector.

A four-vector which is multiplied by a scalar how-
ever, is itself a four-vector. If instead of multiply-
ing ∆xµ with ∆t, we multiply it with the corre-
sponding spacetime interval ∆s we get

∆uµ = ∆s∆xµ.

Transforming to a different frame of reference we
have again ∆x′µ = cµν∆xν since ∆xµ is a four-
vector and ∆s′ = ∆s since ∆s is a scalar. We
thus have

∆u′µ = ∆s′∆x′µ = ∆scµν∆xν = cµν∆uν

which does follow equation 2. In this case ∆uµ is
a four-vector. We thus have generally that when
Aµ is a four vector and f is a scalar, the product

Bµ = fAµ,

is a 4-vector.

3 Four-velocity

Can we define a four dimensional velocity Vµ, that
is, a four dimensional vector showing the direction
of motion in spacetime of a particle with coordi-
nates xµ? By analogy to normal three dimen-
sional velocity, the four-velocity Vµ should be the
the rate of change of the position vector xµ. A
natural choice would be dxµ/dt, but this is not
a four-vector: As we discussed above, ∆t or dt
is not a scalar, it has different values in different
frames of reference. Thus dxµ/dt does not trans-
form as a 4-vector, i.e. you cannot use the Lorentz
transformation to transform it from one frame of
reference to another. But in order to have veloc-
ity, we need the rate of change with respect to
some time interval ∆t. Which measure of time
can we use?

Remember that proper time τ is a scalar, it is
defined as the time observed on the wristwatch
of an observer. All observers will measure the
same time interval ∆τ between two events (how
do they measure ∆τ?). Consider the example
with the train and observer P who is jumping
up and down. Measured on the wrist watch of
observer P, one jump takes one second, thus one
second of proper time for the frame of reference
of the train. According to observer O’s wrist-
watch, the jump takes 1.7 seconds, but this is
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not the proper time for the train (remember the
definition of proper time!). But observer O can
take his binoculars and read of the time between
each jump on observer P’s wristwatch. He will
then find, in agreement with observer P, that in
proper time units for the train, each jump takes
one second.

Note that proper time needs to be defined with
respect to some frame of reference (in this case the
train), but once this is defined, everybody agrees
on the proper time interval between two events
taking place at the same spot in that frame. In
the case of four-velocity, there is no doubt about
which proper time we are speaking about: Four-
velocity is the velocity of a particle or an object
(for instance a train) and the proper time ∆τ
which we use to define four velocity is the time
measured in the rest frame of this object. So four-
velocity can be defined as

Vµ =
dxµ
dτ

.

Let us find the length (absolute value) of the four-
velocity (the square root of the scalar product of
the vector with itself). The square of the length
is (as for normal vectors) given by

VµV
µ =

dxµ
dτ

dxµ

dτ
=
dxµdx

µ

dτ 2
=
ds2

dτ 2
=
dτ 2

dτ 2
= 1.

(did you understand every step here?) Taking the
square root of this we still get 1. The length of the
four-velocity is thus always one. Remember that
a velocity of one means the velocity of light. All
particles move with the velocity of light in space-
time! For each proper time interval ∆τ a particle
moves an equal interval ∆s in spacetime.

Figure 3: The observer on the ground measuring a veloc-
ity vx for the airplane, wondering which velocity v′x the
driver of the car measures for the same airplane.

We can write the four-velocity in terms of normal

3-velocity as

Vµ = (
dt

dτ
,
dxi
dτ

)

= (
dt

dτ
,
dt

dτ

dxi
dt

) =
dt

dτ
(1, ~v) = γ(1, ~v)

where we have used the formula for time dilation
∆t/∆τ = dt/dτ = γ from the previous lecture
notes (go back and check how you derived this,
it is important!). Now we are ready to answer a
question that has bothered us all the time since
we learned about the Lorentz transformations:
We know how to transform between coordinates
(x, t) and (x′, t′) in two different frames of refer-
ence. But how do you transform a velocity vx
from one frame to the other? Say that you stand
on the ground and look at a passing airplane. You
measure the velocity of the airplane along the x-
axis to be vx. A car is passing you on the street
with velocity vrel along the same x-axis and you
note that the driver is also watching the airplane.
You start to wonder which velocity v′x that the
driver is measuring for the airplane. The situation
is depicted in figure 3. In normal non-relativistic
physics you know that the answer should read
v′x = vx− vrel, but we have learned that this does
not work for velocities close to the velocities of
light (for instance, look back at the Michelson-
Morley experiment). Assuming that there are no
motions in the y and z direction, we can now
write the four velocity of the airplane from our
laboratory frame as Vµ = γ(1, vx) and from the

car as V ′µ = γ′(1, v′x) where γ = 1/
√

1− v2x and

γ′ = 1/
√

1− (v′x)
2. We know that four-velocity

is a four-vector and that four-vectors by defini-
tion transform from one frame of reference to the
other under the Lorentz transformation,

V ′µ = cµνVν ,

or written in terms of matrices as
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
γ′

γ′v′x
γ′v′y
γ′v′z

 =


γrel −vrelγrel 0 0

−vrelγrel γrel 0 0
0 0 1 0
0 0 0 1




γ
γvx
γvy
γvz


where γrel = 1/

√
1− v2rel.

From this matrix equation, we obtain two equa-
tions for the velocity vx and v′x,

γ′ = (γrel − vrelγrelvx)γ
γ′v′x = (−vrelγrel + γrelvx)γ.

Dividing the second equation by the first, we ob-
tain

v′x =
vx − vrel
1− vrelvx

, (3)

which is the Lorentz transformation for veloci-
ties. Note that when the speed of the airplane
approaches the speed of light, vx → 1 then v′x → 1
showing that the laboratory observer and the ob-
server in the car will both measure the speed of
light for the airplane. This solves the weird result
obtained by Michelson and Moreley: The speed
of light is the same from all frames of reference.

4 Relativistic momentum and en-
ergy

What about momentum and energy? We have
learned that the velocity v of an object as mea-
sured from two different frames of reference trans-
form according to the Lorentz transformation
(equation 3). This must necessarily have conse-
quences for how we measure momentum p = mv
and energy E = 1/2mv2 from two different frames
of reference. There must be some corresponding
Lorentz transformations for momentum and en-
ergy. We have learned a simple and easy recipe for
finding the transformation equations between dif-
ferent frames: Construct a four-vector and use the
transformation properties for four-vectors. This
worked for velocity so let’s try with momentum
and energy.

We start with momentum. In order to construct
a four-vector Pµ for momentum, let’s try a form

which is as similar as possible to the Newtonian
form ~p = m~v. Rest mass (the mass measured in
the rest frame of the object) is a scalar quantity,
so

Pµ = mVµ

is a four-vector. Using that Vµ = γ(1, ~v), we can
write momentum as

Pµ = mγ(1, ~v) = γ(m, ~p),

where ~p is the Newtonian momentum. Taking the
spatial part of this equation we see that relativis-
tic momentum can be written in three dimensions
simply as

~prelativistic = γm~v, (4)

where ~v is the normal 3-velocity of an object.
What is the meaning of the time component
P0 = γm of the momentum 4-vector? In order to
investigate this let us write it in the Newtonian
limit. For v << 1 (velocity much lower than the
velocity of light) we can make a Taylor expansion
in v,

P0(v) = P0(v = 0)+
dP0

dv
(v = 0)v+

1

2

d2P0

dv2
(v = 0)v2,

where the derivatives taken at v = 0 are (check
it!) P0(v = 0) = m, dP0/dv(v = 0) = 0 and
d2P0/dv

2(v = 0) = m. We get

P0 = m+
1

2
mv2.

The last term is just the expression for Newtonian
kinetic energy. The first term is the rest energy
of a particle, converted to normal units it can be
written as the more well known E = mc2. The
rest energy is the energy of a particle at rest, it is
the energy in the mass of the particle. Thus, the
time component of the momentum four-vector is
relativistic energy,

Erelativistic = mγ, (5)

which in the Newtonian limit reduces to the New-
tonian kinetic energy plus an energy term which
did not exist in Newtonian physics, the energy of
the mass of the particle. So the 4-vector Pµ is not
just a momentum 4-vector, it is the momentum-
energy 4-vector which time component is energy
and space component is momentum. It means
that energy and momentum are related in the
same way as space and time are. In the same
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manner as we talk about spacetime, indicating
that space and time are basically two aspects of
the same thing, we can call energy and momen-
tum collectively as momenergy. The four-vector
Pµ is simply the momenergy four-vector.

What is the length of the momenergy four-vector?
Using that Pµ = mVµ we have for the square of
the length

PµP
µ = m2VµV

µ = m2.

The length is the square root of m2 which is m.
The length of the momenergy four-vector is an
invariant and it is thus simply the mass. We have
seen that we can write Pµ = γ(m, ~p) giving (using
equations 4 and 5)

Pµ = (Erelativistic, ~prelativistic).

From now on we will drop the subscript ’relativis-
tic’ and always refer to the relativistic energy and
relativistic momentum using E and p. But how
can we be so sure? How can we know that this
is the correct expression for energy and momen-
tum? What is the criterion for a quantity to be
energy or momentum? We know that energy and
momentum are conserved quantities. The total
energy and momentum of particles after a colli-
sion should always be the same as the total en-
ergy and momentum before the collision. So this
is easy to check: Measure the total energy and
momentum of particles before and after a colli-
sion, if they are the same we have found the cor-
rect expressions for momenergy. This has been
tested thousands of times in particle accelerators
with particles moving close to the speed of light.
It turns out that the Newtonian energy and mo-
mentum are not conserved in these collisions. The
relativistic energy and momentum defined as we
have done above however, are conserved.

By now we have got used to measure time and
space in the same units and therefore we have also
got used to add these quantities ∆x+∆t without
hesitating. We see that the result of measuring
time and space in the same units is that momen-
tum and energy are also measured in the same
units, the units of mass. We remember that since
space and time are measured in the same units,
the speed v is a dimensionless number. The factor
γ is clearly also dimensionless, so the momentum

p = mγv can be measured in the units of mass
(kg). The same goes for energy E = mγ, which
also has dimension mass. So both energy and mo-
mentum are measured in kg and these quantities
can therefore be added, just as we can add inter-
vals in time and distances in space. The momen-
ergy four-vector is Pµ = (E, ~p), taking the scalar
product we have (remembering the result above
that the length of Pµ is just m),

PµP
µ = E2 − p2 = m2,

we can thus write energy in terms of momentum
as

E =
√
m2 + p2.

A photon is massless, so for photons this relation
is just

E = p,

or by using normal units E = pc which is a more
known form of this expression (In SI units, the en-
ergy of the photon can also be written in terms of
the frequency ν or wavelength λ of the radiation
as E = hν = h/λ).

We return to the above example with the airplane
and the passing car. You measure the relativistic
energy and momentum of the airplane from the
laboratory frame (the ground) and you wonder
what energy and momentum the driver of the car
measures for the same airplane. The momenergy
four-vector is a four-vector which means that it
can be transformed from one frame of reference
to the other by the Lorentz transformation,

P ′µ = cµνPν ,

or in matrix form (remember that there were no
movements in the y and z direction)


E ′

p′x
p′y
p′z

 =


γrel −vrelγrel 0 0

−vrelγrel γrel 0 0
0 0 1 0
0 0 0 1



E
px
py
pz


Giving the following transformation equations for
momentum and energy

E ′ = γrelE − vrelγrelpx
p′x = γrelpx − vrelγrelE

9



where vrel is the relative velocity between the two
frames of reference, the observer on the ground
and the car (see figure 4).

Figure 4: The observer on the ground measuring a veloc-
ity vx for the airplane, wondering which velocity v′x the
driver of the car measures for the same airplane.

We will now use these equations to answer the
following question: What energy and momentum
(E ′, p′x) does a person passing you in his car with
a velocity v (relative to you) measure that you
have? From your frame of reference in which you
are at rest, your momentum is by definition zero
p = 0 and you energy equals your mass E = m.
We will now transform these quantities to the
driver of the car measuring your energy and mo-
mentum to be E ′ and p′. The relative velocity
of the car with respect to you is simply vrel = v.
Then the energy and momentum that the driver
in the car measures that you have is simply (using
the equations above, check that you get the same
result),

E ′ = γE p′x = −vγE
Note that γ > 1 so the driver in the car mea-
sures, not only a larger absolute momentum, but
also larger energy.

From the point of view of Newtonian mechanics
this was to be expected: with respect to the driver
you have a non-zero velocity and kinetic energy,
thus both your momentum and energy are clearly
larger with respect to him than with respect to
your rest frame. But from the point of view of ge-
ometry it might seem strange: In your rest frame
the four-vector Pµ only has a time component and
no space component. In the frame of the driver,
both the time and space component of the vec-
tor are larger than in your frame. But the length
of the momenergy vector Pµ is always the same,
equal to m. Going back to normal 3D geome-
try this would not be possible. Imagine a vector

~a = (f, g, 0) and another vector ~b = (2f, h, 0). If

the length of these vectors are the same, then we
have that h < g. We see that from normal geome-
try you would expect that if the length of a vector
is constant, then if you increase one component
of the vector the other should decrease. The rea-
son for this discrepancy with normal geometry is
that spacetime has Lorentz geometry whereas 3D
space has Euclidean geometry. Lorentz geometry
has a minus sign in the definition of the scalar
product (which also defines the length of the vec-
tor) making such an effect possible.

Now you know the basics of the special theory of
relativity and you have got the necessary prepa-
rations to start studying the general theory of rel-
ativity. In the general theory of relativity we will
study how masses curve spacetime, making the
expression for the line element ∆s different close
to a large mass. This change in the line element
changes the dynamics and gives rise to what we
in Newtonian terms call the force of gravity.

5 List of expressions you should
know by now

Worldline → page 2
Timelike → page 2
Lightlike → page 2
Spacelike → page 2
Principle of maximal aging → page 3
Wristwatch time → page 3
Scalar → page 6
Four vector → page 6
Four velocity → page 7
Momenergy → page 9

10
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6 Exercises

Exercise 2B.1

Relevant theory: Section 1.
Go to MCAst and load the xml corresponding to
this exercise. In this exercise it is recommended
to be three students working togehter: There are
three frames with one xml for each frame and stu-
dent. Choose who does which frame, and only
look at the video for your frame!

In this exercise there are three spaceships trav-
eling with different velocities with respect to a
space station. The different frames of reference in
the videos correspond to the frame of the space
station, ship 1 and ship 2. The ships 1 and 2 both
travel with constant velocity while ship 3 acceler-
ates as seen from the space station. We are not
interested in exact numbers in this exercise, only
roughly correct relative distances and slopes on
the worldlines showing that you have understood
the basic principles.

1. Looking only at the video for your
frame of reference try to imagine how the
ships and space station move in the frames
of the other two students.

2. Still without looking at the other videos,
draw 3 spacetime diagrams: One for each
frame of reference, your frame as well as the
frames of your two fellow students. In these
three diagrams, draw the worldlines of the
space station as well as ship 1, 2 and 3 (the
accelerated ship).

3. Now meet with your fellow students and
compare the diagrams. Do they agree?

4. Look at all the videos togehter and check if
the other videos look as you imagined: dis-
cuss why you were right/wrong.

5. Draw a spacetime diagram in the reference
frame of ship 3 (no video here) with world-
line for all objects.

Return to the spacetime diagram for the space
station frame, we will only work with this dia-
gram for the rest of the exercise. We now define
two events:

• Event 1 occurs at x = 0 and t = 0 is when

all the spaceship are aligned.

• Event 2 is defined as when spaceship 3
catches up with ship 2 reaching the same po-
sition.

Measured on the clock in the space station it takes
10 milliseconds between the two events, on the
clock in the frame of ship 2, it takes 8 millisec-
onds. Assume that the clocks make a tick every
millisecond. The first tick happens at event 1 and
the last tick happens at event 2.

6. Draw dots on the time axis between event 1
and 2 which represents the ticks in the space
station frame.

7. Draw dots on the worldline of ship 2 based on
the ticks which occurs in the frame of ship 2.
The important point here is to have correct
relative spacings between each tick.

8. Spaceship 3 has also been equipped with a
clock identical to those in the space station
and ship 2. Use the principle of maximal
aging to judge whether an astronaut in ship
3 will experience more or less ticks on the
clock from event 1 to event 2 compared to
the astronaut in ship 2.

9. Draw dots on the worldline of ship 3 at the
positions where the clock ticks in this frame.
The exact position is not important, but the
relative distances between the dots should be
correct. Hint: For each dot you draw, look
at the slope of the worldline.

Exercise 2B.2

Relevant theory: Section 2.
In this exercise we will take a closer look at 4-
vectors. More specifically we will prove that a
4-vector follows the regular rules of addition and
subtraction.

1. Explain with your own words what a 4-
vector is.

2. What transformation must be fulfilled for a
four vector to be called a 4-vector? Write
down the mathematical definition.

3. What is the criterion for the transformation
to be successful (what needs to be trans-
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formed)?

4. Assume that Aµ and Bµ are 4-vectors.
Prove, by using the mathematical definition
and the criterion, that Dµ which is the sum
of the two 4-vectors, Dµ = Aµ + Bµ is also
a 4-vector. Hint: Use the transformation
properties of Aµ and Bµ to obtain these vec-
tors in a different frame A′µ and B′µ. Find
an expression for the sum of the two vectors,
D′µ, in the other frame expressed by Dµ in
the laboratory frame and show that Dµ is
indeed a four vector.

Exercise 2B.3

Relevant theory: Section 1 - 3.
Go to MCAst and load the xml corresponding to
this exercise, you and your partner should agree
on who does which frame.

A spaceship is moving with a speed close to the
speed of light and emitting two laser beams. This
is seen from the frame of reference of the planet
and the spaceship.

1. For planet frame student: use the in-
formation given at the top of the video to
find the velocity of the space ship and the
light beam. Check that the beam has in-
deed the speed of light. Given that the light
beams are emitted from the spaceship, what
speed would you have expected the light
beam to have in your frame if you rely on
classical physics? (remember how you trans-
form velocities between frames in classical
physics.) For the spaceship frame stu-
dent: use the information given at the top
of the video to find the velocity of the light
beams and your velocity with respect to the
planet. Check that the beam has indeed the
speed of light. Which velocity would you
expect observers on the planet to measure
for the light beams if you rely on classical
physics? (remember how you transform ve-
locities between frames in classical physics.)

2. Make a space-time diagram of the space ship
and the two laser beams in your frame of ref-
erence as well as in the other frame of refer-
ence.

3. Imagine how the scene look like in the other
frame. Focus in particular on the relative
velocity and distances between beams and
space ship: imagine and describe how the
movements look in the other frame.

4. Use the formula for relativistic transforma-
tion of velocities, to calculate the velocity of
the laser beam in the other frame. Is the
result as expected?

5. Now you should meet and compare videos.
Does the other video look as expected?
Why? Why not?

6. Calculate the distance between the two light
beams in your frame and compare with the
distance calculated by your partner. Find
the ratio of the distances between the two
frames.

7. Imagine a stick with it’s start and end point
at the position of the two beams: Com-
pare the ratio you found between the two
distances/stick lengths to what you expect
from the formula for length contraction (L =
L0/γ). Does the formula for length contrac-
tion apply in this case? Why not?

Exercise 2B.4

Relevant theory: Section 1-4.
A free neutron has a mean life time of about 12
minutes after which it disintegrates into a proton,
an electron and a neutrino. We will ignore the
neutrino here, assuming that the only products
of disintegration are a proton and an electron. A
neutron moves along the positive x-axis in the
laboratory frame with a velocity close to the ve-
locity of light. It disintegrates spontaneously and
a proton and an electron is seen to continue in
the same direction as the neutron. We will try to
calculate the speed of the proton and the electron
in the lab-frame. The easiest way to do this is in
the rest frame of the neutron where the neutron
has a very simple expression for energy and mo-
mentum. In the lab frame this would have been
a lot more work since all three particles have ve-
locities. On our way we will discover a surprising
fact!
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Go to MCAst and load the xml files correspond-
ing to this exercise. In this exercise you may
work alone if you wish and contrary to other ex-
ercises you are supposed to look at both frames
now before starting to calculate. The videos will
show the velocity of the neutron seen from the
lab(planet) frame as well as the masses of the par-
ticles. Important: It is necessary to use all the
given decimals of the particle masses when mak-
ing calculations in this exercise.

1. Write an expression for the momenergy four-
vector P ′µ(e) of the electron in the frame of
the neutron expressed in terms of me and
the unknown velocity v′e. You may define

γ′e = 1/
√

1− (v′e)
2.

2. Write an expression for the momenergy four-
vector P ′µ(p) of the proton in the frame of
the neutron expressed in terms of mp and
the unknown velocity v′p. You may define

γ′p = 1/
√

1− (v′p)
2.

3. Write an expression for the momenergy four-
vector P ′µ(n) of the neutron in the frame of
the neutron expressed in terms of mn and v′n.

4. Use conservation of momenergy

P ′µ(n) = P ′µ(p) + P ′µ(e),

to find expressions for the velocities v′e and
v′p (the velocities of the electron and proton
in the neutron frame). If you are observant
you will discover that there are two sets of
possible soultions (why do you think this is
the case?), in the rest of the exercises choose
one of the solutions. Hint: The algebra in
this exercise can be extremely ugly if done
wrong, here are some tips:

• Solve the equations for γ′e or γ′p NOT
for v′e or v′p.

• You often insert γ′2 = 1/
(
1− v′2

)
but

you should instead insert v′2 = 1−1/γ′2.

• If you end up with something looking
like it will be a quadratic equation try
writing it out, you should end up with a
first order equation.

• If you have an equation a
√
b+ c
√
d = 0,

show that it may be written as a2b =

c2d.

You should arrive at:

γ′p =
m2
n +m2

p −m2
e

2mpmn

. (6)

Find a number for γ′p and use this to obtain
numbers for v′p, γ

′
e and thereby v′e.

5. Use the transformation properties for four-
vectors

P ′µ = cµνPν

to find the energy and momentum of the
electron and the proton in the lab (planet)
frame. (insert numbers: what units do your
results have if you keep c = 1?).

6. Use the numbers you have obtained for en-
ergy or momentum to obtain the speed of
the electron and proton in the planet frame.

7. You might have observed that mn 6= mp +
me, ie. that mass is not conserved in this
process. Rather, parts of the mass has been
converted to energy. In the lectures on nuce-
lar reactions, this result will become very im-
portant. We will now show that it is impos-
sible to conserve mass in this process, sim-
ilar to most other nuclear processes: Now
assume for a moment that mass is indeed
conserved and mn = me + mp. Using only
symbols, not numbers, insert this in the ex-
pression 6 for γ′p above. Use this to obtain
v′p and v′e. Explain why mass could not be
conserved in this process.

8. As an independent check (and to see an al-
ternative way of doing it), use the relativistic
formula for addition of velocities to obtain
the speed of the two particles in the labo-
ratory frame, using only the speed you have
obtained for the proton and electron in the
neutron frame as well as the speed of the
neutron in the planet frame.

9. For those who like long and ugly calculations
only: Do everything from the beginning, but
use only the planet frame to obtain the same
results. Do you see the advantage of using
4-vectors and change of frames?

Exercise 2B.5
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Relevant theory: Section 1 - 4.
Go to MCAst and load the xml corresponding to
this exercise, you and your partner should agree
on who does which frame.

Some crazy researchers have decided to test spe-
cial relativity. They prepare two identical space
ships to travel towards each other with a velocity
close to the speed of light. Eventually they col-
lide close enough to be seen from a planet. One
of the spaceships is made solely from anti-matter
including the researcher, therefore all matter is
converted to photons in the collision. We assume
all the photons have exactly the same wavelength.
During this exercise we therefore have two ob-
jects:

• The leftmost spaceship is denoted by the let-
ter A and is traveling with velocity vA with
respect to the planet frame.

• The rightmost spaceship is denoted by the
letter B and is traveling with velocity vB =
−vA (same speed as A but opposite direc-
tion) in the planet frame.

To measure the wavelength of the photons there
are two observers (you and your partner) both
with a wavelength detector. The observers are in
two different frames of reference:

• The frame 1 observer is at rest on the planet
using unprimed coordinate system.

• The frame 2 observer has a small red space
ship (you can see him/her in the frame 1
video) and follows just behind spaceship A in
the same frame as spaceship A using primed
coordinate system.

All the necessary information including the mass
of the spaceships and number of photons pro-
duced are given in the upper left corner in MCAst.

The main goal of this exercise is to use the trans-
formation of momenergy 4-vectors to deduce a rel-
ativistic formula for Doppler shift.

1. Use the velocity of spaceship A with respect
to the ground to calculate the relative veloc-
ity of spaceship B observed from spaceship A
(transform the velocity with your preferred
method). Remember that with respect to
the ground, the spaceships have equal speed

(but opposite directions).

2. Write down expressions for the momenergy
four-vectors Pµ(A) and Pµ(B) of the two
spaceships in your frame of reference. You
may use vA, vB, v

′
A, v

′
B, the corresponding

gamma-factors γA, γB, γ
′
A, γ

′
B and the mass

m of the spaceships.

3. Use the transformation properties of four-
vectors to transform momenergy four-
vectors from your frame of reference to the
other frame. You should now have Pµ(A)
and Pµ(B) in the planet frame as well as
P ′µ(A) and P ′µ(B) in the space ship frame.

4. Show that the momenergy four-vector of a
photon traveling in the positive x-direction
can be written

P γ
µ = (E,E, 0, 0),

where E is the energy of the photon.

5. Assume for the moment that all the energy
in the explosion is emitted in only two pho-
tons, one emitted along the positive x-axis
(same direction as the space ship) and the
other in the opposite directions (negative x-
direction). Use conservation of momenergy
in the planet frame to argue that the two
photons must have the same energy seen
from the planet frame.

6. Now assume that these two photons are
emitted with an angle θ off the x-axis. Write
the momenery 4-vector for this photon and
use again conservation of momenergy in the
planet frame to argue that the two photons
must have the same energy but opposite di-
rections seen from the planet frame.

7. Use your previous results to argue that if
there are photons emitted in all possible di-
rections, there is, for all photons emitted al-
ways another photon emitted in the opposite
direction with the same energy.(remember
that we assume that all photons produced
in this explosion have the same energy)

8. Using the assumption that all photons are
emitted with the same wavelenght, and using
also the number of photons measured, what
is the energy of one photon (use conservation
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of momenergy!) and thereby the wavelength
in the planet frame? (Hint: To convert pho-
ton energy to wavelenght, it may be useful to
first convert the energy you found to normal
SI units.

9. Use the wavelength to find the color of
the explosion seen in the planet frame (use
the table in this Wikipedia article.)Planet
frame observer: does it correspond to the
colour you observe?

The collision between the spaceships was inspired
by a process which happens in nature. An elec-
tron and a positron are corresponding antiparti-
cles with equal mass. The particles are approach-
ing each other with the same velocity in opposite
directions in the center of mass frame of the two
particles. In the collision, both particles are anni-
hilated and two photons are produced. One pho-
ton travels in the positive x direction, the other
in the negative x direction. In the rest of the ex-
ercise we will therefore only study the photons
which move along the x-axis:

9. We will now study only the photons which
move along the x-axis. Use transformation
properties for four-vectors to show that the
energy E ′ of a photon observed in the space-
ship A frame moving with velocity v with
respect to the planet frame (where the pho-
ton has energy E) is

E ′ = Eγ(1± v)

(Which sign is for the photon moving in pos-
itive x-direction and which is for the photon
moving in negative x-direction?)

10. Use the derived expression for E ′ and the
formula for the energy of a photon to derive
the relativistic Doppler formula

∆λ

λ
=

(√
1 + v

1− v
− 1

)

11. Use this expression to find which colour the
explosion has for the observer in the ship
frame. Finally, meet with the other student
and look at both videos to check your re-
sults. Did you calculate the colour in the
other frame correctly?

12. Show that the relativistic Doppler formula
is consistent with the normal Doppler for-
mula for low velocities. Hint: Make a Tay-
lor expansion of f(v) =

√
(1 + v)/(1− v)

for small v. (Remember: how is the non-
relativistic Doppler-formula using relativis-
tic units where c = 1?)

13. Going back to the more realistic scenario:
Assume the electron and the positron in their
center of mass frame have the same veloci-
ties as your space ships in the planet frame
(which is the center of mass frame of the
ships). Which velocity would the center of
mass of the electron and positron need to
have with respect to the laboratory frame
in order to observe a photon with the same
colour as seen in space ship A frame in the
above questions? (assume the center of mass
is moving towards you)

https://en.wikipedia.org/wiki/Visible_spectrum
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