
AST2000 Lecture Notes

Part 3A
The cosmic distance ladder

Questions to ponder before the lecture

1. How do we know that the distance to our closest star is 4 light years?

2. How do we know that our galaxy is 100.000 light years across?

3. How do we know that the distance to our neighbour galaxy, Andromeda, is 2.5 million light
years?

4. How do we know that the most distant objects we observe are more than 10 billion light years
away?

5. The answer to the above questions are all different. Can you imagine at least one of the ways
to measure distances?

Image: NASA/JPL-Caltech.
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AST2000 Lecture Notes

Part 3A
The cosmic distance ladder

How do we measure the distance to distant ob-
jects in the universe? There are several meth-
ods available, most of which suffer from large un-
certainties. Particularly the methods to measure
the largest distances are often based on assump-
tions which have not been properly verified. For-
tunately, we do have several methods available
which are based on different and independent as-
sumptions. Using cross-checks between these dif-
ferent methods we can often obtain more exact
distance measurements.

Why do we want to measure distances to distant
objects in the universe? In order to understand
the physics of these distant objects, it is often
necessary to be able to measure how large they
are (their physical extension) or how much en-
ergy that they emit. When looking through a
telescope, what we observe is not the physical ex-
tension or the real energy that the object emits,
what we observe is the appaerent magnitude and
the angular extension of an object. We have seen
several times during this course that in order to
convert these to absolute magnitudes (and thereby
luminosity/energy) and physical sizes we need to
know the distance (look back to the formula for
converting appaerent magnitude to absolute mag-
nitude as well as the small angle formula for an-
gular extension of distant objects). In cosmology
it is important to make 3D maps of the structure
in the universe in order to understand how these
structures originated in the Big Bang. To make
such 3D maps, again knowledge of distances are
indispensable.

There are 4 main classes of methods to measure
distances:

1. Triognometric parallax (or simply parallax)

2. Methods based on the Hertzsprung-Russel
diagram: main sequence fitting

3. Distance indicators: Cepheid stars, super-
novae and the Tully-Fisher relation

4. The Hubble law for the expansion of the uni-
verse.

We will now look at each of these in turn.

1 Parallax

Figure 1: Definition of parallax: above is a face seen from
above looking at an object at distance d. Below is the
enlarged triangle showing the geometry.

Shut your left eye. Look at an object which is
close to you and another object which is far away.
Note the position of the close object with respect
to the distant object. Now, open you left eye and
shut you right. Look again at the position of the
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close object with respect to the distant. Has it
changed? If the close object was close enough
and the distant object was distant enough, then
the answer should be yes. You have just experi-
enced parallax. The apparent angular shift of the
position of the close object with respect to the
distant is called the parallax angle (actually the
parallax angle is defined as half this angle). The
further away the close object is, the smaller is
the parallax angle. We can thus use the parallax
angle to measure distance.

Figure 2: The Earth shown at two different positions half
a year apart. The parallax angle p for a distant object at
distance d is defined with respect to the Earth-Sun dis-
tance as baseline B.

In figure (1) we show the situation: It is the fact
that your two eyes are located at different posi-
tions with respect to the close object that causes
the effect. The larger distance between two obser-
vations (between the ’eyes’), the larger the par-
allax angle. The closer the object is to the two
points of observation, the larger the parallax an-
gle. From the figure we see that the relation be-
tween parallax angle p, baseline B (B is defined
as half the distance between your eyes or between
two observations) and distance d to the object is

tan p =
B

d
.

For small angles, tan p ≈ p (when the angle p is
measured in radians) giving,

B = dp, (1)

which is just the small angle formula that we en-
countered in the lectures on extrasolar planets.
For distant objects we can use the Sun-Earth dis-
tance as the baseline by making two observations
half a year apart as depicted in figure 2. In this
case the distance measured in AU can be written
(using equation (1) with B = 1 AU)

d =
1

p
AU ≈ 206265

p′′
AU.

Here p′′ is the angle p measured in arcseconds in-
stead of radians (I just converted from radians to
arcseconds, check that you get the same result!).
For a parallax of one arcsecond (par-sec), the
distance is thus 206265 AU which equals 3.26 ly.
This is the definition of one parsec (pc). We can
thus also write

d =
1

p′′
pc.

The Hipparcos satellite measured the parallax of
120 000 stars with a precision of 0.001′′. This
is far better than the precision which can be
achieved by a normal telescope. A large number
of observations of each star combined with ad-
vanced optical techniques allowed for such high
precision even with a relatively small telescope.
With such a precision, distances of stars out to
about 1000 pc (= 1 kpc) could be measured (do
you see this from the formula?). The diameter
of the Milky Way is about 30 kpc so only the
distance to stars in our vicinity can be measured
using parallax.

2 The Hertzsprung-Russell dia-
gram and
distance measurements

You will encounter the Hertzsprung-Russell (HR)
diagram on several occations during this course.
Here you will only get a short introduction and
just enough information in order to be able to use
it for the estimation of distances. In the lectures
on stellar evolution, you will get more details.

Figure 3: The Hertzsprung-Russell diagram.
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There are many different versions of the HR-
diagram. In this lecture we will study the HR-
diagram as a plot with surface temperature of
stars on the x-axis and absolute magnitude on the
y-axis. In figure 3 you see a typical HR-diagram:
Stars plotted according to their surface tempera-
ture (or color) and absolute magnitude. The y-
axis shows both the luminosity and the absolute
magnitude M of the stars (remember: these are
just two different measures of the same property,
check that you understand this). Note that the
temperature increases towards the left: The red
and cold stars are plotted on the right hand side
and the warm and blue stars on the left.

We clearly see that the stars are not randomly
distributed in this diagram: There is a diagonal
line going from the left to right. This line is called
the main sequence and the stars on this line are
called main sequence stars. The Sun is a typi-
cal main sequence star. In the upper right part
of the diagram we find the so-called giants and
super-giants, cold stars with very large radii up
to hundreds of times larger than the Sun. Among
these are the red giants, stars which are in the fi-
nal phase of their lifetime. Finally, there are also
some stars found in the lower part of the diagram.
Stars with relatively high temperatures, but ex-
tremely low luminosities. These are white dwarfs,
stars with radii similar to the Earth. These are
dead and compact stars which have stopped en-
ergy production by nuclear fusion and are slowly
becoming colder and colder.

In the lectures on stellar evolution we will come
back to why stars are not randomly distributed in
a HR-diagram and why they follow certain lines
in this diagram. Here we will use this fact to
measure distances. The HR-diagram in figure 3
has been made from stars with known distances
(the stars were so close that their distance could
be measured with parallax). For these stars, the
absolute magnitude M (thus the luminosity, to-
tal energy emitted per time interval) could be
calculated using the apparent magnitude m and
distance r,

M = m− 5 log10

(
r

10 pc

)
. (2)

HR-diagrams are often made from stellar clus-
ters, a collection of stars which have been born
from the same cloud of gas and which are still
gravitationally bound to each other. The advan-
tage with this is that all stars have very similar
age. This makes it easier to predict the distri-
bution of the stars in the HR-diagram based on
the theory of stellar evolution. Another advan-
tage with clusters is that all stars in the cluster
have roughly the same distance to us. For studies
of the main sequence, so-called open clusters are
used. These are clusters containing a few thou-
sand stars and are usually located in the galactic
disc of the Milky Way and other spiral galaxies.

Now, consider that we have observed a few hun-
dred stars in an open cluster which is located so
far away that parallax measurements are impos-
sible. We have measured the surface tempera-
ture (how?) and the apparent magnitude of all
stars. We now make an HR-diagram where we,
as usual, plot the surface temperature on the x-
axis. However, we do not know the distance to
the cluster and therefore the absolute magnitudes
are unknown. We will have to use the apparent
magnitudes on the y-axis. It turns out that this
is not so bad at all: Since the cluster is far away,
the distance to all the stars in the cluster is more
or less the same. Looking at equation (2), we thus
find,

M −m = −5 log10

(
r

10 pc

)
= constant,

for all stars in the cluster (assuming r is con-
stant). The HR-diagram with apparent magni-
tude instead of absolute magnitude will thus show
the same pattern of stars as the HR-diagram with
absolute magnitudes on the y-axis. The only dif-
ference is a constant shift m−M in the magnitude
of all stars given by the distance of the cluster.
Thus, by finding the shift in magnitude between
the observed HR-diagram with apparent magni-
tudes and the HR-diagram in figure (3) based on
absolute magnitudes, the distance to the cluster
can be found. This method is called main se-
quence fitting.

4



Example

We observe a distant star cluster with unknown
distance, measure the temperature and apparent
magnitude of each of the stars in the cluster and
plot these results in a diagram shown in figure 4
(lower plot) (note: spectral class is just a differ-
ent measure of temperature, we will come to this
in later lectures). In the same figure (upper plot)
you see the HR-diagram taken from a cluster with
a known distance (measured by parallax). Since
the distance is known, the apparent magnitudes
could be converted to absolute magnitudes and
for this reason we plot absolute magnitude on the
y-axis for this diagram. We know that the main
sequence is similar in all clusters since stars evolve
similarly. For this reason, we know that the two
diagrams should be almost identical. We find that
by shifting all the observed stars in the lower di-
agram upwards by 2 magnitudes (to higher lumi-
nosities but lower magnitudes), the two diagrams
will look almost identical (look at the figure and
check that you agree!). Thus, there is a difference
between the apparent magnitude and the abso-
lute magnitude of M −m = −2 and the distance
is found by

−2 = −5 log10

(
r

10 pc

)
,

giving r = 25 pc.

Figure 4: The HR-diagrams for the example exercise
(note: spectral class is just a different measure of temper-
ature). The upper plot shows the HR-diagram of a clus-
ter with a known distance. Since the distance is known,
we have been able to convert the apparent magnitudes to
absolute magnitudes and we therefore plot absolute mag-
nitudes on the y-axis. The lower plot is the HR-diagram
of a cluster with unknown distance. Because of the un-
known distance, we only have information about the ap-
parent magnitude of the stars and therefore we now have
apparent magnitude on the y-axis.

Main sequence fitting can be used out to dis-
tances of about 7 kpc, still not reaching out of
our galaxy. We now see why we use the phrase
’cosmic distance ladder’. The parallax method
reaches out to about 1000 pc. After that, main
sequence fitting needs to be used. But in order to
use main sequence fitting, we needed a calibratet
HR-diagram like figure 3. But in order to obtain
such a diagram, the parallax method needed to
be used on nearby clusters. So we need to go step
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by step, first the parallax method which we use
to calibrate the HR-diagram to be used for the
main sequence fitting at larger distances. Now
we will continue one more step up the ladder. We
use stars in clusters which distance is calibrated
with main sequence fitting in order to calibrate
the distance indicators to be used for larger dis-
tances.

3 Distance indicators

Again the method is based on equation (2). We
can always measure the apparent magnitude m
of a distant object. From the equation, we see
that all we need in order to obtain the distance is
the absolute magnitude. If we know the absolute
magnitude (luminosity) for an object, we can find
its distance. But how do we know the absolute
magnitude? There are a few classes of objects,
called standard candles, which reveal their abso-
lute magnitude in different ways. Examples of
these ’standard candles’ can be Cepheid stars or
supernova explosions.

Another class of distance indicators are the so-
called ’standard rulers’. The basis for the dis-
tance determination with standard rulers is the
small-angle formula,

d = θr,

where d is the physical length of an object, r is the
distance to the object and θ is the apparent angu-
lar extension (length) of the object. We can often
measure the angular extension of an observed ob-
ject. All that we need in order to find the distance
is the physical length d. There are some objects
for which we know the physical length. These ob-
jects are called standard rulers. For instance a
special kind of galaxy which has been shown to
always have the same dimensions could be used
as a standard ruler.

3.1 Cepheid stars as distance indicators

Several stars show periodic changes in their ap-
parent magnitudes. This was first thought to be
caused by dark spots on a rotating star’s surface:
When the dark spots were turned towards us, the
star appeared fainter, when the spots were turned

away from us, the star appeared brighter. To-
day we know that these periodic variations in the
star’s magnitude is due to pulsations. The star is
pulsating and therefore periodically changing its
radius and surface temperature.

The Milky Way has two small satellite galaxies
orbiting it, the Large and the Small Magellanic
Cloud (LMC and SMC). They contain 109 − 1010

stars, less than one tenth of the number of stars
in the Milky Way and are located at a distance of
about 160 000 ly (LMC) and 200 000 ly (SMC)
from the Sun. In 1908, Henrietta Leavitt at Har-
vard University discovered about 2400 of these
pulsating stars in the SMC. The pulsation period
of these stars were found to be in the range be-
tween 1 and 50 days. These stars were called
Cepheids named after one of the first pulsating
stars to be discovered, δ Cephei. She found a
relationship between the stars’ apparent magni-
tude and pulsation period. The shorter/longer
the pulsation period, the fainter/brighter the star.
Since all these stars were in the SMC they were
all at roughly the same distance to us. We have
seen above that for stars at the same distance,
there is a constant difference M − m in appar-
ent and absolute magnitude. So the stars with
a larger/smaller apparent magnitude also had a
larger/smaller absolute magnitude. Since abso-
lute magnitude is a measure of luminosity, what
she had found was a period-luminosity relation.

Pulsating stars with higher luminosity were thus
found to be pulsating with longer periods, pul-
sating stars with low luminosity were found to be
pulsating with short periods. We can now reverse
the argument: By measuring the period one can
obtain the luminosity. There was one problem
however: The method could not be calibrated as
the distance to the SMC was unknown and there-
fore also the constant in m −M = constant was
unknown. Without this constant one cannot find
M . One had to find Cepheids in our vicinity for
which the distance was known. Only in that way
could this constant and thus the relation between
period and absolute magnitude be established.

Today the distance to several Cepheids in our
galaxy are known by other methods. One of the
most recent measurements of the constants in the
period-luminosity relation came from the parallax
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measurements of several Cepheids by the Hippar-
cos satellite. The relation was found to be

MV = −2.81 log10 Pd − 1.43,

where Pd is the period in days. Here MV is the
absolute magnitude in the Visual part of the elec-
tromagnetic spectrum instead of the normal mag-
nutide M which is based on the flux integrated
over all wavelengths λ. Before describing in de-
tail the difference between M and MV , we will
end our discussion on the Cepheid stars.

When pulsating stars were first used to measure
distances one did not know that there are three
different types of pulsating stars with different
period-luminosity relations:

1. The classical Cepheids which belong to a
class of giants, are very luminous stars.
These are the most useful distance indica-
tors for large distances because of their high
luminosity.

2. W Virginis stars, or type II Cepheids are pul-
sating stars which on average have lower lu-
minosity than the classical Cepheids.

3. RR Lyrae stars are small stars which usually
have less mass than the Sun. Their luminos-
ity is much lower than the luminosity of clas-
sical Cepheids and RR Lyrae stars are ther-
fore less useful for distance determination
at large distances. The advantage with RR
Lyrae stars however, is that they are much
more numerous than classical Cepheids.

When Edwin Hubble tried to estimate the dis-
tance to our neighbour galaxy Andromeda, he ob-
tained a distance of about one million light years
whereas the real distance is about twice as large.
The reason for this error was that he observed
W Virginis stars in Andromeda and applied the
period-luminosity relation for classical Cepheids,
thinking that they were the same. In this course
we will mainly discuss the classical Cepheids.

Since Cepheids are very lumious (about 103 to 104

times higher luminosity than the Sun) they can
be observed in distant galaxies. In order to de-
termine the distance of a whole galaxy it suffices
to find Cepheid stars in that galaxy and deter-
mine their distance. In this manner, the distance

to several galaxies out to about 30 Mpc has been
measured. Beyond 30 Mpc other methods need
to be applied.

At the moment we will use the period-luminosity
relation for Cepheids to determine distances with-
out questioning why it works. When we come
to the lectures on stellar structure we will study
the physics behind these pulsations and see if we
can deduce the period-luminosity relation theo-
retically by doing physics in the interior of stars.

We have now learned about our first distance indi-
cator: We can find the absolute magnitude MV at
visual wavelength of Cepheids by observing their
plusation period. Having the absolute magnitude
MV we can find the distance. We will now look
at a different approach to find MV for a distant
object, but first we will discuss some extended
definitions of magnitudes.

3.2 Visual magnitudes and other filters

Looking back at the definition of absolute magni-
tude, we see that we can write the absolute mag-
nitude M as

M = M ref − 2.5 log10

(
F (10 pc)

F ref(10 pc)

)
= M ref − 2.5 log10

(
L

Lref

)
,

where Mref and Fref are the absolute magnitude
and flux (observed flux if the distance had been
10 pc) of a reference star used for calibration (as
we have seen before, the star Vega with its mag-
nitude defined to be 0, has often been used for
this purpose). The flux is here the total flux of
the star integrated over all wavelengths

F =

∫ ∞
0

F (λ)dλ. (3)

The magnitude M which is based on flux inte-
grated over all wavelengths is called the bolomet-
ric magnitude.

The visual magnitude MV on the other hand, is
based on the flux over a wavelength region defined
by a filter function SV (λ). The filter function is a
function which is centered at λ = 550 nm with an
effective bandwidth of 89 nm. The flux FV which
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is used instead of F to define visual magnitude
can be written as

FV =

∫ ∞
0

F (λ)SV (λ)dλ.

Compare with expression (3): The main differ-
ence is that a limited wavelength range is selected
by SV (λ). The magnitude is then defined as

MV = M ref
V − 2.5 log10

(
FV

F ref
V

)
.

As for the bolometric magnitude, the relation be-
tween absolute and apparent visual magnitude is
also given by

MV −mV = −5 log10

(
r

10 pc

)
.

The concept of the visual magnitude originates
from the fact that detectors normally do not ob-
serve the flux over all wavelengths. Instead detec-
tors are centered on a given wavelength and inte-
grate over wavelengths around this center wave-
length in a given bandwidth. There are three of
these filters which are in common use:

• U-filter (ultraviolet), λ0 = 365 nm,
∆λFWHM = 68 nm

• B-filter (blue), λ0 = 440 nm, ∆λFWHM =
98 nm

• V-filter (visual), λ0 = 550 nm, ∆λFWHM =
89 nm

3.3 OPTIONAL: colour indices

The absolute magnitudes MV , MB and MU are used to define
colour indices. These colour indices (U − B) and (B − V ) are
defined as

U −B = MU −MB = mU −mB ,

B − V = MB −MV = mB −mV .

Note that these indices are written as a difference in apparent
or absolute magnitudes: The colour indices are independent
of distance and will therefore give the same results if they are
obtained using apparent magnitudes or absolute magnitudes
(check that you can show this mathematically!). These indices
are used to measure several properties of a star related to its
colour. The period-luminosity relation for a Cepheid can be
improved using information about its colour in terms of the
(B − V ) colour index as

MV = −3.53 log10 Pd − 2.13 + 2.13(B − V ).

For Cepheids, the B − V colour index is usually in the range

0.4 to 1.1. Thus, a more exact MV and thereby a more exact

distance (using relation (2)) can be obtained using the addi-

tional distance independent information contained in the color

of the star. It suffices to observe the star with three color filters

instead of one to obtain this additional information.

3.4 Supernovae as distance indicators

One of the most energetic events in the Universe
are the Supernova explosions. In such an explo-
sion, one star might emit more energy than the
total energy emitted by all the stars in a galaxy.
For this reason, supernova explosions can be seen
at very large distances. The last confirmed su-
pernova in the Milky way was seen in 1604 and
was studied by Kepler. It reached an appaerent
magnitude of about −2.5, similar to Jupiter at its
brightest. There have been other reports of su-
pernovae in the Milky way during the last 2000–
3000 years, both in Europe and Asia. Some of
these were so bright that they were seen clearly
in the sky during daylight. Written material from
Europe, Asia and the middle East all report about
a supernova in 1006 which was so bright that one
could use it to read at night time. The nearest
supernova in modern times, called SN1987A, was
observed in 1987 in the Large Magellanic Cloud at
a distance of 51 kpc. It was visible by the naked
eye from the southern hemisphere.

Supernovae can be classified as type I or type II,

1. Type I supernovae: These explosions show
no hydrogen lines. There are three sub types,
defined according to their spectra: Type Ia,
Ib and Ic.

2. Type II supernovae: These are explosions
with strong hydrogen lines. Type II super-
nova have several properties in common with
type Ib and Ic.

It is now clear that supernovae of type Ib, Ic and
II are core collapse supernovae. This is a star
ending its life in a huge explosion, leaving be-
hind a neutron star or a black hole. In the lec-
tures on stellar evolution we will come back to
the details of a core collapse supernova. Type Ia
supernovae are usually brighter. These have the
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Fact sheet: Upper panel: Three very distant type Ia supernovae
observed with the Hubble Space Telescope. The stars exploded
back when the universe was approximately half its current age.
Since supernovae are so bright and their absolute magnitude can
be obtained from their light-curves, astronomers can trace the ex-
pansion rate of the universe by observing these standard candles
at various distances. Lower panel: A relatively close example of
another type of supernova, the type II supernova SN 2012aw dis-
covered in March 2012 in M95, a barred spiral galaxy around 10
Mpc away in the constellation Leo. (Figure: A. Block, Univ. of
Arizona, NASA/ESA and A. Riess/STScI)

property which is desirable for a standard candle:
Their luminosity is relatively constant and there
is a receipe for finding their exact luminosity. The
origin of type Ia supernovae are still under discus-
sion, but according to the most popular hypoth-
esis, the explosion occurs in a white dwarf star
which has a binary companion. A white dwarf
star is the result of one of the possible ways that
a star can end its life: in the form of a very com-
pact star consisting mainly of carbon and oxygen
which are the end products from the nuclear fu-
sion processes taking place in the final phase of
a star’s life. If a white dwarf is part of a binary
star system (two stars orbiting a common center
of mass), the white dwarf may start accreating
material from the other star. At a certain point,
the increased pressure and temperature from the
accreted material may reignite fusion processes in
the core of the white dwarf. This is the cause of
the explosion. We will again defer details about
the process to later lectures.

It can be shown that this explosion occurs when
the mass of the white dwarf is close to the so-
called Chandrasekhar limit which is about 1.4M�.
Since the mass of the exploding star is always
very similar, the luminosity of the explosions will
also be very similar. The absolute magnitude of a
type Ia supernova is MV ≈MB ≈= −19.3 with a
spread of about 0.3 magnitudes. A more exact es-
timate of the absolute magnitude of a supernova
may be obtained by the light curve. After reach-
ing maximum magnitude, the supernova fades off
during days, weeks or months. By observing the
rate at which the supernova fades, one can deter-

mine the absolute magnitude of the supernova at
its brightest.

Again, here we will only use the fact that the ab-
solute magnitude of type Ia supernovae can be
obtained from its light curve in order to deter-
mine distances. More details about the physical
processes giving rise to the explosion and to the
fact that the light curve can be used to obtain
the luminosity will be presented in later lectures.
Due to their strong luminosity, supernovae can be
used to determine distances to galaxies beyond
1000 Mpc.

3.5 The Tully-Fisher relation

The Tully-Fisher relation is a relation between
the width of the 21 cm line of a galaxy and its
absolute magnitude. As we remember, the 21 cm
radiation is radiation from neutral hydrogen (look
back at the lecture on electromagnetic radiation).
Spiral galaxies have large quantities of neutral hy-
drogen and therefore emit 21 cm radiation from
the whole disc. The 21 cm line is wide because
of Doppler shifts: Hydrogen gas at different dis-
tances from the center of the galaxy orbits the
center at different speeds giving rise to several
different Doppler shifts. We also remember that
the rotation curve for galaxies towards the edge
of the galaxy was flat. So, gas clouds orbiting the
galactic center at large distances all have the same
orbital velocity vmax and thus the same Doppler
shift. There are therefore many more gas clouds
with velocity vmax than with any other velocity.
The flux at the wavelength corresponding to the
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Doppler shift

∆λmax

λ0
=
vmax

c
,

is therefore larger than for instance at a wave-
length of 21 cm itself. The result is a peak in the
flux of the spectral line at either side of 21 cm at
the wavelength 21 ± ∆λmax cm. The wavelength
of this peak is a measure of the maximal velocity
in the rotation curve:

vmax = c
∆λmax

λ0
.

We have seen in a previous lecture that the max-
imum velocity is related to the total mass of the
galaxy. The higher the maximum velocity, the
higher the mass (why?). If we assume that a
higher total mass also means a higher content of
lumious matter and therefore a higher luminos-
ity, it is not difficult to imagine that a relation
can be found between the maximal speed mea-
sured from the 21 cm line and the luminosity, or
absolute magnitude of the galaxy. The relation
can be written as

MB = C1 log10 vmax + C2,

where MB is the absolute magnitude at blue
wavelenghts and C1 and C2 are constants depend-
ing on the type of spiral galaxy. The constant C1

is normally in the range −9 to −10 and C2 in the
range 2.7 to 3.3. The Tully-Fisher relation can
be used as a distance indicator out to distances
beyond 100 Mpc.

Fact sheet: There are many more steps on the cosmic

distance ladder than discussed in this course. Light green

boxes: technique applicable to star-forming galaxies. Light

blue boxes: technique applicable to Population II galaxies.

Light purple boxes: geometric distance technique. Light

red box: the planetary nebula luminosity function (PNLF)

technique is applicable to all populations of the Virgo Su-

percluster. Solid black lines denote well-calibrated ladder

steps, while dashed black lines denote uncertain calibra-

tion steps. Symbols and acronyms: π = parallax, GCLF =

globular cluster luminosity function, SBF = surface bright-

ness fluctuation, B-W = Baade-Wesselink method, RGB =

red giant branch, LMC = Large Magellanic Cloud, Dn – σ

= relation between the angular diameter, D, of the galaxy

and its velocity dispersion, σ. (Figure: Wikipedia)

3.6 Other distance indicators

Some other distance indicators:

• The globular cluster luminosity function:
Globular clusters are clusters of stars con-
taining a few 100 000 stars. These clusters
are usually orbiting a galaxy. A galaxy has
typically a few hundred globular clusters or-
biting. It has been found that the luminos-
ity function, i.e. the percentage of globular
clusters with a given luminosity, is similar
for all galaxies. By finding this luminosity
function for galaxies with a known distance,
the globular clusters can be used as distance
indicators for other galaxies.

• The planetary nebula luminosity function:
Planetary nebulae (which have nothing to
do with planets) are clouds composed of
gas which dying stars ejected at the end of
their lifetime. The planetary nebulae have
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a known luminosity function which can be
used as distance indicators for distant galax-
ies.

• The brightest galaxies in clusters: It has
been found that the brightest galaxies in
clusters of galaxies have a very similar ab-
solute magnitude in all clusters. They can
therefore be used as distance indicators to
clusters of galaxies.

4 The Hubble law

At the top of the distance ladder, we find the
Hubble law. Edwin Hubble discovered in 1926
that all remote galaxies are moving away from
us. The further away the galaxy, the faster it was
moving away from us. This has later been found
to be due to the expansion of the Universe: The
galaxies are not moving away from us, the space
between us and distant galaxies is expanding in-
ducing a Doppler shift similar to that induced by
a moving galaxy. Waves emitted by an object
moving away from us have larger wavelengths
than in the rest frame of the emitter. Thus, light
from distant galaxies are red shifted. By mea-
suring the red shift of distant galaxies, we can
measure their velocities, or in reality the speed
with which the distance is increasing due to the
expanstion of space. From this velocity we can
find their distance using the Hubble law

v = H0r,

where r is the distance to the galaxy, H0 ≈
71 km/s/Mpc is the Hubble constant and v is the
velocity measured by the redshift.

v = c
∆λ

λ
.

The Hubble law is only valid for large distances.

5 OPTIONAL: Uncertainties in
distance measurements

There are several uncertainties connected with distance mea-
surements. One of the main problems is caused by interstellar
extinction. Our galaxy contains huge clouds of dust between
the stars. Light which passes through these dust clouds loose
flux as

F (λ) = F0(λ)e−τ(λ), (4)

where F (λ) is the observed flux and F0(λ) is the flux we would
have observed had there not been any dust clouds between us
and the emitting object. Finally, the quantity τ(λ) is called
the optical depth and is given by

τ(λ) =

∫ r

0

dr′n(r′)σ(λ, r′).

Here n(r) is the number density of dust grains at distance r
from us and σ(λ, r) is a measure of the probability for a photon
to be scattered on a dust grain. The optical depth is simply an
integral along the line of sight from us to the emitting object of
the density of dust grains times the probability of scattering.
The larger the density of dust grains or the larger the proba-
bility of scattering, the larger the optical depth. The optical
depth is a measure of how many photons which are scattered
away during the trip from the radiation source to us. If the
scattering probability is constant along the line of sight (this
depends on properties of the dust grains), we can write the
optical depths as

τ(λ) = σ(λ)

∫ r

0

dr′n(r′) = N(r)σ(λ),

where N(r) is the total number of dust grains that the photons
encounter during the trip from the emitter at distance r.

Interstellar extinction increases the apparent magnitude (de-
creases the flux) of an object. Photons are scattered away
from the line of sight and the objects appear dimmer. Taking
this into account we need to correct our formula for the relation
between the apparent and the absolute magnitude

m(λ) = M(λ) + 5 log10

(
r

10 pc

)
+A(λ),

where A(λ) is the total extinction at wavelength λ and m(λ)
and M(λ) are the apparent and absolute magnitudes based on
the flux at wavelength λ only. Using the formula for the dif-
ference between two apparent magnitudes in lecture 6, we can
write the change in apparent magnitude due to extinction as

m(λ)−m0(λ) = −2.5 log10

(
F (λ)

F0(λ)

)
= −2.5 log10(e−τ(λ)) = 1.086τ(λ),

where also equation (4) was used (check that you can deduce
this formula!). Here m0(λ) and F0(λ) is the apparent mag-
nitude and flux we would have had if there hadn’t been any
extinction. Thus, we see that

m(λ) = M(λ) + 5 log10

(
r

10 pc

)
+ 1.086τ(λ).

Clearly, if we use a distance indicator and do not take into
account interstellar extinction, we obtain the wrong distance.
It is often difficult to know the exact optical depth from scat-
tering on dust grains. This is an important source of error in
distance measurements. Note that the extinction does not only
increase the apparent magnitude of an object, it also changes
the color. We have seen that the optical depth τ(λ) depends
on wavelength λ. The scattering on dust grains is larger on
smaller wavelength. Thus, it affects red light less than blue
light with the result that the light from the object appears
redder. This is called interstellar reddening.
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Another source of error in the measurement of large distances
in the Universe is the fact that objects observed at a large dis-
tance are also observed at an earlier phase in the history of the
universe. The light from an object at a distance of 1000 Mpc or
3260 million light years has travelled for 3260 million years or
roughly one fourth of the lifetime of the Universe. Thus, we ob-
serve this object as it was 3260 millions years ago. The universe
has been evolving all the time since the Big Bang until today.
We do not know if the galaxies and stars at this early epoch
had the same properties as they have today. Actually, we have
good reasons to believe that they did not. We will come to this
later. This could imply that for instance the relation between
light curve and absolute magnitudes of supernovae were dif-
ferent at that time than today. Using relations obtained from
obervations of the present day universe to observations in the
younger universe may lead to errors in measurements of the
distance.
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6 Exercises

Exercise 3A.1

1. A star is observed to change its angular posi-
tion with respect to very distant stars by 1′′

in half a year. Assuming that the star does
not have any peculiar velocity with respect
to us, what is the parallax angle for the star?
And its distance?

2. What is the parallax angle for our near-
est star Proxima Centauri at a distance of
4.22 ly? (Assume again that the observa-
tions are made with a distance of half a year).

3. An open star cluster is observed to have red
stars (surface temperature 3000 − 4000 K)
with apparent magnitudes in the range m =
[10, 12], yellow stars (about 6000 K) in the

apparent magnitude range m = [6, 9] and a
few hotter white stars (10000 K) in the ap-
parent magnitude range m = [1, 5]. What is
the distance to the cluster? Use the diagram
in figure 3.

4. A supernova explosion of type Ia is detected
today in a distant galaxy. Its apparent vi-
sual magnitude at maximum was mV = 20.
You still need to wait a few days to obtain
the light curve and thereby the exact abso-
lute magnitude. But you can already find
an approximate distance. In which distance
range do you expect to find the supernova?

5. A distant galaxy is measured to have the cen-
ter of its 21 cm line (λ0 = 21.2 cm) shifted
to λ = 29.7 cm. What is the distance of the
galaxy?
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