
AST2000 Lecture Notes

Part 3C
Nuclear reactions in stellar cores

Questions to ponder before the lecture

1. Protons repel each other due to the electric force between equal charges. How can they possibly
come together in a nuclear fusion reactions to create heavier atomic nuclei?

2. What do you think are the necessary conditions for a gas to start nuclear fusions reactions? Or:
if you have a tank of hydrogren gas, what would you need to do to that gas in order to start
fusion reactions?

3. We have quite detailed theories for which nuclear reactions are going on in the solar core. How
would you test such a theory?

4. You might have heard that the energy produced in nuclear reactions are due to mass converted
to energy through the equation E = mc2. But which mass is converted to energy? When two
protons and two neutrons are fused to form helium, there are still two protons and two neutrons
in the new atomic nucleus, no particles are lost? Where is the mass loss?

Plasma in the original START tokamak, a nuclear fusion experiment (Image credit: Alan Sykes)
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AST2000 Lecture Notes

Part 3C
Nuclear reactions in stellar cores

1 Mass in special relativity

Another topic which we need to discuss before
studying nuclear reactions is the notion of mass in
the special theory of relativity. We have already
seen that the scalar product of the momenergy
four-vector equals the mass of a particle,

PµP
µ = E2 − p2 = m2. (1)

Imagine we have two particles with mass m1 and
m2, total energy E1 and E2 and momenta p1 and
p2. Assume that they have opposite momenta
p1 = −p2 = p,

P 1
µ = (E1, p), P 2

µ = (E2,−p)

with E1 =
√
m2

1 + p2 and E2 =
√
m2

2 + p2. These
two particles could for instance constitute the
proton and the neutron in a deuterium nucleus.
The question now is, what is the total mass of the
two-particle system (deuterium nucleus)? Let us
form the momenergy four-vector for the nucleus

Pµ = P 1
µ + P 2

µ = (E1 + E2, 0).

Using equation 1 we can now find the total mass
of the two-particle system (the nucleus),

M2 = PµP
µ = (E1 + E2)

2

= E2
1 + E2

2 + 2E1E2

= m2
1 +m2

2 + 2p2 +
√

(m2
1 + p21)(m

2
2 + p22)

where M is the total mass of the nucleus. We
have two important observations: (1) Mass is not
an additive quantity. The total mass of a system
of particles is not the sum of the mass of the in-
dividual particles. (2) The mass of a system of

particles depends on the total energy of the par-
ticles in the system. The energy of particles in
an atomic nucleus includes the potential energy
between the particles due to electromagnetic and
nuclear forces.

Consider an atomic nucleus with mass M . This
nucleus can be split into two smaller nuclei with
masses m1 and m2. If total mass of the two nuclei
m1 and m2 is smaller than the total mass of the
nucleus, the rest energy is radiated away when the
nucleus is divided. This is a nuclear fission pro-
cess creating energy. Similarly if the total mass
of m1 and m2 is larger than the total mass of the
nucleus, then energy must be provided in order
to split the nucleus. The same argument goes
for nuclear fusion processes: Consider two nuclei
with masses m1 and m2 which combine to form a
larger nucleus of mass M . If M is smaller than
the total mass of the nuclei m1 and m2 then the
rest mass is radiated away and energy is ’created’
in the fusion process. In some cases (particularly
for large nuclei), the mass M is larger than the
total mass of m1 and m2. In this case energy must
be provided in order to combine the two nuclei to
a larger nucleus. We will soon see that in order
to produce atomic nuclei larger than iron, energy
must always be provided.
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2 Penetrating the Coloumb bar-
rier

Figure 1: The repulsive Coloumb potential V (r) as a func-
tion of distance between nuclei r. At small distances r we
see the potential well from the attractive strong forces.

The strong nuclear force (usually referred to as
the strong force) is active over much smaller dis-
tances than the electromagnetic force. The strong
force makes protons attract protons and protons
attract neutrons (and vice versa). For two atomic
nuclei to combine to form a larger nucleus, the
two nuclei need to be close enough to feel the
attractive nuclear forces from each other. Atomic
nuclei have positive charge and therefore repulse
each other at larger distances due to the elec-
tromagnetic force. Thus for a fusion reaction
to take place, the two nuclei need to penetrate
the Coloumb barrier, the repulsive electromag-
netic force between two equally charged parti-
cles. They need to get so close that the attractive
strong force is stronger than the repulsive electro-
magnetic force. In figure 1 we show the combined
potential from electromagnetic and nuclear forces
of a nucleus. We clearly see the potential barrier
at r = R. For a particle to get close enough to
feel the attractive strong force it needs to have
an energy of at least E > E(R). We can make an
estimate of the minimal temperature a gas needs
in order to make a fusion reaction happen: The
mean kinetic energy of a particle in a gas of tem-
perature T is EK = (3/2)kT (see the exercises).
The potential energy between two nuclei A and
B can be written as

U = − 1

4πε0

ZAZBe
2

r
,

where ε0 is the vacuum permittivity, Z1 and Z2

is the number of protons in each nucleus, e is the
electric charge of a proton and r is the distance
between the two nuclei. For nucleus A to reach
the distance R (see figure 1) from nucleus B where
the strong force starts to dominate, the kinetic en-
ergy must at least equal the potential energy at
this point

3

2
kT =

1

4πε0

ZAZBe
2

R
.

The distance R is typically R ∼ 10−15 m. Consid-
ering the case of two hydrogen nuclei Z = 1 fusing
to make helium Z = 2, we can solve this equation
for the temperature and obtain T ∼ 1010 K. This
temperature is much higher than the core tem-
perature of the Sun TC ∼ 15 × 106 K. Still this
reaction is the main source of energy of the Sun.
How can this be?

The secret is hidden in the world of quantum
physics. Due to the Heisenberg uncertainty rela-
tion, nucleus A can borrow energy ∆E from vac-
uum for a short period ∆t. If nucleus A is close
enough to nucleus B, the time ∆t might just be
enough to use the borrowed energy to penetrate
the Coloumb barrier and be captured by the po-
tential well of the strong force. This phenomenon
is called tunneling. Thus, there is a certain prob-
ability that nucleus A spontaneously borrows en-
ergy to get close enough to nucleus B in order for
the fusion reaction to take place.

3 Nuclear reaction probabilities
and cross
sections

Quantum physics is based on probability and
statistics. Nothing can be predicted with 100%
certainty, only statistical probabilities for events
to happen can be calculated. When nucleus A
is at a certain distance from nucleus B we cannot
tell whether it will borrow energy to penetrate the
Coloumb barrier or not, we can only calculate the
probability for the tunneling to take place. These
probabilities are fundamental for understanding
nuclear reactions in stellar cores. These proba-
bilities are usually represented as cross sections
σ.
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The exact calculations of cross sections and
thereby nuclear reaction rates is outside the scope
of this course. Below we show how this can
be done (optional) for those who are interested.
What we need here is the final expression which
can give the energy production rate from a gas
with a certain density and temperature. In the
calculations below, we arrive at an integral (equa-
tion 5) giving the total energy production rate.
We will not do the integral here but note that the
solution can be Taylor expanded around given
temperatures T as

εAB = ε0,reacXAXBρ
αT β,

which is the total energy produced per second and
per kg of gas. Here ρ is the density, α and β are in-
dices which depend on the temperature T around
which the expansion is made and XA and XB are
the mass fractions of the two nuclei defined as

XA =
nAmA

nm
=

total mass in type A nuclei

total mass
,

Here nA is the number density of A particles, n is
the total number density of particles, mA is the
mass of A particles and m is the mean mass of a
particle in the gas.

Here, ε0,reac, α and β will depend on the nuclear
reaction and can in principle be calculated from
the integral in equation 5 for each case, although
in this course these numbers will always be given.
If we have ε0,reac, α and β for different nuclear
reactions, we can use this expression to find the
nuclear reactions which are important for a given
temperature T in a stellar core.

The quantity εAB, or simply ε, given above is the
energy release per mass per time. Sinde energy
release per time is luminosity, we can therefore
write this as

dL

dm
= ε

The luminosity produced in a shell at a distance
r from the center of a star can therefore be writ-
ten as (NB! check that you can arrive at this ex-
pression: how can you write the mass dm for an
infinitesimally thin shell of thickness dr?)

dL(r)

dr
= 4πr2ρ(r)ε(r), (2)

which is another of the equations used together
with the equation of hydrostatic equilibrium in
what is called stellar model building which will
be described more in part 3D: Solving these two
equations combined with some equations from
thermodynamics and fluid dynamics one can ob-
tain temperature and density profiles T (r) and
ρ(r) as well as detailed knowledge of the different
molecules and atoms present at different distances
from the center of a star. These models have been
used to obtain the understanding we have today
of how stars evolve.

3.1 OPTIONAL: Deducing the integral
for the nuclear energy production rate

Figure 2: A particles streaming towards the disk with cross
section σ(E) around the B nucleus. A particles of energy
E within the volume v(E)∆tσ(E) will react with the nu-
cleus B within time ∆t.

Before calculating the nuclear reaction rate, we need to under-
stand the definition of cross section in physics. The definition
of the cross section is based on an imaginary situation which is
a bit different from the real situation but gives an intuitive pic-
ture of the reaction probabilities and, most importantly, makes
the calculations easier. It can be proven that the calculations
made for this imaginary picture gives exact results for the real
situation. Instead of the real situation where we have one nu-
cleus A and one nucleus B passing each other at a certain
distance (and we want to know the probability that they re-
act), one imagines the nucleus B to be at rest and a number
of nuclei of type A approaching it. One imagines nucleus B
to have a finite two dimensional extension, like a disk, with
area σ. Towards this disk there is a one dimensional flow of
A particles (see figure 2). If a nucleus A comes within this
disk, it is captured and fusion takes place, if not the nuclei do
not fuse. It is important to understand that this is not really
what happens: fusion can take place with any distance r be-
tween the nuclei. It might also well be that A is within the
disk and the fusion reaction is not taking place. But in order
to make calculations easier one makes this imaginary disk with
an effective cross section σ saying that any nucleus A coming
within this disk will fuse. It can be shown that calculations
made with this representation gives correct reaction rates even
though the model does not give a 100% correct representation
of the physical situation. Because of the simplified mathemat-
ics, the cross section σ is the most common way of representing
a probability for a reaction or collision process to take place.
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You will now see how this imaginary picture is used to calculate
reaction rates.

The disk cross section (tunneling probability) σ(E) depends
on the energy E of the incoming nucleus A. Thus the size of
the immaginary disk (for the nucleus B at rest) depends on the
energy E of the incoming particle A. We will now make calcu-
lations in the center of mass system. In exercise 1B.4 in part
1B, you showed that the total kinetic energy of a two-body
system can be written as (ignoring gravitational forces)

E =
1

2
µ̂v2,

where µ̂ is the reduced mass µ̂ = (m1m2)/(m1 + m2). We
showed that the two-body problem is equivalent to a system
where a particle with mass M = m1+m2 is at rest and a parti-
cle with the reduced mass µ̂ is moving with velocity v. In this
case we imagine the nucleus B to be at rest and the particle A
is approaching with velocity v.

We will now consider a gas with a total number density of
particles n per volume, a number density nA per volume of A
nuclei and a number density nB per volume of B nuclei. We
will try to find how many A nuclei with a given energy E will
react with one B nucleus per time interval ∆t. The answer is
simple: All the A particles with energy E which are in such
a distance from B that they will hit the disk with cross sec-
tion σ(E) around nucleus B within the time interval ∆t (do
you really understand this?). This means that all the A nuclei
with energy E at a distance v(E)∆t from B moving towards B
will react with B. In figure 2 we illustrate the situation. All A
nuclei within a volume V = v(E)∆tσ(E) will react (make sure
you get this before continuing!). (again, this is an imaginary
situation: only one nucleus A can really react with B, the num-
bers we obtain are in reality probabilities). Let nA(E) be the
number density of A nuclei with energy E such that nA(E)dE
is the number of A nuclei with energies between E and E+dE.
Then, the total number of nuclear reactions per nucleus B from
A nuclei with energies in the interval E to E + dE is given by

dN(E) = v(E) dt σ(E)nA(E) dE. (3)

Before continuing we need to know the number density of A
nuclei with energy E, nA(E). Recall from lectures 1A and
1G that we can use the Maxwell-Boltzmann distribution for
energy:

n(E)dE =
2n√

π(kT )3/2
E1/2e−

E
kT dE,

which is the number of particles in the gas with energy E ex-
pressed in terms of the total number of particles in the gas n.
Returning to equation 3 we see that what we need is not the
total number of particles at energy E, but the total number of
A particles at energy E. This can be written as

nA(E)dE =
nA

n
n(E)dE,

where nA/n is the fraction of A particles in the gas (over all
energies). From equation 3 we thus have

dN(E)

dt
= σ(E)v(E)

nA

n
n(E)dE,

which is the reaction rate per B nucleus, i.e. the number of
reactions taking place for each B nucleus present (independent
of the energy of the B nucleus, remember that the B nucleus is

at rest). To obtain the total reaction rate rAB between A and
B nuclei we thus need to multiply with the total density of B
nuclei nB and integrate over all energies E

rAB =
dN

dt
=

∫ ∞
0

dEnAnBσ(E)v(E)
n(E)

n
.

This is the total number of reactions per time and volume.
Now we insert the Maxwell-Boltzmann distribution to get

rAB =

(
2

kT

)3/2
nAnB√
µ̂π

∫ E

0

dEEe−E/ktσ(E).

Advanced quantum field theory is needed to calculate σ(E).
Here we will give the answer

σ(E) =
S(E)

E
e−b/

√
E ,

where

b =
π
√
µ̂ZAZBe

2

√
2ε0h

and S(E) is a slowly varying function in E depending on the
nuclei involved. The constant b involves the masses and the
number of protons in the nuclei. We can thus write the reac-
tion rate as

rAB =

(
2

kT

)3/2
nAnB√
µ̂π

∫ ∞
0

dES(E)e−b/
√
Ee−E/(kT ). (4)

We usually express the reaction rate as the energy εAB which
is released per kilogram matter per second. We can write this
as

εAB =
ε0
ρ
rAB ,

where ε0 (which is not the vacuum permittivity ε0) is the en-
ergy released per nuclear reaction (why did we include the den-
sity ρ here?). Combined with the integral for rAB above we
therefore get

εAB =
ε0
ρ

(
2

kT

)3/2
nAnB√
µ̂π

∫ ∞
0

dEEe−E/kTσ(E), (5)

where ε0 is the energy released in each nuclear reaction be-
tween an A and a B nucleus, ρ is the total density of the gas
and nA and nB are number densities of A and B nuclei.

4 Stellar nuclear reactions

For main sequence stars the most important fu-
sion reaction fuses four 1

1H atoms to 4
2He. When

writing nuclei, AZX, A is the total number of nucle-
ons (protons and neutrons), Z is the total number
of protons and X is the chemical symbol. There
are mainly two chains of reaction responsible for
this process. One is the pp-chain,

1
1H +1

1 H → 2
1H +0

0 ē +0
0 νe

2
1H +1

1 H → 3
2He +0

0 γ
3
2He +3

2 He → 4
2He + 2×1

1 H

Here 0
0νe is the electron associated neutrino, 0

0γ
is a photon and the bar represents antiparticles:
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0
0ē is the antiparticle of the electron called the
positron. This is the pp-I chain, the most impor-
tant chain reactions in the solar core. There are
also other branches of the pp-chain (with the first
two reactions equal) but these are less frequent.
The pp-chain is most effective for temperatures
around 15 millions Kelvin for which we can write
the reaction rate for the full pp-chain as

εpp ≈ ε0,ppX
2
HρT

4
6 ,

where T = 106KT6 with T6 being the temperature
in millions of Kelvin. This expression is valid for
temperatures close to T6 = 15. For this reaction
ε0,pp = 1.08 × 10−12 Wm3/kg2. The efficiency of
the pp-chain is 0.007, that is only 0.7% of the
mass in each reaction is converted to energy.

The other reaction converting four 1
1H to 4

2He is
the CNO-cycle,

12
6 C +1

1 H → 13
7 N +0

0 γ
13
7 N → 13

6 C +0
0 ē +0

0 νe
13
6 C +1

1 H → 14
7 N +0

0 γ
14
7 N +1

1 H → 15
8 O +0

0 γ
15
8 O → 15

7 N +0
0 ē +0

0 νe
15
7 N +1

1 H → 12
6 C +4

2 He

with a total reaction rate

εCNO = ε0,CNOXHXCNOρT
20
6 ,

where ε0,CNO = 8.24× 10−31 Wm3/kg2 and

XCNO =
MCNO

M

is the total mass fraction in C, N and O. These
three elements are only catalysts in the reaction,
the number of C, N and O molecules do not
change in the reaction. This expression is valid
for T6 ≈ 20. We see that when the temperature
increases a little, the CNO cycle becomes much
more effective because of the power 20 in temper-
ature. In the exercises you will find how much.
Thus, the CNO cycle is very sensitive to the tem-
perature. Small changes in the temperature may
have large influences on the energy production
rate by the CNO cycle.

For stars with an even hotter core, also 4
2He may

fuse to heavier elements. In the triple-alpha pro-
cess three 4

2He nuclei are fused to form 12
6 C.

4
2He + 4

2He→ 8
4Be +0

0 γ

8
4Be + 4

2He→ 12
6 C∗ +0

0 γ

Here the reaction rate can be written as

ε3α = ε0,3αρ
2X3

HeT
41
8 .

Here T = 108KT8, T8 is the temperature in
hundred millions of Kelvin and ε0,3α = 3.86 ×
10−18 Wm6/kg3. This expression is valid near
T8 = 1. We see an extreme temperature depen-
dence. When the temperature is high enough,
this process will produce much more than the
other processes.

For higher temperatures, even heavier elements
will be produced for instance with the reactions

4
2He + 12

6 C→ 16
8 O +0

0 γ (6)

12
6 C + 12

6 C→ 24
12Mg +0

0 γ (7)

There is a limit to which nuclear reactions can
actually take place: The mass of the resulting
nucleus must be lower than the total mass of the
nuclei being fused. Only in this way energy is pro-
duced. This is not always the case. For instance
the reactions

12
6 C + 12

6 C→ 16
8 O + 24

2He (8)

and

16
8 O + 16

8 O→ 24
12Mg + 24

2He (9)

require energy input, that is the total mass of the
resulting nucleus is larger than the total mass of
the input nuclei. It is extremely difficult to make
such reactions happen: Only in extreme environ-
ments with very high temperatures is the proba-
bility for such reactions large enough to make the
processes take place.
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Figure 3: Schematic diagram of mass per nucleon as a
function of the number of nucleons in the nucleus. Note
that we are only illustrating the general trends. There are
for instance a few light elements for which the mass per
nucleon increases with increasing number of nucleons in
the nucleus.

In figure 3 we show the mass per nucleon for the
different elements. We see that we have a min-
imum for 56

26Fe. This means that for lighter el-
ements (with less than 56 nucleons), the mass
per nucleon decreases when combining nuclei to
form more heavier elements. Thus, for lighter ele-
ments, energy is usually released in a fusion reac-
tion (with some exceptions, see equation 8 and 9).
For elements heavier than iron however, the mass
per nucleus increases with increasing number of
nucleons. Thus, energy input is required in order
to make nuclei combine to heavier nuclei. The
latter processes are very improbable and require
very high temperatures.

We see that we can easily produce elements up to
iron in stellar cores. But the Earth and human be-
ings consist of many elements much heavier than
iron. How were these produced? In the Big Bang
only hydrogen and helium were produced so the
heavier elements must have been created in nu-
clear reactions at a later stage in the history of the
universe. We need situations were huge amounts
of energy are available to produce these elements.
The only place we know about where such high
temperatures can be reached are supernova ex-
plosions. We will come back to this later.

5 The solar neutrino problem

If you look back at the chain reactions above you
will see that neutrinos are produced in the pp-

chain and the CNO cycle. We have learned in
earlier lectures that neutrinos are particles which
hardly react with matter. Unlike the photons
which are continuously scattered on charged par-
ticles on they way from the core to the stellar
surface, the neutrinos can travel directly from the
core of the Sun to the Earth without being scat-
tered even once. Thus, the neutrinos carry impor-
tant information about the solar core, information
which would have otherwise been impossible to
obtain without being at the solar core. Using the
chain reactions above combined with the theoret-
ical reaction rates, we can calculate the number of
neutrinos with a given energy we should observe
here at Earth. This would be an excellent test
of the theories for the composition of the stellar
interiors as well as of our understanding of the nu-
clear reactions in the stellar cores. The procedure
is as follows

1. Stellar model building: Solve the coupled set
of equations consisting of the equation of hy-
drostatic equilibrium, equation 2 as well as
several equations from thermodynamics de-
scribing the transport of energy within the
Sun. The solutions to these equations will
give you the density ρ(r) and temperature
T (r) of the Sun as a function of distance r
from the center.

2. The temperature T (r) at a given distance r
combined with the above expressions for stel-
lar reaction rates gives the number of neutri-
nos produced in the different kinds of chain
reactions and what energies E these neutri-
nos should have.

3. Measure the flux of neutrinos for different
energy ranges E that we receive on Earth
and compare to theoretical predictions.

4. If there is agreement, it means we have ob-
tained the correct model for the Sun. If the
agreement is not satisfactory, we need to go
back to the first step and make the stellar
model building with different assumptions
and different parameters.

For many years, there was a strong disagreement
between the neutrino flux observed at Earth and
the solar models. The observed number of neutri-
nos was much lower than predicted. Now the dis-
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Fact sheet: The proton–proton (pp) chain reaction, The carbon-nitrogen-
oxygen (CNO) cycle (the helium nucleus is released at the top-left step) and
the triple-alpha process.(Figure:Wikipedia)

crepancy is resolved and the solution led to an im-
portant discovery in elementary particle physics:
It was discovered that the neutrinos have mass. It
was previously thought that neutrions were mass-
less like the photons. Elementary particle physics
predicted that if the neutrinos have mass, they
may oscillate between the three different types of
neutrino. If neutrinos have mass, then an elec-
tron neutrino could spontaneously convert into a
muon or tau neutrino. The first neutrino experi-
ments were only able to detect electron neutrinos.
The reason they didn’t detect enough solar neu-
trinos was that they had converted to different
types of neutrinos on the way from the solar core
to the Earth. Today neutrino detectors may also
detect other kinds of neutrino and the observed
flux is in much better agreement with the mod-
els. But it does not mean that the solar interior
and solar nuclear reactions are completely under-
stood. Modern neutrino detectors are now used
to measure the flux of different kinds of neutrinos
in different energy ranges in order to understand
better the processes being the source of energy in
the Sun as well as other stars.

But the neutrinos hardly react with matter, how
are they detected? This is not an easy task and
a very small fractions of all the neutrinos passing
through the Earth are detected. One kind of neu-
trino detector consists of a tank of cleaning fluid

C2Cl4, by the reaction

37
17Cl + 0

0νe → 37
18Ar + 0

−1e.

The argon produced is chemically separated from
the system. Left to itself the argon can react with
an electron (in this case with its own inner shell
electron) by the converse process

37
18Ar + 0

−1e→ 37
17Cl + 0

0νe.

The chlorine atom is in an excited electronic state
which will spontaneously decay with the emission
of a photon. The detection of such photons by a
photomultiplier then is an indirect measurement
of the solar neutrino flux.
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6 Exercises

Exercise 3C.1

One of the solar standard models predict the fol-
lowing numbers for the solar core: ρ = 1.5 ×
105 kgm−3, T = 1.57× 107 K, XH = 0.33, XHe =
0.65 and XCNO = 0.01. We will assume that the
expressions for energy production per kilogram
given in the text are valid at the core tempera-
ture of the Sun. We will make this approxima-
tion even for the expression for the triple-alpha
reaction which is supposed to be correct only for
higher temperatures.

1. Calculate the total energy produced per kilo-
gram in the Sun by the pp-chain, CNO-cycle
and the triple-alpha process.

2. Find the ratio between the energy produc-
tion of the pp-chain and the CNO-cycle and
between the pp-chain and the triple-alpha
process. The energy produced by the CNO
cycle is only about 1% of the total energy
production of the Sun. If you got a very dif-
ferent number in your ratio between the pp-
chain and the CNO-cycle, can you find an
explanation for this difference? What would
you need to change in order to obtain a more
correct answer?

3. Now repeat the previous question using a
mean core temperature of about T = 13 ×
106 K. Use this temperature in the rest of
this exercise.

4. At which temperature T does the CNO cycle
start to dominate?

5. Assume for a moment that only the pp-chain
is responsible for the total energy production
in the Sun. Assume that all the energy pro-

duction in the Sun takes place wihin a ra-
dius R < RE inside the solar core.Assume
also that the density, temperature and mass
fractions of the elements are constant within
the radius RE. So all the energy produced
by the Sun is produced in a sphere of ra-
dius RE in the center of the solar core. Use
the above numbers and the solar luminosity
L� = 3.8 × 1026 W to find the size of this
radius RE within which all the energy pro-
duction takes place. Express the result in
solar radii R� ≈ 7 × 108 m. The solar core
extends to about 0.2R�. How well did your
estimate of RE agree with the radius of the
solar core?

6. If the CNO-cycle alone had been responsible
for the total energy production of the Sun,
what would the radius RE had been? (again
express the result in solar radii)

Exercise 3C.2

1. Go through all the nuclear reactions in the
pp-chain and CNO cycle. For each line in
the chain, check that total charge and total
lepton number is conserved. (there might be
some printing errors here, if you spot one
where is it?)

2. After having checked all these reactions you
should have gained some intuition about
these reactions and the principles behind
them. So much that you should be able to
guess the missing numbers and particles in
the following reactions

27
14Si → 27

? Al +0
0 ē + ?

27
? Al + 1

1H → 24
12Mg + ?

2?
35
17Cl + 1

1H → 36
18Ar + ?
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