
AST2000 Lecture Notes

Part 3D
From the main sequence to the giant stage

Questions to ponder before the lecture

1. The main sequence stars follow a line in the HR-diagram. Thinking about the meaning of the
axes in the HR-diagram, what could this tell us about these stars?

2. If somebody turned off all nucelar reactions in the centre of the Sun now, how long time would it
take until you notice? Let’s rephrase the question: how does the energy produced in the centre
of the Sun reach the surface and how long time does it take? How would you start calculating
this?

3. When a star has finished its hydrogen fuel in the core, it expands to become a giant. Why?
What makes it expand?

The Sun observed by the Solar Dynamics Observatory (Image: NASA/SDO)
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AST2000 Lecture Notes

Part 3D
From the main sequence to the giant stage

1 The Hertzsprung-Russell dia-
gram revisited

We have already encountered the Hertzsprung-
Russell (HR) diagram, the diagram where stars
are plotted according to their temperature and
luminosity. There are several versions of this dia-
gram, differing mainly in the units plotted on the
axes. The most used units on the x-axis are:

• Temperature

• B-V color index

• spectral classes

We have so far seen temperature on the x-axis.
The temperature of a star is directly related to
its color and one can therefore also use the B–V
color index (see the lecture on cosmic distances)
on the x-axis. There is also another another pos-
sibility: spectral classes. Stars are classified ac-
cording to their spectral class which consists of
a letter and a number. This historical classifica-
tion is based on the strength of different spectral
lines found in the spectra of the stars. It turned
out later that these spectral classes are strongly
related to the temperature of the star: The tem-
perature of the star determines the state of the
different atoms and therefore the possible spec-
tral lines which can be created.

The letters used in the spectral classification are,
in the order of decreasing temperature, O, B, A,
F, G, K, M. The warmest O stars have surface
temperatures around 40 000 K, the coldest M
stars have surface temperatures down to about
2 500 K. Each of these classes are divided into 10

subclasses using a number from 0 to 9. So the
warmest F stars are called F0 and the coldest F
stars are called F9.

Figure 1: Hertzsprung–Russell diagram with 22 000 stars
plotted from the Hipparcos catalog and 1000 from the
Gliese catalog of nearby stars. Stars tend to fall only into
certain regions of the diagram. The most predominant is
the diagonal, going from the upper-left (hot and bright)
to the lower-right (cooler and less bright), called the main
sequence. White dwarfs are found in the lower-left, while
subgiants, giants, and supergiants are located above the
main sequence. The Sun is found on the main sequence at
absolute magnitude 4.8 (relative luminosity 1) and B–V
color index 0.66 (temperature 5780 K, spectral type G2).
(Figure:Wikipedia)
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Normally observational astronomers tend to use
either spectral class or color index which are
quantities related to the observed properties of
the star. Theoretical astrophysicists on the other
hand, tend to use temperature which is more im-
portant when describing the physics of the star.

Also the y-axis in an HR-diagram have different
units. We have already seen luminosity and ab-
solute magnitude which are two closely related
quantities. In addition one can use luminosity
classes. It turns out that stars which have the
same spectral class but different luminosities also
have some small differences in the spectral lines.
These differences have been shown to depend on
the luminosity of the star. There are 6 luminos-
ity classes, numbered with Roman numerals from
I to VI. The most luminous stars have luminosity
class I. Using this classification, the Sun is a G2V
star.

Before we start to discuss the diagram in more de-
tail, let us try to understand what it is telling us.
We know that the flux of a star with temperature
T can be expressed using the Stefan-Boltzmann
law as F = σT 4. To obtain the luminosity L, we
need to integrate this flux over the full area 4πR2

of the surface of the star giving (why?, check that
you understand this!),

L = 4πR2σT 4.

Looking at the HR-diagram (see figure 1), we
see that there are some spectral classes for which
there are stars with many different luminosities.
For instance stars with spectral class K0 have a
range in luminosity from 0.5 to 1000 solar lumi-
nosities. If we fix T in the relation above (re-
member: fixed T means fixed spectral class) , we
see than higher luminosity simply means larger
radius. So for a fixed temperature, the higher
the star is located in the HR-diagram the larger
radius it has. This also means that we can find
lines of constant radius in the diagram. Fixing
the radius to a constant we get

R2 =
L

4πσT 4
= constant,

so that for stars located along lines following
L ∝ T 4 in the diagram, the radius is the same.
In figure 2 some of these lines have been plotted.

Note that these lines go from the upper left to the
lower right, a bit similar to the main sequence. So
main sequence stars are stars which have a cer-
tain range of radii. The fact that most of the stars
are located on the main sequence means that the
physics of stars somehow prohibits smaller and
larger radii (look at the figure again and check
that you understand) . We will come to this in
some more detail later.

Figure 2: HR-diagram with constant radii lines plotted.
From http://astro.wsu.edu/worthey/astro/html/

im-Galaxy/

Now it is clear why the stars which are situ-
ated above the main sequence are called giants
or super giants and the stars well below the main
sequence are called dwarfs. Main sequence stars
usually have radii in the range 0.1R� to about
10R�. Giant stars fall in the range between 10R�
to about 100R� whereas super giants may have
radii of several 100 solar radii. The masses of
stars range from 0.08M� for the least massive
stars up to about 100M� for the most massive
stars. We will soon discuss theoretical arguments
explaining why there is a lower and an upper

3

http://astro.wsu.edu/worthey/astro/html/im-Galaxy/
http://astro.wsu.edu/worthey/astro/html/im-Galaxy/


limit of star masses.

We will now start to look at the evolution of
stars, from birth to death. Stars start out as huge
clouds of gas contracting due to their own gravity.
Thus a star starts out on the far right side of the
HR-diagram, with a very low temperature. Then,
as it contracts, the radius decreases and the tem-
perature increases. It moves leftwards and finally
after nuclear reactions have begun, the star set-
tles on the main sequence. Where it settles on the
main sequence depends on the mass of the star.
As we will show later, the larger the mass, the
higher the luminosity and the higher the surface
temperature. So the more massive stars settles
on the left side of the main sequence whereas the
less massive stars settles on the right side of the
main sequence. Stars spend the largest part of
their lives on the main sequence. During the time
on the main sequence they move little in the HR-
diagram. Towards the end of their lives, when
the hydrogen in the core has been exhausted, the
stars increase their radii several times becoming
giants or supergiants. The surface temperature
goes down, but due to the enormous increase in
radius the luminosity increases. After a short
time as a giant, the star dies: Low mass stars die
silently, blowing off the outer layers and leaving
behind a small white dwarf star in the lower part
of the HR-diagram. The more massive stars die
violently in a supernova explosion leaving behind
a so-called neutron star or a black hole. We will
now discuss the physics behind each of these steps
in turn. Beginning here with star birth: a gas of
cloud contracting.

Star birth was covered in 3B: when a gas cloud has
a mass larger than the Jeans mass, it starts con-
tracting. As it contracts, the temperature in the
center increases and the gas pressure outwards as
well as radiation pressure from photons increases.
As the outward pressure increases, it starts coun-
teracting the force of gravity. When the temper-
ature in the core is sufficiently high, fusion reac-
tions in the core ignite, giving rise to a high out-
wards pressure which at a certain radius equals
the inwards gravitational force and hydrostatic
equilibrium has been reached. At this point the

star has reached the main sequence.

However for stars with a very low mass, M <
0.08M�, hydrostatic equilibrium is reached before
the temperature is sufficiently high to start nu-
clear reactions. The low mass gives rise to lower
gravitational forces and hydrostatic equilibrium
can be reached at lower core temperatures. In this
case we get a brown dwarf star: a star without nu-
clear reactions. For stars with a very high mass
M > 100M�, the temperature of the gas quicly
becomes very high as the star is contracting, cre-
ating an outward pressure larger than the gravi-
tational force causing collapse. The gas cloud is
therefore starting to expand instead of contract-
ing and a stable star cannot be created.

2 Energy transport in stars and
the life time on the main se-
quence

How long does the star remain on the main se-
quence? It will depend on the available hydrogen
in the core. Note that as hydrogen is converted
to helium the mean molecular weight µ increases.
We remember that the pressure in an ideal gas
can be written as

P =
ρkT

µmH

.

Thus as µ increases, P decreases provided ρ and
T remain approximately constant. The result is
that the hydrostatic equilibrium is lost. The bat-
tle between the gravitational forces and the pres-
sure forces is won by gravitation and the stellar
core starts contracting. The result of the con-
tracting core is that the core density and temper-
ature rise. At higher core temperatures, the nu-
clear reactions which are more effective at higher
temperatures start to be more important. We will
now make an estimate of how long time it takes
until the hydrogen in the core is exhausted. At
this point, the star leaves the main sequence and
starts the transition to the giant stage.

Before continuing the discussion on energy pro-
duction in the core we need to have a quick look
at how the energy is transported from the core
to the surface. Clearly the photons produced in
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the nuclear reactions in the core do not stream di-
rectly from the core and to the surface. The total
luminosity that we observe does not come directly
from the nuclear reactions in the core. The pho-
tons produced in the nuclear reactions scatter on
the nuclei and electrons in the core transferring
the energy to the particles in the core. Thus, the
high temperature of the stellar core is a result
of the energetic photons produced in the nuclear
reactions. The high temperature plasma in the
core emits thermal radiation. The photons re-
sulting from this thermal radiation constitutes a
dense photon gas in the core of the star. How
is the energy, that is, the heat of the plasma or
the photons in the photon gas, transported to the
stellar surface? There are three possible ways to
transport energy in a medium:

• By radiation: Photons from the photon gas
traveling outwards. The photons cannot
travel directly from the core, but will be con-
tinuously scattered in many different direc-
tions by collisions with other particles. After
a large number of scatterings and direction
changes it will eventually reach the surface
and escape.

• By convection: Large masses of the hot gas
may stream outwards while the cooler gas
falls inwards. In this way, the heat and
thereby the energy is transfered outwards.
Convection is a much more efficient way of
energy transport than radiation.

• By conduction: Heat is transfered directly
outwards by particle collisions.

In stars, mostly the two former mechanisms of
energy transport are at play. In solar mass stars,
energy is transported from the core by radiation
until a distance of about r = 0.7R� where convec-
tion starts to be the most important mechanism
of energy transport out to the surface.

We will now make a very crude estimate of how
long a star remains on the main sequence. In
order to do this properly it is necessary to do
stellar model building, i.e. solve the coupled set
of equations of hydrostatic equilibrium, the equa-
tions of energy production and the equations of
energy transport. This gives a model of the star
in terms of density and temperature as a function

of distance from the center. From this model, the
proper life time of the star can be calculated. It
turns out that the estimates and relations that we
now will deduce using some very rough approxi-
mations give results close to the results obtained
using the full machinery of stellar model building.

The outline of the method is the following: Find
an expression for the luminosity of the star. We
know that luminosity is energy radiated away per
unit of time. If we assume how much energy the
star has available to radiate away during its life
time, we can divide this energy by the luminosity
to find the life time (assuming constant luminos-
ity which is a good assumption during the main
sequence phase).

Figure 3: Energy transport by radiation: random walk of
the photons from the core of the star to the surface.

Figure 4: Random walk from the core. The position after
N scatterings ~li is ~d.

We will again consider the photon gas in the stel-
lar core. You will in later courses in thermody-
namics show that the energy density, i.e. energy
per volume, of a photon gas goes as ρE ∝ T 4 (ac-
tually ρE = aT 4 where a is the radiation constant
that we encountered in lecture 1E for the pressure
of a photon gas P = 1

3
aT 4). The question is how
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Fact sheet: Stars produce energy by fusion in their deep interior because
only there are the pressures and temperatures high enough to sustain ther-
monuclear reactions. However, most of the luminous energy of stars is radiated
from the thin region at the surface that we call the photosphere. The two most
important ways of transporting energy from the core to the surface in main
sequence stars are by radiation and by convection. A low mass main sequence
star (middle) will have convection in its outer layers and a radiation zone (yel-
low area) in the center, like the Sun. If the star is really low mass (right) it will
have convection all the way in. A high mass star (left) will have convection
only in its core.(Figure: B. Boroson)

long time it will take for the photos in the pho-
ton gas to reach the surface of the star. We will
now assume that the only mechanism for energy
transport is by radiation. A photon which starts
out in the core will be scattered on particles and
continuously change directions until it reaches the
surface of the star (see figure 3). We assume that
the photon travels a mean free path ` between
each collision. After being scattered N times, the

position ~d of the photon (see figure 4) is given by

~d =
N∑
i=1

~li,

where ~li is the displacement vector between each
scattering i (see again figure 4). The total length
∆r of the vector d is the total distance the photon
has moved from the center. It is given by (check!)

∆r2 = ~d · ~d =
∑
i,j

~li ·~lj = N`2 + `2
∑
i 6=j

cos θij,

where θij is the angle between two vectors ~li and
~lj. The directions of the scatterings are random,
so cos θij will have values between -1 and 1. Af-
ter many scatterings, the mean value of this term
will approach zero and we have

∆r =
√
N`,

or writing this in terms on number of scatterings
N to reach the surface we thus have N = R2/`2

where R is the radius of the star (check!).

The time ∆t for a photon to reach the surface is
then (note that the total distance traveled by the
photon is N`)

∆t =
N`

c
=
`

c

R2

`2
=
R2

`c
.

If we assume that within a radius r of the star,
the temperature T and energy density ρE of the
photon gas is constant, the total energy content
of the photon gas within radius r is

E =
4

3
πr3ρE ∝ r3T 4,

where we used that ρE ∝ T 4. We will now use
a very rough model of the star: We assume the
density and temperature of the star to be con-
stant everywhere in the star. Then the energy
content of the photon gas in the whole star is
given by E ∝ R3T 4. If we assume that this en-
ergy is released within the time ∆t it takes for the
photons in the core to reach the surface, then the
luminosity of the star can be written as

L ∝ E

∆t
∝ R3T 4

R2/`
∝ RT 4`. (1)

The mean free path ` depends on the density of
electrons and the different nuclei in the core. If we
assume that photons are only scattered on elec-
trons, it can be shown that the mean free path
` ∝ 1/ρ which does seem reasonable: The higher
the density the lower the mean free path between
each scattering. Since we assume constant density
we have ρ ∝ M/R3. Inserting this in equation 1
we have

L ∝ RT 4` ∝ RT 4

ρ
∝ R4T 4

M
. (2)

Finally we will use the equation of hydrostatic
equilibrium

dP

dr
= −ρg.

If we assume that the pressure can be written as
P ∝ rn where n is unknown then

dP

dr
= nrn−1 =

nrn

r
=
nP

r
∝ P

r
.
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The equation of hydrostatic equilibrium then
yields

P

R
∝ ρg ∝ M

R3

M

R2
∝ M2

R5
,

or P ∝ M2/R4. We remember that for an ideal
gas P ∝ ρT . Inserting this in the previous equa-
tion gives

T ∝ M

R
.

Inserting this in equation 2 we get

L ∝ R4

M

(
M

R

)4

∝M3. (3)

The luminosity is proportional to the mass of the
star to the third power. A more exact calculation
would have shown that

L ∝Mβ,

where β is usually between 3 and 4 depending on
the exact details of the star. It turns out that
most low or medium mass stars have β ≈ 4. This
is also supported by observations. Therefore we
will in the following use L ∝ M4. Having the
luminosity of the star, we can easily find the life
time. Assume that a fraction p of the mass of the
star is converted to energy. Then the total en-
ergy radiated away during the lifetime of the star
is given by

E = pMc2.

If we assume constant luminosity during the life-
time we have

L =
pMc2

tlife
∝M4,

giving

tlife ∝
1

M3
.

This can be the total life time of the star, or just
the life time on the main sequence (in fact, for
most stars the time on the main sequence is so
much longer than other stages in a star’s life so
the time on the main sequence is roughly the same
as the life time of the star). If we take p to be the
fraction of mass converted to energy during the
main sequence, then this is the expression for the
time the star spends on the main sequence. We

see that the life time of a star is strongly depen-
dent on the mass of the star. The Sun is expected
to live for about 10× 109 years. A star with half
the mass of the Sun will live 8 times longer (which
is much longer than the age of the universe). A
star with two times the mass of the Sun will live
only 1/8 or roughly 109 years. The most massive
stars only live for a few million years. We see from
equation 3 that this can be explained by the fact
that massive stars are much more luminous than
less massive stars and therefore burn their fuel
much faster. A star with two times the mass of
the Sun will burn 16 times (equation 3) as much
’fuel’ per time as the Sun, but it only has twice as
much ’fuel’. It will therefore die much younger.

As the last expression is just a proportionality,
we need to find the constant of proportionality,
that is, we need to know the life time and mass
of one star in order to use it for other stars.
We know these numbers for the Sun and we will
now use approximations to calculate this number.
One can show that a star will leave the main se-
quence when about 10% of its hydrogen has been
converted to helium. We discussed in the pre-
vious lecture that the efficiency of the pp-chain
is 0.7%. So the total energy that will be pro-
duced of the Sun during its lifetime is therefore
0.1×Mc2× 0.007. Assuming that the solar lumi-
nosity 3.7 × 1026 W is constant during the time
on the main sequence we have

tmainsequence
� =

0.1× 2× 1030 kg × (3× 108 m/s)2 × 0.007

3.7× 1026 W

≈ 1010 years.

We will now try to find a way to estimate the
mass of a star. Remember that in the lectures on
extrasolar planets, we needed to know the mass of
the star by independent measurements in order to
be able to estimate the mass of a planet orbiting
it. In the above approximation we considered a
star with constant density and temperature. The
conditions we used are normally valid only for
the core of the star. Thus, the approximations
we made are more correct in the core of the star.
We found that the temperature T ∝ M/R. For
main sequence stars, the core temperature is rea-
sonably constant, there is not a large difference
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in core temperatures for different main sequence
stars. Using this assumption we can write

Tc ∝
M

R
= constant.

We can write this as R ∝M . Now, we know that
the luminosity of a star can be written in terms
of the effective temperature as

L = 4πR2σT 4
eff ,

where 4πR2 is the area of the surface and F =
σT 4

eff is the flux at the surface. Using R ∝M and
L ∝M4 this gives

L ∝M4 ∝ R2T 4
eff ∝ T 4

effM
2,

so M4 ∝ T 4
effM

2 giving

M ∝ T 2
eff (4)

and we have obtained a way to find the mass of
a star from its temperature. In the exercises you
will use this expression to find the temperature of
stars with different masses.

3 From the main sequence to the
giant stage

Figure 5: HR-diagram of the evolution of a star from the
main sequence to the giant stage.

We will now follow a star during the transition
from the main sequence to the giant stage. The
exact sequence of events will be slightly different
depending on the mass of the star. Here we will
only discuss the general features and discuss a

few main differences between low and high mass
stars. In figure 5 we can follow the evolutionary
path of the star in the HR diagram. The theories
for stellar evolution are developed using computer
models of stars obtained by solving the equations
for stellar model building numerically. The chain
of arguments that we will use below to describe
stellar evolution are obtained by studying the out-
come of computer simulations.

Figure 6: The structure of a subgiant and red giant. The
core consists mainly of helium, but the core temperature is
not high enough for helium burning. Hydrogen is burning
to helium in a shell around the core. For red giants, con-
vection transports material all the way from the core to
the surface and the material is mixed (in the figure there is
only hydrogen in the outer parts, for red giants the mixing
due to convection will also transfer other elements all the
way to the surface). The relative sizes of the shells are not
to scale, this will depend on the exact evolutionary stage.

When the hydrogen in the core has been ex-
hausted, the forces of pressure are not any longer
strong enough to sustain the forces of gravity.
The hydrostatic equilibrium is lost and the core
starts contracting. During the core contraction,
the temperature in and around the core increases.
The temperature in the core is still not high
enough to ’burn’ helium (all energy production
is by nuclear fusion, not by ’burning’ in the clas-
sical sense but it is common practice to use the
term ’burning’ anyway), but the temperature in
a shell around the core now reaches temperatures
high enough to start hydrogen burning outside
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the core. The structure of the star is illustrated in
figure 6. Because of the increased outward pres-
sure due to hydrogen burning in the shell, the
radius of the star starts increasing significantly.
The star has become a sub giant of luminosity
class IV (see section ?? on the HR diagram and
luminosity classes). In figure 5 the star has left
the main sequence and is now on the sub giant
branch between point 1 and 2. The luminosity
has been increasing slightly because the energy
produced in the shell is higher than the energy
previously produced in the core. But because of
the increasing radius of the star, the surface tem-
perature is dropping. Thus the star moves to the
right and slightly upwards in the HR diagram.

When reaching point 2 in the HR-diagram, the ra-
dius of the star has been increasing so much that
the surface temperature is close to 2500 K which
is a lower possible limit. When reaching this limit,
the dominant mechanism of energy transport in
the star changes from being radiation to convec-
tion. Convection is much more efficient, the en-
ergy is released at a much larger rate and the
luminosity increases rapidly. The star has now
become a red giant. At the red giant stage, con-
vection takes place all the way from the core to
the surface. Material from the core is moved all
the way to the surface. This allows another test
of the theories of stellar evolution. By observ-
ing the elements on the surface of a red giant we
also know the composition of elements in the core.
The star is now on the red giant branch in the
HR-diagram (figure 5). The structure of the star
still resembles that of figure 6. The radius is be-
tween 10 and 100 times the original radius at the
main sequence and the star has reached luminos-
ity class III.

The next step in the evolution depends on the
mass of the star. For stars more massive than
∼ 2M�, the temperature in the core (which is
still contracting) will eventually reach tempera-
tures high enough to start the triple-alpha pro-
cess burning helium to carbon as well as other
chains burning helium to oxygen. In low mass
stars, something weird happens before the onset
of helium burning. As the core is contracting the
density becomes so high that a quantum mechan-
ical effect sets in: there is no more space in the

core for more electrons. Quantum physics sets an
upper limit on the number of electrons within a
certain volume with a certain momentum. This
is called electron degeneracy. The core has be-
come electron degenerate. Looking back to the
lecture on quantum gases you remember that a
degenerate gas has a different form of pressure:
degeneration pressure. We have already deduced
the equation for this pressure and shown that it
is independent of temperature. The degeneration
pressure is now the outward force which battles
the inward gravitational force in the equation of
hydrostatic equilibrium. Since the degeneration
pressure does not depend on temperature, the
core does not expand even when the temperature
of the core increases significantly. The degener-
ate core is close to isothermal and when the tem-
perature is high enough to start helium burning,
this happens everywhere in the core at the same
time. An enormous amount of energy is released
in a very short time causing an explosive onset
of the helium burning phase. This is called the
helium flash. After a few seconds, a large part of
the helium in the core has already been burned.
The huge amounts of energy released breaks the
electron degeneracy in the core and the gas starts
to behave normally, i.e. the pressure is again de-
pendent on the temperature allowing the core to
expand. The onset of helium burning (which in-
cludes the helium flash for low mass stars and
a less violent transition for high mass stars) is
marked by 3 in figure 5.
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Fact sheet: The size of the current Sun compared to its estimated size dur-
ing its red giant phase in the future. The outer atmosphere of a red giant is
inflated and tenuous, making the radius immense and the surface temperature
low. Prominent bright red giants in the night sky include Aldebaran, Arcturus,
and Mira, while the even larger Antares and Betelgeuse are red supergiants.
(Figure: Wikipedia)

Figure 7: A horizontal branch giant. Helium is burning
to carbon and oxygen in the core. Hydrogen is burning
to helium in a shell around the core. The relative sizes of
the shells are not to scale, this will depend on the exact
evolutionary stage.

The final result of the onset of helium burning is
therefore the same for both low and high mass
stars: The core will finally expand, pushing the
hydrogen burning shells outward to larger radii
where the gas will cool and the hydrogen burn-
ing will therefore cease in large parts of the shell.
The energy produced in the helium burning is not
enough to substitute the energy production in the
shell and the total luminosity of the star will de-
crease. This is the case also for stars which un-
dergo a helium flash. This is seen in the transition
from 3 to 4 in figure 5. The star has now entered
the horizontal branch. This stage is in a way sim-
ilar to the main sequence: This is where the star
burns its helium to carbon and oxygen in the core.
Hydrogen burning is still taking place in parts of

the shell. The structure of the star is shown in
figure 7. Horizontal branch giants are called so
because, as we will discuss now, they will move
back and forth along a horizontal branch.

After the rapid expansion of the star after the on-
set of helium burning, the star starts contracting
again in order to reach hydrostatic equilibrium.
The result is an increasing effective temperature
and the star moves to the left along the horizontal
branch. After a while on the horizontal branch,
the mean molecular weight in the core has in-
creased so much that the forces of pressure in
the core are lower than the gravitational forces
and the core starts contracting. The temperature
of the core increases and the energy released in
this process makes the star expand: The effective
temperature of the surface is decreasing and the
star is moving to the right along the horizontal
branch. At this point the helium in the core is
exhausted and nuclear energy production ceases.
The following scenario resemble the scenario tak-
ing place when the hydrogen was exhausted: The
core which now mainly consists of carbon and
oxygen starts to contract (due to the lack of pres-
sure to sustain the gravitational forces after the
energy production ceased). The core contraction
heats a shell around the core sufficiently for the
ignition of helium burning. Energy is now pro-
duced in a helium burning as well as hydrogen
burning shell around the core. The radius of the
star increases because of the increased pressure.
Again we reach a stage of strong convective en-
ergy transport which (exactly as on the red giant
branch) rises the luminosity. The star now moves
to the asymptotic giant branch becoming a bright
giant of luminosity class II or even a super giant
of luminosity class I. The star now has a radius of
up to 1000 times the original radius. The struc-
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ture of the star is shown in figure 8.

Figure 8: A bright/super giant. The core consists mainly
of carbon and oxygen but the temperature is not high
enough for these elements to burn. Around the core there
is a shell where helium is fused to carbon and oxygen and
another shell where hydrogen is fused to helium. In the
outer parts the temperature is not high enough for fusion
reactions to take place.

Most stars follow an evolution similar to this. The
stars with very high mass (more than ∼ 20M�)
do not have a significant convective phase and do
therefore not change their luminosity much dur-
ing their evolution. They will mainly move left
and right in the HR-diagram.

Figure 9: Schematic HR diagrams of open clusters of dif-
ferent ages:

Upper left: A cluster still in the process of forming. The
less massive stars are still in the contracting phase and
have not yet reached the main sequence.
Upper right: A cluster with an age of about 107 years.
The most massive stars have started to leave the main se-
quence.
Lower left: A cluster of about 109 years. The low mass
stars have now reached the main sequence.
Lower right: A cluster of about 1010 years. The medium
mass stars have now started to leave the main sequence
and we can clearly see the different branches discussed in
the text.

Open stellar clusters can be used to test the the-
ories of stellar evolution. An open cluster is a
collection of stars which were born roughly at the
same time from the same cloud of gas. Observ-
ing different open clusters with different ages, we
can obtain HR diagrams from different epochs of
stellar evolution. We can use observed diagrams
to compare with the predicted diagrams obtained
using the above arguments. In figure 9 we see a
schematic example of HR diagrams taken at dif-
ferent epochs (from clusters with different ages).
We see that the most massive stars start to leave
the main sequence earlier: This is because the
life time of stars is proportional to t ∝ 1/M3.
The most massive stars exhaust their hydrogen
much earlier than less massive stars. As discussed
above, the most massive stars do not have a phase
with strong convection and do therefore not move
vertically up and down but mostly left and right
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in the diagram. For this reason we do not see the
red giant branch and the asymptotic branch for
these stars. Only in the HR diagram of the oldest
cluster has the intermediate mass stars started to
leave the main sequence. For these stars we now
clearly see all the different branches. Compar-
ing such theoretical diagrams with diagrams for
observed clusters has been one of the most im-
portant way to test and understand theories of
stellar evolution.

Having reached the asymptotic giant branch, the
star has almost ended its life cycle. The final
stages will be discussed in more detail in the next
lecture. First we will look at a typical feature of
giant stars: pulsations.

4 OPTIONAL: Stellar pulsations

Some giant stars have been observed to be pulsating. We have
already encountered one kind of pulsating stars: the Cepheids.
The pulsating stars have been found to be located in narrow
vertical bands, so-called instability strips, in the HR-diagram.
The Cepehids for instance, are located in a vertical band about
600 K wide around Teff ∼ 6500 K. The pulsations start dur-
ing the core contraction and expansions starting when the star
leaves the main sequence. They last only for a limited period
when the star passes through an instability strip in the HR
diagram. We remember that for Cepheids there is a relation
between the pulsation period and the luminosity of the star al-
lowing us to determine the distance to the star (see the lecture
on the cosmic distance ladder). The period-luminosity relation
for Cepheids can be written in terms of luminosity (instead of
absolute magnitude) as

〈L〉 ∝ P 1.15, (5)

where 〈L〉 is the mean luminosity and P is the pulsation period.
We will now see if we can deduce this relation using physics in
the stellar interior.

The pulsations are due to huge density waves, sound waves,
traveling through the interior of the star. We can find an ap-
proximate expression for the pulsation period of a star by con-
sidering the time it takes for a sound wave to go from one end
of the star to the other. We will for simplicity consider a star
with radius R and constant density ρ. The pulsation period P
is thus the time it takes for a sound wave to travel a distance
2R. In thermodynamics you will learn that the sound speed
(the so-called adiabatic sound speed) at a given distance r from
the center of a star is given by

vs(r) =

√
γP (r)

ρ
,

where γ is a constant depending on the specific heat capacities
for the gas. We have assumed constant density and therefore
only need to find the pressure as a function of r. The equation
of hydrostatic equilibrium can give us the pressure. We have

dP

dr
= −gρ = −GM(r)

r2
ρ = −4

3
Gπrρ2.

Integrating this expression from the surface where P = 0 and
r = R down to a distance r we get

P (r) =
2

3
πGρ2(R2 − r2).

We now have the necessary expressions in order to find the
pulsation period of a Cepheid. At position r, the sound wave
travels with velocity vs(r). It takes time dt to travel a distance
dr, so

dt =
dr

vs(r)
.

To find the pulsation period, we need to find the total time P
it takes for the sound wave to travel a distance 2R

P ≈ 2

∫ R

0

dr

vs(r)
≈ 2

∫ R

0

dr√
2
3
γπGρ(R2 − r2)

=
1√

2
3
γπGρ

[
− tan−1 r

√
R2 − r2

r2 −R2

]R
0

Taking the limits in this expression, we find

P ≈
√

3π

2γGρ
∝ 1
√
ρ
∝
(
R3/2

M1/2

)
.

From equation 4 we see that M1/2 ∝ Teff but since Cepheids
are located along the instability strip in the HR-diagram their
effective temperatures are roughly constant. So we have

P ∝ R3/2.

The luminosity of a star can be written as as L = 4πR2σT 4
eff .

Again we consider Teff ≈ constant so L ∝ R2 or R ∝ L1/2.
Inserting this into the previous expression for the pulsation
period we have

P ∝ L3/4,

or
L ∝ P 4/3 ∝ P 1.3.

Comparing to the observed period-luminosity relation (equa-
tion 5), this agreement is excellent taking into account the huge
simplifications we have made. We have shown that by assum-
ing the pulsations to be caused by sounds waves in the stellar
interiors, we obtain a period luminosity relation for Cepheids
similar to what we observe.
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5 Exercises

Exercise 3D.1 Look at the HR-diagram in figure
1. Assume that you observe a main sequence star
with spectral class G0. The apparent magnitude
of the star is m = 1.

1. Roughly what luminosity and absolute mag-
nitude would you expect the star to have?
(use the diagram)

2. Using this result, can you give a rough ap-
proximation of the distance?

3. Looking again at the HR-diagram. Roughly
what is the minimum and maximum abso-
lute magnitude you would expect the star to
have?

4. What is the range of distances the star could
have?

This method for measuring distances is called
spectroscopic parallax (although it has nothing to
do with normal parallax). I have not included
this method in the lectures on distance measure-
ments. From the answer to the last question you
will understand why it is not a very exact method.

Exercise 3D.2

We will now assume a very simple model of the
Sun in order to show how one can use the equation
of hydrostatic equilibrium to understand stellar
interiors and the nuclear reactions taking place
in the stellar cores. We will assume that the den-
sity of the Sun ρ = ρ0 is uniform throughout.

1. Find an expression for the total mass M(r)
inside a radius r.

2. We will now assume that the only pressure
in the Sun is the gas pressure from an ideal
gas. We ignore the radiation pressure. Insert
this expression for M(r) into the equation of
hydrostatic equilibrium and show that it can
be written as

dT

dr
= −4π

3
Gρ0r

µmH

k

3. Integrate this equation from the core at r =
0 to the surface of the Sun at r = R and
show that the temperature Tc in the core of

the Sun can be written

TC = T (R) +
2π

3
GR2ρ0

µmH

k
.

4. Assume that the Sun consists entirely of pro-
tons with a mass of 1.67× 10−27 kg. Use the
solar mass of 2 × 1030 kg, the solar radius
of 700 000 km and the surface temperature
of the Sun T = 5780 K to obtain the den-
sity ρ0 and thereby the core temperature TC .
(By doing this calculation properly taking
into account variations of the density with
distance from the core, one obtains a core
temperature of about 15 million Kelvin)

5. You learned from the lectures on nuclear re-
actions that hydrogen can fuse to Helium by
two different processes, the pp-chain and the
CNO-cycle. The pp chain is more efficient
at temperatures below 20 million Kelvin
whereas the CNO-cycle starts dominating at
temperatures above 20 million Kelvin. Use
your result for the core temperature of the
Sun to decide which of these processes pro-
duces most of the energy in the Sun.

6. Write ρ0 in terms of the mass M and the
radius R of the Sun. We have seen that
the surface temperature of the Sun is much
smaller than the core temperature and might
therefore be neglected. Show that the core
temperature of a star depends on the mass
and radius as

TC ∝
M

R

7. When the Hydrogen in the core of a star has
been exhausted, the nuclear fusion processes
cease. In this case the pressure forces can-
not sustain the force of gravity and the ra-
dius of the core starts shrinking. It will con-
tinue shrinking until some other force can
oppose the force of gravity. If Helium, an
element which is now found in large abun-
dances in the core, starts to fuse to heavier
elements this would create a photon pressure
high enough to sustain gravity. A tempera-
ture of at least 100 million degrees Kelvin
is needed in order for this fusion process to
start. By how much does the core radius of
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the Sun need to shrink in order for Helium
fusion to start?

8. In the last case, the radiation pressure is giv-
ing the dominant contribution to the forces
of pressure. Show that in this case, the tem-
perature of the core can be written as

TC =

(
T (R)4 +

2πG

a
ρ2

0R
2

)1/4

,

again assuming a constant density.

Exercise 3D.3

We will now assume a slightly more realistic
model of the Sun. Assume that the density of
the Sun as a function of distance r from the core
can be written as

ρ(r) =
ρC

1 + (r/R)2
,

where ρC is the density in the core of the Sun and
R is the radius at which the density has fallen
by a factor 1/2 (check this by inserting r = R
in the expression). In this exercise we will use
our knowledge about the minimum temperature
which is needed to obtain nuclear reactions in or-
der to calculate the density in the solar core.

1. We will now find an expression for the total
mass M(r) inside a radius r using this den-
sity profile. In order to perform the integral
in equation (??) we make the substitution
x = r/R and integrate over x instead of r.
Show that M(r) can be written

M(r) = 4πρCR
3

∫ r/R

0

dx
x2

1 + x2

2. In order to perform such integrals, the Math-
ematica package is very useful. Not every-
body has access to Mathematica, but a free
web interface exists for performing integrals.

Go to http://integrals.wolfram.com/

index.jsp,

type x^2/(1+x^2) and click “Compute on-
line with Mathematica”,

and you get a nice and easy answer. Using
this result, together with the assumption of

pure ideal gas pressure, show that the equa-
tion of hydrostatic equilibrium can now be
written

d

dr
(ρ(r)T (r)) = −µmH

k
4πGρ2

CR
3

× r/R− arctan(r/R)

r2

1

1 + (r/R)2
.

3. We now need to integrate this equation from
radius 0 to an arbitrary radius r. Again the
substitution x = r/R is useful. Show that
the equation of hydrostatic equilibrium now
reads

ρ(r)T (r)− ρCTC = −µmH

k
4πGρ2

CR
2

×
∫ r/R

0

dx

(
1

x(1 + x2)
− arctan(x)

x2(1 + x2)

)
4. To solve this integral you need

to use the ‘Integrator’ and type
the following: 1/(x(1+x^2)) and
arctan(x)/(x^2(1+x^2)).

Using these results, show that the core tem-
perature Tc can be written

TC = T (r)/(1 + x2) +
µmH

k
4πGρCR

2

×
(

1

2
(arctanx)2 +

arctan(x)

x
− 1

)
5. We will now try to obtain values for the cen-

tral density ρC . In order to obtain that, we
wish to get rid of x and r from the equation.
When x → ∞, that is, when going far from
the center, show that the equation reduces
to

TC =
µmH

k
4πGρCR

2(
π2

8
− 1)

6. Before continuing, we need to find a number
for R, the distance from the center where
the density has fallen by 1/2. Assume that
considerations based on hydrodynamics and
thermodynamics tell us that the core of the
Sun extends out to about 0.2R� and that
the density has fallen to 10 percent of the
central density at this radius. Using this in-
formation, show that

R =
0.2R�√

9
≈ 0.067R�.
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7. We know that a minimum core temperature
of about 15 million degrees is needed in order
for thermonuclear fusion to be an efficient
source of energy production. What is the
minimum density in the center of the Sun?
Assume the gas in the Sun to consist entirely
of protons. Express the result in units of the
mean density ρ0 = 1400 kg/m3 of the Sun.
(More accurate calculations show that the
core density of the Sun is about 100 times
the mean density).

In the last two exercises we have used some
very simplified models together with some rough
assumptions and observed quantities to obtain
knowledge about the density and temperature in
the interior of the Sun. These exercises were made
to show you the power of the equation of hy-
drostatic equilibrium: By combing this equation
with the knowledge we have about the Sun from
observations of its surface together with knowl-
edge about nuclear physics, we are able to de-
duce several facts about the solar interior. In
higher courses in astrophysics, you will also learn
that there are more equations than the equation
of hydrostatic equilibrium which must be satis-
fied in the solar interior. Most of these equations
come from thermodynamics and fluid dynamics.
In the real case, we thus have a set of equations
for T (r) and ρ(r) enabling us to do stellar model
building, without using too many assumptions we
can obtain the density and temperature of stars at
different distances from the center. These mod-
els have been used to obtain the understanding
we have today of how stars evolve. Nevertheless
many questions are still open and poorly under-
stood. Particularly towards the end of a star’s
life, the density distribution and nuclear reactions
in the stellar interior become very complicated
and the equations become difficult to solve. But
solving these equations is important in order to
understand the details of supernova explosions.

Exercise 3D.4

In the text there is a formula for estimating the
effective temperature of a star with a given mass

(or estimating the mass of a star with a given
effective temperature).

1. Given the effective temperature (5780 K)
and mass (M�) of the Sun, find the effec-
tive temperature of a small star with M =
0.5M�, an intermediate mass star M = 5M�
and a high mass star M = 40M�.

2. The star Regulus in the constellation Leo is a
blue main sequence star. It is found to have
a peak in the flux at a wavelength of about
λ = 240 nm. Give an estimate of its mass
expressed in solar masses.

Exercise 3D.5

In the text we derived that the luminosity of
a low/intermediate mass star is proportional to
mass to the third power L ∝ M3. In this deriva-
tion you used the ideal gas law. For high mass
stars, the radiation pressure is more important
than the ideal gas pressure and the expression for
radiation pressure (you need to find it in the text)
needs to be used instead of the expression for the
ideal gas pressure. Repeat the derivation for the
mass-luminosity relation using radiation pressure
instead of ideal gas pressure and show that for
high mass stars L ∝ M . How is the relation be-
tween the life time and the mass of a star for a
high mass star compared to a low mass star?

Exercise 3D.6

Read carefully the description for the evolution
of a star from the main sequence to the giant
stage. Take an A4-sheet. You are allowed to make
some simple drawings and write a maximum of 10
words on the sheet. Make the drawings and words
such that you can use it to be able to tell some-
one how a star goes from the main sequence to the
giant stage, describing the logic of how the core
contracts/expands and how the star moves in the
HR-diagram depending on temperature, means of
energy transport and nuclear reactions. Bring the
sheet to the group and use it (and nothing else)
to tell the story of stellar evolution to another
student, then exchange your roles.

Exercise 3D.7
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Look at the HR-diagram for the oldest cluster in
figure 9. Can you identify the different branches
of stellar evolution?

Exercise 3D.8

We will now study the phase when the hydrogen
in the stellar core has been depleted. The en-
ergy production in the core stops and the core
starts shrinking. The star reaches the sub giant
branch and then the red giant branch while the
core keeps shrinking. The core will keep shrinking
until the temperature in the core is high enough
for helium burning to start. We will try to find
out how much the core shrinks before this takes
place. For simplicity we will study a star with
so high mass that the core does not become de-
generate before helium burning sets in. We will
assume the core density at the main sequence to
be ρ = 1.7× 105 kg/m3.

We imagine the stellar core as an ’independent’
sphere of mass MC , radius RC , pressure PC and
temperature TC . We assume the density and tem-
perature to be the same everywhere in the core.

1. Use the equation of hydrostatic equilibrium
to show that

PC ∝
M2

C

R4
C

.

This is done in the text, but try to find your
own arguments before looking it up.

2. Then combine this with the ideal gas law to
show that

TC ∝
MC

RC

.

3. We assume that the core temperature of
the star on the main sequence was TC =
18 × 106 K. Use the expressions for the nu-
clear energy production rates from the previ-
ous lecture to find out whether it was the pp-
chain or the CNO cycle which dominated the
energy production in the star while it was on
the main sequence. Assume XH = 0.5 and
XCNO = 0.01.

4. Now use the expressions for nuclear energy
production to find at which temperature T

the energy production rate of the triple-
alpha process equals the energy production
the star had on the main sequence (using the
numbers in the previous question). To cal-
culate the energy production rate from the
triple-alpha process you need to find a rea-
sonable number for XHe in the core at the
onset of helium burning. Give some argu-
ments for how you find this number. You
also need a density ρ, but since the energy
production rate is so much more sensitive to
the temperature than to the density you can
make the crude approximation that the core
density is the same as it was on the main se-
quence. Use the temperature you find here
as the criterion for the onset of helium burn-
ing (and therefore the criterion for when the
star moves to the horizontal branch in the
HR-diagram).

5. Use the equations and numbers we have de-
rived in this exercise to find the radius RC

of the core at the moment when the energy
production from helium fusion starts (has
become significant). Express the result in
terms of solar radii R�. At the main se-
quence, the core radius was RC = 0.2R�.
You have now found how much the core
needs to contract in order to start helium
fusion and therefore to move down to the
horizontal branch.

6. When you calculated the temperature for the
onset of helium burning you made a very
rough approximation: You used the core
density which the star had on the main se-
quence, whereas you should really use the
much higher density in the core when the
core temperature is high enough for helium
burning. Now you have estimated the size of
the core radius when helium burning starts.
Use this to obtain the correct density when
helium burning starts and go back to find
a more correct temperature for the onset of
helium burning. Was the error in your first
crude estimate of the helium burning tem-
perature large relative to the temperature?
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