
AST 2000 - Part 2
Planetary Orbits

Welcome to Part 2 of the AST2000 Spacecraft Project. There are 3 components in this part, one
of which is optional for those working alone: To begin, you will need to simulate the orbits of your
planets. Next (this is optional for those working alone), you will test your orbits using Kepler’s
laws. Finally, you will take a look at whether your planets are observable from other solar systems.
Note that this part is one of three parts (the others are part 6 and 7) where you may
choose to be evaluated only on how well you accomplished the challenges (including
the code) as well as the results, conclusions and discussion part. This allows you to
make the report/blog for this part considerably shorter. If this is what you prefer, you
should start your report/blog stating this.

•

GOALS

∇ Plot the orbits of the planets in your solar system.

∇ Simulate the orbits of the planets in your solar
system.

∇ Use Kepler’s laws to verify the integrity of your
planetary orbits (optional for those working alone).

∇ Analyse how your planets affect their star and eval-
uate whether the effect is noticeable from other so-
lar systems.

SIMULATING THE ORBITS

To reduce our computational load we introduce the
following simplifications:

⊗ Ignore planet-planet interactions and only consider
the gravitational pull on the planets by the star.

⊗ Ignore relativistic effects.

⊗ Ignore the gravitational pull on the star by the
planets. Assume the star is fixed at the origin
throughout the simulation.

⊗ We are assuming that all the orbits exist in the
same x-y plane. You can therefore safely ignore
the z-axis.

⊗ All planets both orbit the star and rotate about
the z-axis in a counterclockwise motion.

⊗ Ignore all other astronomical bodies in the solar
system, including moons.

CHALLENGES

Relevant theory for Part 2 is described in Lecture
Notes 1B and Lecture Notes 1C. Make sure you have
read them before you continue.

In addition to the lecture notes you should also check
the integration section in the Numerical Compendium.
Note that the Leap Frog integration scheme is energy
conservative.

http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1b.pdf
http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1b.pdf
http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1c.pdf
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A. Planetary orbits

We encourage you to use AU units to prevent floating
point overflow. Also, the gravitational constant is very
simple in AU units: [1]

G = 4π2 AU3yr−2M−1
�

1. Plotting the Orbits

Your first objective is to use the analytic solution of
elliptical orbits found in Lecture Notes 1B in order to
plot the orbits of all your planets. You can access all
necessary data in the SolarSystem object held by your
instance of the SpaceMission class.

2. Simulating the Orbits

Now that you have plotted the planetary orbits of your
solar system, the next step is to simulate the orbits.
“Wait, didn’t we just find the analytic solution?” I hear
you say. Well, while the analytic solution provides us
with the shape of the orbits, it does not describe the po-
sition of the planets as a function of time t. We need to
find this information by simulating their motion.

Simulate the planetary orbits for at least 20 revolutions
of your home planet. Use a minimum of 10,000 time steps
per year to ensure your results are accurate. Depending
on your solar system you may even need more. Comment
on your chosen number of time steps: why is this number
sufficient? To verify your simulation has been completed
successfully, plot your simulated orbits on top of the an-
alytic orbits (the accuracy of your orbits will be checked
later).

Running the simulation may take a considerable
amount of time. Remember to save your orbits
so you only have to perform this simulation once. You
should also review your options and choose a program-
ming style that is fast and that you understand well. If
you have no preference, we invite you to take a look at
the Numerical Compendium.

B. Kepler’s laws

This is optional for those working alone.

1. Proving Kepler’s 2nd and 3rd Laws

Kepler’s 2nd law can be expressed as

dA

dt
= constant (1)

where A is the area swept out by r in figure 1. Let (r, θ)
denote r in polar coordinates.
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FIG. 1. An illustration of the area swept out by the position
vector of a body in an elliptical orbit.

1. Consider the infinitesimal area dA swept out by dr
during the time interval dt. Approximate this area
using a right triangle and derive

dA =
1

2
r2dθ (2)

2. Prove Kepler’s 2nd law by expressing dA/dt in
terms of h, where h = |h| = |r× ṙ|.

3. Integrate dA/dt for a full time period P and show
that the orbital time period is:

P = 2π
ab

h
(3)

(remember that the area of an ellipse is given by
πab)

4. Deduce Newton’s correct version of Kepler’s 3rd law
using expressions for h and b found in the lecture
notes:

P 2 =
4π2

G(m1 +m2)
a3 (4)

5. Explain what was wrong with Kepler’s original law:

P 2 = a3 (5)

where [P ] = yrs and [a] = AU.

http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1b.pdf
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2. Comparing your Orbits to Kepler’s Laws

1. Use equation (2) to determine the area swept out
by your planet in some time interval ∆t.

(a) Compare two areas: one where the planet is
close to the aphelion and one where the planet
is close to the perihelion. To what degree are
the areas equal?

(b) What distance did the planet travel as it swept
out these two areas?

(c) What mean velocity did the planet travel
with?

2. Check if all your orbits are consistent with Kepler’s
3rd law. Is there a measurable difference between
Kepler’s original version and Newton’s corrected
version?

C. Can Extraterrestrials Discover the Planets in
your Solar System?

We are now going to take a second look at our plane-
tary orbits. This time however, you are going to include
the gravitational pull on your star by its planets.

Be careful not to confuse your orbits later in the
project; the orbits you simulate for this challenge
should not be used in anywhere else.

Furthermore, half of this challenge involves the ex-
change of data between you and another group. Make
sure you have someone to cooperate with!

1. The Solar Orbit

1. Choose one of the planets in your solar system:
preferably one of the largest and as close to the
star as possible (to maximize gravitational pull).
Place the star at the origin for t = 0 and let its
initial velocity be zero. Doing this places you in a
frame of reference where the center of mass drifts;
find a way to change your frame of reference to the
center of mass frame.

Ignore all other planets and simulate the orbits of
the star and your chosen planet using your favorite
integration method. Choose your integration pa-
rameters based on your experience with simulating
the orbits.

2. With the solar orbit in hand we are now going to
test its accuracy using an analytic approach. Your
first task is to study the two-body system in gen-
eral, then use your findings in order to study your
specific solar orbit.

(a) Show that the total energy of the two-body
system as seen from the center of mass frame
can be written as

E =
1

2
µ̂v2 − GMµ̂

r
(6)

where v = |ṙ| is the relative speed, r = |r|
is the relative distance, µ̂ is the reduced mass
and M is the total mass of the system.

(b) Show that the angular momentum of the two-
body system as seen from the center of mass
frame can be written as

P = r× µ̂ṙ (7)

(c) Take a moment and study equations (6) and
(7). If you were given these equations and
nothing else, what physical system would you
guess they described?

(d) Use equation (6) to test the numerical accu-
racy of your new orbits. Is the energy con-
served to a reasonable degree?

2. The Radial Velocity Curve

1. The radial velocity curve of a star is dependent on
three parameters: the peculiar velocity of the cen-
ter of mass, line of sight, and the inclination of the
solar system from the line of sight.

Choose an arbitrary set of parameters and design
the radial velocity curve for your star based on your
newly simulated solar orbit. With the exception of
inclination angles i ≈ 0, you are free to choose any
physically consistent values for your parameters.

Now add some independent Gaussian noise to the
data. Let the mean noise be zero and the standard
deviation be 1/5 of the maximum value of your ve-
locity curve.

2. Contact the other group you are cooperating with
and exchange your radial velocity curves. Your task
is to analyse their velocity curve and provide an
estimated lower boundary for the mass of the planet
in their solar system.

Your analysis should be based on the method of
least squares as described in section 5 of Lecture
Notes 1C. However, before you can employ the least
squares algorithm you need to adjust the data for
the star’s peculiar velocity by removing any exist-
ing drift.

3. Once both groups have finished their analyses, com-
pare your results to the actual masses. Do you ex-
pect to find exact numbers? Why, why not?

http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1c.pdf
http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1c.pdf
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3. The light curve

This is optional for those working alone.

1. Let the inclination of your solar system as seen from
an outside observer be i = 90◦. You need to design
an approximate light curve, remember that the re-
ceived light depends on the area of the planet in
front of the star (this is very easy if you do some
approximations, remember to explain and justify).
That is, you do not need to estimate the actual
flux from your star; only the relative change in the
flux, caused by the planets eclipsing the star. De-
fine your flux relative to the maximum flux emitted
by your star (such that flux = 1 when no planet is
eclipsing the star).

Again, add some independent Gaussian noise to the
data. Let the mean noise be zero and the standard
deviation be 10−4 relative flux. Do you think it is
possible to detect your planet?

2. Contact the other group you are cooperating with
and exchange light curves. Your task is to analyse
their light curve and attempt to estimate the radius
and density of the planet eclipsing their star. In
order to do this, you need data from your analysis
of the same other group’s radial velocity curve.

As opposed to your analysis of the velocity curve,
you do not need to use the method of least squares;
it is sufficient to plot an approximate light curve.

3. Once both projects have finished the analysis, com-
pare your results to the actual radii and densities.

4. The radial velocity curve with more planets

This is optional for those working alone.

1. You are now going to revisit your simulation of the
solar orbit and include 2-4 additional large planets
from your solar system. The simulation is in prin-
ciple exactly the same as before, but you may have
to redesign your integration loop depending on how
you structured your initial program.

2. Again, choose an arbitrary (yet physically plausi-
ble) set of parameters and design a new radial ve-
locity curve. Exchange this curve with the other
group you are cooperating with and attempt to re-
solve the number of planets the other project in-
cluded in their simulations. Once both groups have
made their guesses, compare with the actual num-
ber of planets in the simulations.

VERIFICATION/CONFIRMATION

The Part 2 challenges are now complete! All
that remains now is to verify the numerical ac-
curacy of your orbits. Check your orbits us-
ing the verify planet positions method from the
SpaceMission class. Your calculations are expected to
be within a 1% margin.

Note that the orbits you need to verify are the original
orbits where the star is stationary (i.e. the orbits from
challenge A).

VISUALISING THE SOLAR SYSTEM

Use the generate orbit video method from the
SpaceMission class to generate an XML file containing
your numerically simulated orbits. Assuming you have
downloaded MCAst, place the XML file in the data di-
rectory within the MCAst installation directory. You
can now explore your solar system using the SolarSys-
temViewer software (Note that you need to start the ap-
plication called SSView in the MCAst directory for this,
not MCAst). Does it live up to your expectations?

EXTRA CHALLENGE

If you finished all the challenges and are still hungry
for more, fear not! [2]

? Can you explain why the gravitational constant is
G = 4π2 in Astronomical Units?

? Are you able to redo the analytic part of challenge
B 1 without using infinitesimals such as dA? Use
the theory of limits and the definition of the deriva-
tive from MAT 1100.

? Try to write a program that automagically analy-
ses any light curve based on an approximate model
you derive. (Hint: You already know the max and
min flux values. You need to create a model for
the change in flux as the planet enters/leaves the
radiating disks.)
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FIG. 2. Orbital motivational duck.
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AST 2000 - Part 2
Tips, Hints & Guiding Questions

I. IN GENERAL

→ Note that the first challenge is the most impor-
tant challenge in Part 2. Without the planetary
orbits you are effectively incapable of continuing
the project.

→ Be extra careful with your units! We actually mean
it when we “encourage you to use AU units”.

II. HINTS FOR SOME OF THE CHALLENGES

A. The Gravitational System

Since the orbits are decoupled (they do not interact),
each orbit is described by the same differential equation:

mpr̈ = −Gmsmp

|r|3
r, (a)

Here, ms is the mass of the star, mp is the mass of the
planet and r is the position vector of the planet. Initial
conditions for the planetary orbits are accessed through
the SolarSystem object held by your SpaceMission in-
stance.

You are most likely better off simulating all your
planets’ trajectories simultaneously using NumPy arrays.
The numerical accuracy of your calculations are really
important here; we advise the use of higher order inte-
gration methods such as the Leap Frog scheme. You can
find more hints in the Numerical Compendium.

B. Deriving Kepler’s Laws

→ You are allowed to use “physicist math” and play
with differentials:

df = cdx ⇐⇒ df

dt
= c

df

dt
= cḟ ,

df

dt
=

df

dt

dx

dx
=

df

dx

dx

dt
, etc.

→ The area circumscribed by an ellipse with semi-
major and semi-minor axes a and b is equal to:

A = πab (b)

→ Be careful with your variables! For example: while
p is a constant dependent on the shape of the orbit,
p is the momentum of the body. They are not
related. Specifically: p 6= |p|.

→ What is the mass of our star (The Sol) in AU units,
i.e. in solar masses M�?

C. Simulating the New Orbits

How does the the gravitational system differ from the
original simulation? Is equation (a) still valid for any or
all bodies? What has changed?

To change your frame of reference to the center of mass
frame, you need to construct the position vectors of the
bodies as seen from the center of mass. How do the
orbits look from the center of mass? Can you calculate
the position vector of the center of mass as seen from
your simulation’s frame of reference?

D. Center of Mass Frame

In challenges 1.2a & 1.2b in C 1, use the definitions of
E and P (theory from FYS-MEK 1110) with the position
vector transformations:

rcm1 = − µ̂

m1
r and rcm2 =

µ̂

m2
r (c)

Are there similar transformations for ṙcm1 and ṙcm2 to ṙ?

E. Designing the Radial Velocity Curve

Here you need to use your solar orbit from challenge
C 1 as seen from the center of mass frame. Your first
task is to add an arbitrary peculiar velocity to the center
of mass. Next comes the inclination of the orbit; you
should be able to deduce the effect of tilting the orbital
plane using simple trigonometry. Last but not least, you
need to choose your line of sight. To guide your intuition,
take a look at figure 3: You can think of the line of sight
as placing the stick-man somewhere on the (x, y) plane,
recalling that he is only able to observe the radial velocity
along his line of sight. The easiest cases to implement are
when the line of sight is either along the x-axis or the y-
axis. Can you explain why this is the case?

Unless you have a strong passion for a specific pro-
gramming style, I would like to personally recommend
checking out JIT! It’s fast and simple. Otherwise stan-
dard NumPy vectorization is key here. Regardless of your
chosen style, be careful to mix JIT and NumPy, check out
the ζ Half-Life example in the Numerical Compedium.
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F. Analysing the Radial Velocity Curve

Your first task is to remove any drift from the data.
What is it that is drifting? How did you add the drift to
your radial velocity in the first place?

The analysis of the radial velocity curve is based on
theory from Section 5 in Lecture Notes 1C, specifically
the method of least squares:

∆(v∗r, P, t0) =

N∑
i=1

[
vi − vmodel(ti)

]2
(d)

where

vmodel(ti) = v∗r cos

[
2π

P

(
ti − t0

)]
(e)

is the theoretical model for the curve. Here, v∗r, P and
t0 are the model’s parameters that you need to optimize
using your favorite algorithm.

You will learn more about the method of least squares
in MAT 1120 (and in practically every other course with
any connection to statistical analysis).
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FIG. 3. An illustration of an observer’s line of sight to a
distant solar system. The star (gray disk) follows its circular
orbit (dashed red line) in the (x, y) plane. An observer (stick-
man) sees the star system from an arbitrary position. Note
that in this illustration the inclination angle i is zero, this is
for illustrative purposes only.

[1] Assuming you ignore everything after 4π2.
[2] If you are actually hungry for more, and not just because

of ’dem sweet grades, consider speaking to someone.

http://www.uio.no/studier/emner/matnat/astro/AST2000/h18/undervisningsmateriell_h2018/forelesningsnotater/part1c.pdf

	AST 2000 - Part 2Planetary Orbits
	Abstract
	Goals
	Simulating the orbits
	Challenges
	Planetary orbits
	Plotting the Orbits
	Simulating the Orbits

	Kepler's laws
	Proving Kepler's 2nd and 3rd Laws
	Comparing your Orbits to Kepler's Laws

	Can Extraterrestrials Discover the Planets in your Solar System?
	The Solar Orbit
	The Radial Velocity Curve
	The light curve
	The radial velocity curve with more planets


	Verification/Confirmation
	Visualising the solar system
	Extra Challenge
	In general
	Hints for some of the challenges
	The Gravitational System
	Deriving Kepler's Laws
	Simulating the New Orbits
	Center of Mass Frame
	Designing the Radial Velocity Curve
	Analysing the Radial Velocity Curve

	References


