AST 2000 - Part 4
Onboard Orientation Software

Welcome to Part 4 of the AST2000 Spacecraft Project.

navigation software for your spacecraft.

The aim of this part is to develop

GOALS

V Write software that determines the angular
orientation of the spacecraft.

V Write software that analyses the velocity of the
spacecraft using data from its onboard equipment.

V Write software that analyses the position of the
spacecraft using data from its onboard equipment.

RELEVANT MATHEMATICS

The following section includes relevant mathematics
that you need in order to solve this part’s challenges. You
will not be asked to explain this section in the same level
of detail as presented here. Your job is to understand
what is needed in order to solve your specific challenge.

1. The Spherical Coordinate System

You have likely come across the spherical coordinate
system in earlier courses, but let’s go through a brief re-
cap of the essentials. There are several ways to define
your spherical coordinate system; we will adapt the con-
vention shown in figure 1. Using this convention, the
spherical coordinate ranges are:

FIG. 1. The spherical coordinate system, defined according
to the convention presented in (1).

2. Stereographic Projection
1. Coordinate Transformations

A stereographic projection is a map that transforms
coordinates on the surface of a sphere to coordinates on
a plane. For example, figure 2 shows a stereographic
projection of Earth’s surface.

FIG. 2. A stereographic projection of Earth. This image was
created by manipulating a texture map from http://www.
shadedrelief.com/natural3/pages/textures.html

There are several conventions for stereographic pro-
jections but we are specifically going to use the conven-
tion shown in figures 3 and 4. Figure 3 shows a two-
dimensional slice of the three-dimensional surface shown
in figure 4.

1 spherical surface

y

stereographic projection

FIG. 3. An illustration of the principles behind stereographic
projections. The left-hand side shows the geometric process
while the right-hand side depicts the original surface and the
resulting stereographic projection separately.

http://www.shadedrelief.com/natural3/pages/textures.html
http://www.shadedrelief.com/natural3/pages/textures.html

stereographic
projection

Viewpoint'

FIG. 4. A three-dimensional illustration of stereographic pro-
jections. The transformation of a straight line on the spherical
surface to stereographic projection is illustrated in figure 3.

Mathematically speaking, the stereographic projection
relates spherical coordinates (6, ¢) to planar coordinates
(X,Y). As illustrated in figure 4, the stereographic pro-
jection is dependent on its viewpoint. This is handled
by letting the center of the stereographic projection (i.e.,
where X =Y = 0), transform a specific spherical coordi-
nate (6o, ¢o). The relationship between (6, ¢) and (X,Y)
is exemplified in figure 5. The so-called coordinate trans-
formations are the mathematical functions that relate
(0,9) to (X,Y) and vice versa.

X = ksinfsin(¢ — @) (2a)
Y = k(sinf cosf — cos b sinf cos(¢ — ¢o)) (2b)

0 = 0y — arcsin [cos B cos by + Y sin (3 sin 90} (3a)
p

B Xsin

¢ = ¢o + arctan [P sin @y cos 8 — Y cos O sin 5} (3)
(4a)
(4b)
(4c)

FIG. 5. The planar coordinate system of a stereographic pro-
jection centered about the spherical coordinate (8o, ¢o).

2. Pictures

We are now going to take stereographic projection one
step further and look at pictures. [1] A normal camera is
not able to project the entire spherical surface onto the
picture, the boundaries of the projection is dependent on
the camera’s field of view (or FOV).

FOV, denoted by «, is defined as the maximum angular
width of the picture:

Qp = ®max — Pmin (5)

This introduces new coordinate ranges on 6 and ¢:

Qg = amax - emirn

(6 7] (67:)
— << 2L
9 = ()f27

With limitations on 6 and ¢, the stereographic projection
introduces equivalent limitations on X and Y:

—%w—%é% (6)

o, 2sin(ag/2) (72)
max/min 1+ cos (Ot¢/2)

o, 2sn(ae/2) (7b)
max /min 1+ cos (ap/2)

3. A Little Linear Algebra

We are now going to take a look at a two-dimensional
surface. By now you should be (somewhat) comfortable
describing a plane using either (z,y) rectangular coor-
dinates or (r,6) polar coordinates, both of which have
many useful properties. However, these are not the only
two ways of describing a two-dimensional surface. In this
section we are going to look at a third way of describing
a two-dimensional surface, which in reality is actually a
generalization of the standard (z,y) coordinate system.

It is common to represent the Cartesian coordinate
vectors Z and ¢ in the following way:

= (é) and § — (?) 8)

Using these coordinate vectors you can describe any 2-
dimensional vector d as a linear combination:

d= @z) —diddg=(d-Di+ (-9 ()

However, as you will learn in MAT1120, describing an
arbitrary 2-dimensional vector as a linear combination is
not something that is unique to Z and §. As long as you
have 2 unit vectors in the same plane, say %1 and 9, you
are essentially good to go:

d= (d . ﬁl)ﬂl + (d . ’112)1)2 (10)

But what are 4; and 4?7 They form what is known as
a basis for R?, you will study the details in MAT1120.
Our interest lies in the connection between (u1,uz) and

(z,9).

Let us quantify the relationship between (u1,us) and
(z,y) using figure 6: The unit vectors 4y and s can be
viewed as Z, rotated about the origin by angles ¢; and
¢2. Note that ¢o < 0 in figure 6.

u

FIG. 6. Changing coordinate systems from (z,y) (black) to
(u1,u2) (red). The vector d must therefore change to appro-
priate coordinates.

Using figure 6, you should be able to derive the follow-
ing relations between the two coordinate systems:

iy = (COS (bl) and o = ((ff)S(bg) (11)

sin ¢1
This allows us to explore dy =d - 4; and do = d - us:

dy = dy cos 1 + dysin ¢y
dy = d cos ¢2 + dy sin ¢

or in matrix form:

(dl) _ (cos ¢1 sin ¢1> (dx) (12)
do cos ¢ sings) \ dy

What is equation (12)? Well, it transforms the vector
d from the (x,y) plane to the (u1,us) plane. Note that
it is misleading to denote (x,y) and (u1,us) as separate
planes as this is actually not the case. They both describe
the same plane, each using a different set of coordinate

vectors. If you want to transform d from the (uy,us)
plane to the (x,y) plane, the equivalent transformation

is
dI o 1 sin gf)g —sin ¢1 dl (13)

dy sin(gg — ¢1) \—cospz cosgr) \da
If you’re having a difficult time understanding the co-
ordinate transformations, try to set ¢ = ¢1 + 90°. The
result is the “normal” rotation matrix you may have en-

countered before. Our coordinate transformation is ac-
tually a generalization of the rotation matrix.

4. RGB images and PNG files

Before embarking on the challenges, you need to learn
handling PNG-files.

In a png-file, colors are represented by three integers
from 0 to 255 for each pixel. These are the RGB (Red-
Green-Blue) values. The color of the pixel is a combi-
nation of these three colors weighted by each of these
integers. As an example red is represented by (255, 0, 0),
white would be (255, 255, 255).

Here is an example code that shows how you can open
and manipulate png files in python using the PIL library:

from PIL import Image
import numpy as np

img = Image.open(’example.png’) # Open existing png

pixels = np.array(img) # png into numpy array
width = len(pixels[0, :])

redpixs = [(255, 0, 0) for i in range(width)] # Array of red pixels|
pixels[500, :] = redpixs # Insert into line 500
img2 = Image.fromarray(pixels)

img2.save(’exampleWithRedLine.png’) # Make new png

As you may well see, this code opens a png file and
makes a new png with a horizontal red line at row 500.
Notice that images have the y-coordinate as their first
index, and the z-coordinate as their second index.

CHALLENGES

In order to perform the correct boosts, your spacecraft
needs to be able to orient itself. The orientation includes
the rotational orientation of the satellite, its current ve-
locity and its current position.

A. Generating Reference Pictures

The stars in the night sky are very distant compared
to the distances within your solar system. We are there-
fore going to assume that the night sky remains constant
over the course of this project. Knowing that the night
sky is constant allows us to generate a library of refer-
ence pictures that cover the entire celestial sphere. Later
when the satellite takes a picture of the night sky, you
will be able to compare this picture to your reference
pictures and finally deduce the rotational orientation of
your spacecraft.

To generate the reference pictures we are going to use a
brilliant satellite that is orbiting your home planet right
now! You can access data from this satellite using the
NumPy array file himmelkule.npy, which contains a pix-
elized spherical RGB image of the sky. Each (6, ¢) coor-
dinate on the celestial sphere is mapped to a specific pixel
index using the static method get_sky_image pixel
of the SpaceMission class. For each pixel there are
three integers, red, green and blue. Note that the
himmelkule.npy array actually has 5 integers for each
pixel, the first two are not in use, you obtain the R, G
and B values from index 2, 3 and 4.

1. The Pizel Grid

This first point is optional for those working alone:
Use the stereographic projection transformations in order
to show equations (7). FOr Zyax/min 100k at the case
when y = 0. Likewise for ¥ ax/min 100k at the case when
x = 0. These cases greatly simplify the trigonometric
expressions.

2. Generating Pictures

Let us start by generating a flat picture from a part
of the spherical picture. For comparison with your pro-
jection you will use the file samp1e0000.png which is a
stereographic projection with FOV ay = ag = 70° cen-
tered at the position ¢ = 0° and § = 90°. Note that
6 = 90° corresponds to the plane of your solar system.

1. Open the picture sample0000.png using the PIL
module and determine the size of the picture in
pixels.

2. Find the full range of the coordinates (X,Y") in the
picture.

3. In order to try to reproduce this picture making
a stereographic projection form the sphere, gener-
ate an (X,Y) grid, then use this to generate the
corresponding (6, ¢) grid.

4. Use your coordinate grids, get_sky_image_pixel,
and himmelkule.npy in order to generate the full
RGB picture centered about ¢ = 0° and 6 = 90°.
The picture you generate is supposed to be the
same as sample0000.png, use this as a reference
to see if you have generated the picture correctly.

3. Generating 360 Pictures

This point is not compulsory, it depends on how you
choose to solve the next challenge. But in most cases
this will become very useful: Use the same method and
generate 360 flat pictures, each picture centered about
¢ = i, where ¢ = 0°,1°,2°,...,359°. Do not forget to
save the data! You only need to generate the reference
data once. These pictures may be useful in the next step.

B. Image Analysis

With your reference pictures handy, your next task
is to write a general function that determines the angle
Onew that a new picture is most likely centered about.
The function structure should be similar to this:

input

png picture ‘ Pnew

|output

There are several ways of comparing two images, one
possibility is using a least squares approach. In this way
you are essentially measuring the difference between the
RGB values of the two images.

C. Doppler Shift Analysis

In Part 2 of the project you analysed the radial velocity
of a star in order to study the planets in its solar system.
You are now going to use the radial velocity of two stars
in order to study your own spacecraft’s velocity.

The wavelength of the H, spectral line is 656.3 nm as
seen from a rest frame. Assuming your spacecraft has
used your software from challenge B in order to deter-
mine its rotational orientation, it is now able to rotate
and point its equipment towards any known star in the
night sky. Using onboard equipment, your spacecraft is
able to measure the Doppler shift A\ in the H, spectral
line.

You need two stars in order to resolve the x and y com-
ponents of your spacecraft’s velocity with respect to your
sun. The reference stars have been pre-determined by a
team of excellent astronomers from your home planet.
You can obtain the ¢ coordinates, ¢ and ¢s, of the two
stars from the star_direction_angles attribute of your
SpaceMission instance. Additionally, the Doppler shifts
of the two stars as seen from your sun are available in
the star_doppler_shifts_at_sun attribute.

1. The Process

1. Find a formula that converts wavelength data into
radial velocity with respect to a reference star.

2. Use your formula to determine the radial velocities
of your sun with respect to the reference stars.

3. Assume for the time being that your spacecraft’s
spectrograph measures A\ = 0 for both radial ve-
locities. Use your formula again and determine the
radial velocities of your spacecraft with respect to
the reference stars. Then find the (¢1, ¢2) velocity
components of your spacecraft with respect to your
sun.

4. Transform your (¢1, ¢2) velocity into (x, y) velocity.

2. The General Case

Rewrite your code for C1 into a function that accepts
the Doppler shift of the reference stars (as measured by
your spacecraft’s spectrograph) as an input. The struc-
ture should look something like this:

Here, v, and v, are the velocity components of your
spacecraft with respect to your sun (the “normal” veloc-

ity).

input ‘output
AN from the star at ¢1| vs

A from the star at ¢2| vy

To test your function, think of a situation in which you
know both the spacecraft’s velocity and the correspond-
ing AX values.

D. Spacecraft Trilateration

Trilateration is the process by which one determines
the position of a body using measured distances to known
positions.

In this challenge, you are going to do exactly this. Your
task is to write a function that determines your space-
craft’s position based on a list of distances from your
spacecraft to the planets and the sun, measured at a spe-
cific time.

Using an onboard radar array, your spacecraft is capa-
ble of measuring the distance between itself and another
object. Fortunately, the radar is installed with automagic
planet-recognition software, meaning it will include the
radii of the planets and sun into its calculations. The
distances measured by the radar are from the spacecraft
to the center of the planets/the sun.

The function structure should look something like this:

input ‘output
Time of measurements T
List of measured distances Y

Here, x and y are the position components of your
spacecraft with respect to your sun.

Also, the list of measured distances is given in AU and
will be structured in the following way:

List of [dist to

_ dist to dist to
measured distances

planet 0 planet n sun

This challenge is not entirely trivial and you have not
been given much to start with. It is up to you to design
a numerical algorithm. Try to come up with a rigorous
way of determining the position to any given degree of
accuracy. Meanwhile, try to reduce the number of com-
putations as much as possible by using the information
given to you.

MANUAL ORIENTATION

Congratulations, you have now completed Part 4! The
final step is to verify that your software is accurate, you
are therefore going to complete a manual orientation:

1. The first step is to use the satellite’s onboard
equipement in order to gather the necessary data.
This is done using the following methods of your
SpaceMission instance: take_picture (rotational
orientation), measure_star_doppler_shifts (ve-
locity) and measure _distances (position).

2. The next step is analyse the data using your orien-
tation software.

3. The final step is to use the
verify manual orientation method in or-
der to verify your calculations have been done
correctly.

Further details on how these methods work can be found
in the documentation of the ast2000tools package.
Note that the manual orientation begins at the exact mo-
ment you finish the launch, i.e. when you are in space.

AUTOMAGIC ORIENTATION

After completing the manual orientation your software
will be uploaded to the satellite, which allows it to ori-
entate itself automatically. What this means is that you
only have to perform the manual orientation once! Fol-
lowing the manual orientation, you can easily run the
software at any point during the trip with a simple com-
mand.

EXTRA CHALLENGE

If you love linear algebra, this one is for you. [2]

1. You may have noticed that equations (12) and (13)
are linear transformations. Let

A — [cos ¢1 sin ¢q
COS (2 Sin ¢
and find A1,

2. Provided you want to describe a two-dimensional
plane, can you find a reasonable argument for why
17 and 1o cannot be parallel? Are 4y and s lin-
early dependent?

https://lars-frogner.github.io/ast2000tools/

FIG. 7. Orbitally oriented, trajectory-planning, motivational duck.

AST 2000 - Part 4
Tips, Hints & Guiding Questions

Do not be frightened by the mathematics in Part 4! Remember that the coordinates for each picture’s center
You have been equipped with all the necessary theory. In should be:
addition to the mathematics and problem solving skills
you will learn in this part, our intention with Part 4 is for X=Y=0
you to realise how large the field of Astronomy really is.
In astrophysics, you need to know a little bit of everything which is equivalent to:
in order to do a little bit of anything. -

0o = 5’ ¢o=1=0°1°,...,359°

[1] Technically, there’s not much else to do with pictures.
[2] Personally, I find it to be very straightforward.

	AST 2000 - Part 4Onboard Orientation Software
	Abstract
	Goals
	Relevant mathematics
	The Spherical Coordinate System
	Stereographic Projection
	Coordinate Transformations
	Pictures

	A Little Linear Algebra
	RGB images and PNG files

	Challenges
	Generating Reference Pictures
	The Pixel Grid
	Generating Pictures
	Generating 360 Pictures

	Image Analysis
	Doppler Shift Analysis
	The Process
	The General Case

	Spacecraft Trilateration

	Manual Orientation
	Automagic Orientation
	Extra challenge
	References

