AST 2000 - Part 9
General Relativity

Welcome to Part 9 of the AST2000 Project. The goal of this part is to address several consequences
of general relativity and Schwarzschild geometry such as gravitational time-dilation, motion in strong
gravitational fields and the effect of gravitation on light.

RELATIVITY EXERCISES

You have now landed on your destination planet and
you start making relativity experiments on the surface of
the planet. Before you continue reading, you now need
to read section 7 of lecture 2A remembering that you are
supposed to generate the xml files yourself. Refer to the
documentation for the ast2000tools package to learn
about the RelativityExperiments class that you will
use to generate relativity xml files for MCAst.

For part 8 and part 9 you need to have a partner stu-
dent for some of the exercises. Even if you work in a
group, you need a partner group or partner student. You
may do everything alone, but it requires more work. For
the exercises where you need a partner and each partner
has her/his own frame of reference, you are only supposed
to report on the exercises relevant for your frame (for the
exercises which are different depending on the frame).

You will create a set of videos of the experiments you
are performing on the surface of your planet. You will
need to decide between you and your partner (or your
group and your partner group) on which planet you will
do the experiments: the planet where you have landed
or the planet where your partner has landed. You may
also do some experiments on your planet and others on
your partners planet, but it is very important that for the
same experiment, you use the same planet for all frames
of reference.

In part 8 and 9 you are not supposed to make a scien-
tific paper. Instead your task is to make an educational
text, similar to what the bloggers have been doing in pre-
vious parts. Some of the exercises (mostly those includ-
ing calculations) have been marked @ which means that
you can do these on paper like you do for the exams (no
need for much text, just enough to understand what you
are doing), scan these and deliver these as separate files.
It is only to see that you have actually done it. The ones
marked V are the ones on which you mainly will be eval-
uated. These will normally contain a question asking you
to summerize what you did in the previous questions with
words or they are questions testing your understanding.
For each exercise separately, you should make a
short text which includes the following sections:

1. Introduction: This part should shortly introduce
the problem and make the reader being able to un-
derstand the main question(s) you want to solve
without having read the exercise text.

2. The situation: what are the objects/events in this

exercise and what are the main questions you would
like to test/answer (describe this with words) using
these objects/events. When relevant you may also
include a table with events and positions here.

3. Method: Use text only to describe the main phys-
iocal principles you were using when solving this ex-
ercise and why these principles are relevant. Then,
you may include some very few basic equations here
with words explaining why these are relevant and
how you will use these to solve the problem. (you
should not do the calculations here, unless the V
question asks for it!)

4. Conclusions: shortly summerize the conclusions,
what did you find and in particular: what was the
purpose if this exercise, what are you supposed to
learn? What is the physics behind your results?
Somebody who has not seen the exercise should be
able to understand.

5. Specific questions: If they are not already in-
cluded in the above points: Here the answer to the
remaining V questions should be included in one
fluent text. In most cases, these are already natu-
rally answered in some of the other sections above
in which case there is no need for this section.

You will be evaluated in the following way:

e The scanned hand-ins (or latex-typed if you prefer)
of the ®@-exercises will count 30%

e The Introduction and Conclusion sections together
will count 20%

e The “situation” section will count 25%
e The Method section will count 25%

e The “specific questions” section will be included in
the other relevant points.

In part 9, each exercise will be given the same weight,
except exercise 3 on the spaceship falling into the black
hole. In this exercise, each of the two parts will count as
an entire exercise. The total score will be the mean of all
8 exercises, but weighted in the following way:

T1+ T2+ X3q + T3p + T4+ X5 + X6 + 27+ Tg

totalscore =
8

where x; is the score of exercise i, x3, corresponds to
exercise 3, part 1 and x3;, corresponds to exercise 3, part


https://lars-frogner.github.io/ast2000tools

2. Moreover, if you have completed exercises 5,
6 and 8, and got at least 75% right, your total
score for part 9 will be multiplied with 1.1 before
rounding up.

EXERCISE 1

Relevant theory: sections 1-4 of lecture note 2C.

Imagine a shell observer at shell r, pointing a laser pen
radially outwards from the central mass. The beam has
wavelength Agpen. Here we will try to find the wavelength
) observed by the far-away observer.
The frequency of the light emitted by the laser pen is
Vshell = 1/Atghen. The frequency of the light received by
the far-away observer is v = 1/At. Here Atghen and At
is the time interval between two peaks of electromagnetic
waves.

1. V Show that the difference in time interval mea-
sured by the two observers is given by

At — Atshell

(1-2%)
Hints:

e Imagine that a clock situated at shell r ticks
each time a peak of the electromagnetic wave
passes.

e We have already derived this equation in the
lecture notes. We are asking you to repeat the
deduction for our special case.

2. V Use this fact to show that the gravitational
"Doppler’ formula, i.e. the formula which gives you
the wavelength observed by the far-away observer
for light emitted close to the central mass, is given

by
AN A — Aghell 1
= P— —_— 1
Ashell Ashell (1 - 24)
3. V Show that for distances r > 2M this can be
written as
AN M
Ashell r

Hint: Do you see what order your Taylor expan-
sion should be?

4. © We will now study what wavelength of light an
observer far away from the Sun will observe for the
light with wavelength Ajax = 500 nm emitted from
the solar surface.

(a) Find the mass of the Sun in meters. Then find
the ratio M/r for the surface of the Sun.(can

you see now why we made the Doppler expan-
sion for small M /r?)

(b) Find the redshift AX/Agpen measured by a
far-away observer. Does the apparent color
of the Sun change due to the gravitational
redshift?

For light coming from far away and en-
tering the gravitational field of the Earth, an
opposite effect is taking place. The light is
blue shifted.

(c¢) Find the ratio M/r for the surface of the
Earth.

(d) Find the gravitational blue shift for light arriv-
ing at Earth. Does this change the apparent
color of the Sun?

Note 1: Did you notice that the two observers
changed roles?

Note 2: Is it nessesary to use the answer from
4b in 4d?

A quasar is one of the most powerful sources of energy

in the universe. The quasars are thought to be powered
by a so-called accretion disc: Hot gas circling and falling
into a black hole. The gas reaches velocities close to the
speed of light as it approaches the horizon.
Assume that we observe an emission line at A = 2150 nm
in the radiation from a quasar. Assume also that we
recognize this emission line to be a line which in the lab-
oratory is measured to occur at A = 600 nm.

5. © Find from which distance r (expressed in terms
of the black hole mass M) from the center the ra-
diation is emerging. Give some arguments explain-
ing why this observation supports the hypothesis
of quasars having a black hole in the center. We
assume that the Doppler effect due to the quasar’s
movement with respect to us has been subtracted.

6. © Imagine you are a shell observer living at a shell
at r = 2.01M very close to the horizon of a black
hole of mass M. Can you use optical telescopes to
observe the stars around you? Which part of the
electromagnetic spectrum does your telescope (or
your eyes) need to detect?

EXERCISE 2

Relevant theory: section 5 of lecture note 2C.
In this exercise we will use the principle of maximal aging
to deduce the law of conservation of angular momentum
in general relativity. In the text you have seen three
examples of this kind of derivation and we will follow
exactly the same procedure here. Before embarking on
this exercise, please read the examples in the text care-
fully. Note: In this exercise we should in principle
take the derivative with respect to all space (x,y
and z), but we have already found in the lecture
notes that if we only have radial movement, we



FIG. 1: A sketch of exercise 2

can deduce the expression for energy per mass.
We are therefore only interested in the angular
derivative here..

Use figure 1 in this exercise: We will study the mo-
tion of an object which passes through the three points
(r1,01), (ro2, ¢2) and (r3, ¢3) at times ¢, to and t3. We
fix tq, to, t3, 1, ro and r3 as well as ¢, and ¢3. The free
parameter here is ¢o. We assume that between (11, ¢1)
and (72, ¢9) the radius is r = r4 (we assume the distance
between these two points to be so small that r is con-
stant) and between (ra, ¢2) and (rs, ¢3) we have r = rp
(see again figure 1).

1. © Use the Schwarzschild line element to show that
the proper time interval from ¢; to t3 can be written
as

ATi3 =73 — 71 = AT19 + ATo3 =

2M Ar?
\/<1 - M) Atf, - 1 sar — TaAdh
ra
2M Ar2
+ \/(1 — @) Atsy — —337 — B0,
rB

2. © Use the principle of maximal aging to show that
r3A¢15 _ 5 Ad23
AT12 ATQg ’
and use this to argue that
do
27
" dr

is a conserved quantity.

3. © Show that his quantity can be written as

Vshell" Vg shell

using shell observer speed and tangensial velocity
V¢ shell -

4. © Show that this is equivalent to classical spin per
mass, L/m, in the limit where velocities are small.

5. V Summerize what you did in the exercise: Make
sure to explain the purpose, the main principles,
the main idea, the way you solved it, the results
and the significance of the results. You are not
allowed to use any equations, not even one!
Figures however, if they can help you explain
better, are welcome.

EXERCISE 3

The first part of this exercise is based on lecture note
2C, the second part is also based on lecture note 2E.

Part 1

Relevant theory: sections 1-6 of lecture note 2C.

Go to MCAst and load the xml files that you gener-
ate by calling the black hole descent method with
consider_light_travel=False. You and your partner
should agree on who does which frame. Make sure you
both use the same seed, agree on which of your seeds you
will be using. In the planet frame you are positioned
in a satellite close to a planet which orbits a black hole
at a distance of 1AU. The satellite is not moving with
respect to the planet. Another space ship is falling
freely radially inwards towards the black hole having a
velocity v at the moment when it is passing you. It is
emitting blue light signals (seen from the falling space
ship frame) with a fixed time interval (in the falling
space ship frame) between each signal.

In the other frame, the falling frame, you are
positioned in the falling space ship, looking at your
friend positioned close to the planet who is sending red
light signals (seen from the planet frame) with a fixed
time interval (in the planet frame) between each signal.

The mass of the black hole, the locally observed shell
speed of the falling space ship at 1 AU from the black
hole as well as the time interval between each signal in
the frame which emits the signal is given in the upper
left corner.

Important: As in most other xml-videos in this
course, the light travel time from the objects to the cam-
era is not considered, meaning that you see all events
instantaneously. This would correspond to an infinite
light speed for light travelling from the objects/events to
the camera. This effect is more visibile here than in most
other videos. In part 2 of this exercise, you will correct
the answers and the video from part 1 taking into account
the real light speed.

1. V Characterize each of the two observers as either
far away observer, shell observer or freely falling
observer.

2. V Use the general expression for E/m as well as
some known transformation relations between far-
away and shell quantities to show that the energy
of the falling space ship can be written as

E 1 2M dtsnen
m r dr
and find physical interpretations of the quantities

r, dtshen and dr. Explain well the physics of what
you do and why you can do this.



3. V Show that for a shell observer at position r the
above expression becomes

E 2M
— =1\/1 = —"%nen
m r

where Yepen = 1/4/1 _Us?hell where vgne corre-

sponds to the locally observed shell velocity at a
distance r from the black hole. Remember that
you may use a local intertial frame, and thereby
special relativity, during a short moment when the
space ship passes the shell observer. (How would
we write digpen/dr in special relativity? If the shell
observer is standing on the ground and the space-
ship is a train passing, can you see the analogy to
the exercises in special relativity?) Explain well the
physics of what you do and why you can do this.

4. @ Calculate a number for the energy per mass E/m
of the falling space ship.

5. @ Use the expression for energy to show that the
relation between a time interval A7 in the falling
space ship and a time interval At on the far-away-
clock, can be written as

_2M

AT = E/m At

6. © Use the relation between far-away-time and shell
time to find a relation between a time interval in
the falling space ship, A7, and a time interval in
the planet frame, Atgpenr.

We will now assume that the time interval between two
emitted signals are short, so short that we can approxi-
mate the distance r between the space ship and the black
hole as constant during this time interval. We will in the
following use our expression above to find the (assumed
constant) distance r between the space ship and the cen-
tre of the black hole during the time between two emitted
signals. Remember that in both frames, the light signals
are emitted with a constant known time interval between
each signal in the frame of reference of the emitter.

7. © No matter which frame is yours, you should now
use the light signal you receive from the other ob-
server to find the distance r from the black hole to
the falling space ship in the time period between
the two first signals, as well as between the two
last signals received. Give the answer in units of
AU and in units of Schwarzschild radii. Use both
numbers to judge whether your answer may be rea-
sonable or not (give arguments).

8. V Summarize shortly (5-10 sentences) without any
equations what you have been doing so far and
which results you got.

9. V Before you meet to compare videos, can you
imagine how this looks from the other observer?
How do you think the other observers sees your
light signals? Focus in particular on the frequency
and color of the signals. Use the equations that you
already found to argue. Now meet to compare.

10. V After meeting, you should discuss the result seen
from the space ship frame: the time interval be-
tween each received light interval seems to grow
shorter and shorter as you approach the horizon.
Play the frame 2 video at very slow speed during
the last light signals. Could this really be? What
will happen as you hit the horizon? Is the video
correct? If not, what is wrong?

Part 2

In order to do this exercise, you need to have read sec-
tions 1 and 2 of lecture note 2E. This time you will use the
xml files generated by calling the black_hole_descent
method the with consider_light_travel=True. These
videos are the same as the videos used in part 1, with one
important difference: now the light travel time has been
included. In part 1, you assumed the light to travel at
infinite speed such that you saw the light signals imme-
diately as they were emitted. Now you see the light sig-
nal when it actually reaches you, this is what you would
really see. As the light signals travel through a strong
gravitational field, effects which we have learned about
in this lecture will be at play. Please do not watch the
videos for this exercise yet.

You do not need your partner for this part of the ex-
ericse.

1. V Watch again the frame 1 video (observing the
space craft from the shell) from part 1, do not
look at the corresponding video for part 2 yet. Use
equation for radial light speed v, deduced in lecture
note 2E to judge what you think will change (no
calculations, just considerations) in the new video
and how.

2. V Now watch the frame 1 video for part 2 which
takes into account light travel time. What differ-
ences do you see by eye? (if any?)

3. V In addition to the xml-files, some text files are
also generated for the cases with and without light
travel time considered. These contain the same in-
formation which is printed during the video: the
light signal number and the time when you re-
ceive the signal. Use the numpy function x,y
= np.loadtxt(’name_of txt_file.txt’) to load
the information into arrays, where x is the light
signal number and y is the corresponding time of
reception. Here is your task: Plot the time dif-
ferences (you need to convert to time differences)



between the reception of each light signal as a func-
tion of signal number for the case with and without
light travel time in the same plot. Explain the dif-
ference beteween the two curves. Was this what
you expected?

4. © Watch the video corresponding to frame 2 (from
the space craft) without light travel included (part
1), do not yet look at the video that includes light
travel. Show that the distance Ar, that a photon
approaching the space craft travels during a time
interval A7 on the space craft clock is given by

1-2M 5
Ary=———"—Ar

T

where 7, is the position of the photon and r is the
position of the space craft. Use this equation to
judge what you think will change (no calculations,
just considerations) in the new video (part 2) and
how.

5. V Watch the video corresponding to frame 2, with
both light travel included and not included. Do you
see a difference and was this difference as expected?

6. V Now use the text files for frame 2 to plot the
time intervals for part 1 and part 2 in one plot as
above. Can you explain the difference between the
curves?

EXERCISE 4

Relevant theory: sections 1-6 of lecture note 2C.

In figure 2 we show a spaceship at position (r,¢,t) in
Schwarzschild coordinates around a black hole of mass
M. The spaceship has used all its fuel and can therefore
not use its engine, it is falling freely. We will now study
the motion of the spaceship step by step. We will ask the
question, what is the new position (r,¢,t) in Schwarz-
schild coordinates of the spaceship after a time interval
A7 has passed on the wrist watches of the astronauts?
By increasing A7 and thereby the other coordinates step
by step, we will be able to follow the motion (r, ¢) of the
spaceship.

1. © We will start by finding an expression for the
increase in far-away time At when the time on the
astronauts wrist watch increases by Ar. Show that

E/m
(1-27)

where E/m is energy per mass of the space ship.

At = AT.

2. © Show that after a proper time interval At, the
space ship has moved an angle

L/m
2

Ap = AT.

g

dr

r=2M

FIG. 2: For exercise 4: The spaceship is out of fuel.
The engines stop. What will be the next movement in r
and ¢ direction?

where L/m is the total angular momentum per
mass of the space ship.

We have already obtained the displacements Ag¢
and At per proper time interval A7. Now we need
to find the radial displacement Ar.

3. © Using the two previous expressions, the relation
between proper time and space time interval as well
as an appropriate expression for As, show that

EXERCISE 5

Relevant theory: section 7 of part 2C.

Now open the xml file generated by calling the gps
method.

In the video, you are situated at a fixed point, some-
where at the equator of a planet. The mass and radius of
the planet is given in the upper left corner of the video.
Two GPS satellites are passing above you in the sky, con-
tinously sending messages about the (x,y) position and
time (measured on the satellite clock) specifying when
and where the signal was sent. The satellites go in a cir-
cular orbit around equator. Since all positions, both for
the satellite and observer are at the equator, we will use
a 2-dimensional (x,y) system to denote all positions. The
origin of the system is the center of the planet. During
the video, the camera is fixed at your position, but the
camera angle changes so that it follows the two satellites.
Note that you even receive signals from the satellite when
they are below the planet.

We assume that your planet clock and the satellite
clocks are synchronized at the beginning of the video.
Your main task in this exercise is to use the signals sent
from the satelittes to determine your (x,y) position on
the planet.

In this exercise, precision is of high importance. In
order to get consistent results, you need to use the values



of constants which were used to create this video. In the
constants module, look up the value c_km_pr_s for the
speed of light in km /s and G for the gravitational constant
in SI units. In all your calculations you need to use
all digits given. This also applies for the times and
positions which you find in the video. If you omit
some digits you loose the necessary precision in order to
see the small effects of general relativity. We will assume
that the planet is not rotating, meaning that your (x,y)
position is fixed.

1. © Use information given in the video to find the
height of the orbit of the satellites.

2. © Use information from the video as well as some
celestial mechanics to fint the orbital velocity of the
satellites.

3. © Now choose a very early moment in the video,
one of the very first frames which are displayed:
Write down the position and time signals which you
receive from both satellites at this moment. You
must also write down current time at the planet at
this moment when you receive the signals. Use this
information to infer your (x,y) position.

Hints:

e We have already done some of the work in this
lecture note. Remember that the time sent
from the satellite is the time when the satellite
sent the signal (on the satellite clock), whereas
the planet time is the time when you receive
the signal. For the moment, please ignore all
relativistic effects.

e Assume the position of the satellite is given
by 7at and your position is 7. Then you know
how to write |Fut — 7] in terms of At. You
also know how to write |Fs,y — 7] in terms of
the angle a between 75, and 7.

e Use angles and some vector properties (the law
of cosine) to find the solution.

e You will need both satellites to find your po-
sition. You end up with two possible solutions
if you only use one.

4. © Now you should take into account relativistic ef-
fects: both the gravitational and special relativis-
tic effects should be included. You know that the
clocks onboard the satellites tick with a different
rate than your clock. In order to get your correct
position, you need to derive the time when the sig-
nals were sent measured on the planet clock.

5. © Now use your new times to find your position.
With how many meters did you miss your position?

6. © Pick a moment towards the end of the video,
preferably one of the very last frames of the video.
Repeat all the previous exercises in order to find
your position with and without correction for rela-
tivistic effects.

\

FIG. 3: For exercise 6: Rocket launched from shell
r = 20M inwards at an angle 6. Note: figure not to
scale.

7. V You should have found a considerably larger de-
viation in the latter case. Why? What would hap-
pen if you repeated your position estimate in a few
days? Would GPS still be useful? Before answer-
ing these questions, make a short summary (a very
few sentences) of you results in this section.

EXERCISE 6

Relevant theory: All sections of part 2D.

A rocket is launched from shell at » = R = 20M
around a black hole with mass M. The rocket has the
velocity vghen = 0.993 and is launched with 8 = 167°
where 6 is defined as the angle from the radial vector to
the velocity vector as seen in figure 3.

Just after launch the engines stop working. The astro-
naut therefore fears that his fate may lie within the black
hole. In this exercise we will examine whether the rocket
will be captured by the black hole or not. The rocket’s
angular momentum is L and the mass of the rocket is m.
A relation that may come in handy is

dzx dr  dtsnen

% o dtshell dr

where z can be any quantity.

1. V Sketch a typical gravitational potential for a
black hole. What criterion needs to be fulfilled for
an object in free fall to avoid being absorbed by
the black hole? What quantities do you need to
calculate in order to check this criterion?

2. © You should have found that one of the quanti-
ties necessary to check the criterion is the energy



per mass of the rocket. Use the general relativistic
expression for E/m to show that the total energy
per mass of the rocket can be written as

E_ _M
m— R’Yshell

where Yghen = 1/ \/l—vfhen. Hint: Remember
that for short time intervals dtgnen, the shell ob-

servers can use special relativity. How would we
write dtspen/d7 in special relativity?

3. © Another quantity needed to check the criterion

is the value of the potential at the maximum: Use
the general relativistic expression for the effective
potential to show that the minimum and the max-
imum of the effective potential are located at the
following distances(measured in Schwarzschild co-
ordinates) from the black hole

(L/m)? [ 12Mm2
Textremum — W (1 + 1-— W) .

Use your earlier draft to determine which of the two
extrema has to be the maximum.

4. © Clearly, in order to calculate the latter quantity,

we need angular momentum per mass: Show that
the angular momentum per mass for the rocket can
be written as

L 10

— =77~ = R¥%nhenVshen sin 6.
m dr

. 'V Insert numbers in the expression for L/m.
Thereafter plot the potential for the rocket using
r in units of M on the x-axis and Vog/m on the
y-axis. Mark the maximum effective potential and
draw a horizontal line for the total energy per mass.
Use the information from the plot to tell if the
rocket is captured by the black hole and explain
how you use the plot.

6. © If he is captured by the black hole, how long does

it take on the wristwatch of the astronauts to reach
the singularity from the moment he enters the hori-
zon? For simplicity ignore the angular momentum
of the rocket L/m = 0, use the black hole in the
center of the Milky way with mass M =~ 4 x 10° M,
and give the answer in seconds.

Important hint: In this exercise E/m # 1 and
you can therefore not copy the result in the lecture
note. Remember that you can use ’physics math’
and exchange A with infinitesimals in an equation
linking Ar and A7. For the integral, do yourself a
favor and use an online calculator.

. V What will happen with the astronaut just be-
fore entering the singularity? Draw the gravita-
tional forces on the astronaut (you can’t really

use forces but they are easier to draw and visu-
alize than spacetime geometry). Which shape will
he/she have just before reaching the center?

EXERCISE 7

This exercise is optional for those working alone

Relevant theory: All sections of part 2D.
The rocket has entered the horizon and is falling towards
the singularity, miraculously the engine starts working,
is all hope truly lost or is there a way to escape? To
study the possibility of escape the astronaut emits two
light beams, one towards the central singularity and one
backwards away from the singularity.

In order to study how these beams of light are moving
we need to write the Schwarzschild line element in terms
of our wristwatch time ¢’ instead of Schwarzschild time ¢.
We will make this change of coordinates already before
entering the horizon as this allows us to use shell frames
as a help. Assume in the following that we have velocity
only in the radial direction. Assume also that we started
falling freely with velocity v = 0 far away from the black
hole.

1. © Use the Lorentz transformations to show that
time intervals measured on the wristwatch of the
astronaut are related to time and space intervals
measured by shell observers as

/
dt’ = —Vshell VshelldTshell + Vshell@lshell,

where vgpe1 and Yshen are based on the local velocity
of the astronaut measured by the shell observer at
the shell which the spaceship passes.

2. © Use the expressions relating shell coordinates and
Schwarzschild coordinates to show that

she she d 2M
gt = — Ushellshend?’ o (1_ )dt.
(1-25) '

3. © At the end of lecture note 2D we deduced the
shell velocity vghen of a falling spaceship starting
with v = 0 far from the black hole. Go back and
check this expression. Insert it in the previous ex-
pression and show that

v/ 2M /rd

dt = ap — Y2M[rdr,
(1-2%)

4. © Use this to substitute dt with dt’ in the nor-

mal Schwarzschild line element and show that the
Schwarzschild line element can be written

ds* = dr* =

2M [2M
(1 - T) (dt/)2 -2 Tdt/d”/’ - d’/‘2 - T2d¢2.



o.

Note that this form of the Schwarzschild line ele-
ment does not have a singularity at r = 2M.

© We will now study the motion of the two light
beams that we emit, one forwards and one back-
wards. We know that for light, proper time is not
moving and d7 = 0. The light beams in this case
are moving only radially so d¢ = 0. Show that the
speed of the two beams can be written as

dr 2M
— =—4/— =L 1
dt’ r (1)

. V What is the physical interpretation of this equa-

tion, and more importantly can this speed be mea-
sured by any observers?

. V Based on equation 1 how does the speed of the

light beams change depending on the position of
the rocket both outside and inside the horizon?

. V What speed would observers inside the horizon

being at the position of the light beams actually
measure for the light beams? (explain your reason-
ing well!)

We now have all the information needed to disclose when-
ever the astronaut have any possibilities to escape. So
let’s determine his/her fate by first studying the fate of
the two emitted light beams.

9.

10.

11.

12.

V Use equation 1 to determine the direction of the
two emitted light beams inside the horizon.

V The world line of the spaceship and the direction
of the world lines for the two emitted light beams
(arrows) has been plotted in figure 4. Use your
previous results and equation 1 to explain why the
world lines for the light beams have the direction
they have for each point in the diagram.

V Looking at equation 1 and figure 4, can the light
beams exit the horizon?

V By looking at the worldlines of light as well as
the fact that light cannot escape the black hole.
Does the astronaut with a rocket that can reach a
velocity close to the speed of light escape the black
hole?

EXERCISE 8

Relevant theory: Section 2 of part 2E.

1. © Use the equations of motion for a photon writ-
ten in terms of the impact paramteter b (from lec-
ture note 2E) to show that the radial light speed

»
'

I
]
:
I2 r/M

FIG. 4: For exercise 7: Worldline of the rocket (marked
by a balls) and parts of the worldlines of the forward
and backward light beam (arrows) at several points
during the free fall into the black hole.

drshen /dtsnen observed by the shell observer can be

written as
1 (drepen : 1 (=21 @)
b2 \ dtshen B2 r2 '

2. © Look at equation (7) and (8) from part 2D and
show that we can define an effective potential for
light (based on the shell velocity rather than the
velocity dr/dt) as

3. V Sketch the potential (if you wish, by hand) and
explain if light may move in a stable orbit or not,
justify your answer using your drawing.
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