The following people have participated in creating these solutions: Nicolaas E. Groeneboom, Magnus Pedersen Lohne, Karl R. Leikanger NOTE: There might be errors in the solution. If you find something which doens't look right, please let me know

Partial solutions to problems: part 1A

Problem 1A. 5

1. Do the next two exercises first. When you understand how they are done, this one is easy using the same techniques. The answer is

$$
\langle v\rangle=\sqrt{\frac{8 k T}{\pi m}}
$$

2. We have

$$
P=\frac{1}{3} \int_{0}^{\infty} p v n(p) d p
$$

Starting from eq. 12 in lecture notes part 1 A , we have

$$
P=\frac{1}{3} \int_{0}^{\infty} \frac{p^{2}}{m} n(p) d p=\frac{1}{3 m} \int_{0}^{\infty} n\left(\frac{1}{2 \pi m k T}\right)^{3 / 2} 4 \pi e^{-p^{2} /(2 m k T)} p^{4} d p
$$

summarizing terms:

$$
P=\frac{4 \pi}{3 m}\left(\frac{1}{2 \pi m k T}\right)^{3 / 2} \int_{0}^{\infty} n e^{-p^{2} /(2 m k T)} p^{4} d p
$$

Perform the substitution $x=\frac{p^{2}}{2 m k T}$ such that

$$
p^{2}=2 m k T x
$$

and hence

$$
d p=\frac{1}{2} \sqrt{\frac{2 m k T}{x}} d x
$$

Substituting:

$$
P=\frac{4 \pi n}{3 m}\left(\frac{1}{2 \pi m k T}\right)^{3 / 2} \int_{0}^{\infty} e^{-x}(2 m k T x)^{2} \frac{1}{2} \sqrt{\frac{2 m k T}{x}} d x
$$

Summarizing again:

$$
P=\frac{2 \pi n}{3 m}\left(\frac{1}{2 \pi m k T}\right)^{3 / 2}(2 m k T)^{5 / 2} \int_{0}^{\infty} e^{-x} x^{3 / 2} d x
$$

where we have the integral

$$
\Gamma(n)=n \Gamma(n-1)=\int_{0}^{\infty} e^{-x} x^{n-1} d x
$$

giving the Gamma-function. For $n \in \mathbb{N}$, we have that $\Gamma(n+1)=n$! and $\Gamma(1 / 2)=\sqrt{\pi}$ such that $\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{1}{2} \sqrt{\pi}$. This function will
become very important when working with statistical physics and quantum mechanics, so it's in general a good idea to get familiarized and friendly with it as soon as possible. The Γ-function doesn't bite.. too much. Using that $\Gamma(5 / 2)=\frac{3}{2} \Gamma\left(\frac{3}{2}\right)=\frac{3}{4} \sqrt{\pi}$, then

$$
P=\frac{\pi^{3 / 2} n}{2 m}\left(\frac{1}{2 \pi m k T}\right)^{3 / 2}(2 m k T)^{5 / 2}=n k T
$$

3. We begin by determining the average energy of the gas:

$$
\langle E\rangle=\left\langle\frac{1}{2} m v^{2}\right\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle=\int_{0}^{\infty} P(v) \frac{1}{2} m v^{2} d v
$$

Inserting all values yields

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{0}^{\infty} e^{-\frac{1}{2} \frac{m v^{2}}{k T}} v^{4} d v
$$

Perform the substitution $x=\frac{1}{2} \frac{m v^{2}}{k T}$ such that

$$
v^{2}=\frac{2 x k T}{m}
$$

and hence

$$
d v=\frac{k T}{v m} d x=\frac{k T \sqrt{m}}{m \sqrt{2 x k T}} d x=\sqrt{\frac{k T}{2 m x}} d x
$$

Inserting

$$
\langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi \int_{0}^{\infty} e^{-x}\left(\frac{2 x k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m x}} d x
$$

or

$$
\begin{aligned}
& \langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi\left(\frac{2 k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m}} \Gamma\left(\frac{5}{2}\right) \\
& \langle E\rangle=\frac{m}{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} 4 \pi\left(\frac{2 k T}{m}\right)^{2} \sqrt{\frac{k T}{2 m}} \frac{3}{4} \sqrt{\pi}
\end{aligned}
$$

Summarizing:

$$
\langle E\rangle=\frac{3}{2} m\left(\frac{m}{2 \pi k T}\right)^{3 / 2}\left(\frac{2 \pi k T}{m}\right)^{3 / 2}\left(\frac{k T}{m}\right)
$$

or (finally)

$$
\langle E\rangle=\frac{3}{2} k T
$$

