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Partial solutions to problems: part 1A

Problem 1A.5

1. Do the next two exercises first. When you understand how they are done,
this one is easy using the same techniques. The answer is

-5
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Starting from eq.12 in lecture notes part 1A, we have

2. We have
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summarizing terms:
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Perform the substitution z = % such that
p? = 2mkTx
and hence
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Substituting:
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Summarizing again:
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where we have the integral
I'(n)=nl'(n—1) = / e " td
0

giving the Gamma-function. For n € N, we have that I'(n + 1) = n!
and I'(1/2) = /7 such that I'(3) = iT'(3) = 1/7. This function will



become very important when working with statistical physics and quantum
mechanics, so it’s in general a good idea to get familiarized and friendly
with it as soon as possible. The I'-function doesn’t bite.. too much. Using

that T'(5/2) = 3T'(2) = 2/x, then
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. We begin by determining the average energy of the gas:

(E) = <%mv2> = %m<v2> = /000 P(v)%vadv

Inserting all values yields
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Perform the substitution z = %mk%z such that
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and hence
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Inserting
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Summarizing:
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or (finally)
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